Sample records for molecular processes relevant

  1. The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Treat, Neil D.; Westacott, Paul; Stingelin, Natalie

    2015-07-01

    The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.

  2. RNA Surveillance: Molecular Approaches in Transcript Quality Control and their Implications in Clinical Diseases

    PubMed Central

    Moraes, Karen CM

    2010-01-01

    Production of mature mRNAs that encode functional proteins involves highly complex pathways of synthesis, processing and surveillance. At numerous steps during the maturation process, the mRNA transcript undergoes scrutiny by cellular quality control machinery. This extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins. Recent advances in elucidating the molecular mechanisms of mRNA processing have demonstrated the existence of an integrated network of events, and have revealed that a variety of human diseases are caused by disturbances in the well-coordinated molecular equilibrium of these events. From a medical perspective, both loss and gain of function are relevant, and a considerable number of different diseases exemplify the importance of the mechanistic function of RNA surveillance in a cell. Here, mechanistic hallmarks of mRNA processing steps are reviewed, highlighting the medical relevance of their deregulation and how the understanding of such mechanisms can contribute to the development of therapeutic strategies. PMID:19829759

  3. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, Daniel C; Ferreyro-Fernandez, Sebastian; Paul, Chandan

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gasmore » radiation and spectral radiation properties are important for engine-relevant conditions.« less

  4. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  5. Amphibian molecular ecology and how it has informed conservation.

    PubMed

    McCartney-Melstad, Evan; Shaffer, H Bradley

    2015-10-01

    Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems. © 2015 John Wiley & Sons Ltd.

  6. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  7. VAMPnets for deep learning of molecular kinetics.

    PubMed

    Mardt, Andreas; Pasquali, Luca; Wu, Hao; Noé, Frank

    2018-01-02

    There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.

  8. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  9. Update on conjunctival pathology

    PubMed Central

    Mudhar, Hardeep Singh

    2017-01-01

    Conjunctival biopsies constitute a fairly large number of cases in a typical busy ophthalmic pathology practice. They range from a single biopsy through multiple mapping biopsies to assess the extent of a particular pathological process. Like most anatomical sites, the conjunctiva is subject to a very wide range of pathological processes. This article will cover key, commonly encountered nonneoplastic and neoplastic entities. Where relevant, sections will include recommendations on how best to submit specimens to the ophthalmic pathology laboratory and the relevance of up-to-date molecular techniques. PMID:28905821

  10. Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes

    NASA Technical Reports Server (NTRS)

    Lam, K. S.; George, T. F.

    1979-01-01

    An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.

  11. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  12. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors.

    PubMed

    Gruter, Gert-Jan M; Sipos, Laszlo; Adrianus Dam, Matheus

    2012-02-01

    High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.

  13. Direct molecular dynamics simulation of Ge deposition on amorphous SiO 2 at experimentally relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Claire Y.; Zepeda-Ruiz, Luis A.; Han, Sang M.

    2015-06-01

    Molecular dynamics simulations were used to study Ge island nucleation and growth on amorphous SiO 2 substrates. This process is relevant in selective epitaxial growth of Ge on Si, for which SiO 2 is often used as a template mask. The islanding process was studied over a wide range of temperatures and fluxes, using a recently proposed empirical potential model for the Si–SiO 2–Ge system. The simulations provide an excellent quantitative picture of the Ge islanding and compare well with detailed experimental measurements. These quantitative comparisons were enabled by an analytical rate model as a bridge between simulations and experimentsmore » despite the fact that deposition fluxes accessible in simulations and experiments are necessarily different by many orders of magnitude. In particular, the simulations led to accurate predictions of the critical island size and the scaling of island density as a function of temperature. Lastly, the overall approach used here should be useful not just for future studies in this particular system, but also for molecular simulations of deposition in other materials.« less

  14. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  15. [Relevance of long non-coding RNAs in tumour biology].

    PubMed

    Nagy, Zoltán; Szabó, Diána Rita; Zsippai, Adrienn; Falus, András; Rácz, Károly; Igaz, Péter

    2012-09-23

    The discovery of the biological relevance of non-coding RNA molecules represents one of the most significant advances in contemporary molecular biology. It has turned out that a major fraction of the non-coding part of the genome is transcribed. Beside small RNAs (including microRNAs) more and more data are disclosed concerning long non-coding RNAs of 200 nucleotides to 100 kb length that are implicated in the regulation of several basic molecular processes (cell proliferation, chromatin functioning, microRNA-mediated effects, etc.). Some of these long non-coding RNAs have been associated with human tumours, including H19, HOTAIR, MALAT1, etc., the different expression of which has been noted in various neoplasms relative to healthy tissues. Long non-coding RNAs may represent novel markers of molecular diagnostics and they might even turn out to be targets of therapeutic intervention.

  16. Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight

    PubMed Central

    Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.

    2008-01-01

    The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590

  17. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cholesterol and Prostate Cancer

    PubMed Central

    Pelton, Kristine; Freeman, Michael R.; Solomon, Keith R.

    2012-01-01

    Summary Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations. PMID:22824430

  19. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  20. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-25

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint workmore » towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.« less

  1. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  2. Molecular clock on a neutral network.

    PubMed

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  3. Molecular Clock on a Neutral Network

    NASA Astrophysics Data System (ADS)

    Raval, Alpan

    2007-09-01

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  4. NASA Applications of Molecular Nanotechnology

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  5. Theoretical and experimental studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Reeves, E. M.

    1975-01-01

    The processes and parameters in atomic and molecular physics that are relevant to solar physics are investigated. The areas covered include: (1) measurement of atomic and molecular parameters that contribute to discrete and continous sources of opacity and abundance determinations in the sun; (2) line broadening and scattering phenomena; and (3) development of an ion beam spectroscopic source which is used for the measurement of electron excitation cross sections of transition region and coronal ions.

  6. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  7. Studies for the Loss of Atomic and Molecular Species from Io

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    1998-01-01

    Continued effort is reported to improve the emission rates of various emission lines for atomic oxygen and sulfur. Atomic hydrogen has been included as a new species in the neutral cloud model. The pertinent lifetime processes for hydrogen in the plasma torus and the relevant excitation processes for H Lyman-alpha emission in Io's atmosphere are discussed.

  8. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems.

  9. Molecular-dynamics simulations of urea nucleation from aqueous solution

    PubMed Central

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  10. Molecular-dynamics simulations of urea nucleation from aqueous solution.

    PubMed

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-06

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

  11. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  12. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  13. Molecular markers: Implications for cytopathology and specimen collection.

    PubMed

    VanderLaan, Paul A

    2015-08-01

    Cytologic specimens obtained through minimally invasive biopsy techniques are increasingly being used as principle diagnostic specimens for tumors arising in multiple sites. The number and scope of ancillary tests performed on these specimens have grown substantially over the past decade, including many molecular markers that not only can aid in formulating accurate and specific diagnoses but also can provide prognostic or therapeutic information to help direct clinical decisions. Thus, the cytopathologist needs to ensure that adequate material is collected and appropriately processed for the study of relevant molecular markers, many of which are specific to tumor site. This brief review covers considerations for effective cytologic specimen collection and processing to ensure diagnostic and testing success. In addition, a general overview is provided of molecular markers pertinent to tumors from a variety of sites. The recognition of these established and emerging molecular markers by cytopathologists is an important step toward realizing the promise of personalized medicine. © 2015 American Cancer Society.

  14. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  15. FAST TRACK COMMUNICATION: Attosecond correlation dynamics during electron tunnelling from molecules

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.; Smirnova, Olga

    2010-08-01

    In this communication, we present an analytical theory of strong-field ionization of molecules, which takes into account the rearrangement of multiple interacting electrons during the ionization process. We show that such rearrangement offers an alternative pathway to the ionization of orbitals more deeply bound than the highest occupied molecular orbital. This pathway is not subject to the full exponential suppression characteristic of direct tunnel ionization from the deeper orbitals. The departing electron produces an 'attosecond correlation pulse' which controls the rearrangement during the tunnelling process. The shape and duration of this pulse are determined by the electronic structure of the relevant states, molecular orientation and laser parameters.

  16. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    PubMed

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  17. The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants

    PubMed Central

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2010-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability. PMID:21687499

  18. Generation and detection of pulsed T-rays for use in the study of biological and bioterrorism issues

    NASA Astrophysics Data System (ADS)

    Jedju, Thomas M.; Bosacchi, Bruno; Warren, Warren S.; Nahata, Ajay; Kuenstner, Todd

    2004-09-01

    Terahertz (T-rays) spectroscopy has recently emerged as a powerful method to access a heretofore barely explored region of the electromagnetic spectrum where fundamental molecular resonances occur. Besides their importance for fundamental research, these resonances could be used as signatures in the identification of molecular species and as sensitive probes in a wide variety of molecular processes. In this paper we consider the potential of THz spectroscopy in the application to relevant biomedical and homeland security problems such as the analysis of normal and diseased tissues and the detection of toxic biomolecules. As examples, we present preliminary experimental data which suggest that THz spectroscopy: 1) can discriminate between cancerous and normal tissue, and 2) can reveal the presence of foreign substances hidden in an envelope and even allow their specific identification. This capability is of particular relevance as a straightforward homeland security tool for the detection of anthrax and other biotoxic molecules.

  19. Forensic molecular pathology: its impacts on routine work, education and training.

    PubMed

    Maeda, Hitoshi; Ishikawa, Takaki; Michiue, Tomomi

    2014-03-01

    The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling.

    PubMed

    Mueller, Claudius; Harpole, Michael G; Espina, Virginia

    2017-01-01

    Bone metastasis from primary cancer sites creates diagnostic and therapeutic challenges. Calcified bone is difficult to biopsy due to tissue hardness and patient discomfort, thus limiting the frequency and availability of bone/bone marrow biopsy material for molecular profiling. In addition, bony tissue must be demineralized (decalcified) prior to histomorphologic analysis. Decalcification processes rely on three main principles: (a) solubility of calcium salts in an acid, such as formic or nitric acid; (b) calcium chelation with ethylenediaminetetraacetic acid (EDTA); or (c) ion-exchange resins in a weak acid. A major roadblock in molecular profiling of bony tissue has been the lack of a suitable demineralization process that preserves histomorphology of calcified and soft tissue elements while also preserving phosphoproteins and nucleic acids. In this chapter, we describe general issues relevant to specimen collection and preservation of osseous tissue for molecular profiling. We provide two protocols: (a) one-step preservation of tissue histomorphology and proteins and posttranslational modifications, with simultaneous decalcification of bony tissue, and (b) ethanol-based tissue processing for TheraLin-fixed bony tissue.

  1. Unveiling molecular events in the brain by noninvasive imaging.

    PubMed

    Klohs, Jan; Rudin, Markus

    2011-10-01

    Neuroimaging allows researchers and clinicians to noninvasively assess structure and function of the brain. With the advances of imaging modalities such as magnetic resonance, nuclear, and optical imaging; the design of target-specific probes; and/or the introduction of reporter gene assays, these technologies are now capable of visualizing cellular and molecular processes in vivo. Undoubtedly, the system biological character of molecular neuroimaging, which allows for the study of molecular events in the intact organism, will enhance our understanding of physiology and pathophysiology of the brain and improve our ability to diagnose and treat diseases more specifically. Technical/scientific challenges to be faced are the development of highly sensitive imaging modalities, the design of specific imaging probe molecules capable of penetrating the CNS and reporting on endogenous cellular and molecular processes, and the development of tools for extracting quantitative, biologically relevant information from imaging data. Today, molecular neuroimaging is still an experimental approach with limited clinical impact; this is expected to change within the next decade. This article provides an overview of molecular neuroimaging approaches with a focus on rodent studies documenting the exploratory state of the field. Concepts are illustrated by discussing applications related to the pathophysiology of Alzheimer's disease.

  2. Clinical librarian support for rapid review of clinical utility of cancer molecular biomarkers.

    PubMed

    Geng, Yimin; Fowler, Clara S; Fulton, Stephanie

    2015-01-01

    The clinical librarian used a restricted literature searching and quality-filtering approach to provide relevant clinical evidence for the use of cancer molecular biomarkers by institutional policy makers and clinicians in the rapid review process. The librarian-provided evidence was compared with the cited references in the institutional molecular biomarker algorithm. The overall incorporation rate of the librarian-provided references into the algorithm was above 80%. This study suggests the usefulness of clinical librarian expertise for clinical practice. The searching and filtering methods for high-level evidence can be adopted by information professionals who are involved in the rapid literature review.

  3. Coffee husk composting: An investigation of the process using molecular and non-molecular tools

    PubMed Central

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H.; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-01-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  4. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  5. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds.

    PubMed

    Walker, Jason M; Bodamer, Emily; Krebs, Olivia; Luo, Yuanyuan; Kleinfehn, Alex; Becker, Matthew L; Dean, David

    2017-04-10

    Two distinct molecular masses of poly(propylene fumarate) (PPF) are combined with an additive manufacturing process to fabricate highly complex scaffolds possessing controlled chemical properties and porous architecture. Scaffolds were manufactured with two polymer molecular masses and two architecture styles. Degradation was assessed in an accelerated in vitro environment. The purpose of the degradation study is not to model or mimic in vivo degradation, but to efficiently compare the effect of modulating scaffold properties. This is the first study addressing degradation of chain-growth synthesized PPF, a process that allows for considerably more control over molecular mass distribution. It demonstrates that, with greater process control, not only is scaffold fabrication reproducible, but the mechanical properties and degradation kinetics can be tailored by altering the physical properties of the scaffold. This is a clear step forward in using PPF to address unmet medical needs while meeting regulatory demands and ultimately obtaining clinical relevancy.

  6. Structure and properties of visible-light absorbing homodisperse nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Jason

    Broadly, the scientific progress from this award focused in two main areas: developing time-resolved X-ray diffraction methods and the synthesis and characterization of molecular systems relevant to solar energy harvesting. The knowledge of photo–induced non–equilibrium states is central to our understanding of processes involved in solar–energy capture. More specifically, knowledge of the geometry changes on excitation and their relation to lifetimes and variation with adsorption of chromophores on the substrates is of importance for the design of molecular devices used in light capture.

  7. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  8. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  9. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases.

    PubMed

    Rescigno, Tania; Micolucci, Luigina; Tecce, Mario F; Capasso, Anna

    2017-01-08

    The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  10. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review

    PubMed Central

    Mamy, Laure; Patureau, Dominique; Barriuso, Enrique; Bedos, Carole; Bessac, Fabienne; Louchart, Xavier; Martin-laurent, Fabrice; Miege, Cecile; Benoit, Pierre

    2015-01-01

    A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pKa), water dissolution or hydrophobic behavior (especially through the KOW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital (ELUMO), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment. PMID:25866458

  11. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review.

    PubMed

    Mamy, Laure; Patureau, Dominique; Barriuso, Enrique; Bedos, Carole; Bessac, Fabienne; Louchart, Xavier; Martin-Laurent, Fabrice; Miege, Cecile; Benoit, Pierre

    2015-06-18

    A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes. A significant number of equations was found for dissociation process (pK a ), water dissolution or hydrophobic behavior (especially through the K OW parameter), adsorption to soils and biodegradation. A lack of QSAR was observed to estimate desorption or potential of transfer to water. Among the 686 molecular descriptors, five were found to be dominant in the 790 collected equations and the most generic ones: four quantum-chemical descriptors, the energy of the highest occupied molecular orbital (E HOMO ) and the energy of the lowest unoccupied molecular orbital (E LUMO ), polarizability (α) and dipole moment (μ), and one constitutional descriptor, the molecular weight. Keeping in mind that the combination of descriptors belonging to different categories (constitutional, topological, quantum-chemical) led to improve QSAR performances, these descriptors should be considered for the development of new QSAR, for further predictions of environmental parameters. This review also allows finding of the relevant QSAR equations to predict the fate of a wide diversity of compounds in the environment.

  12. Signal processing for molecular and cellular biological physics: an emerging field.

    PubMed

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  13. Signal processing for molecular and cellular biological physics: an emerging field

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  14. Artificial neural networks for efficient clustering of conformational ensembles and their potential for medicinal chemistry.

    PubMed

    Pandini, Alessandro; Fraccalvieri, Domenico; Bonati, Laura

    2013-01-01

    The biological function of proteins is strictly related to their molecular flexibility and dynamics: enzymatic activity, protein-protein interactions, ligand binding and allosteric regulation are important mechanisms involving protein motions. Computational approaches, such as Molecular Dynamics (MD) simulations, are now routinely used to study the intrinsic dynamics of target proteins as well as to complement molecular docking approaches. These methods have also successfully supported the process of rational design and discovery of new drugs. Identification of functionally relevant conformations is a key step in these studies. This is generally done by cluster analysis of the ensemble of structures in the MD trajectory. Recently Artificial Neural Network (ANN) approaches, in particular methods based on Self-Organising Maps (SOMs), have been reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data-mining problems. In the specific case of conformational analysis, SOMs have been successfully used to compare multiple ensembles of protein conformations demonstrating a potential in efficiently detecting the dynamic signatures central to biological function. Moreover, examples of the use of SOMs to address problems relevant to other stages of the drug-design process, including clustering of docking poses, have been reported. In this contribution we review recent applications of ANN algorithms in analysing conformational and structural ensembles and we discuss their potential in computer-based approaches for medicinal chemistry.

  15. Learning Systems Biology: Conceptual Considerations toward a Web-Based Learning Platform

    ERIC Educational Resources Information Center

    Emmert-Streib, Frank; Dehmer, Matthias; Lyardet, Fernando

    2013-01-01

    Within recent years, there is an increasing need to train students, from biology and beyond, in quantitative methods that are relevant to cope with data-driven biology. Systems Biology is such a field that places a particular focus on the functional aspect of biology and molecular interacting processes. This paper deals with the conceptual design…

  16. Dopaminergic and Cholinergic Modulations of Visual-Spatial Attention and Working Memory: Insights from Molecular Genetic Research and Implications for Adult Cognitive Development

    ERIC Educational Resources Information Center

    Stormer, Viola S.; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-01-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic…

  17. Plasma in a Pulsed Discharge Environment

    NASA Technical Reports Server (NTRS)

    Remy, J.; Bienier, L.; Salama, F.

    2005-01-01

    The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.

  18. AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective

    PubMed Central

    Talmadge, James E; Fidler, Isaiah J

    2014-01-01

    Metastases resistant to therapy is the major cause of death from cancer. Despite almost 200 years of study, the process of tumor metastasis remains controversial. Stephen Paget initially identified the role of host-tumor interactions on the basis of a review of autopsy records. His “seed and soil” hypothesis was substantiated a century later with experimental studies and numerous reports have confirmed these seminal observations. Inarguably, an improved understanding of the metastatic process and the attributes of the cells selected by this process are critical to the treatment of patients with systemic disease. In many patients, metastasis has occurred by the time of diagnosis, such that metastasis prevention may not be relevant, and treatment of systemic disease, as well as the identity of patients with early disease, should be our goal. During the last three decades, revitalized research has focused on new discoveries in the biology of metastasis. While our understanding of the molecular events that regulate metastasis has improved; nonetheless, the relevant contributions and timing of molecular lesion(s) potentially involved in its pathogenesis remain unclear. The history of pioneering observations and discussion of current controversies should help investigators understand the complex and multifactorial interactions between the host and selected tumor cells that contribute to fatal metastasis and allow for the design of successful therapy. PMID:20610625

  19. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    PubMed

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. Coffee husk composting: an investigation of the process using molecular and non-molecular tools.

    PubMed

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-03-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Markov-modulated Markov chains and the covarion process of molecular evolution.

    PubMed

    Galtier, N; Jean-Marie, A

    2004-01-01

    The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.

  3. Evaluating experimental molecular physics studies of radiation damage in DNA*

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  4. Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Delamar, Michel; Busca, Patricia; Prestat, Guillaume; Le Corre, Laurent; Legeai-Mallet, Laurence; Hu, RongJing; Zhang, Ruisheng; Barbault, Florent

    2015-07-01

    Tyrosine kinases are a wide family of targets with strong pharmacological relevance. These proteins undergo large-scale conformational motions able to inactivate them. By the end of one of these structural processes, a new cavity is opened allowing the access to a specific type of inhibitors, called type II. The kinase domain of fibroblast growth factor receptor 3 (FGFR3) falls into this family of kinases. We describe here, for the first time, its inactivation process through target molecular dynamics. The transient cavity, at the crossroad between the DFGout and Cα helix out inactivation is herein explored. Molecular docking calculations of known ligands demonstrated that type II inhibitors are able to interact with this metastable transient conformation of FGFR3 kinase. Besides, supplemental computations were conducted and clearly show that type II inhibitors drive the kinase inactivation process through specific stabilization with the DFG triad. This induced-fit effect of type II ligands toward FGFR3 might be extrapolated to other kinase systems and provides meaningful structural information for future drug developments.

  5. Basic primitives for molecular diagram sketching

    PubMed Central

    2010-01-01

    A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555

  6. Insights into H2 formation in space from ab initio molecular dynamics

    PubMed Central

    Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco

    2013-01-01

    Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584

  7. Protein Interactome of Muscle Invasive Bladder Cancer

    PubMed Central

    Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera

    2015-01-01

    Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276

  8. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.

    PubMed

    Zhang, Jin; Wang, Guan; Zhou, Yuxin; Chen, Yi; Ouyang, Liang; Liu, Bo

    2018-05-01

    Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.

  9. Gene Expression in the Human Brain: The Current State of the Study of Specificity and Spatiotemporal Dynamics

    ERIC Educational Resources Information Center

    Naumova, Oksana Yu.; Lee, Maria; Rychkov, Sergei Yu.; Vlasova, Natalia V.; Grigorenko, Elena L.

    2013-01-01

    Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or…

  10. Molecular Phenotyping Combines Molecular Information, Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery.

    PubMed

    Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco

    2017-05-18

    Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mapping biological process relationships and disease perturbations within a pathway network.

    PubMed

    Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc

    2018-01-01

    Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.

  12. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction which has been chemically altered in the solar nebula itself (and perhaps giant planet nebulae).

  13. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  14. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    NASA Astrophysics Data System (ADS)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  15. Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community.

    PubMed

    Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh

    2017-03-01

    Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  16. The whole-genome landscape of medulloblastoma subtypes

    PubMed Central

    Northcott, Paul A.; Buchhalter, Ivo; Morrissy, A. Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Groebner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H.; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M.; Erkek, Serap; Jones, David T.W.; Worst, Barbara C.; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D.; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D.; Wolf, Stephan; Robinson, Giles W.; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M.G.; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L.; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M.; Mora, Jaume; McLendon, Roger E.; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J.M.; Witt, Olaf; Milde, Till; Von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O.; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A.; Pfister, Stefan M.; Taylor, Michael D.; Lichter, Peter

    2018-01-01

    Summary Current therapies for medulloblastoma (MB), a highly malignant childhood brain tumor, impose debilitating effects on the developing child, warranting deployment of molecularly targeted treatments with reduced toxicities. Prior studies failed to disclose the full spectrum of driver genes and molecular processes operative in MB subgroups. Herein, we detail the somatic landscape across 491 sequenced MBs and molecular heterogeneity amongst 1,256 epigenetically analyzed cases, identifying subgroup-specific driver alterations including previously unappreciated actionable targets. Driver mutations explained the majority of Group 3 and Group 4 patients, remarkably enhancing previous knowledge. Novel molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions targeting KBTBD4 and ‘enhancer hijacking’ driving PRDM6 activation. Thus, application of integrative genomics to an unprecedented cohort of clinical samples derived from a single childhood cancer entity disclosed a series of new cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for treating MB patients. PMID:28726821

  17. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  18. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing.

    PubMed

    Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi

    2008-12-01

    The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.

  19. Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.

    PubMed

    Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2017-08-10

    Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.

  20. Epileptogenesis in experimental models.

    PubMed

    Pitkänen, Asla; Kharatishvili, Irina; Karhunen, Heli; Lukasiuk, Katarzyna; Immonen, Riikka; Nairismägi, Jaak; Gröhn, Olli; Nissinen, Jari

    2007-01-01

    Epileptogenesis refers to a phenomenon in which the brain undergoes molecular and cellular alterations after a brain-damaging insult, which increase its excitability and eventually lead to the occurrence of recurrent spontaneous seizures. Common epileptogenic factors include traumatic brain injury (TBI), stroke, and cerebral infections. Only a subpopulation of patients with any of these brain insults, however, will develop epilepsy. Thus, there are two great challenges: (1) identifying patients at risk, and (2) preventing and/or modifying the epileptogenic process. Target identification for antiepileptogenic treatments is difficult in humans because patients undergoing epileptogenesis cannot currently be identified. Animal models of epileptogenesis are therefore necessary for scientific progress. Recent advances in the development of experimental models of epileptogenesis have provided tools to investigate the molecular and cellular alterations and their temporal appearance, as well as the epilepsy phenotype after various clinically relevant epileptogenic etiologies, including TBI and stroke. Studying these models will lead to answers to critical questions such as: Do the molecular mechanisms of epileptogenesis depend on the etiology? Is the spectrum of network alterations during epileptogenesis the same after various clinically relevant etiologies? Is the temporal progression of epileptogenesis similar? Work is ongoing, and answers to these questions will facilitate the identification of molecular targets for antiepileptogenic treatments, the design of treatment paradigms, and the determination of whether data from one etiology can be extrapolated to another.

  1. Molecular mechanisms of synaptic remodeling in alcoholism

    PubMed Central

    Kyzar, Evan J.; Pandey, Subhash C.

    2015-01-01

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the “dark side” of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. PMID:25623036

  2. Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo

    NASA Astrophysics Data System (ADS)

    Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.

    2007-02-01

    Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.

  3. Rotationally inelastic cross sections, rates and cooling times for para-H2 +, ortho-D2 + and HD+ in cold helium gas

    NASA Astrophysics Data System (ADS)

    Vera, Mario Hernández; Schiller, Stephan; Wester, Roland; Gianturco, Francesco Antonio

    2017-05-01

    In the present work we discuss the dynamical processes guiding the relaxation of the internal rotational energy of three diatomic ions, the para-H2+, the ortho-D2+ and the HD+ in collision with He atoms. The state-changing cross sections and rates for these Molecular Hydrogen Ions (MHIs) are obtained from Close Coupling quantum dynamics calculations and the decay times into their respective ground states are computed by further solving the relevant time-evolution equations. The comparison of the results from the three molecules allows us to obtain a detailed understanding, and a deep insight, on the relative efficiencies of the relaxation processes considered. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

  4. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  5. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  6. Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.

    PubMed

    Montagne, Franck; Blondiaux, Nicolas; Bojko, Alexandre; Pugin, Raphaël

    2012-09-28

    To achieve fast and selective molecular filtration, membrane materials must ideally exhibit a thin porous skin and a high density of pores with a narrow size distribution. Here, we report the fabrication of nanoporous silicon nitride membranes (NSiMs) at the full wafer scale using a versatile process combining block copolymer (BCP) self-assembly and conventional photolithography/etching techniques. In our method, self-assembled BCP micelles are used as templates for creating sub-100 nm nanopores in a thin low-stress silicon nitride layer, which is then released from the underlying silicon wafer by etching. The process yields 100 nm thick free-standing NSiMs of various lateral dimensions (up to a few mm(2)). We show that the membranes exhibit a high pore density, while still retaining excellent mechanical strength. Permeation experiments reveal that the molecular transport rate across NSiMs is up to 16-fold faster than that of commercial polymeric membranes. Moreover, using dextran molecules of various molecular weights, we also demonstrate that size-based separation can be achieved with a very good selectivity. These new silicon nanosieves offer a relevant technological alternative to commercially available ultra- and microfiltration membranes for conducting high resolution biomolecular separations at small scales.

  7. 3D-liquid chromatography as a complex mixture characterization tool for knowledge-based downstream process development.

    PubMed

    Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel

    2016-09-01

    Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.

  8. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  9. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    PubMed

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  10. Chemodiversity and molecular plasticity: recognition processes as explored by property spaces.

    PubMed

    Vistoli, Giulio; Pedretti, Alessandro; Testa, Bernard

    2011-06-01

    In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.

  11. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  12. Human relevance of an in vitro gene signature in HaCaT for skin sensitization.

    PubMed

    van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine

    2015-02-01

    The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Pharmacological Activity and Clinical Use of PDRN

    PubMed Central

    Squadrito, Francesco; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Minutoli, Letteria; Altavilla, Domenica

    2017-01-01

    PDRN is a proprietary and registered drug that possesses several activities: tissue repairing, anti-ischemic, and anti-inflammatory. These therapeutic properties suggest its use in regenerative medicine and in diabetic foot ulcers. PDRN holds a mixture of deoxyribonucleotides with molecular weights ranging between 50 and 1,500 KDa, it is derived from a controlled purification and sterilization process of Oncorhynchus mykiss (Salmon Trout) or Oncorhynchus keta (Chum Salmon) sperm DNA. The procedure guarantees the absence of active protein and peptides that may cause immune reactions. In vitro and in vivo experiments have suggested that PDRN most relevant mechanism of action is the engagement of adenosine A2A receptors. Besides engaging the A2A receptor, PDRN offers nucleosides and nucleotides for the so called “salvage pathway.” The binding to adenosine A2A receptors is a unique property of PDRN and seems to be linked to DNA origin, molecular weight and manufacturing process. In this context, PDRN represents a new advancement in the pharmacotherapy. In fact adenosine and dipyridamole are non-selective activators of adenosine receptors and they may cause unwanted side effects; while regadenoson, the only other A2A receptor agonist available, has been approved by the FDA as a pharmacological stress agent in myocardial perfusion imaging. Finally, defibrotide, another drug composed by a mixture of oligonucleotides, has different molecular weight, a DNA of different origin and does not share the same wound healing stimulating effects of PDRN. The present review analyses the more relevant experimental and clinical evidences carried out to characterize PDRN therapeutic effects. PMID:28491036

  14. Convergent molecular defects underpin diverse neurodegenerative diseases.

    PubMed

    Tofaris, George K; Buckley, Noel J

    2018-02-19

    In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Understanding the mechanisms of amorphous creep through molecular simulation

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Short, Michael P.; Yip, Sidney

    2017-12-01

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  16. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  17. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE PAGES

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.; ...

    2018-03-15

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  18. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair.

    PubMed

    Friedhoff, Peter; Manelyte, Laura; Giron-Monzon, Luis; Winkler, Ines; Groothuizen, Flora S; Sixma, Titia K

    2017-01-01

    DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process. © 2017 Elsevier Inc. All rights reserved.

  19. Bridging the Gaps: the Promise of Omics Studies in Pediatric Exercise Research

    PubMed Central

    Radom-Aizik, Shlomit; Cooper, Dan M.

    2018-01-01

    In this review, we highlight promising new discoveries that may generate useful and clinically relevant insights into the mechanisms that link exercise with growth during critical periods of development. Growth in childhood and adolescence is unique among mammals, and is a dynamic process regulated by an evolution of hormonal and inflammatory mediators, age-dependent progression of gene expression, and environmentally modulated epigenetic mechanisms. Many of these same processes likely affect molecular transducers of physical activity. How the molecular signaling associated with growth is synchronized with signaling associated with exercise is poorly understood. Recent advances in “omics,” namely, genomics and epigenetics, metabolomics, and proteomics, now provide exciting approaches and tools that can be used for the first time to address this gap. A biologic definition of “healthy” exercise that links the metabolic transducers of physical activity with parallel processes that regulate growth will transform health policy and guidelines that promote optimal use of physical activity. PMID:27137166

  20. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †

    PubMed Central

    2018-01-01

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed. PMID:29677107

  1. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †.

    PubMed

    Afzal, Adeel; Dickert, Franz L

    2018-04-20

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.

  2. Electron-impact excitation and recombination of molecular cations in edge fusion plasma: application to H2+and BeD+

    NASA Astrophysics Data System (ADS)

    Pop, Nicolina; Iacob, Felix; Mezei, Zsolt; Motapon, Ousmanou; Niyonzima, Sebastien; Schneider, Ioan

    2017-10-01

    Dissociative recombination, ro-vibrational excitation and dissociative excitation of molecular cations with electrons are major elementary process in the kinetics and in the energy balance of astrophysically-relevant ionized media (supernovae, interstellar molecular clouds, planetary ionospheres, early Universe), in edge fusion and in many other cold media of technological interest. For the fusion plasma edge, extensive cross sections and rate coefficients have been produced for reactions induced on HD+, H2+ and BeD+ using the Multichannel Quantum Defect Theory (MQDT). Our calculations resulted in good agreement with the CRYRING (Stockholm) and TSR (Heidelberg) magnetic storage ring results, and our approach is permanently improved in order to face the new generation of electrostatic storage rings, as CSR (Heidelberg) and DESIREE (Stockholm). Member of APS Reciprocal Society: European Physics Society.

  3. What does the amygdala contribute to social cognition?

    PubMed Central

    Adolphs, Ralph

    2010-01-01

    The amygdala has received intense recent attention from neuroscientists investigating its function at the molecular, cellular, systems, cognitive, and clinical level. It clearly contributes to processing emotionally and socially relevant information, yet a unifying description and computational account have been lacking. The difficulty of tying together the various studies stems in part from the sheer diversity of approaches and species studied, in part from the amygdala’s inherent heterogeneity in terms of its component nuclei, and in part because different investigators have simply been interested in different topics. Yet, a synthesis now seems close at hand in combining new results from social neuroscience with data from neuroeconomics and reward learning. The amygdala processes a psychological stimulus dimension related to saliency or relevance; mechanisms have been identified to link it to processing unpredictability; and insights from reward learning have situated it within a network of structures that include the prefrontal cortex and the ventral striatum in processing the current value of stimuli. These aspects help to clarify the amygdala’s contributions to recognizing emotion from faces, to social behavior toward conspecifics, and to reward learning and instrumental behavior. PMID:20392275

  4. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less

  5. Speeding up biomolecular interactions by molecular sledding

    DOE PAGES

    Turkin, Alexander; Zhang, Lei; Marcozzi, Alessio; ...

    2015-10-07

    In numerous biological processes associations involve a protein with its binding partner, an event that is preceded by a diffusion-mediated search bringing the two partners together. Often hindered by crowding in biologically relevant environments, three-dimensional diffusion can be slow and result in long bimolecular association times. Moreover, the initial association step between two binding partners often represents a rate-limiting step in biotechnologically relevant reactions. We also demonstrate the practical use of an 11-a.a. DNA-interacting peptide derived from adenovirus to reduce the dimensionality of diffusional search processes and speed up associations between biological macromolecules. We functionalize binding partners with the peptidemore » and demonstrate that the ability of the peptide to one-dimensionally diffuse along DNA results in a 20-fold reduction in reaction time. We also show that modifying PCR primers with the peptide sled enables significant acceleration of standard PCR reactions.« less

  6. Quantitative real-time analysis of collective cancer invasion and dissemination

    NASA Astrophysics Data System (ADS)

    Ewald, Andrew J.

    2015-05-01

    A grand challenge in biology is to understand the cellular and molecular basis of tissue and organ level function in mammals. The ultimate goals of such efforts are to explain how organs arise in development from the coordinated actions of their constituent cells and to determine how molecularly regulated changes in cell behavior alter the structure and function of organs during disease processes. Two major barriers stand in the way of achieving these goals: the relative inaccessibility of cellular processes in mammals and the daunting complexity of the signaling environment inside an intact organ in vivo. To overcome these barriers, we have developed a suite of tissue isolation, three dimensional (3D) culture, genetic manipulation, nanobiomaterials, imaging, and molecular analysis techniques to enable the real-time study of cell biology within intact tissues in physiologically relevant 3D environments. This manuscript introduces the rationale for 3D culture, reviews challenges to optical imaging in these cultures, and identifies current limitations in the analysis of complex experimental designs that could be overcome with improved imaging, imaging analysis, and automated classification of the results of experimental interventions.

  7. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  8. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-08-08

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. Areas covered: In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. Expert opinion: QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  9. A Critical Review of the Concept of Transgenic Plants: Insights into Pharmaceutical Biotechnology and Molecular Farming.

    PubMed

    Abiri, Rambod; Valdiani, Alireza; Maziah, Mahmood; Shaharuddin, Noor Azmi; Sahebi, Mahbod; Yusof, Zetty Norhana Balia; Atabaki, Narges; Talei, Daryush

    2016-01-01

    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.

  10. Dynamics of partially folded and unfolded proteins investigated with quasielastic neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadler, Andreas M.

    2018-05-01

    Molecular dynamics in proteins animate and play a vital role for biologically relevant processes of these biomacromolecules. Quasielastic incoherent neutron scattering (QENS) is a well-suited experimental method to study protein dynamics from the picosecond to several nanoseconds and in the Ångström length-scale. In QENS experiments of protein solutions hydrogens act as reporters for the motions of methyl groups or amino acids to which they are bound. Neutron Spin-Echo spectroscopy (NSE) offers the highest energy resolution in the field of neutron spectroscopy and allows the study of slow collective motions in proteins up to several hundred nanoseconds and in the nanometer length-scale. In the following manuscript I will review recent studies that stress the relevance of molecular dynamics for protein folding and for conformational transitions of intrinsically disordered proteins (IDPs). During the folding collapse the protein is exploring its accessible conformational space via molecular motions. A large flexibility of partially folded and unfolded proteins, therefore, is mandatory for rapid protein folding. IDPs are a special case as they are largely unstructured under physiological conditions. A large flexibility is a characteristic property of IDPs as it allows, for example, the interaction with various binding partners or the rapid response to different conditions.

  11. [Arterial media calcification in patients with type 2 diabetes mellitus].

    PubMed

    Belovici, Maria Isabela; Pandele, G I

    2008-01-01

    Arterial calcification was previously viewed as an inevitable, passive, and degenerative process that occurred at the end stages of atherosclerosis. Recent studies, however, have demonstrated that calcification of arteries is a complex and regulated process. It may occur in conjunction with atherosclerosis or in an isolated form that is commonly associated with diabetes and renal failure. Higher artery calcium scores are associated with increased cardiovascular events, and some aspects of arterial calcification are similar to the biology of forming bone. Arterial calcification can thus be viewed as a distinct inflammatory arteriopathy, much like atherosclerosis and aneurysms, with its own contribution to cardiovascular morbidity and mortality. Current research involves efforts to define the complex interactions between cellular and molecular mediators of arterial calcification and, in particular, the role of endogenous calcification inhibitors. This review discusses the clinical relevance, cellular events, and suspected molecular pathways that control arterial calcification.

  12. Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

    PubMed

    Arosio, Paolo

    2017-12-01

    An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.

  13. The Burn Wound Microenvironment

    PubMed Central

    Rose, Lloyd F.; Chan, Rodney K.

    2016-01-01

    Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice. PMID:26989577

  14. Theory of "laser distillation" of enantiomers: purification of a racemic mixture of randomly oriented dimethylallene in a collisional environment.

    PubMed

    Gerbasi, David; Shapiro, Moshe; Brumer, Paul

    2006-02-21

    Enantiomeric control of 1,3 dimethylallene in a collisional environment is examined. Specifically, our previous "laser distillation" scenario wherein three perpendicular linearly polarized light fields are applied to excite a set of vib-rotational eigenstates of a randomly oriented sample is considered. The addition of internal conversion, dissociation, decoherence, and collisional relaxation mimics experimental conditions and molecular decay processes. Of greatest relevance is internal conversion which, in the case of dimethylallene, is followed by molecular dissociation. For various rates of internal conversion, enantiomeric control is maintained in this scenario by a delicate balance between collisional relaxation of excited dimethylallene that enhances control and collisional dephasing, which diminishes control.

  15. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    PubMed

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given. © 2011 American Chemical Society

  16. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms☆

    PubMed Central

    Stirban, Alin; Gawlowski, Thomas; Roden, Michael

    2013-01-01

    The enhanced generation and accumulation of advanced glycation endproducts (AGEs) have been linked to increased risk for macrovascular and microvascular complications associated with diabetes mellitus. AGEs result from the nonenzymatic reaction of reducing sugars with proteins, lipids, and nucleic acids, potentially altering their function by disrupting molecular conformation, promoting cross-linking, altering enzyme activity, reducing their clearance, and impairing receptor recognition. AGEs may also activate specific receptors, like the receptor for AGEs (RAGE), which is present on the surface of all cells relevant to atherosclerotic processes, triggering oxidative stress, inflammation and apoptosis. Understanding the pathogenic mechanisms of AGEs is paramount to develop strategies against diabetic and cardiovascular complications. PMID:24634815

  17. Computational Cosmology

    NASA Astrophysics Data System (ADS)

    Abel, Tom

    2013-01-01

    Gravitational instability of small density fluctuations, possibly created during an early inflationary period, is the key process leading to the formation of all structure in the Universe. New numerical algorithms have recently enabled much progress in understanding the relevant physical processes dominating the first billion years of structure formation. Computational cosmologists are attempting to simulate on their supercomputers how galaxies come about. In recent years first attempts trying to follow the formation and eventual death of every single star in these model galaxies has become to be within reach. The models now include gravity for both dark matter and baryonic matter, hydrodynamics, follow the radiation from massive stars and its impact in shaping the surrounding material, gas chemistry and all the key radiative atomic and molecular physics determining the thermal state of the model gas. In a small number of cases even the rold of magnetic fields on galactic scales is being studied. At the same time we are learning more about the limitations of certain numerical techniques and developing new schemes to more accurately follow the interplay of these many different physical processes. This talk is in two parts. First we consider a birds eye view of the relevant physical processes relevant for structure formation and potential approaches in solving the relevant equations efficiently and accurately on modern supercomputers. Secondly, we focus in on one of those processes. Namely the intricate and fascinating dynamics of the likely collsionless fluid dynamics of dark matter. A novel way of following the intricate evolution of such collisionless fluids in phase space is allowing us to construct new numerical methods to help understand the nature of dark matter halos as well as problems in astrophysical and terrestial plasmas.

  18. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    PubMed

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  19. A complex mTOR response in habituation paradigms for a social signal in adult songbirds.

    PubMed

    Ahmadiantehrani, Somayeh; Gores, Elisa O; London, Sarah E

    2018-06-01

    Nonassociative learning is considered simple because it depends on presentation of a single stimulus, but it likely reflects complex molecular signaling. To advance understanding of the molecular mechanisms of one form of nonassociative learning, habituation, for ethologically relevant signals we examined song recognition learning in adult zebra finches. These colonial songbirds learn the unique song of individuals, which helps establish and maintain mate and other social bonds, and informs appropriate behavioral interactions with specific birds. We leveraged prior work demonstrating behavioral habituation for individual songs, and extended the molecular framework correlated with this behavior by investigating the mechanistic Target of Rapamycin (mTOR) signaling cascade. We hypothesized that mTOR may contribute to habituation because it integrates a variety of upstream signals and enhances associative learning, and it crosstalks with another cascade previously associated with habituation, ERK/ZENK. To begin probing for a possible role for mTOR in song recognition learning, we used a combination of song playback paradigms and bidirectional dysregulation of mTORC1 activation. We found that mTOR demonstrates the molecular signatures of a habituation mechanism, and that its manipulation reveals the complexity of processes that may be invoked during nonassociative learning. These results thus expand the molecular targets for habituation studies and raise new questions about neural processing of complex natural signals. © 2018 Ahmadiantehrani et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  1. Atomic and molecular physics in the gas phase

    NASA Astrophysics Data System (ADS)

    Toburen, L. H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  2. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  3. The whole-genome landscape of medulloblastoma subtypes.

    PubMed

    Northcott, Paul A; Buchhalter, Ivo; Morrissy, A Sorana; Hovestadt, Volker; Weischenfeldt, Joachim; Ehrenberger, Tobias; Gröbner, Susanne; Segura-Wang, Maia; Zichner, Thomas; Rudneva, Vasilisa A; Warnatz, Hans-Jörg; Sidiropoulos, Nikos; Phillips, Aaron H; Schumacher, Steven; Kleinheinz, Kortine; Waszak, Sebastian M; Erkek, Serap; Jones, David T W; Worst, Barbara C; Kool, Marcel; Zapatka, Marc; Jäger, Natalie; Chavez, Lukas; Hutter, Barbara; Bieg, Matthias; Paramasivam, Nagarajan; Heinold, Michael; Gu, Zuguang; Ishaque, Naveed; Jäger-Schmidt, Christina; Imbusch, Charles D; Jugold, Alke; Hübschmann, Daniel; Risch, Thomas; Amstislavskiy, Vyacheslav; Gonzalez, Francisco German Rodriguez; Weber, Ursula D; Wolf, Stephan; Robinson, Giles W; Zhou, Xin; Wu, Gang; Finkelstein, David; Liu, Yanling; Cavalli, Florence M G; Luu, Betty; Ramaswamy, Vijay; Wu, Xiaochong; Koster, Jan; Ryzhova, Marina; Cho, Yoon-Jae; Pomeroy, Scott L; Herold-Mende, Christel; Schuhmann, Martin; Ebinger, Martin; Liau, Linda M; Mora, Jaume; McLendon, Roger E; Jabado, Nada; Kumabe, Toshihiro; Chuah, Eric; Ma, Yussanne; Moore, Richard A; Mungall, Andrew J; Mungall, Karen L; Thiessen, Nina; Tse, Kane; Wong, Tina; Jones, Steven J M; Witt, Olaf; Milde, Till; Von Deimling, Andreas; Capper, David; Korshunov, Andrey; Yaspo, Marie-Laure; Kriwacki, Richard; Gajjar, Amar; Zhang, Jinghui; Beroukhim, Rameen; Fraenkel, Ernest; Korbel, Jan O; Brors, Benedikt; Schlesner, Matthias; Eils, Roland; Marra, Marco A; Pfister, Stefan M; Taylor, Michael D; Lichter, Peter

    2017-07-19

    Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.

  4. Molecular trophic markers in marine food webs and their potential use for coral ecology.

    PubMed

    Leal, Miguel Costa; Ferrier-Pagès, Christine

    2016-10-01

    Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Division B Commission 14 Working Group: Collision Processes

    NASA Astrophysics Data System (ADS)

    Peach, Gillian; Dimitrijevic, Milan S.; Barklem, Paul S.

    2016-04-01

    Since our last report (Peach & Dimitrijević 2012), a large number of new publications on the results of research in atomic and molecular collision processes and spectral line broadening have been published. Due to the limited space available, we have only included work of importance for astrophysics. Additional relevant papers, not included in this report, can be found in the databases at the web addresses provided in Section 6. Elastic and inelastic collisions between electrons, atoms, ions, and molecules are included, as well as charge transfer in collisions between heavy particles which can be very important.

  6. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  7. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  8. Micrometastases in neuroblastoma: are they clinically important?

    PubMed Central

    Burchill, S A

    2004-01-01

    Despite advances in the treatment of neuroblastoma (NBL), recurrence and metastases continue to pose major problems in clinical management. The relation between micrometastases and the development of secondary disease is not fully understood. However, accurate methods to detect low numbers of tumour cells may allow the evaluation of their role in the disease process, and by implication the possible benefits of eliminating them. Although there is substantial evidence for the increased sensitivity of current molecular methods for the detection of NBL cells compared with more conventional cytology, the clinical relevance and usefulness of detecting this disease remain controversial. The primary goal of current translational research must be to evaluate the clinical relevance of micrometastatic disease detected by these methods in multicentre prospective clinical outcome studies. Only then can the clinical usefulness of these methods be defined so that they may be introduced into relevant clinical practice. PMID:14693828

  9. Cataloging the biomedical world of pain through semi-automated curation of molecular interactions

    PubMed Central

    Jamieson, Daniel G.; Roberts, Phoebe M.; Robertson, David L.; Sidders, Ben; Nenadic, Goran

    2013-01-01

    The vast collection of biomedical literature and its continued expansion has presented a number of challenges to researchers who require structured findings to stay abreast of and analyze molecular mechanisms relevant to their domain of interest. By structuring literature content into topic-specific machine-readable databases, the aggregate data from multiple articles can be used to infer trends that can be compared and contrasted with similar findings from topic-independent resources. Our study presents a generalized procedure for semi-automatically creating a custom topic-specific molecular interaction database through the use of text mining to assist manual curation. We apply the procedure to capture molecular events that underlie ‘pain’, a complex phenomenon with a large societal burden and unmet medical need. We describe how existing text mining solutions are used to build a pain-specific corpus, extract molecular events from it, add context to the extracted events and assess their relevance. The pain-specific corpus contains 765 692 documents from Medline and PubMed Central, from which we extracted 356 499 unique normalized molecular events, with 261 438 single protein events and 93 271 molecular interactions supplied by BioContext. Event chains are annotated with negation, speculation, anatomy, Gene Ontology terms, mutations, pain and disease relevance, which collectively provide detailed insight into how that event chain is associated with pain. The extracted relations are visualized in a wiki platform (wiki-pain.org) that enables efficient manual curation and exploration of the molecular mechanisms that underlie pain. Curation of 1500 grouped event chains ranked by pain relevance revealed 613 accurately extracted unique molecular interactions that in the future can be used to study the underlying mechanisms involved in pain. Our approach demonstrates that combining existing text mining tools with domain-specific terms and wiki-based visualization can facilitate rapid curation of molecular interactions to create a custom database. Database URL: ••• PMID:23707966

  10. Cataloging the biomedical world of pain through semi-automated curation of molecular interactions.

    PubMed

    Jamieson, Daniel G; Roberts, Phoebe M; Robertson, David L; Sidders, Ben; Nenadic, Goran

    2013-01-01

    The vast collection of biomedical literature and its continued expansion has presented a number of challenges to researchers who require structured findings to stay abreast of and analyze molecular mechanisms relevant to their domain of interest. By structuring literature content into topic-specific machine-readable databases, the aggregate data from multiple articles can be used to infer trends that can be compared and contrasted with similar findings from topic-independent resources. Our study presents a generalized procedure for semi-automatically creating a custom topic-specific molecular interaction database through the use of text mining to assist manual curation. We apply the procedure to capture molecular events that underlie 'pain', a complex phenomenon with a large societal burden and unmet medical need. We describe how existing text mining solutions are used to build a pain-specific corpus, extract molecular events from it, add context to the extracted events and assess their relevance. The pain-specific corpus contains 765 692 documents from Medline and PubMed Central, from which we extracted 356 499 unique normalized molecular events, with 261 438 single protein events and 93 271 molecular interactions supplied by BioContext. Event chains are annotated with negation, speculation, anatomy, Gene Ontology terms, mutations, pain and disease relevance, which collectively provide detailed insight into how that event chain is associated with pain. The extracted relations are visualized in a wiki platform (wiki-pain.org) that enables efficient manual curation and exploration of the molecular mechanisms that underlie pain. Curation of 1500 grouped event chains ranked by pain relevance revealed 613 accurately extracted unique molecular interactions that in the future can be used to study the underlying mechanisms involved in pain. Our approach demonstrates that combining existing text mining tools with domain-specific terms and wiki-based visualization can facilitate rapid curation of molecular interactions to create a custom database. Database URL: •••

  11. Molecular dynamics studies on the DNA-binding process of ERG.

    PubMed

    Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R

    2016-11-15

    The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.

  12. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    PubMed

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. CLINICAL APPROACH TO THE DIAGNOSTIC EVALUATION OF HERDITARY AND ACQUIRED NEUROMUSCULAR DISEASES

    PubMed Central

    McDonald, Craig M.

    2012-01-01

    SYNOPSIS In the context of a neuromuscular disease diagnostic evaluation, the clinician still must be able to obtain a relevant patient and family history and perform focused general, musculoskeletal, neurologic and functional physical examinations to direct further diagnostic evaluations. Laboratory studies for hereditary neuromuscular diseases include relevant molecular genetic studies. The EMG and nerve conduction studies remain an extension of the physical examination and help to guide further diagnostic studies such as molecular genetic studies, and muscle and nerve biopsies. All diagnostic information needs to be interpreted not in isolation, but within the context of relevant historical information, family history, physical examination findings, and laboratory data, electrophysiologic findings, pathologic findings, and molecular genetic findings if obtained. PMID:22938875

  14. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.

  15. Microarray profiling analysis uncovers common molecular mechanisms of rubella virus, human cytomegalovirus, and herpes simplex virus type 2 infections in ECV304 cells.

    PubMed

    Mo, X; Xu, L; Yang, Q; Feng, H; Peng, J; Zhang, Y; Yuan, W; Wang, Y; Li, Y; Deng, Y; Wan, Y; Chen, Z; Li, F; Wu, X

    2011-08-01

    To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.

  16. The RAPID method for blood processing yields new insight in plasma concentrations and molecular forms of circulating gut peptides.

    PubMed

    Stengel, Andreas; Keire, David; Goebel, Miriam; Evilevitch, Lena; Wiggins, Brian; Taché, Yvette; Reeve, Joseph R

    2009-11-01

    The correct identification of circulating molecular forms and measurement of peptide levels in blood entails that the endocrine peptide being studied is stable and recovered in good yields during blood processing. However, it is not clear whether this is achieved in studies using standard blood processing. Therefore, we compared peptide concentration and form of 12 (125)I-labeled peptides using the standard procedure (EDTA-blood on ice) and a new method employing Reduced temperatures, Acidification, Protease inhibition, Isotopic exogenous controls, and Dilution (RAPID). During standard processing there was at least 80% loss for calcitonin-gene-related peptide and cholecystokinin-58 (CCK-58) and more than 35% loss for amylin, insulin, peptide YY forms (PYY((1-36)) and PYY((3-36))), and somatostatin-28. In contrast, the RAPID method significantly improved the recovery for 11 of 12 peptides (P < 0.05) and eliminated the breakdown of endocrine peptides occurring after standard processing as reflected in radically changed molecular forms for CCK-58, gastrin-releasing peptide, somatostatin-28, and ghrelin. For endogenous ghrelin, this led to an acyl/total ghrelin ratio of 1:5 instead of 1:19 by the standard method. These results show that the RAPID method enables accurate assessment of circulating gut peptide concentrations and forms such as CCK-58, acylated ghrelin, and somatostatin-28. Therefore, the RAPID method represents an efficacious means to detect circulating variations in peptide concentrations and form relevant to the understanding of physiological function of endocrine peptides.

  17. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis.

    PubMed

    Alvarez-Navarro, Carlos; Cragnolini, Juan J; Dos Santos, Helena G; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A

    2013-09-06

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.

  18. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  19. Automated identification of molecular effects of drugs (AIMED)

    PubMed Central

    Fathiamini, Safa; Johnson, Amber M; Zeng, Jia; Araya, Alejandro; Holla, Vijaykumar; Bailey, Ann M; Litzenburger, Beate C; Sanchez, Nora S; Khotskaya, Yekaterina; Xu, Hua; Meric-Bernstam, Funda; Bernstam, Elmer V

    2016-01-01

    Introduction Genomic profiling information is frequently available to oncologists, enabling targeted cancer therapy. Because clinically relevant information is rapidly emerging in the literature and elsewhere, there is a need for informatics technologies to support targeted therapies. To this end, we have developed a system for Automated Identification of Molecular Effects of Drugs, to help biomedical scientists curate this literature to facilitate decision support. Objectives To create an automated system to identify assertions in the literature concerning drugs targeting genes with therapeutic implications and characterize the challenges inherent in automating this process in rapidly evolving domains. Methods We used subject-predicate-object triples (semantic predications) and co-occurrence relations generated by applying the SemRep Natural Language Processing system to MEDLINE abstracts and ClinicalTrials.gov descriptions. We applied customized semantic queries to find drugs targeting genes of interest. The results were manually reviewed by a team of experts. Results Compared to a manually curated set of relationships, recall, precision, and F2 were 0.39, 0.21, and 0.33, respectively, which represents a 3- to 4-fold improvement over a publically available set of predications (SemMedDB) alone. Upon review of ostensibly false positive results, 26% were considered relevant additions to the reference set, and an additional 61% were considered to be relevant for review. Adding co-occurrence data improved results for drugs in early development, but not their better-established counterparts. Conclusions Precision medicine poses unique challenges for biomedical informatics systems that help domain experts find answers to their research questions. Further research is required to improve the performance of such systems, particularly for drugs in development. PMID:27107438

  20. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci

    PubMed Central

    Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia

    2017-01-01

    Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275

  1. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.

    PubMed

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F

    2018-05-01

    Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Treatment algorithm in 2014 for advanced non-small cell lung cancer: therapy selection by tumour histology and molecular biology.

    PubMed

    Manegold, Christian

    2014-09-01

    The availability of antineoplastic monoclonal antibodies, small molecules and newer cytotoxics such as pemetrexed, the EGFR-tyrosine kinase inhibitors erlotinib, gefitinib, afatinib as well as the anti-angiogenic bevacizumab and the ALK-inhibitor crizotinib has recently changes the treatment algorithm of advanced non-small cell lung cancer. Decision making in 2014 is characterized by customizing therapy, by selecting a specific therapeutic regimen based on the histotype and the genotype of the tumour. This refers to first-line induction therapy and maintenance therapy as well, but also to subsequent lines of therapy since anti-neoplastic drugs and regimens used upfront clinically influence the selection of agents/regimes considered for second-/third-line treatment. Consequently, therapy customization through tumour histology and molecular markers has significantly influenced the work of pathologists around the globe and the process of obtaining an extended therapeutically relevant tumour diagnosis. Not only histological sub-typing became standard but molecular information is also considered of increasing importance for treatment selection. Routine molecular testing in certified laboratories must be established, and the diagnostic process should ideally be performed under the guidance of evidence based recommendation. The process of investigating and implementing medical targeting in lung cancer therefore, requires advanced diagnostic techniques and expertise and because of its large dimension is costly and influenced by the limitation of financial and clinical resources. Copyright © 2014. Published by Elsevier Urban & Partner Sp. z o.o.

  3. miRNA profiling in gastrointestinal stromal tumors: implication as diagnostic and prognostic markers.

    PubMed

    Nannini, Margherita; Ravegnini, Gloria; Angelini, Sabrina; Astolfi, Annalisa; Biasco, Guido; Pantaleo, Maria A

    2015-01-01

    MicroRNAs are a class of short noncoding RNAs, that play a relevant role in multiple biological processes, such as differentiation, proliferation and apoptosis. Gastrointestinal stromal tumors (GIST) are considered as a paradigm of molecular biology in solid tumors worldwide, and after the discovery of specific alterations in the KIT and PDGFRA genes, they have emerged from anonymity to become a model for targeted therapy. Epigenetics have an emerging and relevant role in different steps of GIST biology such as tumorigenesis, disease progression, prognosis and drug resistance. The aim of the present review was to summarize the current evidence about the role of microRNAs in GIST, including their potential application as well as their limits.

  4. Elucidation of molecular kinetic schemes from macroscopic traces using system identification

    PubMed Central

    González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir

    2017-01-01

    Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems. PMID:28192423

  5. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  6. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    PubMed

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  7. Physiological regulation and metabolic role of browning in white adipose tissue.

    PubMed

    Jankovic, Aleksandra; Otasevic, Vesna; Stancic, Ana; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2017-09-01

    Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.

  8. First-principles modeling of biological systems and structure-based drug-design.

    PubMed

    Sgrignani, Jacopo; Magistrato, Alessandra

    2013-03-01

    Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.

  9. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).

    PubMed

    Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie

    2017-11-01

    Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Establishment and Characterization of Primary Glioblastoma Cell Lines from Fresh and Frozen Material: A Detailed Comparison

    PubMed Central

    Mullins, Christina Susanne; Schneider, Björn; Stockhammer, Florian; Krohn, Mathias; Classen, Carl Friedrich; Linnebacher, Michael

    2013-01-01

    Background Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. High molecular heterogeneity of GBM tumors is well recognized, forming the rationale for molecular tests required before administration of several of the novel therapeutics rapidly entering the clinics. One model that has gained wide acceptance is the primary cell culture model. The laborious and time consuming process is rewarded with a relative high success rate (about 60%). We here describe and evaluate a very simple cryopreservation procedure for GBM tissue prior to model establishment that will considerably reduce the logistic complexity. Methods Twenty-seven GBM samples collected ad hoc were prepared for primary cell culture freshly from surgery (#1) and after cryopreservation (#2). Results Take rates after cryopreservation (59%) were as satisfactory as from fresh tissue (63%; p = 1.000). We did not observe any relevant molecular or phenotypic differences between cell lines established from fresh or vitally frozen tissue. Further, sensitivity both towards standard chemotherapeutic agents (Temozolomide, BCNU and Vincristine) and novel agents like the receptor tyrosine kinase inhibitor Imatinib did not differ. Conclusions Our simple cryopreservation procedure facilitates collection, long-time storage and propagation (modeling) of clinical GBM specimens (potentially also from distant centers) for basic research, (pre-) clinical studies of novel therapies and individual response prediction. PMID:23951083

  11. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  12. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.

    PubMed

    Haustein, Elke; Schwille, Petra

    2003-02-01

    Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.

  13. De novo assembly and transcriptome characterization of the freshwater prawn Palaemonetes argentinus: Implications for a detoxification response.

    PubMed

    García, C Fernando; Pedrini, Nicolas; Sánchez-Paz, Arturo; Reyna-Blanco, Carlos S; Lavarias, Sabrina; Muhlia-Almazán, Adriana; Fernández-Giménez, Analía; Laino, Aldana; de-la-Re-Vega, Enrique; Lukaszewicz, German; López-Zavala, Alonso A; Brieba, Luis G; Criscitello, Michael F; Carrasco-Miranda, Jesús S; García-Orozco, Karina D; Ochoa-Leyva, Adrian; Rudiño-Piñera, Enrique; Sanchez-Flores, Alejandro; Sotelo-Mundo, Rogerio R

    2018-02-01

    Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. INVOLVEMENT OF MULTIPLE MOLECULAR PATHWAYS IN THE GENETICS OF OCULAR REFRACTION AND MYOPIA.

    PubMed

    Wojciechowski, Robert; Cheng, Ching-Yu

    2018-01-01

    The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.

  15. Biomimicry as a route to new materials: what kinds of lessons are useful?

    PubMed

    Reed, Emily J; Klumb, Lisa; Koobatian, Maxwell; Viney, Christopher

    2009-04-28

    We consider the attributes of a successful engineered material, acknowledging the contributions of composition and processing to properties and performance. We recognize the potential for relevant lessons to be learned from nature, at the same time conceding both the limitations of such lessons and our need to be selective. We then give some detailed attention to the molecular biomimicry of filamentous phage, the process biomimicry of silk and the structure biomimicry of hippopotamus 'sweat', in each case noting that the type of lesson now being learned is not the same as the potential lesson that originally motivated the study.

  16. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder

    PubMed Central

    Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.

    2014-01-01

    Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. PMID:22676371

  17. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder.

    PubMed

    Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R

    2012-11-01

    Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley & Sons A/S.

  18. Clinical and pathological implications of miRNA in bladder cancer.

    PubMed

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20-22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.

  19. [Practical guidelines for genetic testing in cardiovascular diseases].

    PubMed

    Reinhard, W; Trenkwalder, T; Schunkert, H

    2017-08-01

    In the last decade, genetic testing for cardiovascular disorders has become more and more relevant. Progress in molecular genetics has led to new opportunities for diagnostics, improved risk prediction and could lead to novel therapeutic approaches. Genetic diagnostic testing is relevant for both confirming a diagnosis as well as deciding on therapeutic consequences, if applicable. Furthermore, predictive testing in family members for specific cardiovascular diseases is now a standard procedure in holistic patient management. The process of genetic testing as well as documentation requirements and discussion of test results with patients are subject to legal regulations. These regulations might be confusing for clinical practitioners/cardiologists. The aim of this article is to provide a clinical framework for genetic testing. First, we explain the legal and ethical background. Second, we illustrate the process of genetic testing step by step and present updates on remuneration. Finally, we discuss the significance of genetic testing and specific disease indications in cardiology.

  20. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    PubMed

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  1. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  2. pH-Controlled Assembly of DNA Tiles

    DOE PAGES

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...

    2016-09-15

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  3. pH-Controlled Assembly of DNA Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  4. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  5. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  6. The Molecular Signatures Database (MSigDB) hallmark gene set collection.

    PubMed

    Liberzon, Arthur; Birger, Chet; Thorvaldsdóttir, Helga; Ghandi, Mahmoud; Mesirov, Jill P; Tamayo, Pablo

    2015-12-23

    The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These better represent a wider range of biological processes and diseases, but the utility of the database is reduced by increased redundancy across, and heterogeneity within, gene sets. To address this challenge, here we use a combination of automated approaches and expert curation to develop a collection of "hallmark" gene sets as part of MSigDB. Each hallmark in this collection consists of a "refined" gene set, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression. The hallmarks effectively summarize most of the relevant information of the original founder sets and, by reducing both variation and redundancy, provide more refined and concise inputs for gene set enrichment analysis.

  7. Clinical, functional, behavioural and epigenomic biomarkers of obesity.

    PubMed

    Lafortuna, Claudio L; Tovar, Armando R; Rastelli, Fabio; Tabozzi, Sarah A; Caramenti, Martina; Orozco-Ruiz, Ximena; Aguilar-Lopez, Miriam; Guevara-Cruz, Martha; Avila-Nava, Azalia; Torres, Nimbe; Bertoli, Gloria

    2017-06-01

    Overweight and obesity are highly prevalent conditions worldwide, linked to an increased risk for death, disability and disease due to metabolic and biochemical abnormalities affecting the biological human system throughout different domains. Biomarkers, defined as indicators of biological processes in health and disease, relevant for body mass excess management have been identified according to different criteria, including anthropometric and molecular indexes, as well as physiological and behavioural aspects. Analysing these different biomarkers, we identified their potential role in diagnosis, prognosis and treatment. Epigenetic biomarkers, cellular mediators of inflammation and factors related to microbiota-host interactions may be considered to have a theranostic value. Though, the molecular processes responsible for the biological phenomenology detected by the other analysed markers, is not clear yet. Nevertheless, these biomarkers possess valuable diagnostic and prognostic power. A new frontier for theranostic biomarkers can be foreseen in the exploitation of parameters defining behaviours and lifestyles linked to the risk of obesity, capable to describe the effects of interventions for obesity prevention and treatment which include also behaviour change strategies.

  8. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution.

    PubMed

    Tomé, Luciana I N; Jorge, Miguel; Gomes, José R B; Coutinho, João A P

    2012-02-16

    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids.

  9. Fundamental data on the desorption of pure interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, Wendy A.; Bolina, Amandeep S.

    2007-01-01

    The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

  10. Single molecule translocation in smectics illustrates the challenge for time-mapping in simulations on multiple scales

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt

    2017-09-01

    Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.

  11. Deconstructing (and reconstructing) cell migration.

    PubMed

    Maheshwari, G; Lauffenburger, D A

    1998-12-01

    An overriding objective in cell biology is to be able to relate properties of particular molecular components to cell behavioral functions and even physiology. In the "traditional" mode of molecular cell biology, this objective has been tackled on a molecule-by-molecule basis, and in the "future" mode sometimes termed "functional genomics," it might be attacked in a high-throughput, parallel manner. Regardless of the manner of approach, the relationship between molecular-level properties and cell-level function is exceedingly difficult to elucidate because of the large number of relevant components involved, their high degree of interconnectedness, and the inescapable fact that they operate as physico-chemical entities-according to the laws of kinetics and mechanics-in space and time within the cell. Cell migration is a prominent representative example of such a cell behavioral function that requires increased understanding for both scientific and technological advance. This article presents a framework, derived from an engineering perspective regarding complex systems, intended to aid in developing improved understanding of how properties of molecular components influence the function of cell migration. That is, cell population migration behavior can be deconstructed as follows: first in terms of a mathematical model comprising cell population parameters (random motility, chemotaxis/haptotaxis, and chemokinesis/haptokinesis coefficients), which in turn depend on characteristics of individual cell paths that can be analyzed in terms of a mathematical model comprising individual cell parameters (translocation speed, directional persistence time, chemotactic/haptotactic index), which in turn depend on cell-level physical processes underlying motility (membrane extension and retraction, cell/substratum adhesion, cell contractile force, front-vs.-rear asymmetry), which in turn depend on molecular-level properties of the plethora of components involved in governance and regulation of these processes. Hence, the influence of any molecular component on cell population migration can be understood by reconstructing these relationships from the molecular level to the physical process level to the individual cell path level to the cell population distribution level. This approach requires combining experimental, theoretical, and computational methodologies from molecular biology, biochemistry, biophysics, and bioengineering.

  12. Huntington's Disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database

    PubMed Central

    2012-01-01

    Background Huntington’s disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. Methods To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. Results Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally, we derived a candidate set of 24 novel genetic modifiers, including histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated receptor gamma (PPARGC1B). Conclusions The results of our study give us an intriguing picture of the molecular complexity of HD. Our analyses can be seen as a first step towards a comprehensive list of biological processes, molecular functions, and pathways involved in HD, and may provide a basis for the development of more holistic disease models and new therapeutics. PMID:22741533

  13. Quantifying the Relationship between Curvature and Electric Potential in Lipid Bilayers.

    PubMed

    Bruhn, Dennis S; Lomholt, Michael A; Khandelia, Himanshu

    2016-06-02

    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.

  14. Molecular Docking and Drug Discovery in β-Adrenergic Receptors.

    PubMed

    Vilar, Santiago; Sobarzo-Sanchez, Eduardo; Santana, Lourdes; Uriarte, Eugenio

    2017-01-01

    Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The effect of the molecular orientation on the release of antimicrobial substances from uniaxially drawn polymer matrixes.

    PubMed

    Iconomopoulou, S M; Voyiatzis, G A

    2005-03-21

    A new method of controlled release of low molecular weight biocides incorporated in polymer matrixes is described. The molecular orientation of uniaxially drawn biocide doped polymer films is suggested as a significant parameter for controlled release monitoring. Triclosan, a well-established widespread antibacterial agent, has been incorporated into high density polyethylene (HDPE) films that have been subsequently uniaxially drawn at different draw ratios. The molecular orientation developed was estimated utilizing polarized mu-Raman spectra. Biocide incorporated polymer films, drawn at different draw ratios, have been immersed in ethanol-water solutions (EtOH) and in physiological saline. The release of Triclosan out of the polymer matrix was probed with UV-Vis absorption spectroscopy for a period of time up to 15 months. In all cases, although the film surface of the drawn samples exposed to the liquid solution was higher than the undrawn one, the relevant release rate from the drawn specimens was lower than the non-stretched samples depending on the molecular orientation developed during the drawing process. A note is made of the fact that no significant molecular orientation relaxation of the polyethylene films has been observed even after such a long time of immersion of the drawn films in the liquid solutions.

  16. Bacteriophage lambda: early pioneer and still relevant

    PubMed Central

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  17. Perspectives on the evolving state of the art management of gastrointestinal stromal tumours

    PubMed Central

    Szucs, Zoltan

    2018-01-01

    Gastrointestinal stromal tumours (GISTs) represent a very exciting tumour entity for the medical oncologist. There has been extensive clinical and preclinical research dissecting the natural behaviour, molecular landscape and therapeutic responsiveness of this rare mesenchymal tumour. Various molecular subtypes of GIST have a differing prognostic and predictive relevance in the state of the art management of the disease. Emerging mature clinical trial data gathered over the last one and half decade provided substantial molecular profiling information in understanding the success and eventual failure of treatment. In our review of the most relevant literature we aim to guide the clinician in tailoring neoadjuvant, adjuvant and palliative treatment of GIST alongside the different, now well established molecular subgroups of GISTs. PMID:29780899

  18. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the oleic acid model aerosol system is of limited relevance to complex internally mixed atmospheric aerosol, the generic findings presented in this paper give useful insights into the nature of heterogeneous chemical processes.

  19. Base-Catalyzed Depolymerization of Biorefinery Lignins

    DOE PAGES

    Katahira, Rui; Mittal, Ashutosh; McKinney, Kellene; ...

    2016-01-12

    Lignocellulosic biorefineries will produce a substantial pool of lignin-enriched residues, which are currently slated to be burned for heat and power. Going forward, however, valorization strategies for residual solid lignin will be essential to the economic viability of modern biorefineries. To achieve these strategies, effective lignin depolymerization processes will be required that can convert specific lignin-enriched biorefinery substrates into products of sufficient value and market size. Base-catalyzed depolymerization (BCD) of lignin using sodium hydroxide and other basic media has been shown to be an effective depolymerization approach when using technical and isolated lignins relevant to the pulp and paper industry.more » Moreover, to gain insights in the application of BCD to lignin-rich, biofuels-relevant residues, here we apply BCD with sodium hydroxide at two catalyst loadings and temperatures of 270, 300, and 330 °C for 40 min to residual biomass from typical and emerging biochemical conversion processes. We obtained mass balances for each fraction from BCD, and characterized the resulting aqueous and solid residues using gel permeation chromatography, NMR, and GC–MS. When taken together, these results indicate that a significant fraction (45–78%) of the starting lignin-rich material can be depolymerized to low molecular weight, water-soluble species. The yield of the aqueous soluble fraction depends significantly on biomass processing method used prior to BCD. Namely, dilute acid pretreatment results in lower water-soluble yields compared to biomass processing that involves no acid pretreatment. We also find that the BCD product selectivity can be tuned with temperature to give higher yields of methoxyphenols at lower temperature, and a higher relative content of benzenediols with a greater extent of alkylation on the aromatic rings at higher temperature. Our study shows that residual, lignin-rich biomass produced from conventional and emerging biochemical conversion processes can be depolymerized with sodium hydroxide to produce significant yields of low molecular weight aromatics that potentially can be upgraded to fuels or chemicals.« less

  20. Base-Catalyzed Depolymerization of Biorefinery Lignins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katahira, Rui; Mittal, Ashutosh; McKinney, Kellene

    Lignocellulosic biorefineries will produce a substantial pool of lignin-enriched residues, which are currently slated to be burned for heat and power. Going forward, however, valorization strategies for residual solid lignin will be essential to the economic viability of modern biorefineries. To achieve these strategies, effective lignin depolymerization processes will be required that can convert specific lignin-enriched biorefinery substrates into products of sufficient value and market size. Base-catalyzed depolymerization (BCD) of lignin using sodium hydroxide and other basic media has been shown to be an effective depolymerization approach when using technical and isolated lignins relevant to the pulp and paper industry.more » Moreover, to gain insights in the application of BCD to lignin-rich, biofuels-relevant residues, here we apply BCD with sodium hydroxide at two catalyst loadings and temperatures of 270, 300, and 330 °C for 40 min to residual biomass from typical and emerging biochemical conversion processes. We obtained mass balances for each fraction from BCD, and characterized the resulting aqueous and solid residues using gel permeation chromatography, NMR, and GC–MS. When taken together, these results indicate that a significant fraction (45–78%) of the starting lignin-rich material can be depolymerized to low molecular weight, water-soluble species. The yield of the aqueous soluble fraction depends significantly on biomass processing method used prior to BCD. Namely, dilute acid pretreatment results in lower water-soluble yields compared to biomass processing that involves no acid pretreatment. We also find that the BCD product selectivity can be tuned with temperature to give higher yields of methoxyphenols at lower temperature, and a higher relative content of benzenediols with a greater extent of alkylation on the aromatic rings at higher temperature. Our study shows that residual, lignin-rich biomass produced from conventional and emerging biochemical conversion processes can be depolymerized with sodium hydroxide to produce significant yields of low molecular weight aromatics that potentially can be upgraded to fuels or chemicals.« less

  1. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    NASA Astrophysics Data System (ADS)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  2. Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.

    2005-01-01

    Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].

  3. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  4. Nottingham Prognostic Index Plus (NPI+): a modern clinical decision making tool in breast cancer.

    PubMed

    Rakha, E A; Soria, D; Green, A R; Lemetre, C; Powe, D G; Nolan, C C; Garibaldi, J M; Ball, G; Ellis, I O

    2014-04-02

    Current management of breast cancer (BC) relies on risk stratification based on well-defined clinicopathologic factors. Global gene expression profiling studies have demonstrated that BC comprises distinct molecular classes with clinical relevance. In this study, we hypothesised that molecular features of BC are a key driver of tumour behaviour and when coupled with a novel and bespoke application of established clinicopathologic prognostic variables can predict both clinical outcome and relevant therapeutic options more accurately than existing methods. In the current study, a comprehensive panel of biomarkers with relevance to BC was applied to a large and well-characterised series of BC, using immunohistochemistry and different multivariate clustering techniques, to identify the key molecular classes. Subsequently, each class was further stratified using a set of well-defined prognostic clinicopathologic variables. These variables were combined in formulae to prognostically stratify different molecular classes, collectively known as the Nottingham Prognostic Index Plus (NPI+). The NPI+ was then used to predict outcome in the different molecular classes. Seven core molecular classes were identified using a selective panel of 10 biomarkers. Incorporation of clinicopathologic variables in a second-stage analysis resulted in identification of distinct prognostic groups within each molecular class (NPI+). Outcome analysis showed that using the bespoke NPI formulae for each biological BC class provides improved patient outcome stratification superior to the traditional NPI. This study provides proof-of-principle evidence for the use of NPI+ in supporting improved individualised clinical decision making.

  5. Role of the pulmonologist in ordering post-procedure molecular markers in non-small-cell lung cancer: implications for personalized medicine.

    PubMed

    Murgu, Septimiu; Colt, Henri

    2013-11-01

    In the growing era of personalized medicine for the treatment of non-small-cell lung cancer (NSCLC), it is becoming increasingly important that sufficient quality and quantity of tumor tissue are available for morphologic diagnosis and molecular analysis. As new treatment options emerge that might require more frequent and possibly higher volume biopsies, the role of the pulmonologist will expand, and it will be important for pulmonologists to work within a multidisciplinary team to provide optimal therapeutic management for patients with NSCLC. In this review, we discuss the rationale for individualized treatment decisions for patients with NSCLC, molecular pathways and specific molecular predictors relevant to personalized NSCLC therapy, assay technologies for molecular marker analysis, and specifics regarding tumor specimen selection, acquisition, and handling. Moreover, we briefly address issues regarding racial and socioeconomic disparities as they relate to molecular testing and treatment decisions, and cost considerations for molecular testing and targeted therapies in NSCLC. We also propose a model for an institution-based multidisciplinary team, including oncologists, pathologists, pulmonologists, interventional radiologists, and thoracic surgeons, to ensure adequate material is available for cytological and histological studies and to standardize methods of tumor specimen handling and processing in an effort to provide beneficial, individualized therapy for patients with NSCLC. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. De Novo Characterization of the Spleen Transcriptome of the Large Yellow Croaker (Pseudosciaena crocea) and Analysis of the Immune Relevant Genes and Pathways Involved in the Antiviral Response

    PubMed Central

    Ding, Yang; Ao, Jingqun; Hu, Songnian; Chen, Xinhua

    2014-01-01

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. PMID:24820969

  7. Glass transition of polymers in bulk, confined geometries, and near interfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Glynos, Emmanouil; Tito, Nicholas B.

    2017-03-01

    When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass—a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.

  8. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    PubMed

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  9. Electron-flux infrared response to varying π-bond topology in charged aromatic monomers

    PubMed Central

    Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta

    2016-01-01

    The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules. PMID:27577323

  10. Exploring JWST's Capability to Constrain Habitability on Simulated Terrestrial TESS Planets

    NASA Astrophysics Data System (ADS)

    Tremblay, Luke; Britt, Amber; Batalha, Natasha; Schwieterman, Edward; Arney, Giada; Domagal-Goldman, Shawn; Mandell, Avi; Planetary Systems Laboratory; Virtual Planetary Laboratory

    2017-01-01

    In the following, we have worked to develop a flexible "observability" scale of biologically relevant molecules in the atmospheres of newly discovered exoplanets for the instruments aboard NASA's next flagship mission, the James Webb Space Telescope (JWST). We sought to create such a scale in order to provide the community with a tool with which to optimize target selection for JWST observations based on detections of the upcoming Transiting Exoplanet Satellite Survey (TESS). Current literature has laid the groundwork for defining both biologically relevant molecules as well as what characteristics would make a new world "habitable", but it has so far lacked a cohesive analysis of JWST's capabilities to observe these molecules in exoplanet atmospheres and thereby constrain habitability. In developing our Observability Scale, we utilized a range of hypothetical planets (over planetary radii and stellar insolation) and generated three self-consistent atmospheric models (of dierent molecular compositions) for each of our simulated planets. With these planets and their corresponding atmospheres, we utilized the most accurate JWST instrument simulator, created specically to process transiting exoplanet spectra. Through careful analysis of these simulated outputs, we were able to determine the relevant parameters that effected JWST's ability to constrain each individual molecular bands with statistical accuracy and therefore generate a scale based on those key parameters. As a preliminary test of our Observability Scale, we have also applied it to the list of TESS candidate stars in order to determine JWST's observational capabilities for any soon-to-be-detected planet in those solar systems.

  11. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  12. Biomarkers for Uranium Risk Assessment for the Development of the CURE (Concerted Uranium Research in Europe) Molecular Epidemiological Protocol.

    PubMed

    Guéguen, Yann; Roy, Laurence; Hornhardt, Sabine; Badie, Christophe; Hall, Janet; Baatout, Sarah; Pernot, Eileen; Tomasek, Ladislav; Laurent, Olivier; Ebrahimian, Teni; Ibanez, Chrystelle; Grison, Stephane; Kabacik, Sylwia; Laurier, Dominique; Gomolka, Maria

    2017-01-01

    Despite substantial experimental and epidemiological research, there is limited knowledge of the uranium-induce health effects after chronic low-dose exposures in humans. Biological markers can objectively characterize pathological processes or environmental responses to uranium and confounding agents. The integration of such biological markers into a molecular epidemiological study would be a useful approach to improve and refine estimations of uranium-induced health risks. To initiate such a study, Concerted Uranium Research in Europe (CURE) was established, and involves biologists, epidemiologists and dosimetrists. The aims of the biological work package of CURE were: 1. To identify biomarkers and biological specimens relevant to uranium exposure; 2. To define standard operating procedures (SOPs); and 3. To set up a common protocol (logistic, questionnaire, ethical aspects) to perform a large-scale molecular epidemiologic study in uranium-exposed cohorts. An intensive literature review was performed and led to the identification of biomarkers related to: 1. retention organs (lungs, kidneys and bone); 2. other systems/organs with suspected effects (cardiovascular system, central nervous system and lympho-hematopoietic system); 3. target molecules (DNA damage, genomic instability); and 4. high-throughput methods for the identification of new biomarkers. To obtain high-quality biological materials, SOPs were established for the sampling and storage of different biospecimens. A questionnaire was developed to assess potential confounding factors. The proposed strategy can be adapted to other internal exposures and should improve the characterization of the biological and health effects that are relevant for risk assessment.

  13. Kinetics in the real world: linking molecules, processes, and systems.

    PubMed

    Kohse-Höinghaus, Katharina; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter

    2018-04-25

    Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

  14. Elucidating the thermal, chemical, and mechanical mechanisms of ultraviolet ablation in poly(methyl methacrylate) via molecular dynamics simulations.

    PubMed

    Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J

    2008-08-01

    [Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.

  15. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    NASA Astrophysics Data System (ADS)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter < 10 nm requires no external sintering aids such as the addition of barium sources (since stoichiometry is preserved during heat treatment in this size regime). Also, we observe that sintering of particles > 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  16. Long non-coding RNAs involved in autophagy regulation

    PubMed Central

    Yang, Lixian; Wang, Hanying; Shen, Qi; Feng, Lifeng; Jin, Hongchuan

    2017-01-01

    Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke. PMID:28981093

  17. Advances in sepsis research derived from animal models.

    PubMed

    Männel, Daniela N

    2007-09-01

    Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.

  18. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    NASA Astrophysics Data System (ADS)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and angiogenesis were upregulated at both surfaces. Abundant upregulation of several differential markers of alternative activated macrophages was also observed. The biological processes involved with the inflammatory/immune response gene expression were concomitantly downregulated. Conclusions: The presence of micro-roughened and nanosurface features modulated in vivo bone response. This work confirms previous evaluations and further implicates modulation of the inflammatory/immune responses as a factor affecting the accrual of bone mass shortly after implant placement.

  19. Bending Genders: The Biology of Natural Sex Change in Fish.

    PubMed

    Todd, Erica V; Liu, Hui; Muncaster, Simon; Gemmell, Neil J

    2016-01-01

    Sexual fate is no longer seen as an irreversible deterministic switch set during early embryonic development but as an ongoing battle for primacy between male and female developmental trajectories. That sexual fate is not final and must be actively maintained via continuous suppression of the opposing sexual network creates the potential for flexibility into adulthood. In many fishes, sexuality is not only extremely plastic, but sex change is a usual and adaptive part of the life cycle. Sequential hermaphrodites begin life as one sex, changing sometime later to the other, and include species capable of protandrous (male-to-female), protogynous (female-to-male), or serial (bidirectional) sex change. Natural sex change involves coordinated transformations across multiple biological systems, including behavioural, anatomical, neuroendocrine, and molecular axes. We here review the biological processes underlying this amazing transformation, focussing particularly on its molecular basis, which remains poorly understood, but where new genomic technologies are significantly advancing our understanding of how sex change is initiated and progressed at the molecular level. Knowledge of how a usually committed developmental process remains plastic in sequentially hermaphroditic fishes is relevant to understanding the evolution and functioning of sexual developmental systems in vertebrates generally, as well as pathologies of sexual development in humans. © 2016 S. Karger AG, Basel.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less

  1. Effects of tethering a multistate folding protein to a surface

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2011-05-01

    Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

  2. The Development of Students' Mental Models of Chemical Substances and Processes at the Molecular Level

    NASA Astrophysics Data System (ADS)

    Dalton, Rebecca Marie

    The development of student's mental models of chemical substances and processes at the molecular level was studied in a three-phase project. Animations produced in the VisChem project were used as an integral part of the chemistry instruction to help students develop their mental models. Phase one of the project involved examining the effectiveness of using animations to help first-year university chemistry students develop useful mental models of chemical phenomena. Phase two explored factors affecting the development of student's mental models, analysing results in terms of a proposed model of the perceptual processes involved in interpreting an animation. Phase three involved four case studies that served to confirm and elaborate on the effects of prior knowledge and disembedding ability on student's mental model development, and support the influence of study style on learning outcomes. Recommendations for use of the VisChem animations, based on the above findings, include: considering the prior knowledge of students; focusing attention on relevant features; encouraging a deep approach to learning; using animation to teach visual concepts; presenting ideas visually, verbally and conceptually; establishing 'animation literacy'; minimising cognitive load; using animation as feedback; using student drawings; repeating animations; and discussing 'scientific modelling'.

  3. Solid State Pathways towards Molecular Complexity in Space

    NASA Astrophysics Data System (ADS)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  4. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  5. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    PubMed

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  6. Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation

    PubMed Central

    Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.

    2013-01-01

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191

  7. Free Electron coherent sources: From microwave to X-rays

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Di Palma, Emanuele; Pagnutti, Simonetta; Sabia, Elio

    2018-04-01

    The term Free Electron Laser (FEL) will be used, in this paper, to indicate a wide collection of devices aimed at providing coherent electromagnetic radiation from a beam of "free" electrons, unbound at the atomic or molecular states. This article reviews the similarities that link different sources of coherent radiation across the electromagnetic spectrum from microwaves to X-rays, and compares the analogies with conventional laser sources. We explore developing a point of view that allows a unified analytical treatment of these devices, by the introduction of appropriate global variables (e.g. gain, saturation intensity, inhomogeneous broadening parameters, longitudinal mode coupling strength), yielding a very effective way for the determination of the relevant design parameters. The paper looks also at more speculative aspects of FEL physics, which may address the relevance of quantum effects in the lasing process.

  8. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    ERIC Educational Resources Information Center

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  9. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.

    PubMed

    Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-05-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.

  10. Plant Molecular Farming: Much More than Medicines.

    PubMed

    Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva

    2016-06-12

    Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.

  11. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin; Scarpulla, Michael A.

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  12. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    PubMed

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  13. A general mechanism for competitor-induced dissociation of molecular complexes

    PubMed Central

    Paramanathan, Thayaparan; Reeves, Daniel; Friedman, Larry J.; Kondev, Jane; Gelles, Jeff

    2014-01-01

    The kinetic stability of non-covalent macromolecular complexes controls many biological phenomena. Here we find that physical models of complex dissociation predict that competitor molecules will in general accelerate the breakdown of isolated bimolecular complexes by occluding rapid rebinding of the two binding partners. This prediction is largely independent of molecular details. We confirm the prediction with single-molecule fluorescence experiments on a well-characterized DNA strand dissociation reaction. Contrary to common assumptions, competitor–induced acceleration of dissociation can occur in biologically relevant competitor concentration ranges and does not necessarily implyternary association of competitor with the bimolecular complex. Thus, occlusion of complex rebinding may play a significant role in a variety of biomolecular processes. The results also show that single-molecule colocalization experiments can accurately measure dissociation rates despite their limited spatio temporal resolution. PMID:25342513

  14. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE PAGES

    Alberi, Kirstin; Scarpulla, Michael A.

    2017-11-22

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  15. Plant Molecular Farming: Much More than Medicines

    NASA Astrophysics Data System (ADS)

    Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva

    2016-06-01

    Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.

  16. Uncovering molecular details of urea crystal growth in the presence of additives.

    PubMed

    Salvalaglio, Matteo; Vetter, Thomas; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2012-10-17

    Controlling the shape of crystals is of great practical relevance in fields like pharmacology and fine chemistry. Here we examine the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology. To prevent this undesired effect, inhibitors that selectively favor or discourage the growth of specific crystal faces can be used. In urea the most relevant faces are the {001} and the {110} which are known to grow fast and slow, respectively. The relevant growth speed difference between these two crystal faces is responsible for the needle-like structure of crystals grown in water solution. To prevent this effect, additives are used to slow down the growth of one face relative to another, thus controlling the shape of the crystal. We study the growth of fast {001} and slow {110} faces in water solution and the effect of shape controlling inhibitors like biuret. Extensive sampling through molecular dynamics simulations provides a microscopic picture of the growth mechanism and of the role of the additives. We find a continuous growth mechanism on the {001} face, while the slow growing {110} face evolves through a birth and spread process, in which the rate-determining step is the formation on the surface of a two-dimensional crystalline nucleus. On the {001} face, growth inhibitors like biuret compete with urea for the adsorption on surface lattice sites; on the {110} face instead additives cannot interact specifically with surface sites and play a marginal sterical hindrance of the crystal growth. The free energies of adsorption of additives and urea are evaluated with advanced simulation methods (well-tempered metadynamics) allowing a microscopic understanding of the selective effect of additives. Based on this case study, general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out. Our work is a step toward a rational development of novel shape-affecting additives.

  17. An approach to functionally relevant clustering of the protein universe: Active site profile‐based clustering of protein structures and sequences

    PubMed Central

    Knutson, Stacy T.; Westwood, Brian M.; Leuthaeuser, Janelle B.; Turner, Brandon E.; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D.; Harper, Angela F.; Brown, Shoshana D.; Morris, John H.; Ferrin, Thomas E.; Babbitt, Patricia C.

    2017-01-01

    Abstract Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results. PMID:28054422

  18. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences.

    PubMed

    Knutson, Stacy T; Westwood, Brian M; Leuthaeuser, Janelle B; Turner, Brandon E; Nguyendac, Don; Shea, Gabrielle; Kumar, Kiran; Hayden, Julia D; Harper, Angela F; Brown, Shoshana D; Morris, John H; Ferrin, Thomas E; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2017-04-01

    Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification-amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F-measure and performance analysis on the enolase search results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  19. Clinical and pathological implications of miRNA in bladder cancer

    PubMed Central

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer. PMID:25653521

  20. Systems modelling methodology for the analysis of apoptosis signal transduction and cell death decisions.

    PubMed

    Rehm, Markus; Prehn, Jochen H M

    2013-06-01

    Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  2. Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.

  3. Unidirectional rotary motion in a molecular system

    NASA Astrophysics Data System (ADS)

    Kelly, T. Ross; de Silva, Harshani; Silva, Richard A.

    1999-09-01

    The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by `biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although `brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120° rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

  4. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.

    PubMed

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-08-06

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

  5. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  6. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas.

    PubMed

    Brandner, Sebastian; von Deimling, Andreas

    2015-10-01

    The advances of genome-wide 'discovery platforms' and the increasing affordability of the analysis of significant sample sizes have led to the identification of novel mutations in brain tumours that became diagnostically and prognostically relevant. The development of mutation-specific antibodies has facilitated the introduction of these convenient biomarkers into most neuropathology laboratories and has changed our approach to brain tumour diagnostics. However, tissue diagnosis will remain an essential first step for the correct stratification for subsequent molecular tests, and the combined interpretation of the molecular and tissue diagnosis ideally remains with the neuropathologist. This overview will help our understanding of the pathobiology of common intrinsic brain tumours in adults and help guiding which molecular tests can supplement and refine the tissue diagnosis of the most common adult intrinsic brain tumours. This article will discuss the relevance of 1p/19q codeletions, IDH1/2 mutations, BRAF V600E and BRAF fusion mutations, more recently discovered mutations in ATRX, H3F3A, TERT, CIC and FUBP1, for diagnosis, prognostication and predictive testing. In a tumour-specific topic, the role of mitogen-activated protein kinase pathway mutations in the pathogenesis of pilocytic astrocytomas will be covered. © 2015 British Neuropathological Society.

  7. [Relevance of big data for molecular diagnostics].

    PubMed

    Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T

    2018-04-01

    Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.

  8. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    NASA Astrophysics Data System (ADS)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of reaction products because the reaction probabilities were in the diffusion dominant regime. The molecular beam data at different surface temperatures was then used to build a finite rate model. Each reaction mechanism and all rate parameters of the new model were determined individually based on the molecular beam data. Despite the experiments being performed at near vacuum conditions, the finite rate model developed using the data could be used at pressures and temperatures relevant to hypersonic conditions. The new model was implemented in a computational fluid dynamics (CFD) solver and flow over a hypersonic vehicle was simulated. The new model predicted similar overall mass loss rates compared to existing models, however, the individual species production rates were completely different. The most notable difference was that the new model (based on molecular beam data) predicts CO as the oxidation reaction product with virtually no CO2 production, whereas existing models predict the exact opposite trend. CO being the dominant oxidation product is consistent with recent high enthalpy wind tunnel experiments. The discovery that measurements taken in molecular beam facilities are able to determine individual reaction mechanisms, including dependence on surface coverage, opens up an entirely new way of constructing ablation models.

  9. Molecular mechanisms of immunosuppression.

    PubMed

    Baumann, G; Zenke, G; Wenger, R; Hiestand, P; Quesniaux, V; Andersen, E; Schreier, M H

    1992-04-01

    The immunosuppressive drug cyclosporin A (CsA, Sandimmun, SIM) is currently being evaluated in a variety of autoimmune disorders with some remarkable successes. Despite the wide empiric application of CsA, the precise mechanism of action of this drug remains elusive. To identify the molecular mode of action of CsA in the process of T cell activation, we have compared the biological profile of cyclophilin-binding cyclosporin analogues (CBCA), which lack immunosuppressive properties, with CsA. We have found that CsA binding to its intracellular receptor (cyclophilin) is required but not sufficient for immunosuppression. Moreover, inhibition of the peptidyl-prolyl cis-trans isomerase activity of cyclophilin does not seem to be relevant for the inhibitory effects of CsA. In analogy to the immunosuppressants FK506 and rapamycin, a specific structure at the 'effector' domain of the CsA molecule different from the immunophilin 'binding' domain determines the biological activity. Overall, a significant understanding of the structure-activity relationship of CsA has emerged. This will have a major impact on the identification of the precise mechanism of action of CsA and its side effects in the process of immunosuppression.

  10. Electronic Transport in Ultrathin Heterostructures.

    DTIC Science & Technology

    1981-10-01

    heterostructures, superlattices, diffusion-enhanced disorder, transport properties, molecular beam epitaxy (MBE), photoluminescence, optical absorption...tion of single and multilayer GatlAs/GaAs heterostructures by metalorganic chemical vapor deposition (MJCVD) and molecular beam epitaxy (MBE) has...fundamental nature of these clusters and their relevance to other epitaxial techniques such as molecular beam epitaxy (MBE). To further varify or

  11. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Chialvo, Ariel A.

    2018-05-01

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  12. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.

    PubMed

    Chialvo, Ariel A

    2018-05-07

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  13. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The therapeutic use of the relaxation response in stress-related diseases.

    PubMed

    Esch, Tobias; Fricchione, Gregory L; Stefano, George B

    2003-02-01

    The objective of this work was to investigate a possible (therapeutic) connection between the relaxation response (RR) and stress-related diseases. Further, common underlying molecular mechanisms and autoregulatory pathways were examined. For the question of (patho)physiology and significance of RR techniques in the treatment of stress-related diseases, we analyzed peer-reviewed references only. The RR has been shown to be an appropriate and relevant therapeutic tool to counteract several stress-related disease processes and certain health-restrictions, particularly in certain immunological, cardiovascular, and neurodegenerative diseases/mental disorders. Further, common underlying molecular mechanisms may exist that represent a connection between the stress response, pathophysiological findings in stress-related diseases, and physiological changes/autoregulatory pathways described in the RR. Here, constitutive or low-output nitric oxide (NO) production may be involved in a protective or ameliorating context, whereas inducible, high-output NO release may facilitate detrimental disease processes. In mild or early disease states, a high degree of biological and physiological flexibility may still be possible (dynamic balance). Here, the therapeutic use of RR techniques may be considered particularly relevant, and the observable (beneficial) effects may be exerted via activation of constitutive NO pathways. RR techniques, regularly part of professional stress management or mind/body medical settings, represent an important tool to be added to therapeutic strategies dealing with stress-related diseases. Moreover, as part of 'healthy' life-style modifications, they may serve primary (or secondary) prevention. Further studies are necessary to elucidate the complex physiology underlying the RR and its impact upon stress-related disease states.

  15. Molecular environmental geochemistry

    NASA Astrophysics Data System (ADS)

    O'Day, Peggy A.

    1999-05-01

    The chemistry, mobility, and bioavailability of contaminant species in the natural environment are controlled by reactions that occur in and among solid, aqueous, and gas phases. These reactions are varied and complex, involving changes in chemical form and mass transfer among inorganic, organic, and biochemical species. The field of molecular environmental geochemistry seeks to apply spectroscopic and microscopic probes to the mechanistic understanding of environmentally relevant chemical processes, particularly those involving contaminants and Earth materials. In general, empirical geochemical models have been shown to lack uniqueness and adequate predictive capability, even in relatively simple systems. Molecular geochemical tools, when coupled with macroscopic measurements, can provide the level of chemical detail required for the credible extrapolation of contaminant reactivity and bioavailability over ranges of temperature, pressure, and composition. This review focuses on recent advances in the understanding of molecular chemistry and reaction mechanisms at mineral surfaces and mineral-fluid interfaces spurred by the application of new spectroscopies and microscopies. These methods, such as synchrotron X-ray absorption and scattering techniques, vibrational and resonance spectroscopies, and scanning probe microscopies, provide direct chemical information that can elucidate molecular mechanisms, including element speciation, ligand coordination and oxidation state, structural arrangement and crystallinity on different scales, and physical morphology and topography of surfaces. Nonvacuum techniques that allow examination of reactions in situ (i.e., with water or fluids present) and in real time provide direct links between molecular structure and reactivity and measurements of kinetic rates or thermodynamic properties. Applications of these diverse probes to laboratory model systems have provided fundamental insight into inorganic and organic reactions at mineral surfaces and mineral-water interfaces. A review of recent studies employing molecular characterizations of soils, sediments, and biological samples from contaminated sites exemplifies the utility and benefits, as well as the challenge, of applying molecular probes to complicated natural materials. New techniques, technological advances, and the crossover of methods from other disciplines such as biochemistry and materials science promise better examination of environmental chemical processes in real time and at higher resolution, and will further the integration of molecular information into field-scale chemical and hydrologic models.

  16. Quantum Dot Platform for Single-Cell Molecular Profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.

  17. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  18. Helicase-inactivating mutations as a basis for dominant negative phenotypes

    PubMed Central

    Wu, Yuliang

    2010-01-01

    There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANC J helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANC J to use the energy from AT P hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers. PMID:20980836

  19. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.

    PubMed

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi

    2013-10-05

    The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging.

    PubMed

    Castillo-Quan, Jorge Iván; Kinghorn, Kerri J; Bjedov, Ivana

    2015-01-01

    Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases*

    PubMed Central

    Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.; Beckham, Gregg T.

    2013-01-01

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ∼5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pKa values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pKa values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pKa values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  2. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  3. Diffusion in Single Supported Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.

    2011-03-01

    Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H

  4. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.

    PubMed

    Banerjee, Bubun

    2017-03-01

    Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparative analysis of the structure of carbon materials relevant in combustion.

    PubMed

    Apicella, B; Barbella, R; Ciajolo, A; Tregrossi, A

    2003-06-01

    The determination of the structure of carbon materials is an analytical problem that join the research scientific communities involved in the chemical characterization of heavy fuel-derived products (heavy fuel oils, coal-derived fuels, shale oil, etc.) and of carbon materials (polycyclic aromatic compounds, tar, soot) produced in many combustion processes. The knowledge of the structure of these "difficult" fuels and of the carbon materials produced by incomplete combustion is relevant to research for the best low-environmental impact operation of combustion systems; but an array of many analytical and spectroscopic tools are necessary, and often not sufficient, to attempt the characterization of such complex products and in particular to determine the distribution of molecular masses. In this paper the size exclusion chromatography using N-methyl-pyrrolidinone as eluent has been applied for the characterization of different carbon materials starting from typical carbon species, commercially available like polyacenaphthylene, carbon black, naphthalene pitch up to combustion products like soot and soot extract collected in fuel-rich combustion systems. Two main fractions were detected, separated and molecular weights (MWs) determined by comparison with polystyrene standards: a first fraction consisted of particles with very large molecular masses (>100000 u); a second fraction consisted of species in a relatively small MW range (200-600 u). The distribution of these fractions changes in dependence on the carbon sample characteristics. Fluorescence spectroscopy applied on the fractions separated by size-exclusion chromatography has been used and comparatively interpreted giving indications on the differences and similarities in chemical structure of such different materials.

  6. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems.

    PubMed

    Craig, D Q; Royall, P G; Kett, V L; Hopton, M L

    1999-03-15

    Many pharmaceuticals, either by accident or design, may exist in a total or partially amorphous state. Consequently, it is essential to have an understanding of the physico-chemical principles underpinning the behaviour of such systems. In this discussion, the nature of the glassy state will be described, with particular emphasis on the molecular processes associated with glass transitional behaviour and the use of thermal methods for characterising the glass transition temperature, Tg. The practicalities of such measurements, the significance of the accompanying relaxation endotherm and plasticization effects are considered. The advantages and difficulties associated with the use of amorphous drugs will be outlined, with discussion given regarding the problems associated with physical and chemical stability. Finally, the principles of freeze drying will be described, including discussion of the relevance of glass transitional behaviour to product stability. Copyright

  7. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    PubMed Central

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  8. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  9. Changes in Chromatin Compaction During the Cell Cycle Revealed by Micrometer-Scale Measurement of Molecular Flow in the Nucleus

    PubMed Central

    Hinde, Elizabeth; Cardarelli, Francesco; Digman, Michelle A.; Gratton, Enrico

    2012-01-01

    We present a quantitative fluctuation-based assay to measure the degree of local chromatin compaction and investigate how chromatin density regulates the diffusive path adopted by an inert protein in dividing cells. The assay uses CHO-K1 cells coexpressing untagged enhanced green fluorescent protein (EGFP) and histone H2B tagged mCherry. We measure at the single-cell level the EGFP localization and molecular flow patterns characteristic of each stage of chromatin compaction from mitosis through interphase by means of pair-correlation analysis. We find that the naturally occurring changes in chromatin organization impart a regulation on the spatial distribution and temporal dynamics of EGFP within the nucleus. Combined with the analysis of Ca2+ intracellular homeostasis during cell division, EGFP flow regulation can be interpreted as the result of controlled changes in chromatin compaction. For the first time, to our knowledge, we were able to probe chromatin compaction on the micrometer scale, where the regulation of molecular diffusion may become relevant for many cellular processes. PMID:22325293

  10. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches

    PubMed Central

    Parasuraman, Raja; Jiang, Yang

    2012-01-01

    We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

  11. Recent Developments in Molecular Brain Imaging of Neuropsychiatric Disorders.

    PubMed

    Slifstein, Mark; Abi-Dargham, Anissa

    2017-01-01

    Molecular imaging with PET or SPECT has been an important research tool in psychiatry for as long as these modalities have been available. Here, we discuss two areas of neuroimaging relevant to current psychiatry research. The first is the use of imaging to study neurotransmission. We discuss the use of pharmacologic probes to induce changes in levels of neurotransmitters that can be inferred through their effects on outcome measures of imaging experiments, from their historical origins focusing on dopamine transmission through recent developments involving serotonin, GABA, and glutamate. Next, we examine imaging of neuroinflammation in the context of psychiatry. Imaging markers of neuroinflammation have been studied extensively in other areas of brain research, but they have more recently attracted interest in psychiatry research, based on accumulating evidence that there may be an inflammatory component to some psychiatric conditions. Furthermore, new probes are under development that would allow unprecedented insights into cellular processes. In summary, molecular imaging would continue to offer great potential as a unique tool to further our understanding of brain function in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success.

    PubMed

    Wang, Haibin; Xie, Huirong; Sun, Xiaofei; Tranguch, Susanne; Zhang, Hao; Jia, Xiangxu; Wang, Dingzhi; Das, Sanjoy K; Desvergne, Béatrice; Wahli, Walter; DuBois, Raymond N; Dey, Sudhansu K

    2007-12-28

    Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.

  13. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  14. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  15. Molecular organization of various collagen fragments as revealed by atomic force microscopy and diffusion-ordered NMR spectroscopy.

    PubMed

    Stötzel, Sabine; Schurink, Marloes; Wienk, Hans; Siebler, Uschi; Burg-Roderfeld, Monika; Eckert, Thomas; Kulik, Bianca; Wechselberger, Rainer; Sewing, Judith; Steinmeyer, Jürgen; Oesser, Steffen; Boelens, Rolf; Siebert, Hans-Christian

    2012-09-17

    Heterogeneous mixtures of collagen fragments can be used as nutrition supplement or as key ingredients for ointments with therapeutic relevance in wound healing. Some mixtures of collagen fragments are referred to as collagen hydrolysates owing to the production process with hydrolytic enzymes. Since the precise composition of collagen hydrolysates is generally unknown, it is of interest to analyze samples containing various collagen fragments with appropriate biophysical methods. Any product optimization without a profound knowledge concerning the size and the molecular weight distribution of its components is nearly impossible. It turned out that a combination of AFM methods with NMR techniques is exceptionally suited to examine the size range and the aggregation behavior of the collagen fragments in the hydrolysates of fish, jellyfish, chicken, porcine and bovine collagen. Supported by molecular modeling calculations, the AFM and NMR experiments provide a detailed knowledge about the composition of collagen hydrolysates and collagen ointments. Furthermore, the data allow a correlation between the size of the fragments and their potential bioactivity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Current Status and Future Perspectives of Mass Spectrometry Imaging

    PubMed Central

    Nimesh, Surendra; Mohottalage, Susantha; Vincent, Renaud; Kumarathasan, Prem

    2013-01-01

    Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology. PMID:23759983

  17. Polymerase chain reaction: A molecular diagnostic tool in periodontology

    PubMed Central

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease. PMID:27143822

  18. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    PubMed

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  19. Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers.

    PubMed

    Zhang, Kai; Meng, Dong; Müller-Plathe, Florian; Kumar, Sanat K

    2018-01-17

    Membrane separations of gas mixtures strive to maximize the permeability of a desired species while keeping out undesired ones. Permeability vs. selectivity data from many polymer membranes for a given gas pair with diameters d A and d B are typically collected in a "Robeson plot"', and are bound from above by a line with a slope λ = (d B /d A ) 2 - 1. A microscopic understanding of this relationship, especially λ, is still missing. We perform molecular dynamics simulations of penetrant diffusion using three different coarse-grained polymer models over a wide range of penetrant sizes, temperatures, and monomer densities. The empirically relevant λ = (d B /d A ) 2 - 1 is only found for polymers that are either supercooled liquids with caged segmental dynamics or glasses and when the penetrant size is approximately half the Kuhn length of the chains, for which the penetrant diffusion is an activated process.

  20. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.

  1. In situ sum-frequency generation spectroscopy of ethylene-glycol and poly-N-isopropylacrylamide films

    NASA Astrophysics Data System (ADS)

    Kurz, Volker; Koelsch, Patrick

    2009-03-01

    Ethylene-glycol(EG)-based self-assembled monolayers (SAMs) are often used as a model systems for thin liquid films. Temperature series in heavy water were measured using a unique sample cell developed for in situ sum-frequency generation (SFG) spectroscopy experiments. Results obtained from model EG-SAMs with different lengths and terminating groups in various ionic solutions showed temperature-dependent changes in the molecular order. Films of poly-N-isopropylacrylamide(pNIPAM) were also characterized by in situ SFG spectroscopy in the CH, OH, OD and amide spectral regions under different polarization combinations. These systems have many applications as thermo-responsive polymers due to their ability to change solubility in water at the biologically relevant temperature of 32 C. This so-called lower critical solution temperature (LCST) phase transition was characterized in depth, allowing for the identification of the molecular groups involved in this process.

  2. Machine Learning Estimates of Natural Product Conformational Energies

    PubMed Central

    Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert

    2014-01-01

    Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952

  3. Chordoma: the entity.

    PubMed

    Yakkioui, Youssef; van Overbeeke, Jacobus J; Santegoeds, Remco; van Engeland, Manon; Temel, Yasin

    2014-12-01

    Chordomas are malignant tumors of the axial skeleton, characterized by their locally invasive and slow but aggressive growth. These neoplasms are presumed to be derived from notochordal remnants with a molecular alteration preceding their malignant transformation. As these tumors are most frequently observed on the skull base and sacrum, patients suffering from a chordoma present with debilitating neurological disease, and have an overall 5-year survival rate of 65%. Surgical resection with adjuvant radiotherapy is the first-choice treatment modality in these patients, since chordomas are resistant to conventional chemotherapy. Even so, management of chordomas can be challenging, as chordoma patients often present with recurrent disease. Recent advances in the understanding of the molecular events that contribute to the development of chordomas are promising; the most novel finding being the identification of brachyury in the disease process. Here we present an overview of the current paradigms and summarize relevant research findings. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.

    PubMed

    Joos, Lennart; Swisher, Joseph A; Smit, Berend

    2013-12-23

    The presence of H2O in postcombustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Because of its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/CO2 mixtures in 13X, a popular zeolite for CO2 capture processes that is commercially available. The simulations show that H2O reduces the capacity of these materials for adsorbing CO2 by an order of magnitude and that at the partial pressures of H2O relevant for postcombustion capture, 13X will be essentially saturated with H2O .

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qin; Zhao, Lichen; Wu, Jiang

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI 6] 4– cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular-more » or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.« less

  6. Polymerase chain reaction: A molecular diagnostic tool in periodontology.

    PubMed

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease.

  7. Liquid methanol under a static electric field

    NASA Astrophysics Data System (ADS)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  8. Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery.

    PubMed

    Karapiperis, Christos; Kempf, Stefan J; Quintens, Roel; Azimzadeh, Omid; Vidal, Victoria Linares; Pazzaglia, Simonetta; Bazyka, Dimitry; Mastroberardino, Pier G; Scouras, Zacharias G; Tapio, Soile; Benotmane, Mohammed Abderrafi; Ouzounis, Christos A

    2016-05-11

    The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .

  9. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus

    PubMed Central

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766

  10. Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling.

    PubMed

    Verheijen, Marcha; Schrooders, Yannick; Gmuender, Hans; Nudischer, Ramona; Clayton, Olivia; Hynes, James; Niederer, Steven; Cordes, Henrik; Kuepfer, Lars; Kleinjans, Jos; Caiment, Florian

    2018-05-24

    Doxorubicin (DOX) is a chemotherapeutic agent of which the medical use is limited due to cardiotoxicity. While acute cardiotoxicity is reversible, chronic cardiotoxicity is persistent or progressive, dose-dependent and irreversible. While DOX mechanisms of action are not fully understood yet, 3 toxicity processes are known to occur in vivo: cardiomyocyte dysfunction, mitochondrial dysfunction and cell death. We present an in vitro experimental design aimed at detecting DOX-induced cardiotoxicity by obtaining a global view of the induced molecular mechanisms through RNA-sequencing. To better reflect the in vivo situation, human 3D cardiac microtissues were exposed to physiologically-based pharmacokinetic (PBPK) relevant doses of DOX for 2 weeks. We analysed a therapeutic and a toxic dosing profile. Transcriptomics analysis revealed significant gene expression changes in pathways related to "striated muscle contraction" and "respiratory electron transport", thus suggesting mitochondrial dysfunction as an underlying mechanism for cardiotoxicity. Furthermore, expression changes in mitochondrial processes differed significantly between the doses. Therapeutic dose reflects processes resembling the phenotype of delayed chronic cardiotoxicity, while toxic doses resembled acute cardiotoxicity. Overall, these results demonstrate the capability of our innovative in vitro approach to detect the three known mechanisms of DOX leading to toxicity, thus suggesting its potential relevance for reflecting the patient situation. Our study also demonstrated the importance of applying physiologically relevant doses during toxicological research, since mechanisms of acute and chronic toxicity differ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Epigenetics and Psychoneuroimmunology: Mechanisms and Models

    PubMed Central

    Mathews, Herbert L.; Janusek, Linda Witek

    2010-01-01

    In this Introduction to the Named Series “Epigenetics, Brain, Behavior, and Immunity” an overview of epigenetics is provided with a consideration of the nature of epigenetic regulation including DNA methylation, histone modification and chromatin remodeling. Illustrative examples of recent scientific developments are highlighted to demonstrate the influence of epigenetics in areas of research relevant to those who investigate phenomena within the scientific discipline of psychoneuroimmunology. These examples are presented in order to provide a perspective on how epigenetic analysis will add insight into the molecular processes that connect the brain with behavior, neuroendocrine responsivity and immune outcome. PMID:20832468

  12. Epigenetics of Addiction: Current Knowledge, Challenges, and Future Directions.

    PubMed

    Cecil, Charlotte A M; Walton, Esther; Viding, Essi

    2016-09-01

    Addiction to psychoactive substances is a debilitating condition underpinned by the interplay of genetic and environmental factors. At present, a key challenge for research is to delineate how, at a molecular level, these influences become "biologically embedded," contributing to the onset and persistence of addictive behaviors. Recently, epigenetic processes that regulate gene expression have emerged as a potential mechanism of interest. In this commentary, we discuss the relevance of epigenetics to addiction research, starting with the current state of knowledge, what challenges we have yet to overcome, and what the future may hold in terms of research methodology and translational potential.

  13. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  15. Long-timescale molecular dynamics simulations elucidate the dynamics and kinetics of exposure of the hydrophobic patch in troponin C.

    PubMed

    Lindert, Steffen; Kekenes-Huskey, Peter M; McCammon, J Andrew

    2012-10-17

    Troponin (Tn) is an important regulatory protein in the thin-filament complex of cardiomyocytes. Calcium binding to the troponin C (TnC) subunit causes a change in its dynamics that leads to the transient opening of a hydrophobic patch on TnC's surface, to which a helix of another subunit, troponin I (TnI), binds. This process initiates contraction, making it an important target for studies investigating the detailed molecular processes that underlie contraction. Here we use microsecond-timescale Anton molecular dynamics simulations to investigate the dynamics and kinetics of the opening transition of the TnC hydrophobic patch. Free-energy differences for opening are calculated for wild-type Ca(2+)-bound TnC (∼8 kcal/mol), V44Q Ca(2+)-bound TnC (3.2 kcal/mol), E40A Ca(2+)-bound TnC (∼12 kcal/mol), and wild-type apo TnC (∼20 kcal/mol). These results suggest that the mutations have a profound impact on the frequency with which the hydrophobic patch presents to TnI. In addition, these simulations corroborate that cardiac wild-type TnC does not open on timescales relevant to contraction without calcium being bound. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    PubMed

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  17. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    PubMed Central

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241

  18. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    PubMed Central

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  19. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    PubMed

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Clinical relevance of molecular diagnostics in gastrointestinal (GI) cancer: European Society of Digestive Oncology (ESDO) expert discussion and recommendations from the 17th European Society for Medical Oncology (ESMO)/World Congress on Gastrointestinal Cancer, Barcelona.

    PubMed

    Baraniskin, Alexander; Van Laethem, Jean-Luc; Wyrwicz, Lucjan; Guller, Ulrich; Wasan, Harpreet S; Matysiak-Budnik, Tamara; Gruenberger, Thomas; Ducreux, Michel; Carneiro, Fatima; Van Cutsem, Eric; Seufferlein, Thomas; Schmiegel, Wolff

    2017-11-01

    In the epoch of precision medicine and personalised oncology, which aims to deliver the right treatment to the right patient, molecular genetic biomarkers are a topic of growing interest. The aim of this expert discussion and position paper is to review the current status of various molecular tests for gastrointestinal (GI) cancers and especially considering their significance for the clinical routine use. Opinion leaders and experts from diverse nationalities selected on scientific merit were asked to answer to a prepared set of questions about the current status of molecular diagnostics in different GI cancers. All answers were then discussed during a plenary session and reported here in providing a well-balanced reflection of both clinical expertise and updated evidence-based medicine. Preselected molecular genetic biomarkers that are described and disputed in the current medical literature in different GI cancers were debated, and recommendations for clinical routine practice were made whenever possible. Furthermore, the preanalytical variations were commented and proposals for quality controls of biospecimens were made. The current article summarises the recommendations of the expert committee regarding prognostic and predictive molecular genetic biomarkers in different entities of GI cancers. The briefly and comprehensively formulated guidelines should assist clinicians in the process of decision making in daily clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transport mirages in single-molecule devices

    NASA Astrophysics Data System (ADS)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  2. Data Processing

    NASA Astrophysics Data System (ADS)

    Grangeat, P.

    A new area of biology has been opened up by nanoscale exploration of the living world. This has been made possible by technological progress, which has provided the tools needed to make devices that can measure things on such length and time scales. In a sense, this is a new window upon the living world, so rich and so diverse. Many of the investigative methods described in this book seek to obtain complementary physical, chemical, and biological data to understand the way it works and the way it is organised. At these length and time scales, only dedicated instrumentation could apprehend the relevant phenomena. There is no way for our senses to observe these things directly. One important field of application is molecular medicine, which aims to explain the mechanisms of life and disease by the presence and quantification of specific molecular entities. This involves combining information about genes, proteins, cells, and organs. This in turn requires the association of instruments for molecular diagnosis, either in vitro, e.g., the microarray or the lab-on-a-chip, or in vivo, e.g., probes for molecular biopsy, and tools for molecular imaging, used to localise molecular information in living organisms in a non-invasive way. These considerations concern both preclinical research for drug design and human medical applications. With the development of DNA and RNA chips [1], genomics has revolutionised investigative methods for cells and cell processes [2,3]. By sequencing the human genome, new ways have been found for understanding the fundamental mechanisms of life [4]. A revolution is currently under way with the analysis of the proteome [5-8], i.e., the complete set of proteins that can be found in some given biological medium, such as the blood plasma. The goal is to characterise certain diseases by recognisable signatures in the proteomic profile, as determined from a blood sample or a biopsy, for example [9-13]. What is at stake is the early detection of disease and personalisation of health care [14].

  3. Water anomalous thermodynamics, attraction, repulsion, and hydrophobic hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerdeiriña, Claudio A., E-mail: calvarez@uvigo.es; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    A model composed of van der Waals-like and hydrogen bonding contributions that simulates the low-temperature anomalous thermodynamics of pure water while exhibiting a second, liquid-liquid critical point [P. H. Poole et al., Phys. Rev. Lett. 73, 1632 (1994)] is extended to dilute solutions of nonionic species. Critical lines emanating from such second critical point are calculated. While one infers that the smallness of the water molecule may be a relevant factor for those critical lines to move towards experimentally accessible regions, attention is mainly focused on the picture our model draws for the hydration thermodynamics of purely hydrophobic and amphiphilicmore » non-electrolyte solutes. We first focus on differentiating solvation at constant volume from the corresponding isobaric process. Both processes provide the same viewpoint for the low solubility of hydrophobic solutes: it originates from the combination of weak solute-solvent attractive interactions and the specific excluded-volume effects associated with the small molecular size of water. However, a sharp distinction is found when exploring the temperature dependence of hydration phenomena since, in contrast to the situation for the constant-V process, the properties of pure water play a crucial role at isobaric conditions. Specifically, the solubility minimum as well as enthalpy and entropy convergence phenomena, exclusively ascribed to isobaric solvation, are closely related to water’s density maximum. Furthermore, the behavior of the partial molecular volume and the partial molecular isobaric heat capacity highlights the interplay between water anomalies, attraction, and repulsion. The overall picture presented here is supported by experimental observations, simulations, and previous theoretical results.« less

  4. Thalamic Proteome Changes and Behavioral Impairments in Thiamine-deficient Rats.

    PubMed

    Nunes, Polliana Toledo; Gómez-Mendoza, Diana Paola; Rezende, Cristiana Perdigão; Figueiredo, Henrique César Pereira; Ribeiro, Angela Maria

    2018-06-09

    Thiamine deficiency (TD) has been used as an experimental model in rodents to study the molecular mechanisms of neurodegeneration and its association with behavioral changes. The aims of the present study were to investigate the spatial cognitive performance of pyrithiamine-induced thiamine deficiency (PTD) in adult male rats and disclose the thalamic proteome alterations caused by a severe TD episode. After the onset of the neurological signs, such as seizure and/or loss of righting reflex, the TD treatment was interrupted. Following 15 days of recovery, all rats were submitted to the spatial cognitive tasks in the Morris Water Maze (MWM). The results show that the PTD rats exhibited deficits during the learning process, which was reverted by repeated training. However, despite the spatial cognitive recovery, some protein changes were not reversible. The proteomic analysis, using label-free quantification, revealed deregulation of 183 thalamic proteins. Using bioinformatic tools, these proteins were categorized according to Gene Ontology functional annotation and metabolic pathways. We show that a severe TD affects proteins involved in different biological processes, such as, oxidative stress, neurotransmitter synthesis and synaptic vesicle cycle. These could explain the outcome in neurotransmitter release changes caused by TD, previously observed by our group and by other authors. These findings disclose the role of key proteins and metabolic pathways probably involved in the neurodegeneration process induced by TD. These proteins represent relevant molecular targets for future studies focusing also on the molecular basis of selective vulnerability of some brain areas to TD insult. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Molecular dynamics simulation of β₂-microglobulin in denaturing and stabilizing conditions.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Varini, Nicola; Rotter, Matteo; Gumral, Devrim; Codutti, Luca; Rennella, Enrico; Viglino, Paolo; Bellotti, Vittorio; Esposito, Gennaro

    2011-03-01

    β₂-Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β₂-microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β₂-microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β₂-microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis-trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native-like trans-conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis-trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β₂-microglobulin provides details of the binding modes of the drug and a rationale for its effect. Copyright © 2010 Wiley-Liss, Inc.

  6. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.

  7. Adaptive Memory: Evaluating Alternative Forms of Fitness-Relevant Processing in the Survival Processing Paradigm

    PubMed Central

    Sandry, Joshua; Trafimow, David; Marks, Michael J.; Rice, Stephen

    2013-01-01

    Memory may have evolved to preserve information processed in terms of its fitness-relevance. Based on the assumption that the human mind comprises different fitness-relevant adaptive mechanisms contributing to survival and reproductive success, we compared alternative fitness-relevant processing scenarios with survival processing. Participants rated words for relevancy to fitness-relevant and control conditions followed by a delay and surprise recall test (Experiment 1a). Participants recalled more words processed for their relevance to a survival situation. We replicated these findings in an online study (Experiment 2) and a study using revised fitness-relevant scenarios (Experiment 3). Across all experiments, we did not find a mnemonic benefit for alternative fitness-relevant processing scenarios, questioning assumptions associated with an evolutionary account of remembering. Based on these results, fitness-relevance seems to be too wide-ranging of a construct to account for the memory findings associated with survival processing. We propose that memory may be hierarchically sensitive to fitness-relevant processing instructions. We encourage future researchers to investigate the underlying mechanisms responsible for survival processing effects and work toward developing a taxonomy of adaptive memory. PMID:23585858

  8. Molecular Heterogeneity in Glioblastoma: Potential Clinical Implications

    PubMed Central

    Parker, Nicole Renee; Khong, Peter; Parkinson, Jonathon Fergus; Howell, Viive Maarika; Wheeler, Helen Ruth

    2015-01-01

    Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed. PMID:25785247

  9. Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Giacomin, A. Jeffrey; Saengow, Chaimongkol

    2018-05-01

    In this paper, we connect a molecular description of the rheology of a polymeric liquid to a continuum description, and then test this connection for large-amplitude oscillatory shear (LAOS) flow. Specifically, for the continuum description, we use the 6-constant Oldroyd framework, and for the molecular, we use the simplest relevant molecular model, the suspension of rigid dumbbells. By relevant, we mean predicting at least higher harmonics in the shear stress response in LAOS. We call this connection a molecular continuum, and we examine two ways of arriving at this connection. The first goes through the retarded motion expansion, and the second expands each of a set of specific material functions (complex, steady shear, and steady uniaxial extensional viscosities). Both ways involve in comparing the coefficients of expansions and then solve for the six constants of the continuum framework in terms of the two constants of the rigid dumbbell suspension. The purpose of a molecular continuum is that many well-known results for rigid dumbbell suspensions in other flow fields can also be easily obtained, without having to firstly find the orientation distribution function. In this paper, we focus on the recent result for the rigid dumbbell suspension in LAOS. We compare the accuracies of the retarded motion molecular continuum (RMMC) with the material function molecular continuum (MFMC). We find the RMMC to be the most accurate for LAOS.

  10. Nanoscale Pore Features and Associated Fluid Behavior in Shale

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Striolo, A.

    2017-12-01

    Unconventional hydrocarbons occurring in economic abundance require greater than industry-standard levels of technology or investment to exploit. Geological formations that host unconventional oil and gas are extraordinarily heterogeneous and exhibit a wide range of physical and chemical features that can vary over many orders of magnitude in length scale. The size, distribution and connectivity of these confined geometries, the chemistry of the solid, the chemistry of the fluids and their physical properties collectively dictate how fluids migrate into and through these micro- and nano-environments, wet and ultimately react with the solid surfaces. Our current understanding of the rates and mechanisms of fluid and mass transport and interaction within these multiporosity systems at the molecular scale is far less robust than we would like. This presentation will take a two-fold approach to this topic area. First, a brief overview is provided that highlights the use of advanced electron microscopy and neutrons scattering methods to quantify the nature of the nanopore system that hosts hydrocarbons in representative gas shale formations such as the Utica, Marcellus and Eagle Ford. Second, results will be presented that leverage the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction relevant to shale settings. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of C-O-H fluids confined to well-characterized porous media, subjected to temperatures and pressures relevant to subsurface energy systems. These studies conducted in concert are beginning to provide a fundamental understanding at the molecular level of how intrinsically different hydrocarbon-bearing fluids behave in confined geometries compared to bulk systems, and shed light on key geochemical processes such as fluid wetting, competitive sorption and the onset of mineral dissolution and precipitation.

  11. Current approaches for the assessment of in situ biodegradation.

    PubMed

    Bombach, Petra; Richnow, Hans H; Kästner, Matthias; Fischer, Anko

    2010-04-01

    Considering the high costs and technical difficulties associated with conventional remediation strategies, in situ biodegradation has become a promising approach for cleaning up contaminated aquifers. To verify if in situ biodegradation of organic contaminants is taking place at a contaminated site and to determine if these processes are efficient enough to replace conventional cleanup technologies, a comprehensive characterization of site-specific biodegradation processes is essential. In recent years, several strategies including geochemical analyses, microbial and molecular methods, tracer tests, metabolite analysis, compound-specific isotope analysis, and in situ microcosms have been developed to investigate the relevance of biodegradation processes for cleaning up contaminated aquifers. In this review, we outline current approaches for the assessment of in situ biodegradation and discuss their potential and limitations. We also discuss the benefits of research strategies combining complementary methods to gain a more comprehensive understanding of the complex hydrogeological and microbial interactions governing contaminant biodegradation in the field.

  12. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.

    PubMed

    Korf, Jakob

    2015-08-01

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.

  14. Assembling oppositely charged lock and key responsive colloids: A mesoscale analog of adaptive chemistry

    PubMed Central

    Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.

    2017-01-01

    We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133

  15. Developing and applying the adverse outcome pathway ...

    EPA Pesticide Factsheets

    To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out

  16. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  17. Expression signatures of early-stage and advanced medaka melanomas.

    PubMed

    Klotz, Barbara; Kneitz, Susanne; Regensburger, Martina; Hahn, Lena; Dannemann, Michael; Kelso, Janet; Nickel, Birgit; Lu, Yuan; Boswell, William; Postlethwait, John; Warren, Wesley; Kunz, Manfred; Walter, Ronald B; Schartl, Manfred

    2018-06-01

    Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  19. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  20. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  1. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  2. Exploring glycogen biosynthesis through Monte Carlo simulation.

    PubMed

    Zhang, Peng; Nada, Sharif S; Tan, Xinle; Deng, Bin; Sullivan, Mitchell A; Gilbert, Robert G

    2018-05-08

    Glycogen, a complex branched polymer of glucose (average chain length ~10 monomer units), is the blood-sugar reservoir in humans and other animals. Certain aspects of its molecular structure relevant to its biological functions are currently unamenable to experimental exploration. Knowledge of these is needed to develop future models for quantitative data-fitting to obtain mechanistic understanding of the biosynthetic processes that give rise to glycogen structure. Monte Carlo simulations of the biosynthesis of this structure with realistic macromolecular parameters reveal how chain growth and stoppage (the latter assumed to be through both the action of glycogen branching enzyme and other degradative enzymes, and by hindrance) control structural features. The simulated chain-length, pair-distance and radial density distributions agree semi-quantitatively with the limited available data. The simulations indicate that a steady state in molecular structure and size is rapidly obtained, that molecular density reaches a maximum near the center of the particle (not at the periphery, as is the case with dendrimers), and that particle size is controlled by both enzyme activity and hindrance. This knowledge will aid in the understanding of diabetes (loss of blood-sugar control), which has been found to involve subtle differences in glycogen molecular structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees?

    PubMed

    Morgan, E R; Clare, E L; Jefferies, R; Stevens, J R

    2012-12-01

    SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.

  4. The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community.

    PubMed

    Aebersold, Ruedi; Bader, Gary D; Edwards, Aled M; van Eyk, Jennifer E; Kussmann, Martin; Qin, Jun; Omenn, Gilbert S

    2013-01-04

    The biology and disease oriented branch of the Human Proteome Project (B/D-HPP) was established by the Human Proteome Organization (HUPO) with the main goal of supporting the broad application of state-of the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. This will be accomplished through the generation of research and informational resources that will support the routine and definitive measurement of the process or disease relevant proteins. The B/D-HPP is highly complementary to the C-HPP and will provide datasets and biological characterization useful to the C-HPP teams. In this manuscript we describe the goals, the plans, and the current status of the of the B/D-HPP.

  5. Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions

    NASA Astrophysics Data System (ADS)

    Foley, Nolan; Cazaux, S.; Egorov, D.; Boschman, L. M. P. V.; Hoekstra, R.; Schlathölter, T.

    2018-06-01

    We present experimental data on H2 formation processes on gas-phase polycyclic aromatic hydrocarbon (PAH) cations. This process was studied by exposing coronene radical cations, confined in a radio-frequency ion trap, to gas phase H atoms. Sequential attachment of up to 23 hydrogen atoms has been observed. Exposure to atomic D instead of H allows one to distinguish attachment from competing abstraction reactions, as the latter now leave a unique fingerprint in the measured mass spectra. Modeling of the experimental results using realistic cross sections and barriers for attachment and abstraction yield a 1:2 ratio of abstraction to attachment cross sections. The strong contribution of abstraction indicates that H2 formation on interstellar PAH cations is an order of magnitude more relevant than previously thought.

  6. Identifying Candidate Chemical-Disease Linkages ...

    EPA Pesticide Factsheets

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.

  7. Systems-based biological concordance and predictive reproducibility of gene set discovery methods in cardiovascular disease.

    PubMed

    Azuaje, Francisco; Zheng, Huiru; Camargo, Anyela; Wang, Haiying

    2011-08-01

    The discovery of novel disease biomarkers is a crucial challenge for translational bioinformatics. Demonstration of both their classification power and reproducibility across independent datasets are essential requirements to assess their potential clinical relevance. Small datasets and multiplicity of putative biomarker sets may explain lack of predictive reproducibility. Studies based on pathway-driven discovery approaches have suggested that, despite such discrepancies, the resulting putative biomarkers tend to be implicated in common biological processes. Investigations of this problem have been mainly focused on datasets derived from cancer research. We investigated the predictive and functional concordance of five methods for discovering putative biomarkers in four independently-generated datasets from the cardiovascular disease domain. A diversity of biosignatures was identified by the different methods. However, we found strong biological process concordance between them, especially in the case of methods based on gene set analysis. With a few exceptions, we observed lack of classification reproducibility using independent datasets. Partial overlaps between our putative sets of biomarkers and the primary studies exist. Despite the observed limitations, pathway-driven or gene set analysis can predict potentially novel biomarkers and can jointly point to biomedically-relevant underlying molecular mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    because most imaging is based upon structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine...imaging, which is that micro metastases cannot be visualized at a relevant stage., largely because most imaging is based upon structures and not...evaluate the limits on structural , metabolic and immunologic probes for molecular imaging, and (4) to complete studies on metastatic breast cancer

  9. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    PubMed

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.

  10. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  11. Molecular pathways for defect annihilation in directed self-assembly

    PubMed Central

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  12. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGES

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  13. SeqAPASS: Sequence alignment to predict across-species ...

    EPA Pesticide Factsheets

    Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, such as U.S. EPA ToxCast, and application of the adverse outcome pathway (AOP) framework for identifying and defining biological key events triggered upon perturbation of molecular initiating events and leading to adverse outcomes occuring at a level of organization relevant for risk assessment [1]. With these recent initiatives to harness the power of “the pathway” in describing and evaluating toxicity comes the need to extrapolate data beyond the model species. Sequence alignment to predict across-species susceptibilty (SeqAPASS) is a web-based tool that allows the user to begin to understand how broadly HTS data or AOP constructs may plausibly be extrapolated across species, while describing the relative intrinsic susceptibiltiy of different taxa to chemicals with known modes of action (e.g., pharmaceuticals and pesticides). The tool rapidly and strategically assesses available molecular target information to describe protein sequence similarity at the primary amino acid sequence, conserved domain, and individual amino acid residue levels. This in silico approach to species extrapolation was designed to automate and streamline the relatively complex and time-consuming process of co

  14. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm2. The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm2, MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm2 laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm2, the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  15. Genomic medicine: health care issues and the unresolved ethical and social dilemmas.

    PubMed

    Idemyor, Vincent

    2014-01-01

    Our perception of the mechanism by which single genes can cause disease is evolving. This has led to the understanding of the pathophysiological basis of common diseases. Genomic Medicine continues to contribute to the understanding of the molecular basis of disease. Medicine has strived to achieve the goal of tailoring interventions to individual variations in risk and treatment response and advances in medical genomics will facilitate this process. Relevant to present-day practice is the use of genomic information to classify individuals according to disease susceptibility or expected responsiveness to a pharmacologic treatment and to provide targeted interventions. By investigating the genetic profile of individuals, medical professionals are able to select patients and use the information obtained to plan out a course of treatment that is much more in step with the way their body works. However, society is concerned about the effect genetic knowledge will have on ethnic or racial groups. Currently, the Health Insurance Portability and Accountability Act prohibits discrimination based on genetics. There is a need to increase the understanding of the social and ethical challenges that genomics information may pose to clinicians and scientists. This review is not meant to be exhaustive; rather, clinically relevant examples are used to illustrate how genomic medicine can facilitate the provision of molecular diagnostic methods that improve drug therapy. Finally, the rapid pace of change in genomics may likely make my conclusions today obsolete tomorrow.

  16. Programmable Potentials: Approximate N-body potentials from coarse-level logic.

    PubMed

    Thakur, Gunjan S; Mohr, Ryan; Mezić, Igor

    2016-09-27

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the "coefficients" of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.

  17. The Pathway of Oligomeric DNA Melting Investigated by Molecular Dynamics Simulations

    PubMed Central

    Wong, Ka-Yiu; Pettitt, B. Montgomery

    2008-01-01

    Details of the reaction coordinate for DNA melting are fundamental to much of biology and biotechnology. Recently, it has been shown experimentally that there are at least three states involved. To clarify the reaction mechanism of the melting transition of DNA, we perform 100-ns molecular dynamics simulations of a homo-oligomeric, 12-basepair DNA duplex, d(A12)·d(T12), with explicit salt water at 400 K. Analysis of the trajectory reveals the various biochemically important processes that occur on different timescales. Peeling (including fraying from the ends), searching for Watson-Crick complements, and dissociation are recognizable processes. However, we find that basepair searching for Watson-Crick complements along a strand is not mechanistically tied to or directly accessible from the dissociation steps of strand melting. A three-step melting mechanism is proposed where the untwisting of the duplex is determined to be the major component of the reaction coordinate at the barrier. Though the observations are limited to the characteristics of the system being studied, they provide important insight into the mechanism of melting of other more biologically relevant forms of DNA, which will certainly differ in details from those here. PMID:18952784

  18. Nucleic acid-based approaches to investigate microbial-related cheese quality defects

    PubMed Central

    O'Sullivan, Daniel J.; Giblin, Linda; McSweeney, Paul L. H.; Sheehan, Jeremiah J.; Cotter, Paul D.

    2012-01-01

    The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors. PMID:23346082

  19. Quantitative imaging with fluorescent biosensors.

    PubMed

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  20. Programmable Potentials: Approximate N-body potentials from coarse-level logic

    NASA Astrophysics Data System (ADS)

    Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor

    2016-09-01

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.

  1. Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.

    PubMed

    Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel

    2014-01-01

    The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range.

  2. Programmable Potentials: Approximate N-body potentials from coarse-level logic

    PubMed Central

    Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor

    2016-01-01

    This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out. PMID:27671683

  3. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  4. PSYCHOSOCIAL INTERVENTION EFFECTS ON ADAPTATION, DISEASE COURSE AND BIOBEHAVIORAL PROCESSES IN CANCER

    PubMed Central

    Antoni, Michael H.

    2012-01-01

    A diagnosis of cancer and subsequent treatments place demands on psychological adaptation. Behavioral research suggests the importance of cognitive, behavioral, and social factors in facilitating adaptation during active treatment and throughout cancer survivorship, which forms the rationale for the use of many psychosocial interventions in cancer patients. This cancer experience may also affect physiological adaptation systems (e.g., neuroendocrine) in parallel with psychological adaptation changes (negative affect). Changes in adaptation may alter tumor growth-promoting processes (increased angiogenesis, migration and invasion, and inflammation) and tumor defense processes (decreased cellular immunity) relevant for cancer progression and the quality of life of cancer patients. Some evidence suggests that psychosocial intervention can improve psychological and physiological adaptation indicators in cancer patients. However, less is known about whether these interventions can influence tumor activity and tumor growth-promoting processes and whether changes in these processes could explain the psychosocial intervention effects on recurrence and survival documented to date. Documenting that psychosocial interventions can modulate molecular activities (e.g., transcriptional indicators of cell signaling) that govern tumor promoting and tumor defense processes on the one hand, and clinical disease course on the other is a key challenge for biobehavioral oncology research. This mini-review will summarize current knowledge on psychological and physiological adaptation processes affected throughout the stress of the cancer experience, and the effects of psychosocial interventions on psychological adaptation, cancer disease progression, and changes in stress-related biobehavioral processes that may mediate intervention effects on clinical cancer outcomes. Very recent intervention work in breast cancer will be used to illuminate emerging trends in molecular probes of interest in the hope of highlighting future paths that could move the field of biobehavioral oncology intervention research forward. PMID:22627072

  5. Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer.

    PubMed

    Antoni, Michael H

    2013-03-01

    A diagnosis of cancer and subsequent treatments place demands on psychological adaptation. Behavioral research suggests the importance of cognitive, behavioral, and social factors in facilitating adaptation during active treatment and throughout cancer survivorship, which forms the rationale for the use of many psychosocial interventions in cancer patients. This cancer experience may also affect physiological adaptation systems (e.g., neuroendocrine) in parallel with psychological adaptation changes (negative affect). Changes in adaptation may alter tumor growth-promoting processes (increased angiogenesis, migration and invasion, and inflammation) and tumor defense processes (decreased cellular immunity) relevant for cancer progression and the quality of life of cancer patients. Some evidence suggests that psychosocial intervention can improve psychological and physiological adaptation indicators in cancer patients. However, less is known about whether these interventions can influence tumor activity and tumor growth-promoting processes and whether changes in these processes could explain the psychosocial intervention effects on recurrence and survival documented to date. Documenting that psychosocial interventions can modulate molecular activities (e.g., transcriptional indicators of cell signaling) that govern tumor promoting and tumor defense processes on the one hand, and clinical disease course on the other is a key challenge for biobehavioral oncology research. This mini-review will summarize current knowledge on psychological and physiological adaptation processes affected throughout the stress of the cancer experience, and the effects of psychosocial interventions on psychological adaptation, cancer disease progression, and changes in stress-related biobehavioral processes that may mediate intervention effects on clinical cancer outcomes. Very recent intervention work in breast cancer will be used to illuminate emerging trends in molecular probes of interest in the hope of highlighting future paths that could move the field of biobehavioral oncology intervention research forward. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Towards a semantic lexicon for biological language processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verspoor, K.

    It is well understood that natural language processing (NLP) applications require sophisticated lexical resources to support their processing goals. In the biomedical domain, we are privileged to have access to extensive terminological resources in the form of controlled vocabularies and ontologies, which have been integrated into the framework of the National Library of Medicine's Unified Medical Language System's (UMLS) Metathesaurus. However, the existence of such terminological resources does not guarantee their utility for NLP. In particular, we have two core requirements for lexical resources for NLP in addition to the basic enumeration of important domain terms: representation of morphosyntactic informationmore » about those terms, specifically part of speech information and inflectional patterns to support parsing and lemma assignment, and representation of semantic information indicating general categorical information about terms, and significant relations between terms to support text understanding and inference (Hahn et at, 1999). Biomedical vocabularies by and large commonly leave out morphosyntactic information, and where they address semantic considerations, they often do so in an unprincipled manner, for instance by indicating a relation between two concepts without indicating the type of that relation. But all is not lost. The UMLS knowledge sources include two additional resources which are relevant - the SPECIALIST lexicon, a lexicon addressing our morphosyntactic requirements, and the Semantic Network, a representation of core conceptual categories in the biomedical domain. The coverage of these two knowledge sources with respect to the full coverage of the Metathesaurus is, however, not entirely clear. Furthermore, when our goals are specifically to process biological text - and often more specifically, text in the molecular biology domain - it is difficult to say whether the coverage of these resources is meaningful. The utility of the UMLS knowledge sources for medical language processing (MLP) has been explored (Johnson, 1999; Friedman et al 2001); the time has now come to repeat these experiments with respect to biological language processing (BLP). To that end, this paper presents an analysis of ihe UMLS resources, specifically with an eye towards constructing lexical resources suitable for BLP. We follow the paradigm presented in Johnson (1999) for medical language, exploring overlap between the UMLS Metathesaurus and SPECIALIST lexicon to construct a morphosyntactic and semantically-specified lexicon, and then further explore the overlap with a relevant domain corpus for molecular biology.« less

  7. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    PubMed

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Necroptosis: Mechanisms and Relevance to Disease

    PubMed Central

    Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido

    2018-01-01

    Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis. PMID:27959630

  9. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints.

    PubMed

    Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D

    2015-02-01

    The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern ("receptor fingerprint"), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints

    PubMed Central

    Zilles, Karl; Bacha-Trams, Maraike; Palomero-Gallagher, Nicola; Amunts, Katrin; Friederici, Angela D.

    2015-01-01

    The language network is a well-defined large-scale neural network of anatomically and functionally interacting cortical areas. The successful language process requires the transmission of information between these areas. Since neurotransmitter receptors are key molecules of information processing, we hypothesized that cortical areas which are part of the same functional language network may show highly similar multireceptor expression pattern (“receptor fingerprint”), whereas those that are not part of this network should have different fingerprints. Here we demonstrate that the relation between the densities of 15 different excitatory, inhibitory and modulatory receptors in eight language-related areas are highly similar and differ considerably from those of 18 other brain regions not directly involved in language processing. Thus, the fingerprints of all cortical areas underlying a large-scale cognitive domain such as language is a characteristic, functionally relevant feature of this network and an important prerequisite for the underlying neuronal processes of language functions. PMID:25243991

  11. Detecting phenotype-driven transitions in regulatory network structure.

    PubMed

    Padi, Megha; Quackenbush, John

    2018-01-01

    Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.

  12. Studies of thin water films and relevance to the heterogeneous nucleation of ice

    NASA Astrophysics Data System (ADS)

    Ochshorn, Eli

    The research that I will present in this dissertation concerns qualitative factors relevant to thin water films and ice nucleation. The immediate goal is not to develop a precise quantitative theory of ice nucleation. Instead, the focus is on characterizing some molecular properties (e.g., bond strengths, bond orientations, range of surface effects, etc.) of freezing catalysts and interfacial water over a range of temperatures relevant to the ice nucleation process (i.e., 20 to -20 °C). From this, we can evaluate the plausibility of different mechanistic freezing hypotheses through comparison with experiment. In all studies, I use Fourier transform infrared spectroscopy to study the intermolecular details of water and a surface species of interest. The dissertation is arranged with an introductory chapter, which primarily serves to place the research within the context of the field, then three chapters containing original research, each of which is a self-contained study that has either already been published or is currently under consideration for publication in a peer-reviewed journal. Finally, an appendix at the end provides some additional details that have not been included in the articles.

  13. Laboratory Studies Offer New Insights for Mesospheric Nightglow

    NASA Astrophysics Data System (ADS)

    Kalogerakis, K. S.; Matsiev, D.

    2017-12-01

    The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. Our recent laboratory measurements corroborated the aforementioned result for OH(v = 9) + O and provided important new insights on the multi-quantum energy transfer pathways involved. We will discuss relevant atmospheric implications, including warranted revisions of mesospheric nightglow models. Research supported by SRI International Internal R&D and NSF Aeronomy Grant AGS-1441896. Previously funded by NASA Geospace Science Grant NNX12AD09G.

  14. Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database

    PubMed Central

    Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Dwinell, Melinda R.; Jacob, Howard J.; Shimoyama, Mary

    2013-01-01

    The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat. PMID:23255149

  15. Ring-rearrangement metathesis of nitroso Diels-Alder cycloadducts.

    PubMed

    Vincent, Guillaume; Kouklovsky, Cyrille

    2011-03-01

    Strained nitroso Diels-Alder bicyclo[2.2.1] or [2.2.2] adducts functionalized with alkene side chains of diverse length undergo a ring-rearrangement metathesis process with external alkenes and Grubbs II or Hoveyda-Grubbs II ruthenium catalysts, under microwave irradiation or classical heating, to deliver cis-fused bicycles of various ring sizes, which contain a N-O bond. These scaffolds are of synthetic relevance for the generation of molecular diversity and to the total synthesis of alkaloids. The observation of unexpected reactions, such as epimerization or one-carbon homologation of the alkene side chain, is also reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Coordinated Research Projects of the IAEA Atomic and Molecular Data Unit

    NASA Astrophysics Data System (ADS)

    Braams, B. J.; Chung, H.-K.

    2011-05-01

    The IAEA Atomic and Molecular Data Unit is dedicated to the provision of databases for atomic, molecular and plasma-material interaction (AM/PMI) data that are relevant for nuclear fusion research. IAEA Coordinated Research Projects (CRPs) are the principal mechanism by which the Unit encourages data evaluation and the production of new data. Ongoing and planned CRPs on AM/PMI data are briefly described here.

  17. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine. Positron emission tomography, PET, is...be visualized at a relevant stage., largely because most imaging is based upon structures and not molecular functions. But there are no tools to...system suitable for imaging signals from in small animals on the standard radiation therapy tools. (3) To evaluate the limits on structural , metabolic

  18. A review of methods used for studying the molecular epidemiology of Brachyspira hyodysenteriae.

    PubMed

    Zeeh, Friederike; Nathues, Heiko; Frey, Joachim; Muellner, Petra; Fellström, Claes

    2017-08-01

    Brachyspira (B.) spp. are intestinal spirochaetes isolated from pigs, other mammals, birds and humans. In pigs, seven Brachyspira spp. have been described, i.e. B. hyodysenteriae, B. pilosicoli, B. intermedia, B. murdochii, B. innocens, B. suanatina and B. hampsonii. Brachyspira hyodysenteriae is especially relevant in pigs as it causes swine dysentery and hence considerable economic losses to the pig industry. Furthermore, reduced susceptibility of B. hyodysenteriae to antimicrobials is of increasing concern. The epidemiology of B. hyodysenteriae infections is only partially understood, but different methods for detection, identification and typing have supported recent improvements in knowledge and understanding. In the last years, molecular methods have been increasingly used. Molecular epidemiology links molecular biology with epidemiology, offering unique opportunities to advance the study of diseases. This review is based on papers published in the field of epidemiology and molecular epidemiology of B. hyodysenteriae in pigs. Electronic databases were screened for potentially relevant papers using title and abstract and finally, Barcellos et al. papers were systemically selected and assessed. The review summarises briefly the current knowledge on B. hyodysenteriae epidemiology and elaborates on molecular typing techniques available. Results of the studies are compared and gaps in the knowledge are addressed. Finally, potential areas for future research are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia

    PubMed Central

    Ferrari, Raffaele; Graziano, Francesca; Novelli, Valeria; Rossi, Giacomina; Galimberti, Daniela; Rainero, Innocenzo; Benussi, Luisa; Nacmias, Benedetta; Bruni, Amalia C.; Cusi, Daniele; Salvi, Erika; Borroni, Barbara; Grassi, Mario

    2017-01-01

    Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies. PMID:29020091

  20. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  1. Computation of Electron Impact Ionization Cross sections of Iron Hydrogen Clusters - Relevance in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Patel, Umang; Joshipura, K. N.

    2017-04-01

    Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.

  2. Molecular recognition of DNA by ligands: Roughness and complexity of the free energy profile

    NASA Astrophysics Data System (ADS)

    Zheng, Wenwei; Vargiu, Attilio Vittorio; Rohrdanz, Mary A.; Carloni, Paolo; Clementi, Cecilia

    2013-10-01

    Understanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.

  3. A focus on polarity: Investigating the role of orientation cues in mediating student performance on mRNA synthesis tasks in an introductory cell and molecular biology course.

    PubMed

    Olimpo, Jeffrey T; Quijas, Daniel A; Quintana, Anita M

    2017-11-01

    The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining specifically to the formation of messenger ribonucleic acid (mRNA) transcripts. In the present study, we sought to expand upon these observations through exploration of the influence of orientation cues on students' aptitude at synthesizing mRNAs from provided deoxyribonucleic acid (DNA) template strands. Data indicated that participants (n = 45) were proficient at solving tasks of this nature when the DNA template strand and the mRNA molecule were represented in an antiparallel orientation. In contrast, participants' performance decreased significantly on items in which the mRNA was depicted in a parallel orientation relative to the DNA template strand. Furthermore, participants' Grade Point Average, self-reported confidence in understanding the transcriptional process, and spatial ability were found to mediate their performance on the mRNA synthesis tasks. Collectively, these data reaffirm the need for future research and pedagogical interventions designed to enhance students' comprehension of the central dogma in a manner that makes transparent its relevance to real-world scientific phenomena. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):501-508, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level

    NASA Astrophysics Data System (ADS)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia

    2014-05-01

    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of formation of the light absorbing species. Data obtained from laboratory solutions were merged with those from SOA generated in chamber experiments conducted at the European PhotoReactor (EUPHORE) from the uptake of gas-phase GLY and MGLY onto AS seeds. While in general the results confirm previous studies in ranking MGLY as more effective than GLY in brown carbon formation, the link between overall optical properties and the identified molecular species is reported here for the first time for both systems.

  5. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  6. Molecular fractionation of dissolved organic matter with metal salts.

    PubMed

    Riedel, Thomas; Biester, Harald; Dittmar, Thorsten

    2012-04-17

    Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ∼9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ∼1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.

  7. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  8. The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation.

    PubMed

    Morikawa, Momo; Tanaka, Yosuke; Cho, Hyun-Soo; Yoshihara, Masaharu; Hirokawa, Nobutaka

    2018-06-26

    Fear extinction is a component of cognitive flexibility that is relevant for important psychiatric diseases, but its molecular mechanism is still largely elusive. We established mice lacking the kinesin-4 motor KIF21B as a model for fear extinction defects. Postsynaptic NMDAR-dependent long-term depression (LTD) is specifically impaired in knockouts. NMDAR-mediated LTD-causing stimuli induce dynamic association of KIF21B with the Rac1GEF subunit engulfment and cell motility protein 1 (ELMO1), leading to ELMO1 translocation out of dendritic spines and its sequestration in endosomes. This process may essentially terminate transient activation of Rac1, shrink spines, facilitate AMPAR endocytosis, and reduce postsynaptic strength, thereby forming a mechanistic link to LTD expression. Antagonizing ELMO1/Dock Rac1GEF activity by the administration of 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) significantly reverses the knockout phenotype. Therefore, we propose that KIF21B-mediated Rac1 inactivation is a key molecular event in NMDAR-dependent LTD expression underlying cognitive flexibility in fear extinction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Effects of Hypertension and Exercise on Cardiac Proteome Remodelling

    PubMed Central

    Petriz, Bernardo A.; Franco, Octavio L.

    2014-01-01

    Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined. PMID:24877123

  10. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    PubMed Central

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  11. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  12. Herschel and the Molecular Universe

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Helmich, F. P.

    2006-01-01

    Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe.

  13. Transcriptome Analysis and Discovery of Genes Relevant to Development in Bradysia odoriphaga at Three Developmental Stages.

    PubMed

    Gao, Huanhuan; Zhai, Yifan; Wang, Wenbo; Chen, Hao; Zhou, Xianhong; Zhuang, Qianying; Yu, Yi; Li, Rumei

    2016-01-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive (Allium tuberosum) in Asia; however, the molecular genetics are poorly understood. To explore the molecular biological mechanism of development, Illumina sequencing and de novo assembly were performed in the third-instar, fourth-instar, and pupal B. odoriphaga. The study resulted in 16.2 Gb of clean data and 47,578 unigenes (≥125 bp) contained in 7,632,430 contigs, 46.21% of which were annotated from non-redundant protein (NR), Gene Ontology (GO), Clusters of Orthologous Groups (COG), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. It was found that 19.67% of unigenes matched the homologous species mainly, including Aedes aegypti, Culex quinquefasciatus, Ceratitis capitata, and Anopheles gambiae. According to differentially expressed gene (DEG) analysis, 143, 490, and 309 DEGs were annotated as involved in the developmental process in the GO database respectively, in the comparisons of third-instar and fourth-instar larvae, third-instar larvae and pupae, and fourth-instar larvae and pupae. Twenty-five genes were closely related to these processes, including developmental process, reproduction process, and reproductive organs development and programmed cell death (PCD). The information of unigenes assembled in B. odoriphaga through transcriptome and DEG analyses could provide a detailed genetic basis and regulated information for elaborating the developmental mechanism from the larval, pre-pupal to pupal stages of B. odoriphaga.

  14. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  15. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.

  16. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  17. Observation of a Rare Earth Ion–Extractant Complex Arrested at the Oil–Water Interface During Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Wei; Yu, Hao; Luo, Guangming

    2014-09-11

    Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous–organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance. Although state-of-the-art X-ray scatteringmore » is uniquely capable of probing molecular ordering at a liquid–liquid interface with subnanometer spatial resolution, utilizing this capability to investigate interfacial dynamical processes of short temporal duration remains a challenge. We show that a temperature-driven adsorption transition can be used to turn the extraction on and off by controlling adsorption and desorption of extractants at the oil–water interface. Lowering the temperature through this transition immobilizes a supramolecular ion–extractant complex at the interface during the extraction of rare earth erbium ions. Under the conditions of these experiments, the ion–extractant complexes condense into a two-dimensional inverted bilayer, which is characterized on the molecular scale with synchrotron X-ray reflectivity and fluorescence measurements. Raising the temperature above the transition leads to Er ion extraction as a result of desorption of ion–extractant complexes from the interface into the bulk organic phase. XAFS measurements of the ion–extractant complexes in the bulk organic phase demonstrate that they are similar to the interfacial complexes.« less

  18. Integrated Molecular Characterization of Gastrointestinal Stromal Tumors (GIST) Harboring the Rare D842V Mutation in PDGFRA Gene

    PubMed Central

    Astolfi, Annalisa; Patterson, Janice; Nannini, Margherita; Saponara, Maristella; Gatto, Lidia; Santini, Donatella; do Valle, Italo F.; Castellani, Gastone; Fiorentino, Michelangelo; von Mehren, Margaret; Brandi, Giovanni; Biasco, Guido; Heinrich, Michael C.; Pantaleo, Maria Abbondanza

    2018-01-01

    Gastrointestinal stromal tumors (GIST) carrying the D842V activating mutation in the platelet-derived growth factor receptor alpha (PDGFRA) gene are a very rare subgroup of GIST (about 10%) known to be resistant to conventional tyrosine kinase inhibitors (TKIs) and to show an indolent behavior. In this study, we performed an integrated molecular characterization of D842V mutant GIST by whole-transcriptome and whole-exome sequencing coupled with protein–ligand interaction modelling to identify the molecular signature and any additional recurrent genomic event related to their clinical course. We found a very specific gene expression profile of D842V mutant tumors showing the activation of G-protein-coupled receptor (GPCR) signaling and a relative downregulation of cell cycle processes. Beyond D842V, no recurrently mutated genes were found in our cohort. Nevertheless, many private, clinically relevant alterations were found in each tumor (TP53, IDH1, FBXW7, SDH-complex). Molecular modeling of PDGFRA D842V suggests that the mutant protein binds imatinib with lower affinity with respect to wild-type structure, showing higher stability during the interaction with other type I TKIs (like crenolanib). D842V mutant GIST do not show any actionable recurrent molecular events of therapeutic significance, therefore this study supports the rationale of novel TKIs development that are currently being evaluated in clinical studies for the treatment of D842V mutant GIST. PMID:29510530

  19. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  20. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  1. Stem cells in clinical practice: applications and warnings.

    PubMed

    Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino

    2011-01-17

    Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.

  2. Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection

    PubMed Central

    Zündorf, Gregor

    2011-01-01

    Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073

  3. Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation.

    PubMed

    Aris-Brosou, Stéphane; Bielawski, Joseph P

    2006-08-15

    A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.

  4. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  5. Protective Mechanism of STAT3-siRNA on Cerebral Ischemia Injury

    NASA Astrophysics Data System (ADS)

    He, Jinting; Yang, Le; Liang, Wenzhao

    2018-01-01

    Nerve cells in ischemic brain injury will occur a series of complex signal transduction pathway changes and produce the corresponding biological function, thus affecting the central nervous system functionally different cells in the ischemic brain injury metabolism, division, Differentiation and death process, while changes in signal pathways also play an important role in the repair process of the post-ischemic nervous system. JAK/STAT pathway and vascular lesions have some relevance, but its exact mechanism after cerebral ischemia is not yet fully understood. This study is intended to further explore the JAK / STAT pathway in the functional site of STAT3 in neuronal ischemia Hypoxic injury and related molecular mechanisms, targeting these targets design intervention strategies to block the signal pathway, in order to provide a theoretical basis for the treatment of ischemic brain damage in this pathway.

  6. Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids

    PubMed Central

    2018-01-01

    Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles. PMID:29806009

  7. Coagulation of dust particles in a plasma

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  8. Histone chaperones: an escort network regulating histone traffic.

    PubMed

    De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève

    2007-11-01

    In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.

  9. Understanding the Accretion Engine in Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.

    2009-05-01

    Planetary systems are angular momentum reservoirs generated during star formation as a result of the joint action of gravity and angular momentum conservation. The accretion process drives to the generation of powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating the circumstellar plasma to temperatures between 3000 K to 10 MK depending on the plasma location and density. There are very important unsolved problems concerning the nature of the engine, its evolution and its impact in the chemical evolution of the disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ought to be studied in the UV.

  10. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers reply upon for identifying molecular compositions (and ultimately structures) of chemicals. While the power of MS has long been visible to the practicing environmental chemist, it borders on obscurity to the lay public and many scientists. While MS has played a long, historic (and largely invisible) role in establishing our knowledge of environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually the relevance or significance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the data were acquired. Methods (736/800): Mass Spectrometry and the

  11. Real-time dynamics of Auger wave packets and decays in ultrafast charge migration processes

    NASA Astrophysics Data System (ADS)

    Covito, F.; Perfetto, E.; Rubio, A.; Stefanucci, G.

    2018-06-01

    The Auger decay is a relevant recombination channel during the first few femtoseconds of molecular targets impinged by attosecond XUV or soft x-ray pulses. Including this mechanism in time-dependent simulations of charge-migration processes is a difficult task, and Auger scatterings are often ignored altogether. In this work we present an advance of the current state-of-the-art by putting forward a real-time approach based on nonequilibrium Green's functions suitable for first-principles calculations of molecules with tens of active electrons. To demonstrate the accuracy of the method we report comparisons against accurate grid simulations of one-dimensional systems. We also predict a highly asymmetric profile of the Auger wave packet, with a long tail exhibiting ripples temporally spaced by the inverse of the Auger energy.

  12. Polymer-based alternative method to extract bromelain from pineapple peel waste.

    PubMed

    Novaes, Letícia Celia de Lencastre; Ebinuma, Valéria de Carvalho Santos; Mazzola, Priscila Gava; Pessoa, Adalberto

    2013-01-01

    Bromelain is a mixture of proteolytic enzymes present in all tissues of the pineapple (Ananas comosus Merr.), and it is known for its clinical therapeutic applications, food processing, and as a dietary supplement. The use of pineapple waste for bromelain extraction is interesting from both an environmental and a commercial point of view, because the protease has relevant clinical potential. We aimed to study the optimization of bromelain extraction from pineapple waste, using the aqueous two-phase system formed by polyethylene glycol (PEG) and poly(acrylic acid). In this work, bromelain partitioned preferentially to the top/PEG-rich phase and, in the best condition, achieved a yield of 335.27% with a purification factor of 25.78. The statistical analysis showed that all variables analyzed were significant to the process. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Linking Adverse Outcome Pathways to Dynamic Energy Budgets: A Conceptual Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Cheryl; Nisbet, Roger; Antczak, Philipp

    Ecological risk assessment quantifies the likelihood of undesirable impacts of stressors, primarily at high levels of biological organization. Data used to inform ecological risk assessments come primarily from tests on individual organisms or from suborganismal studies, indicating a disconnect between primary data and protection goals. We know how to relate individual responses to population dynamics using individual-based models, and there are emerging ideas on how to make connections to ecosystem services. However, there is no established methodology to connect effects seen at higher levels of biological organization with suborganismal dynamics, despite progress made in identifying Adverse Outcome Pathways (AOPs) thatmore » link molecular initiating events to ecologically relevant key events. This chapter is a product of a working group at the National Center for Mathematical and Biological Synthesis (NIMBioS) that assessed the feasibility of using dynamic energy budget (DEB) models of individual organisms as a “pivot” connecting suborganismal processes to higher level ecological processes. AOP models quantify explicit molecular, cellular or organ-level processes, but do not offer a route to linking sub-organismal damage to adverse effects on individual growth, reproduction, and survival, which can be propagated to the population level through individual-based models. DEB models describe these processes, but use abstract variables with undetermined connections to suborganismal biology. We propose linking DEB and quantitative AOP models by interpreting AOP key events as measures of damage-inducing processes in a DEB model. Here, we present a conceptual model for linking AOPs to DEB models and review existing modeling tools available for both AOP and DEB.« less

  14. Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours. Part 2: invasion, angiogenesis, metastasis and therapy.

    PubMed

    Santos, A A; Matos, A J F

    2015-08-01

    Significant advances have been made recently in the understanding of the molecular events and critical pathways associated with and driving cancer of the mammary gland in humans and dogs. The study of canine mammary tumour biology, particularly the interactions of neoplastic cells with stromal and immune cells, is crucial for the development of novel effective therapeutic agents and strategies. This second part of a two-part review discusses some of the latest advances in the understanding of the clinically relevant genetic and molecular pathways involved in metastasis and in the interactions between tumour and stromal cells, including inflammatory and immune cells, cancer-associated fibroblasts, and endothelial cells. Recent experimental data on the role of matrix-degrading proteases and angiogenic factors are also discussed. Finally, the clinical utility of different non-surgical therapeutic modalities is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Predicting cancer-relevant proteins using an improved molecular similarity ensemble approach.

    PubMed

    Zhou, Bin; Sun, Qi; Kong, De-Xin

    2016-05-31

    In this study, we proposed an improved algorithm for identifying proteins relevant to cancer. The algorithm was named two-layer molecular similarity ensemble approach (TL-SEA). We applied TL-SEA to analyzing the correlation between anticancer compounds (against cell lines K562, MCF7 and A549) and active compounds against separate target proteins listed in BindingDB. Several associations between cancer types and related proteins were revealed using this chemoinformatics approach. An analysis of the literature showed that 26 of 35 predicted proteins were correlated with cancer cell proliferation, apoptosis or differentiation. Additionally, interactions between proteins in BindingDB and anticancer chemicals were also predicted. We discuss the roles of the most important predicted proteins in cancer biology and conclude that TL-SEA could be a useful tool for inferring novel proteins involved in cancer and revealing underlying molecular mechanisms.

  16. Ethical issues in molecular medicine of relevance to surgeons

    PubMed Central

    Bernstein, Mark; Bampoe, Joseph; Daar, Abdallah S.

    2004-01-01

    The technology associated with the care of surgical patients and the level of sophistication of biomedical research accompanying it are evolving at a rapid pace. Both new and old bioethical issues are assuming increasing levels of prominence and importance, particularly in this age of molecular medicine. The authors explore bioethical issues pertinent and relevant to surgeons. Four specific areas that are exemplary by presenting both major scientific and ethical challenges are briefly addressed: privacy of information, stem cells, gene therapy, and conflict of interest in biomedical research. All of these can be generalized to all surgeons. As bioethical issues today play a greater role in surgical practice than they did even a decade ago, it is hoped that this brief review on ethical issues in molecular medicine will help stimulate present and future generations of surgeons in thinking about the ethical dimensions of their work. PMID:15646439

  17. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations.

    PubMed

    Blöchliger, Nicolas; Caflisch, Amedeo; Vitalis, Andreas

    2015-11-10

    Data mining techniques depend strongly on how the data are represented and how distance between samples is measured. High-dimensional data often contain a large number of irrelevant dimensions (features) for a given query. These features act as noise and obfuscate relevant information. Unsupervised approaches to mine such data require distance measures that can account for feature relevance. Molecular dynamics simulations produce high-dimensional data sets describing molecules observed in time. Here, we propose to globally or locally weight simulation features based on effective rates. This emphasizes, in a data-driven manner, slow degrees of freedom that often report on the metastable states sampled by the molecular system. We couple this idea to several unsupervised learning protocols. Our approach unmasks slow side chain dynamics within the native state of a miniprotein and reveals additional metastable conformations of a protein. The approach can be combined with most algorithms for clustering or dimensionality reduction.

  18. The Association Between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer Risk

    DTIC Science & Technology

    2017-08-01

    mouse and human colon epithelium; Aim 2.) Perform genome editing using CRISPR /Cas9 on immortalized human colon epithelial cells to introduce CRC...relevant gene mutations; Aim 3.) Use CRISPR /Cas9 genome editing in colon organoid cultures to introduce CRC relevant gene mutations into primary colon cells

  19. Complete Genome Sequences for 35 Biothreat Assay-Relevant Bacillus Species

    DOE PAGES

    Johnson, Shannon L.; Daligault, Hajnalka E.; Davenport, Karen W.; ...

    2015-04-30

    In 2011, the Association of Analytical Communities (AOAC) International released a list of Bacillus strains relevant to biothreat molecular detection assays. Presented in this document are the complete and annotated genome assemblies for the 15 strains listed on the inclusivity panel, as well as the 20 strains listed on the exclusivity panel.

  20. Modeling the Dynamics of Gel Electrophorresis in the High School Classroom

    NASA Astrophysics Data System (ADS)

    Saucedo, Skyler R.

    2013-01-01

    Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.

  1. Profiling charge complementarity and selectivity for binding at the protein surface.

    PubMed

    Sulea, Traian; Purisima, Enrico O

    2003-05-01

    A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.

  2. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-06-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4- cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.

  3. Charge Inversion by Electrostatic Complexation: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Faraudo, Jordi; Travesset, Alex

    2007-03-01

    Ions near interfaces play an important role in many biological and physico-chemical processes and exhibit a fascinating diverse range of phenomena. A relevant example is charge inversion, where interfacial charges attract counterions in excess of their own nominal charge, thus leading to an inversion of the sign of the interfacial charge. In this work, we argue that in the case of amphiphilic interfaces, charge inversion can be generated by complexation, that is, electrostatic complexes containing several counterions bound to amphiphilic molecules. The formation of these complexes require the presence at the interface of groups with conformational degrees of freedom with many electronegative atoms. We illustrate this mechanism by analyzing all atomic molecular dynamics simulations of a DMPA (Dimirystoil-Phosphatidic acid) phospholipid monolayer in contact with divalent counterions. The results are found to be in agreement with recent experimental results on Langmuir monolayers. We also discuss the implications for biological systems, as Phosphatidic acid is emerging as a key signaling phospholipid.

  4. Long non-coding RNAs as molecular players in plant defense against pathogens.

    PubMed

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  5. Conformational heterogeneity of the calmodulin binding interface

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  6. Flowers under pressure: ins and outs of turgor regulation in development

    PubMed Central

    Beauzamy, Léna; Nakayama, Naomi; Boudaoud, Arezki

    2014-01-01

    Background Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation. Scope This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth. Conclusions Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development. PMID:25288632

  7. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-04-01

    The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.

  8. Membrane Repair: Mechanisms and Pathophysiology

    PubMed Central

    Cooper, Sandra T.; McNeil, Paul L.

    2015-01-01

    Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031

  9. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  10. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles

    PubMed Central

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-01-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4− cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated. PMID:28635947

  11. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells

    PubMed Central

    Munoz, Javier; Low, Teck Y; Kok, Yee J; Chin, Angela; Frese, Christian K; Ding, Vanessa; Choo, Andre; Heck, Albert J R

    2011-01-01

    Assessing relevant molecular differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) is important, given that such differences may impact their potential therapeutic use. Controversy surrounds recent gene expression studies comparing hiPSCs and hESCs. Here, we present an in-depth quantitative mass spectrometry-based analysis of hESCs, two different hiPSCs and their precursor fibroblast cell lines. Our comparisons confirmed the high similarity of hESCs and hiPSCS at the proteome level as 97.8% of the proteins were found unchanged. Nevertheless, a small group of 58 proteins, mainly related to metabolism, antigen processing and cell adhesion, was found significantly differentially expressed between hiPSCs and hESCs. A comparison of the regulated proteins with previously published transcriptomic studies showed a low overlap, highlighting the emerging notion that differences between both pluripotent cell lines rather reflect experimental conditions than a recurrent molecular signature. PMID:22108792

  12. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    PubMed

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus.

    PubMed

    Arjona, Davinia; Aragón, Carlos; Aguilera, José Antonio; Ramírez, Lucía; Pisabarro, Antonio G

    2009-05-01

    Fruiting is a crucial developmental process in basidiomycetes yet the genetic and molecular factors that control it are not yet fully understood. The search for fruiting inducers is of major relevance for both basic research and for their use in industrial applications. In this paper, an efficient and reproducible protocol for controlled fruiting induction of Pleurotus ostreatus growing on synthetic medium is described. The protocol is based on the control of light intensity and photoperiod and permits the life cycle for this fungus to be completed in less than two weeks. The fruiting bodies produced by this method release fertile spores after 4-5 d of culture. Our results indicate that fruiting induction is solely dependent on the illumination regime and that it occurs long before the available nutrients are depleted in the culture. This protocol will greatly facilitate molecular and developmental biology research in this fungus as it avoids the need for complex culture media based on lignocellulosic materials or the use of chemical inducers.

  14. Development of molecularly imprinted polymers to block quorum sensing and inhibit bacterial biofilm formation.

    PubMed

    Ma, Luyao; Feng, Shaolong; de la Fuente-Nunez, Cesar; Hancock, Robert E W; Lu, Xiaonan

    2018-05-16

    Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity towards 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved 5-fold. HEMA-based MIPs significantly reduced biofilm formation (by ~65%), while biofilm suppression by IA-based MIPs was neutralized due to increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.

  15. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Qi, Yifei; Qiao, Ruirui; Hou, Yi; Chan, Kaying; Li, Ziqian; Huang, Jiayi; Jing, Lihong; Du, Jun; Gao, Mingyuan

    2016-06-01

    Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation.Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation. Electronic supplementary information (ESI) available: (1) Molecular structure of Jeffamine-modified FA; (2) immunohistochemical analysis of FR expression in the colorectal tissue derived from mice treated with NaCl at different weeks; (3) biodistributions of probes of NP-FA and NP-IgG in the main organs of mice. See DOI: 10.1039/c5nr07858j

  16. METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Biarnés, Xevi; Pietrucci, Fabio; Marinelli, Fabrizio; Laio, Alessandro

    2012-01-01

    We present a new computational tool, METAGUI, which extends the VMD program with a graphical user interface that allows constructing a thermodynamic and kinetic model of a given process simulated by large-scale molecular dynamics. The tool is specially designed for analyzing metadynamics based simulations. The huge amount of diverse structures generated during such a simulation is partitioned into a set of microstates (i.e. structures with similar values of the collective variables). Their relative free energies are then computed by a weighted-histogram procedure and the most relevant free energy wells are identified by diagonalization of the rate matrix followed by a commitor analysis. All this procedure leads to a convenient representation of the metastable states and long-time kinetics of the system which can be compared with experimental data. The tool allows to seamlessly switch between a collective variables space representation of microstates and their atomic structure representation, which greatly facilitates the set-up and analysis of molecular dynamics simulations. METAGUI is based on the output format of the PLUMED plugin, making it compatible with a number of different molecular dynamics packages like AMBER, NAMD, GROMACS and several others. The METAGUI source files can be downloaded from the PLUMED web site ( http://www.plumed-code.org). Program summaryProgram title: METAGUI Catalogue identifier: AEKH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 117 545 No. of bytes in distributed program, including test data, etc.: 8 516 203 Distribution format: tar.gz Programming language: TK/TCL, Fortran Computer: Any computer with a VMD installation and capable of running an executable produced by a gfortran compiler Operating system: Linux, Unix OS-es RAM: 1 073 741 824 bytes Classification: 23 External routines: A VMD installation ( http://www.ks.uiuc.edu/Research/vmd/) Nature of problem: Extract thermodynamic data and build a kinetic model of a given process simulated by metadynamics or molecular dynamics simulations, and provide this information on a dual representation that allows navigating and exploring the molecular structures corresponding to each point along the multi-dimensional free energy hypersurface. Solution method: Graphical-user interface linked to VMD that clusterizes the simulation trajectories in the space of a set of collective variables and assigns each frame to a given microstate, determines the free energy of each microstate by a weighted histogram analysis method, and identifies the most relevant free energy wells (kinetic basins) by diagonalization of the rate matrix followed by a commitor analysis. Restrictions: Input format files compatible with PLUMED and all the MD engines supported by PLUMED and VMD. Running time: A few minutes.

  17. Drama advertisements: moderating effects of self-relevance on the relations among empathy, information processing, and attitudes.

    PubMed

    Chebat, Jean-Charles; Vercollier, Sarah Drissi; Gélinas-Chebat, Claire

    2003-06-01

    The effects of drama versus lecture format in public service advertisements are studied in a 2 (format) x 2 (malaria vs AIDS) factorial design. Two structural equation models are built (one for each level of self-relevance), showing two distinct patterns. In both low and high self-relevant situations, empathy plays a key role. Under low self-relevance conditions, drama enhances information processing through empathy. Under high self-relevant conditions, the advertisement format has neither significant cognitive or empathetic effects. The information processing generated by the highly relevant topic affects viewers' empathy, which in turn affects the attitude the advertisement and the behavioral intent. As predicted by the Elaboration Likelihood Model, the advertisement format enhances the attitudes and information processing mostly under low self-relevant conditions. Under low self-relevant conditions, empathy enhances information processing while under high self-relevance, the converse relation holds.

  18. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis.

    PubMed

    Mandl, Christian W

    2005-08-01

    Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage within the CNS ("neurovirulence"). TBEV is a small, enveloped flavivirus with an unsegmented, positive-stranded RNA genome. Mutations affecting various steps of its natural replication cycle were shown to influence its neuropathogenic properties. This review describes experimental approaches and summarizes results on molecular determinants of neurovirulence and neuroinvasiveness that have been identified for this virus. It focuses on molecular mechanisms of three particular steps of the viral life cycle that have been studied in some detail for TBEV and two closely related tick-borne flaviviruses (Louping ill virus (LIV) and Langat virus (LGTV)), namely (i) the envelope protein E and its role in viral attachment to the cell surface, (ii) the 3'-noncoding region of the genome and its importance for viral RNA replication, and (iii) the capsid protein C and its role in the assembly process of infectious virus particles. Mutations affecting each of these three molecular targets significantly influence neuropathogenesis of TBEV, particularly its neuroinvasiveness. The understanding of molecular determinants of TBEV neuropathogenesis is relevant for vaccine development, also against other flaviviruses.

  19. Spatial Distribution and Kinematics of the Molecular Material Associated with eta Carinae

    NASA Astrophysics Data System (ADS)

    Loinard, Laurent; Kamiński, Tomasz; Serra, Paolo; Menten, Karl M.; Zapata, Luis A.; Rodríguez, Luis F.

    2016-12-01

    Single-dish submillimeter observations have recently revealed the existence of a substantial, chemically peculiar molecular gas component located in the innermost circumstellar environment of the very massive luminous blue variable star, η Carinae. Here, we present 5″-resolution interferometric observations of the 1\\to 0 rotational transition of hydrogen cyanide (HCN) toward this star obtained with the Australia Telescope Compact Array. The emission is concentrated in the central few arcseconds around η Carinae and shows a clear 150 km s-1 velocity gradient running from west-north-west (blue) to east-south-east (red). Given the extent, location, and kinematics of this molecular material, we associate it with the complex of dusty arcs and knots seen in mid-infrared emission near the center of the Homunculus nebula. Indeed, the shielding provided by this dust could help explain how molecules survive in the presence of the intense UV radiation field produced by η Carinae. The dust located in the central few arcseconds around η Carinae and the molecular component described here most likely formed in situ and out of material expelled by the massive interacting binary system. Thus, η Carinae offers us a rare glimpse of the processes that lead to the formation of dust and molecules around massive stars, which are relevant to the interpretation of dust and molecule detections at high redshifts.

  20. Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation

    PubMed Central

    McCammon, J. Andrew

    2011-01-01

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11–18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery. PMID:22022240

  1. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    PubMed

    de Oliveira, César Augusto F; Grant, Barry J; Zhou, Michelle; McCammon, J Andrew

    2011-10-01

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  2. Implementation of a Multiplex and Quantitative Proteomics Platform for Assessing Protein Lysates Using DNA-Barcoded Antibodies.

    PubMed

    Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B

    2018-06-01

    Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A Complex mTOR Response in Habituation Paradigms for a Social Signal in Adult Songbirds

    ERIC Educational Resources Information Center

    Ahmadiantehrani, Somayeh; Gores, Elisa O.; London, Sarah E.

    2018-01-01

    Nonassociative learning is considered simple because it depends on presentation of a single stimulus, but it likely reflects complex molecular signaling. To advance understanding of the molecular mechanisms of one form of nonassociative learning, habituation, for ethologically relevant signals we examined song recognition learning in adult zebra…

  4. Molecular Cardiac Surgery with Recirculating Delivery (MCARD): Procedure and Vector Transfer.

    PubMed

    Katz, Michael G; Fargnoli, Anthony S; Kendle, Andrew P; Bridges, Charles R

    2017-01-01

    Despite progress in clinical treatment, cardiovascular diseases are still the leading cause of morbidity and mortality worldwide. Therefore, novel therapeutic approaches are needed, targeting the underlying molecular mechanisms of disease with improved outcomes for patients. Gene therapy is one of the most promising fields for the development of new treatments for the advanced stages of cardiovascular diseases. The establishment of clinically relevant methods of gene transfer remains one of the principal limitations on the effectiveness of gene therapy. Recently, there have been significant advances in direct and transvascular gene delivery methods. The ideal gene transfer method should be explored in clinically relevant large animal models of heart disease to evaluate the roles of specific molecular pathways in disease pathogenesis. Characteristics of the optimal technique for gene delivery include low morbidity, an increased myocardial transcapillary gradient, esxtended vector residence time in the myocytes, and the exclusion of residual vector from the systemic circulation after delivery to minimize collateral expression and immune response. Here we describe myocardial gene transfer techniques with molecular cardiac surgery with recirculating delivery in a large animal model of post ischemic heart failure.

  5. Endophenotype Best Practices

    PubMed Central

    Iacono, William G.; Malone, Stephen M.; Vrieze, Scott I.

    2016-01-01

    This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder. PMID:27473600

  6. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs.

    PubMed

    Heinemann, Jack A; Kurenbach, Brigitta; Quist, David

    2011-10-01

    Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Dynamics and mechanisms of interfacial photoinduced electron transfer processes of third generation photovoltaics and photocatalysis.

    PubMed

    Bauer, Christophe; Teuscher, Joël; Brauer, Jan C; Punzi, Angela; Marchioro, Arianna; Ghadiri, Elham; De Jonghe, Jelissa; Wielopolski, Mateusz; Banerji, Natalie; Moser, Jacques E

    2011-01-01

    Photoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes. We aim to achieve a fundamental understanding of these phenomena by designing experiments that can be used to test and alter modern theory and computational modeling. One example illustrating recent investigations into the details of the ultrafast processes that form the basis for photoinduced charge separation at a molecular/bulk interface relevant to dye-sensitized solar cells is briefly presented here: Kinetics of interfacial PET and charge recombination processes were measured by fs and ns transient spectroscopy in a heterogeneous donor-bridge-acceptor (D-B-A) system, where D is a Ru(II)(terpyridyl-PO3)(NCS)3 complex, B an oligo-p-phenylene bridge, and A nanocrystalline TiO2. The forward ET reaction was found to be faster than vibrational relaxation of the vibronic excited state of the donor. Instead, the back ET occurred on the micros time scale and involved fully thermalized species. The D-A distance dependence of the electron transfer rate was studied by varying the number of p-phenylene units contained in the bridge moiety. The remarkably low damping factor beta = 0.16 angstroms(-1) observed for the ultrafast charge injection from the dye excited state into the conduction band of TiO2 is attributed to the coupling of electron tunneling with nonequilibrium vibrations redistributed on the bridge, giving rise to polaronic transport of charges from the donor ligand to the acceptor solid oxide surface.

  8. The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies.

    PubMed

    Patterson, Sara E; Liu, Rangjiao; Statz, Cara M; Durkin, Daniel; Lakshminarayana, Anuradha; Mockus, Susan M

    2016-01-16

    Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult. To support clinical decision-making, we have developed a data loader and mapper that connects sequence information from oncology patients to data stored in an in-house database, the JAX Clinical Knowledgebase (JAX-CKB), which can be queried readily to access comprehensive data for clinical reporting via customized reporting queries. JAX-CKB functions as a repository to house expertly curated clinically relevant data surrounding our 358-gene panel, the JAX Cancer Treatment Profile (JAX CTP), and supports annotation of functional significance of molecular variants. Through queries of data housed in JAX-CKB, we have analyzed the landscape of clinical trials relevant to our 358-gene targeted sequencing panel to evaluate strengths and weaknesses in current molecular targeting in oncology. Through this analysis, we have identified patient indications, molecular aberrations, and targeted therapy classes that have strong or weak representation in clinical trials. Here, we describe the development and disseminate system methods for associating patient genomic sequence data with clinically relevant information, facilitating interpretation and providing a mechanism for informing therapeutic decision-making. Additionally, through customized queries, we have the capability to rapidly analyze the landscape of targeted therapies in clinical trials, enabling a unique view into current therapeutic availability in oncology.

  9. epiPATH: an information system for the storage and management of molecular epidemiology data from infectious pathogens.

    PubMed

    Amadoz, Alicia; González-Candelas, Fernando

    2007-04-20

    Most research scientists working in the fields of molecular epidemiology, population and evolutionary genetics are confronted with the management of large volumes of data. Moreover, the data used in studies of infectious diseases are complex and usually derive from different institutions such as hospitals or laboratories. Since no public database scheme incorporating clinical and epidemiological information about patients and molecular information about pathogens is currently available, we have developed an information system, composed by a main database and a web-based interface, which integrates both types of data and satisfies requirements of good organization, simple accessibility, data security and multi-user support. From the moment a patient arrives to a hospital or health centre until the processing and analysis of molecular sequences obtained from infectious pathogens in the laboratory, lots of information is collected from different sources. We have divided the most relevant data into 12 conceptual modules around which we have organized the database schema. Our schema is very complete and it covers many aspects of sample sources, samples, laboratory processes, molecular sequences, phylogenetics results, clinical tests and results, clinical information, treatments, pathogens, transmissions, outbreaks and bibliographic information. Communication between end-users and the selected Relational Database Management System (RDMS) is carried out by default through a command-line window or through a user-friendly, web-based interface which provides access and management tools for the data. epiPATH is an information system for managing clinical and molecular information from infectious diseases. It facilitates daily work related to infectious pathogens and sequences obtained from them. This software is intended for local installation in order to safeguard private data and provides advanced SQL-users the flexibility to adapt it to their needs. The database schema, tool scripts and web-based interface are free software but data stored in our database server are not publicly available. epiPATH is distributed under the terms of GNU General Public License. More details about epiPATH can be found at http://genevo.uv.es/epipath.

  10. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M. L.; Markham, Jennifer; Templeton, David W.

    Identifying and addressing critical improvements in biomass, bioproduct and biofuel productivity is a priority for the nascent algae-based bioeconomy. Economic and sustainability principles should guide these developing improvements and help to unravel the contentious water–food–energy–environment nexus that algae inhabit. Understanding the biochemistry of the storage carbon metabolism of algae to produce biofuels and bioproducts can bring to light the key barriers that currently limit the overall carbon efficiency and the photosynthetic efficiency, and ultimately guide productivity and commercial viability in the context of limiting resources. In the analysis reported here, we present different potential pathways for a conceptual algae biorefinerymore » framework, with each pathway addressing one of the main identified barriers to future deployment. We highlight the molecular identification, in the form of an extensive literature review, of potential bioproducts that may be derived directly from both biomass and fractions produced through a conversion pathway, for three important commercially-relevant genera of algae, Scenedesmus, Chlorella and Nannochloropsis. Here, we establish a relationship between each of the potential bioproducts, describe relevant conversion and extraction processes, and discuss market opportunities with values and sizes as they relate to commercial development of the products.« less

  12. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.

  13. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis

    PubMed Central

    Binder, Christoph J.

    2018-01-01

    Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanism of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles (MV) or oxidized low-density lipoproteins (LDL). Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are pro-inflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes. PMID:27235680

  14. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    PubMed

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  15. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction

    DOE PAGES

    Laurens, Lieve M. L.; Markham, Jennifer; Templeton, David W.; ...

    2017-07-10

    Identifying and addressing critical improvements in biomass, bioproduct and biofuel productivity is a priority for the nascent algae-based bioeconomy. Economic and sustainability principles should guide these developing improvements and help to unravel the contentious water–food–energy–environment nexus that algae inhabit. Understanding the biochemistry of the storage carbon metabolism of algae to produce biofuels and bioproducts can bring to light the key barriers that currently limit the overall carbon efficiency and the photosynthetic efficiency, and ultimately guide productivity and commercial viability in the context of limiting resources. In the analysis reported here, we present different potential pathways for a conceptual algae biorefinerymore » framework, with each pathway addressing one of the main identified barriers to future deployment. We highlight the molecular identification, in the form of an extensive literature review, of potential bioproducts that may be derived directly from both biomass and fractions produced through a conversion pathway, for three important commercially-relevant genera of algae, Scenedesmus, Chlorella and Nannochloropsis. Here, we establish a relationship between each of the potential bioproducts, describe relevant conversion and extraction processes, and discuss market opportunities with values and sizes as they relate to commercial development of the products.« less

  16. Reactive Neuroblastosis in Huntington’s Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain

    PubMed Central

    Kandasamy, Mahesh; Aigner, Ludwig

    2018-01-01

    The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington’s disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term “reactive astrogliosis”, we propose to name the observed cellular event “reactive neuroblastosis”. Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD. PMID:29593498

  17. Accelerating Adverse Outcome Pathway (AOP) development ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. However, the conventional process for assembly of these AOPs is time and resource intensive, and has been a rate limiting step for AOP use and development. Therefore computational approaches to accelerate the process need to be developed. We previously developed a method for generating computationally predicted AOPs (cpAOPs) by association mining and integration of data from publicly available databases. In this work, a cpAOP network of ~21,000 associations was established between 105 phenotypes from TG-GATEs rat liver data from different time points (including microarray, pathological effects and clinical chemistry data), 994 REACTOME pathways, 688 High-throughput assays from ToxCast and 194 chemicals. A second network of 128,536 associations was generated by connecting 255 biological target genes from ToxCast to 4,980 diseases from CTD using either HT screening activity from ToxCast for 286 chemicals or CTD gene expression changes in response to 2,330 chemicals. Both networks were separately evaluated through manual extraction of disease-specific cpAOPs and comparison with expert curation of the relevant literature. By employing data integration strategies that involve the weighting of n

  18. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia

    PubMed Central

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T.; Rogers, Hilary J.

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries. PMID:28558066

  19. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.

    PubMed

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.

  20. Natural products with anti-aging potential: Affected targets and molecular mechanisms.

    PubMed

    Cătană, Cristina-Sorina; Atanasov, Atanas G; Berindan-Neagoe, Ioana

    2018-03-27

    In recent years, there has been a great deal of attention toward the molecular machinery relevant to age-related progression controlled through the external intervention of polyphenols- an epigenetic-modulating diet. Natural products modulate cellular longevity through histone post-translational modification and can also induce the upregulation of autophagy, thus reducing the level of acetyl coenzyme A (AcCoA). In addition, the effect of caloric restriction (CR) on cancer-related chronic inflammation is of great significance in aging. In line with this, SIRT1 protein levels are expanded in response to calorie restriction mimetics (CRM), in this way acting as autophagy inducers relevant to cancer prevention. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. MODELING MOLECULAR TARGETS FOR TOXICITY, A COMPUTATIONAL APPROACH TO UNDERSTANDING KEY STEPS IN THE MECHANISMS FOR TOXICITY AND A TOOL FOR PRIORITIZING BIOASSAY REQUIREMENTS

    EPA Science Inventory

    The Agency frequently encounters situations where it must make decisions about the potential health and environmental effects of chemicals when all of the relevant data is not available. One rational approach to this problem is to estimate the relevant missing information by ext...

  2. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    PubMed

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study.

    PubMed

    Magrini, Taciana D; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000  mJ/cm². The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5  mJ/cm², MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1  J/cm² laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8  mJ/cm², the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  4. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  5. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  6. Translational Evidence for a Role of Endocannabinoids in the Etiology and Treatment of Posttraumatic Stress Disorder

    PubMed Central

    Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J.; Pietrzak, Robert H.

    2014-01-01

    Introduction Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Methods Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. Results There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Conclusion Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. PMID:25456347

  7. Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder.

    PubMed

    Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J; Pietrzak, Robert H

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Innate Immunity in Alzheimer Disease- Relevance to Pathogenesis and Therapy.

    PubMed

    Blach-Olszewska, Zofia; Zaczynska, Ewa; Gustaw-Rothenberg, Kasia; Avila-Rodrigues, Marco; Barreto, George E; Leszek, Jerzy; Aliev, Gjumrakch

    2015-01-01

    The genetic, cellular, and molecular changes associated with Alzheimer disease provide evidence of immune and inflammatory processes involvement in its pathogenesis. These are supported by epidemiological studies, which show some benefit of long-term use of NSAID. The hypothesis that AD is in fact an immunologically mediated and even inflammatory pathological process may be in fact scientifically intriguing. There are several obstacles that suggest the need for more complex view, in the process of targeting inflammation and immunity in AD. In our previous studies we proposed a reliable methodology to assess innate immunity in Alzheimer patients and controls. The methodology is based on the phenomenon of human leukocytes being resistant to viral infection. The unspecific character of the resistance, dependent on interferons and tumor necrosis factor, and occurrence in cells ex vivo indicate that an in vivo mechanism of innate immunity may be involved. The above mentioned resistance could be estimated in a test based on peripheral blood leukocytes infection by vesicular stomachs virus.

  9. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  10. Gene regulation by noncoding RNAs

    PubMed Central

    Patil, Veena S.; Zhou, Rui; Rana, Tariq M.

    2015-01-01

    The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576

  11. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  12. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.

    PubMed

    Guo, Xinyi; Chitale, Poonam; Sanjana, Neville E

    2017-01-01

    Over the past few years, programmable RNA-guided nucleases such as the CRISPR/Cas9 system have ushered in a new era of precision genome editing in diverse model systems and in human cells. Functional screens using large libraries of RNA guides can interrogate a large hypothesis space to pinpoint particular genes and genetic elements involved in fundamental biological processes and disease-relevant phenotypes. Here, we review recent high-throughput CRISPR screens (e.g. loss-of-function, gain-of-function, and targeting noncoding elements) and highlight their potential for uncovering novel therapeutic targets, such as those involved in cancer resistance to small molecular drugs and immunotherapies, tumor evolution, infectious disease, inborn genetic disorders, and other therapeutic challenges.

  13. Behavioral Effects of Developmental Methylmercury Drinking Water Exposure in Rodents

    PubMed Central

    Bisen-Hersh, Emily B.; Farina, Marcelo; Barbosa, Fernando; Rocha, Joao BT; Aschner, Michael

    2013-01-01

    Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents. Combination treatments that exacerbate or ameliorate MeHg-induced effects, and possible molecular mechanisms underlying behavioral impairment are also discussed. PMID:24210169

  14. Mucin Production and Mucous Cell Metaplasia in Otitis Media

    PubMed Central

    Lin, Jizhen; Caye-Thomasen, Per; Tono, Tetsuya; Zhang, Quan-An; Nakamura, Yoshihisa; Feng, Ling; Huang, Jianmin; Ye, Shengnan; Hu, Xiaohua; Kerschner, Joseph E.

    2012-01-01

    Otitis media (OM) with mucoid effusion, characterized by mucous cell metaplasia/hyperplasia in the middle ear cleft and thick fluid accumulation in the middle ear cavity, is a subtype of OM which frequently leads to chronic OM in young children. Multiple factors are involved in the developmental process of OM with mucoid effusion, especially disorders of mucin production resulting from middle ear bacterial infection and Eustachian tube dysfunction. In this review, we will focus on several aspects of this disorder by analyzing the cellular and molecular events such as mucin production and mucous cell differentiation in the middle ear mucosa with OM. In addition, infectious agents, mucin production triggers, and relevant signaling pathways will be discussed. PMID:22685463

  15. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos

    PubMed Central

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-01-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders. PMID:27562248

  16. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives.

    PubMed

    Variola, Fabio; Brunski, John B; Orsini, Giovanna; Tambasco de Oliveira, Paulo; Wazen, Rima; Nanci, Antonio

    2011-02-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.

  17. Experimental and theoretical studies on the gas/solid/gas transformation cycle in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Gazeau, Marie-Claire; Chaquin, Patrick; Raulin, François; Bénilan, Yves

    2001-12-01

    The ubiquity of molecular material in the universe, from hydrogen to complex organic matter, is the result of intermixed physicochemical processes that have occurred throughout history. In particular, the gas/solid/gas phase transformation cycle plays a key role in chemical evolution of organic matter from the interstellar medium to planetary systems. This paper focuses on two examples that are representative of the diversity of environments where such transformations occur in the Solar System: (1) the photolytic evolution from gaseous to solid material in methane containing planetary atmospheres and (2) the degradation of high molecular weight compounds into gas phase molecules in comets. We are currently developing two programs which couple experimental and theoretical studies. The aim of this research is to provide data necessary to build models in order to better understand (1) the photochemical evolution of Titan's atmosphere, through a laboratory program to determine quantitative spectroscopic data on long carbon chain molecules (polyynes) obtained in the SCOOP program (French acronym for Spectroscopy of Organic Compounds Oriented for Planetology), and (2) the extended sources in comets, through a laboratory program of quantitative studies of photochemical and thermal degradation processes on relevant polymers (e.g., Polyoxymethylene) by the SEMAPhOrE Cometaire program (French acronym for Experimental Simulation and Modeling Applied to Organic Chemistry in Cometary Environment).

  18. Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells

    PubMed Central

    Ghosh, Santosh K.; Yohannes, Elizabeth; Bebek, Gurkan; Weinberg, Aaron; Jiang, Bin; Willard, Belinda; Chance, Mark R.; Kinter, Michael T.; McCormick, Thomas S.

    2012-01-01

    Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached. Combining 2D gel electrophoresis with shotgun proteomics resulted in identification of 1662 NHOEC proteins. Proteome annotations were performed based on protein classes, molecular functions, disease association and membership in canonical and metabolic signaling pathways. Comparing the NHOEC proteome with a database of innate immunity-relevant interactions (InnateDB) identified 64 common proteins associated with innate immunity. Comparison with published salivary proteomes revealed that 738/1662 NHOEC proteins were common, suggesting that significant numbers of salivary proteins are of epithelial origin. Gene ontology analysis showed similarities in the distributions of NHOEC and saliva proteomes with regard to biological processes, and molecular functions. We also assessed the inter-individual variability of the NHOEC proteome and observed it to be comparable with other primary cells. The baseline proteome described in this study should serve as a resource for proteome studies of the oral mucosa, especially in relation to disease processes. PMID:23035736

  19. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos.

    PubMed

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-08-26

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.

  20. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos

    NASA Astrophysics Data System (ADS)

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-08-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.

  1. Nanoscale surface modifications of medically-relevant metals: state-of-the art and perspectives

    PubMed Central

    Variola, Fabio; Brunski, John; Orsini, Giovanna; de Oliveira, Paulo Tambasco; Wazen, Rima; Nanci, Antonio

    2011-01-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently used to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. Importantly, this review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, as a matter of fact, all biomaterials. PMID:20976359

  2. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  3. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  4. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications.

    PubMed

    Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J

    2017-10-20

    The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.

  5. A Learner-Centered Molecular Modeling Exercise for Allied Health Majors in a Biochemistry Class

    ERIC Educational Resources Information Center

    Fletcher, Terace M.; Ershler, Jeff

    2014-01-01

    Learner-centered molecular modeling exercises in college science courses can be especially challenging for nonchemistry majors as students typically have a higher degree of anxiety and may not appreciate the relevance of the work. This article describes a learner-centered project given to allied health majors in a Biochemistry course. The project…

  6. Development of the Kinetic Molecular Theory of Gases Concept Inventory: Preliminary Results on University Students' Misconceptions

    ERIC Educational Resources Information Center

    Erceg, Nataša; Aviani, Ivica; Mešic, Vanes; Gluncic, Matko; Žauhar, Gordana

    2016-01-01

    In this study, we investigated students' understanding of concepts related to the microscopic model of gas. We thoroughly reviewed the relevant literature and conducted think alouds with students by asking them to answer open-ended questions about the kinetic molecular theory of gases. Thereafter, we transformed the open-ended questions into…

  7. [Clinical, morphological and molecular biological characteristics of the aging eye].

    PubMed

    Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P

    2017-02-01

    The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.

  8. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. Copyright © 2016. Published by Elsevier B.V.

  9. Computational prediction of kink properties of helices in membrane proteins

    NASA Astrophysics Data System (ADS)

    Mai, T.-L.; Chen, C.-M.

    2014-02-01

    We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

  10. Molecular subgroups of medulloblastoma

    PubMed Central

    Northcott, Paul A; Dubuc, Adrian M; Pfister, Stefan; Taylor, Michael D

    2014-01-01

    Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understanding of the core medulloblastoma subgroups, focusing largely on clinically relevant discoveries that have already, and will continue to, shape research. PMID:22853794

  11. MOLECULAR THEORY OF HYDROPHOBIC EFFECTS: "She is too mean to have her name repeated."*

    NASA Astrophysics Data System (ADS)

    Pratt, Lawrence R.

    2002-10-01

    This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g., pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solution.

  12. Laboratory Studies of Vibrational Relaxation: Important Insights for Mesospheric OH

    NASA Astrophysics Data System (ADS)

    Kalogerakis, K. S.; Matsiev, D.

    2016-12-01

    The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Previous work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. We will report our most recent laboratory experiments that corroborate the aforementioned result for fast OH(v = 9) + O and provide important new insights on the mechanistic pathways involved. We will also highlight relevant atmospheric implications, including warranted revisions of current mesospheric OH models. Research supported by SRI International Internal R&D and NSF Aeronomy grant AGS-1441896. Previously supported by NASA Geospace Science grant NNX12AD09G.

  13. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    PubMed Central

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  14. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  15. Conserved linear dynamics of single-molecule Brownian motion.

    PubMed

    Serag, Maged F; Habuchi, Satoshi

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  16. Conserved linear dynamics of single-molecule Brownian motion

    PubMed Central

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance. PMID:28585925

  17. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.

    PubMed

    Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W

    2016-01-01

    This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.

  18. Experimental studies of forensic odontology to aid in the identification process

    PubMed Central

    Saxena, Susmita; Sharma, Preeti; Gupta, Nitin

    2010-01-01

    The importance of dental identification is on the increase year after year. With the passage of time, the role of forensic odontology has increased as very often teeth and dental restorations are the only means of identification. Forensic odontology has played a key role in identification of persons in mass disasters (aviation, earthquakes, Tsunamis), in crime investigations, in ethnic studies, and in identification of decomposed and disfigured bodies like that of drowned persons, fire victims, and victims of motor vehicle accidents. The various methods employed in forensic odontology include tooth prints, radiographs, photographic study, rugoscopy, cheiloscopy and molecular methods. Investigative methods applied in forensic odontology are reasonably reliable, yet the shortcomings must be accounted for to make it a more meaningful and relevant procedure. This paper gives an overview of the various experimental studies to aid in the identification processes, discussing their feasibilities and limitations in day-to-day practice. PMID:21731343

  19. Conserved linear dynamics of single-molecule Brownian motion

    NASA Astrophysics Data System (ADS)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  20. Insights on diagnosis of oral cavity pathologies by infrared spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Giorgini, Elisabetta; Balercia, Paolo; Conti, Carla; Ferraris, Paolo; Sabbatini, Simona; Rubini, Corrado; Tosi, Giorgio

    2013-11-01

    Fourier-Transform Infrared microspectroscopy, a largely used spectroscopic technique in basic and industrial researches, offers the possibility to analyze the vibrational features of molecular groups within a variety of environments. In the bioclinical field, and, in particular, in the study of cells, tissues and biofluids, it could be considered a supporting objective technique able to characterize the biochemical processes involved in relevant pathologies, such as tumoral diseases, highlighting specific spectral markers associable with the principal biocomponents (proteins, lipids and carbohydrates). In this article, we review the applications of infrared spectroscopy to the study of tumoral diseases of oral cavity compartments with the aim to improve understanding of biological processes involved during the onset of these lesions and to afford to an early diagnosis. Spectral studies on mouth, salivary glands and oral cystic lesions, objectively discriminate normal from dysplastic and cancer states characterizing also the grading.

  1. Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water

    PubMed Central

    Noy, Agnes; Pérez, Alberto; Laughton, Charles A.; Orozco, Modesto

    2007-01-01

    We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B⇔A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both water and ethanol/water mixture. The pathway of the transition in the A→B direction mirrors the B→A pathway, and is dominated by two processes that occur somewhat independently: local changes in sugar puckering and global rearrangements (particularly twist and roll) in the structure. The B→A transition is found to be a quasi-harmonic process, which follows closely the first spontaneous deformation mode of B-DNA, showing that a physiologically-relevant deformation is in coded in the flexibility pattern of DNA. PMID:17459891

  2. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin.

    PubMed

    Cavinato, Maria; Jansen-Dürr, Pidder

    2017-08-01

    Due to its ability to cross the epidermis and reach the upper dermis where it causes cumulative DNA damage and increased oxidative stress, UVB is considered the most harmful component of sunlight to the skin. The consequences of chronic exposition to UVB are related to photoaging and photocarcinogenesis. There are limitations to the study of human skin aging and for this reason the use of models is required. Human dermal fibroblasts submitted to mild and repeated doses of UVB are considered a versatile model to study UVB effects in the process of skin photoaging, which depends on the accumulation of senescent cells, in particular in the dermis. Here we provide updated information about the current model of UVB-induced senescence with special emphasis on the process of protein quality control. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  4. Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Yang, Jiping (Inventor); Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor)

    2008-01-01

    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices.

  5. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multimodal nanoparticle imaging agents: design and applications

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  7. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    PubMed

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  8. combination effect of hypertonic disease with chronic pancreatitis on the processes maintain homeostasis.

    PubMed

    Babinets, Liliya S; Medvid, Igor I; Herasymets, Iryna I; Borovyk, Iryna O; Migenko, Liudmyla M; Migenko, Bogdan O; Ryabokon, Svitlana S; Korylchuk, Neonila I; Botcyk, Natalia E; Tvorko, Vadym M

    Introduction: Abnormalities comorbidity - a frequent phenomenon in medical practice. This determines the relevance of research processes maintaining homeostasis with a combination of various diseases. The aim of this study was to examine and compare the character of vegetative, antioxidant, kallikrein-kinin system and parameters of endogenous intoxication disorders in the patients with isolated essential hypertension and with combination of hypertonic disease and chronic pancreatitis. Materials and Methods: Cardiointervalography was used in the research with definition of standard statistical and spectral heart rate variability. Determination of superoxide dismutase, glutathione, catalase, middle molecular peptides, total proteolytic activity of plasma by the hydrolysis of protamine sulfate, prekallikrein, kallikrein, α1 -proteinase inhibitor, α2 -macroglobulin and kininase II was conducted by laboratory methods. Results: Sympathicotonia with the moderate tension of adaptation processes, violation of antioxidant protection, kallikrein-kinin system and displays of endogenous intoxication were found in the patients with isolated hypertension. Reduction of sympathicotonia, reducing total power spectrum, increasing the share of humoral-metabolic effects on heart rate, tendency to asympathicotonia autonomic reactivity, lower levels of superoxide dismutase, glutathione, prekallikrein, α2 -macroglobulin, kininase II, higher levels of catalase, middle molecular peptides, total proteolytic activity of plasma kallikrein were observed upon accession the concomitant chronic pancreatitis. Conclusions: The signs of compensatory mechanisms disruption and increased autonomic nervous system imbalance with a decrease in ductility autonomous processes in the load were determined upon accession the concomitant chronic pancreatitis. The combination of pathologies also accompanied by more severe manifestations of endogenous intoxication, significant violations of antioxidant and kallikrein-kinin systems.

  9. Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA

    NASA Astrophysics Data System (ADS)

    Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.

    2002-10-01

    Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.

  10. Intercalation and de-intercalation pathway of proflavine through the minor and major grooves of DNA: roles of water and entropy.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2013-05-07

    DNA intercalation is a clinically relevant biophysical process due to its potential to inhibit the growth and survival of tumor cells and microbes through the arrest of the transcription and replication processes. Extensive kinetic and thermodynamic studies have followed since the discovery of the intercalative binding mode. However, the molecular mechanism and the origin of the thermodynamic and kinetic profile of the process are still not clear. Here we have constructed the free energy landscape of intercalation, de-intercalation and dissociation from both the major and minor grooves of DNA using extensive all-atom metadynamics simulations, capturing both the free energy barriers and stability in close agreement with fluorescence kinetic experiments. In the intercalated state, an alternate orientation of proflavine is found with an almost equal stability compared to the crystal orientation, however, separated by a 5.0 kcal mol(-1) barrier that decreases as the drug approaches the groove edges. This study provides a comprehensive picture in comparison with experiments, which indicates that the intercalation and de-intercalation of proflavine happen through the major groove side, although the effective intercalation barrier increases because the path of intercalation goes through the stable (abortive) minor groove bound state, making the process a millisecond long one in excellent agreement with the experiments. The molecular origin of the higher barrier for the intercalation from the minor groove side is attributed to the desolvation energy of DNA and the loss of entropy, while the barrier from the major groove, in the absence of desolvation energy, is primarily entropic.

  11. DaMold: A data-mining platform for variant annotation and visualization in molecular diagnostics research.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2017-07-01

    Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.

  12. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  13. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  14. Effects of Coherence and Relevance on Shallow and Deep Text Processing.

    ERIC Educational Resources Information Center

    Lehman, Stephen; Schraw, Gregory

    2002-01-01

    Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…

  15. Biological Relevance of Key Events (KE) in utero in The Androgen Adverse Outcome Pathway Network (AOPn) to Adverse Effects in F1 Male Rats

    EPA Science Inventory

    We are conducting studies to evaluate the biological relevance of changes in KEs and molecular initiating events (MIE) in AOPs to determine if these can accurately predict of the dose levels of chemicals that disrupt the androgen signaling pathway in utero. Herein, we focus on ch...

  16. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid

    2012-01-01

    Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance

    PubMed Central

    Ivey, Adam; Huntly, Brian J. P.

    2016-01-01

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response. PMID:26660431

  18. First-principles calculation of the optical properties of an amphiphilic cyanine dye aggregate.

    PubMed

    Haverkort, Frank; Stradomska, Anna; de Vries, Alex H; Knoester, Jasper

    2014-02-13

    Using a first-principles approach, we calculate electronic and optical properties of molecular aggregates of the dye amphi-pseudoisocyanine, whose structures we obtained from molecular dynamics (MD) simulations of the self-aggregation process. Using quantum chemistry methods, we translate the structural information into an effective time-dependent Frenkel exciton Hamiltonian for the dominant optical transitions in the aggregate. This Hamiltonian is used to calculate the absorption spectrum. Detailed analysis of the dynamic fluctuations in the molecular transition energies and intermolecular excitation transfer interactions in this Hamiltonian allows us to elucidate the origin of the relevant time scales; short time scales, on the order of up to a few hundreds of femtoseconds, result from internal motions of the dye molecules, while the longer (a few picosecond) time scales we ascribe to environmental motions. The absorption spectra of the aggregate structures obtained from MD feature a blue-shifted peak compared to that of the monomer; thus, our aggregates can be classified as H-aggregates, although considerable oscillator strength is carried by states along the entire exciton band. Comparison to the experimental absorption spectrum of amphi-PIC aggregates shows that the simulated line shape is too wide, pointing to too much disorder in the internal structure of the simulated aggregates.

  19. Defining a Computational Framework for the Assessment of ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework describes the effects of environmental stressors across multiple scales of biological organization and function. This includes an evaluation of the potential for each key event to occur across a broad range of species in order to determine the taxonomic applicability of each AOP. Computational tools are needed to facilitate this process. Recently, we developed a tool that uses sequence homology to evaluate the applicability of molecular initiating events across species (Lalone et al., Toxicol. Sci., 2016). To extend our ability to make computational predictions at higher levels of biological organization, we have created the AOPdb. This database links molecular targets identified associated with key events in the AOPwiki to publically available data (e.g. gene-protein, pathway, species orthology, ontology, chemical, disease) including ToxCast assay information. The AOPdb combines different data types in order to characterize the impacts of chemicals to human health and the environment and serves as a decision support tool for case study development in the area of taxonomic applicability. As a proof of concept, the AOPdb allows identification of relevant molecular targets, biological pathways, and chemical and disease associations across species for four AOPs from the AOP-Wiki (https://aopwiki.org): Estrogen receptor antagonism leading to reproductive dysfunction (Aop:30); Aromatase inhibition leading to reproductive d

  20. A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models.

    PubMed

    Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger

    2017-06-01

    Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).

  1. Diffusion of Molecular Diagnostic Lung Cancer Tests: A Survey of German Oncologists

    PubMed Central

    Steffen, Julius Alexander

    2014-01-01

    This study was aimed at examining the diffusion of diagnostic lung cancer tests in Germany. It was motivated by the high potential of detecting and targeting oncogenic drivers. Recognizing that the diffusion of diagnostic tests is a conditio sine qua non for the success of personalized lung cancer therapies, this study analyzed the diffusion of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tests in Germany. Qualitative and quantitative research strategies were combined in a mixed-method design. A literature review and subsequent Key Opinion Leader interviews identified a set of qualitative factors driving the diffusion process, which were then translated into an online survey. The survey was conducted among a sample of 961 oncologists (11.34% response rate). The responses were analyzed in a multiple linear regression which identified six statistically significant factors driving the diffusion of molecular diagnostic lung cancer tests: reimbursement, attitude towards R&D, information self-assessment, perceived attitudes of colleagues, age and test-pathway strategies. Besides the important role of adequate reimbursement and relevant guidelines, the results of this study suggest that an increasing usage of test-pathway strategies, especially in an office-based setting, can increase the diffusion of molecular diagnostic lung cancer tests in the future. PMID:25562146

  2. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    PubMed

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  3. Final report for the DOE Early Career Award #DE-SC0003912

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Arthi

    This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less

  4. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals.

    PubMed

    Badoud, Flavia; Perreault, Maude; Zulyniak, Michael A; Mutch, David M

    2015-03-01

    Obesity is a risk factor for the development of type 2 diabetes and cardiovascular disease. However, it is now recognized that a subset of individuals have reduced cardiometabolic risk despite being obese. Paradoxically, a subset of lean individuals is reported to have high risk for cardiometabolic complications. These distinct subgroups of individuals are referred to as metabolically unhealthy normal weight (MUNW) and metabolically healthy obese (MHO). Although the clinical relevance of these subgroups remains debated, evidence shows a critical role for white adipose tissue (WAT) function in the development of these phenotypes. The goal of this review is to provide an overview of our current state of knowledge regarding the molecular and metabolic characteristics of WAT associated with MUNW and MHO. In particular, we discuss the link between different WAT depots, immune cell infiltration, and adipokine production with MUNW and MHO. Furthermore, we also highlight recent molecular insights made with genomic technologies showing that processes such as oxidative phosphorylation, branched-chain amino acid catabolism, and fatty acid β-oxidation differ between these phenotypes. This review provides evidence that WAT function is closely linked with cardiometabolic risk independent of obesity and thus contributes to the development of MUNW and MHO. © FASEB.

  5. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs.

    PubMed

    Deluyker, Dorien; Evens, Lize; Bito, Virginie

    2017-09-01

    Advanced glycation end products (AGEs) are a group of proteins and lipids becoming glycated and oxidized after persistent contact with reducing sugars or short-chain aldehydes with amino group and/or high degree of oxidative stress. The accumulation of AGEs in the body is a natural process that occurs with senescence, when the turnover rate of proteins is reduced. However, increased circulating AGEs have been described to arise at early lifetime and are associated with adverse outcome and survival, in particular in settings of cardiovascular diseases. AGEs contribute to the development of cardiac dysfunction by two major mechanisms: cross-linking of proteins or binding to their cell surface receptor. Recently, growing evidence shows that high-molecular weight AGEs (HMW-AGEs) might be as important as the characterized low-molecular weight AGEs (LMW-AGEs). Here, we point out the targets of AGEs in the heart and the mechanisms that lead to heart failure with focus on the difference between LMW-AGEs and the less characterized HMW-AGEs. As such, this review is a compilation of relevant papers in the form of a useful resource tool for researchers who want to further investigate the role of HMW-AGEs on cardiac disorders and need a solid base to start on this specific topic.

  6. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    PubMed

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  7. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    PubMed Central

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  8. Consistent View of Protein Fluctuations from All-Atom Molecular Dynamics and Coarse-Grained Dynamics with Knowledge-Based Force-Field.

    PubMed

    Jamroz, Michal; Orozco, Modesto; Kolinski, Andrzej; Kmiecik, Sebastian

    2013-01-08

    It is widely recognized that atomistic Molecular Dynamics (MD), a classical simulation method, captures the essential physics of protein dynamics. That idea is supported by a theoretical study showing that various MD force-fields provide a consensus picture of protein fluctuations in aqueous solution [Rueda, M. et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 796-801]. However, atomistic MD cannot be applied to most biologically relevant processes due to its limitation to relatively short time scales. Much longer time scales can be accessed by properly designed coarse-grained models. We demonstrate that the aforementioned consensus view of protein dynamics from short (nanosecond) time scale MD simulations is fairly consistent with the dynamics of the coarse-grained protein model - the CABS model. The CABS model employs stochastic dynamics (a Monte Carlo method) and a knowledge-based force-field, which is not biased toward the native structure of a simulated protein. Since CABS-based dynamics allows for the simulation of entire folding (or multiple folding events) in a single run, integration of the CABS approach with all-atom MD promises a convenient (and computationally feasible) means for the long-time multiscale molecular modeling of protein systems with atomistic resolution.

  9. The molecular mechanisms of larval cestode development: first steps into an unknown world.

    PubMed

    Brehm, Klaus; Spiliotis, Markus; Zavala-Góngora, Ricardo; Konrad, Christian; Frosch, Matthias

    2006-01-01

    Several hundred million years ago, the free-living ancestors of all extant helminth parasites decided to colonize entirely new habitats, the bodies of other metazoan animals. As a consequence of the resulting adaptation processes, they evolved highly complex life-cycles in which many developmental transitions were initiated and controlled by host-derived signals. Understanding the molecular basis of the original developmental mechanisms, and the modifications that occurred during co-evolution with the host, is not only fundamental to our understanding of parasitism but also highly relevant for the design of anti-parasitic drugs and vaccines. In the past several years, molecular investigations on parasitic nematode and trematode development have made considerable progress and, supported by respective genome sequencing projects and emerging methods of genetic manipulation, will be a flourishing field in the years to come. We consider it time that corresponding studies are also pushed for the third large group of parasitic helminths, the cestodes. Here, we review the first experimental steps into that area, which have been undertaken recently. We report on cestode genomics, the identification of signaling factors associated with larval development, and the establishment as well as improvement of in vitro cultivation systems by which cestode life-cycles can be studied in the laboratory.

  10. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells

    PubMed Central

    Jain, Aklank; Bacolla, Albino; del Mundo, Imee M.; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M.

    2013-01-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA. PMID:24049074

  11. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    PubMed

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  12. Lessons learned from the design of chemical space networks and opportunities for new applications.

    PubMed

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  13. Lessons learned from the design of chemical space networks and opportunities for new applications

    NASA Astrophysics Data System (ADS)

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  14. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis.

    PubMed

    Brownell, Robert; Kaminski, Naftali; Woodruff, Prescott G; Bradford, Williamson Z; Richeldi, Luca; Martinez, Fernando J; Collard, Harold R

    2016-06-01

    Precision medicine is defined by the National Institute of Health's Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field's nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management.

  15. ER-stress and apoptosis: molecular mechanisms and potential relevance in infection.

    PubMed

    Häcker, Georg

    2014-10-01

    During ER-stress, one of the responses a cell can choose is apoptosis. Apoptosis generally is a cell's preferred response when other control mechanisms are overwhelmed. We now have a reasonably clear molecular picture what is happening once the apoptotic apparatus has been started. Unclear however are the majority of the upstream pathways that connect other signalling to apoptosis. During ER-stress, confirmed apoptosis-regulating targets are pro- and anti-apoptotic proteins of the Bcl-2-family, whose concerted action induces apoptosis. I will here discuss how mitochondrial apoptosis is triggered, how this is linked to the ER-stress response and in what way this may be relevant during microbial infections. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Goals and objectives for molecular pathology education in residency programs. The Association for Molecular Pathology Training and Education Committee.

    PubMed

    1999-11-01

    Increasing knowledge of the molecular basis of disease and advances in technology for analyzing nucleic acids and gene products are changing pathology practice. The explosion of information regarding inherited susceptibility to disease is an important aspect of this transformation. Pathology residency programs are incorporating molecular pathology education into their curricula to prepare newly trained pathologists for the future, yet little guidance has been available regarding the important components of molecular pathology training. We present general goals for pathology training programs for molecular pathology education. These include recommendations to pathology residents for the acquisition of both basic knowledge in human genetics and molecular biology and specific skills relevant to microbiology, molecular oncology, genetics, histocompatibility, and identity determination. The importance of residents gaining facility in integrating data gained via nucleic acid based-technology with other laboratory and clinical information available in the care of patients is emphasized.

  17. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  18. Investigating substrate use efficiency across different microbial physiologies in soil-extracted, solubilized organic matter (SESOM)

    NASA Astrophysics Data System (ADS)

    Cyle, K. T.; Martinez, C. E.

    2017-12-01

    Recent experimental work has elevated the importance of microbial processing for the stabilization of fresh carbon inputs within the soil mineral matrix. Enhancing our understanding of soil carbon and nitrogen dynamics therefore requires a better understanding of how efficiently microbial metabolism can process low molecular weight carbon substrates (carbon use efficiency, CUE) under environmentally relevant conditions. One approach to better understanding microbial uptake rates and CUE is the ecophysiological study of soil isolates in liquid media culture consisting of soil-extracted solubilized organic matter (SESOM). We are using SESOM from an Oa horizon under hemlock hardwood vegetation in upstate New York as liquid media for the growth of 12 isolates from the Oa and B horizon of the same site. Here we seek to test the uptake rates as well as CUE of 5 different low molecular weight substrates spanning compound class and nominal oxidation state (glucose, acetate, formate, glycine, valine) by isolates differing in phylogeny and physiology. The use of a spike of each of the 13C-labeled substrates into SESOM, along with a 0.2 μm filtration step, allows accurate partitioning of labeled carbon between biomass, gaseous CO2 as well as the exometabolome. Coupled UHPLC-MS measurements are being used to identify and determine uptake rates of over 80 potential C substrates present in the extract as well as our labeled substrate of interest along the course of the isolate growth curve. This work seeks to utilize a gradient in substrate class as well as microbial physiologies to inform our understanding of C and N cycling under relevant soil solution conditions. Future experiments may also use labeled biomass from stationary phase to investigate the stabilization potential of anabolic products formed from each substrate with a clay fraction isolated from the same site.

  19. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    PubMed

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies.

    PubMed

    Hacker, Benedikt; Schultheiß, Christoph; Döring, Michael; Kurzik-Dumke, Ursula

    2018-06-01

    This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.

Top