Sample records for molecular profiling technologies

  1. Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor.

    PubMed

    Bae, Jeong-Mo; Won, Jae-Kyung; Park, Sung-Hye

    2018-05-01

    Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed.

  2. Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor

    PubMed Central

    Bae, Jeong-Mo; Won, Jae-Kyung; Park, Sung-Hye

    2018-01-01

    Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed. PMID:29742887

  3. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  4. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses.

    PubMed

    Davey, Peter A; Pernice, Mathieu; Sablok, Gaurav; Larkum, Anthony; Lee, Huey Tyng; Golicz, Agnieszka; Edwards, David; Dolferus, Rudy; Ralph, Peter

    2016-09-01

    Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events.

  5. Managing the genomic revolution in cancer diagnostics.

    PubMed

    Nguyen, Doreen; Gocke, Christopher D

    2017-08-01

    Molecular tumor profiling is now a routine part of patient care, revealing targetable genomic alterations and molecularly distinct tumor subtypes with therapeutic and prognostic implications. The widespread adoption of next-generation sequencing technologies has greatly facilitated clinical implementation of genomic data and opened the door for high-throughput multigene-targeted sequencing. Herein, we discuss the variability of cancer genetic profiling currently offered by clinical laboratories, the challenges of applying rapidly evolving medical knowledge to individual patients, and the need for more standardized population-based molecular profiling.

  6. Molecular Profiling of Liquid Biopsy Samples for Precision Medicine.

    PubMed

    Campos, Camila D M; Jackson, Joshua M; Witek, Małgorzata A; Soper, Steven A

    In the context of oncology, liquid biopsies consist of harvesting cancer biomarkers, such as circulating tumor cells, tumor-derived cell-free DNA, and extracellular vesicles, from bodily fluids. These biomarkers provide a source of clinically actionable molecular information that can enable precision medicine. Herein, we review technologies for the molecular profiling of liquid biopsy markers with special emphasis on the analysis of low abundant markers from mixed populations.

  7. Unmasking molecular profiles of bladder cancer.

    PubMed

    Piao, Xuan-Mei; Byun, Young Joon; Kim, Wun-Jae; Kim, Jayoung

    2018-03-01

    Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.

  8. NMR and MS Methods for Metabolomics.

    PubMed

    Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias

    2017-01-01

    Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

  9. NMR and MS methods for metabonomics.

    PubMed

    Dieterle, Frank; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Amberg, Alexander

    2011-01-01

    Metabonomics, also often referred to as "metabolomics" or "metabolic profiling," is the systematic profiling of metabolites in bio-fluids or tissues of organisms and their temporal changes. In the last decade, metabonomics has become increasingly popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabonomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabonomics, i.e., NMR, LC-MS, UPLC-MS, and GC-MS have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabonomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation, to determining the measurement details of all analytical platforms, and finally, to discussing the corresponding specific steps of data analysis.

  10. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing.

    PubMed

    Agnelli, Luca; Tassone, Pierfrancesco; Neri, Antonino

    2013-06-01

    Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.

  11. Clinical Trials of Precision Medicine through Molecular Profiling: Focus on Breast Cancer.

    PubMed

    Zardavas, Dimitrios; Piccart-Gebhart, Martine

    2015-01-01

    High-throughput technologies of molecular profiling in cancer, such as gene-expression profiling and next-generation sequencing, are expanding our knowledge of the molecular landscapes of several cancer types. This increasing knowledge coupled with the development of several molecularly targeted agents hold the promise for personalized cancer medicine to be fully realized. Moreover, an expanding armamentarium of targeted agents has been approved for the treatment of specific molecular cancer subgroups in different diagnoses. According to this paradigm, treatment selection should be dictated by the specific molecular aberrations found in each patient's tumor. The classical clinical trials paradigm of patients' eligibility being based on clinicopathologic parameters is being abandoned, with current clinical trials enrolling patients on the basis of specific molecular aberrations. New, innovative trial designs have been generated to better tackle the multiple challenges induced by the increasing molecular fragmentation of cancer, namely: (1) longitudinal cohort studies with or without downstream trials, (2) studies assessing the clinical utility of molecular profiling, (3) master or umbrella trials, (4) basket trials, (5) N-of-1 trials, and (6) adaptive design trials. This article provides an overview of the challenges for clinical trials in the era of molecular profiling of cancer. Subsequently, innovative trial designs with respective examples and their potential to expedite efficient clinical development of targeted anticancer agents is discussed.

  12. Automated cell-type classification in intact tissues by single-cell molecular profiling

    PubMed Central

    2018-01-01

    A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504

  13. A statistical framework for applying RNA profiling to chemical hazard detection

    EPA Science Inventory

    Use of ‘omics technologies in environmental science is expanding. However, application is mostly restricted to characterizing molecular steps leading from toxicant interaction with molecular receptors to apical endpoints in laboratory species. Use in environmental decision-...

  14. Advanced Mass Spectrometry Technologies for the Study of Microbial Pathogenesis

    PubMed Central

    Moore, Jessica L.; Caprioli, Richard M.; Skaar, Eric P.

    2014-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been successfully applied to the field of microbial pathogenesis with promising results, principally in diagnostic microbiology to rapidly identify bacteria based on the molecular profiles of small cell populations. Direct profiling of molecules from serum and tissue samples by MALDI MS providesa means to study the pathogen-host interaction and to discover potential markers of infection. Systematic molecular profiling across tissue sections represents a new imaging modality, enabling regiospecific molecular measurements to be made in situ, in both two- and three-dimensional analyses. Herein, we briefly summarize work that employs MALDI MS to study the pathogenesis of microbial infection. PMID:24997399

  15. GENE EXPRESSION PATTERNS ASSOCIATED WITH INFERTILITY IN HUMAN AND RODENT MODELS

    EPA Science Inventory

    Modern genomic technologies such as DNA arrays provide the means to investigate molecular interactions at an unprecedented level, and arrays have been used to carry out gene expression profiling as a means of identifying candidate genes involved in molecular mechanisms underlying...

  16. Use of Microarray to Analyze Gene Expression Profiles of Acute Effects of Prochloraz on Fathead Minnows Pimephales promelas

    EPA Science Inventory

    Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...

  17. Internet-based profiler system as integrative framework to support translational research

    PubMed Central

    Kim, Robert; Demichelis, Francesca; Tang, Jeffery; Riva, Alberto; Shen, Ronglai; Gibbs, Doug F; Mahavishno, Vasudeva; Chinnaiyan, Arul M; Rubin, Mark A

    2005-01-01

    Background Translational research requires taking basic science observations and developing them into clinically useful tests and therapeutics. We have developed a process to develop molecular biomarkers for diagnosis and prognosis by integrating tissue microarray (TMA) technology and an internet-database tool, Profiler. TMA technology allows investigators to study hundreds of patient samples on a single glass slide resulting in the conservation of tissue and the reduction in inter-experimental variability. The Profiler system allows investigator to reliably track, store, and evaluate TMA experiments. Here within we describe the process that has evolved through an empirical basis over the past 5 years at two academic institutions. Results The generic design of this system makes it compatible with multiple organ system (e.g., prostate, breast, lung, renal, and hematopoietic system,). Studies and folders are restricted to authorized users as required. Over the past 5 years, investigators at 2 academic institutions have scanned 656 TMA experiments and collected 63,311 digital images of these tissue samples. 68 pathologists from 12 major user groups have accessed the system. Two groups directly link clinical data from over 500 patients for immediate access and the remaining groups choose to maintain clinical and pathology data on separate systems. Profiler currently has 170 K data points such as staining intensity, tumor grade, and nuclear size. Due to the relational database structure, analysis can be easily performed on single or multiple TMA experimental results. The TMA module of Profiler can maintain images acquired from multiple systems. Conclusion We have developed a robust process to develop molecular biomarkers using TMA technology and an internet-based database system to track all steps of this process. This system is extendable to other types of molecular data as separate modules and is freely available to academic institutions for licensing. PMID:16364175

  18. Internet-based Profiler system as integrative framework to support translational research.

    PubMed

    Kim, Robert; Demichelis, Francesca; Tang, Jeffery; Riva, Alberto; Shen, Ronglai; Gibbs, Doug F; Mahavishno, Vasudeva; Chinnaiyan, Arul M; Rubin, Mark A

    2005-12-19

    Translational research requires taking basic science observations and developing them into clinically useful tests and therapeutics. We have developed a process to develop molecular biomarkers for diagnosis and prognosis by integrating tissue microarray (TMA) technology and an internet-database tool, Profiler. TMA technology allows investigators to study hundreds of patient samples on a single glass slide resulting in the conservation of tissue and the reduction in inter-experimental variability. The Profiler system allows investigator to reliably track, store, and evaluate TMA experiments. Here within we describe the process that has evolved through an empirical basis over the past 5 years at two academic institutions. The generic design of this system makes it compatible with multiple organ system (e.g., prostate, breast, lung, renal, and hematopoietic system,). Studies and folders are restricted to authorized users as required. Over the past 5 years, investigators at 2 academic institutions have scanned 656 TMA experiments and collected 63,311 digital images of these tissue samples. 68 pathologists from 12 major user groups have accessed the system. Two groups directly link clinical data from over 500 patients for immediate access and the remaining groups choose to maintain clinical and pathology data on separate systems. Profiler currently has 170 K data points such as staining intensity, tumor grade, and nuclear size. Due to the relational database structure, analysis can be easily performed on single or multiple TMA experimental results. The TMA module of Profiler can maintain images acquired from multiple systems. We have developed a robust process to develop molecular biomarkers using TMA technology and an internet-based database system to track all steps of this process. This system is extendable to other types of molecular data as separate modules and is freely available to academic institutions for licensing.

  19. Initiative for Molecular Profiling and Advanced Cancer Therapy and challenges in the implementation of precision medicine.

    PubMed

    Tsimberidou, Apostolia-Maria

    In the last decade, breakthroughs in technology have improved our understanding of genomic, transcriptional, proteomic, epigenetic aberrations and immune mechanisms in carcinogenesis. Genomics and model systems have enabled the validation of novel therapeutic strategies. Based on these developments, in 2007, we initiated the IMPACT (Initiative for Molecular Profiling and Advanced Cancer Therapy) study, the first personalized medicine program for patients with advanced cancer at The University of Texas MD Anderson Cancer Center. We demonstrated that in patients referred for Phase I clinical trials, the use of tumor molecular profiling and treatment with matched targeted therapy was associated with encouraging rates of response, progression-free survival and overall survival compared to non-matched therapy. We are currently conducting IMPACT2, a randomized study evaluating molecular profiling and targeted agents in patients with metastatic cancer. Optimization of innovative biomarker-driven clinical trials that include targeted therapy and/or immunotherapeutic approaches for carefully selected patients will accelerate the development of novel drugs and the implementation of precision medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The rise of genomic profiling in ovarian cancer

    PubMed Central

    Previs, Rebecca A.; Sood, Anil K.; Mills, Gordon B.; Westin, Shannon N.

    2017-01-01

    Introduction Next-generation sequencing and advances in ‘omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a ‘one size fits all’ approach to ovarian cancer. Expert commentary Genomic profiling offers potentially ‘actionable’ opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity. PMID:27828713

  1. Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine.

    PubMed

    Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-11-01

    New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.

  2. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic.

    PubMed

    Stricker, Thomas; Catenacci, Daniel V T; Seiwert, Tanguy Y

    2011-04-01

    Cancers arise as a result of an accumulation of genetic aberrations that are either acquired or inborn. Virtually every cancer has its unique set of molecular changes. Technologies have been developed to study cancers and derive molecular characteristics that increasingly have implications for clinical care. Indeed, the identification of key genetic aberrations (molecular drivers) may ultimately translate into dramatic benefit for patients through the development of highly targeted therapies. With the increasing availability of newer, more powerful, and cheaper technologies such as multiplex mutational screening, next generation sequencing, array-based approaches that can determine gene copy numbers, methylation, expression, and others, as well as more sophisticated interpretation of high-throughput molecular information using bioinformatics tools like signatures and predictive algorithms, cancers will routinely be characterized in the near future. This review examines the background information and technologies that clinicians and physician-scientists will need to interpret in order to develop better, personalized treatment strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The role of molecular diagnostic testing in the management of thyroid nodules.

    PubMed

    Moore, Maureen D; Panjwani, Suraj; Gray, Katherine D; Finnerty, Brendan M; Zarnegar, Rasa; Fahey, Thomas J

    2017-06-01

    Fine needle aspiration (FNA) with cytologic examination remains the standard of care for investigation of thyroid nodules. However, as many as 30% of FNA samples are cytologically indeterminate for malignancy, which confounds clinical management. To reduce the burden of repeat diagnostic testing and unnecessary surgery, there has been extensive investigation into molecular markers that can be detected on FNA specimens to more accurately stratify a patient's risk of malignancy. Areas covered: In this review, the authors discuss recent evidence and progress in molecular markers used in the diagnosis of thyroid cancer highlighting somatic gene alterations, molecular technologies and microRNA analysis. Expert commentary: The goal of molecular markers is to improve diagnostic accuracy and aid clinicians in the preoperative management of thyroid lesions. Modalities such as direct mutation analysis, mRNA gene expression profiling, next-generation sequencing, and miRNA expression profiling have been explored to improve the diagnostic accuracy of thyroid nodule FNA. Although no perfect test has been discovered, molecular diagnostic testing has revolutionized the management of thyroid nodules.

  4. How molecular profiling could revolutionize drug discovery.

    PubMed

    Stoughton, Roland B; Friend, Stephen H

    2005-04-01

    Information from genomic, proteomic and metabolomic measurements has already benefited target discovery and validation, assessment of efficacy and toxicity of compounds, identification of disease subgroups and the prediction of responses of individual patients. Greater benefits can be expected from the application of these technologies on a significantly larger scale; by simultaneously collecting diverse measurements from the same subjects or cell cultures; by exploiting the steadily improving quantitative accuracy of the technologies; and by interpreting the emerging data in the context of underlying biological models of increasing sophistication. The benefits of applying molecular profiling to drug discovery and development will include much lower failure rates at all stages of the drug development pipeline, faster progression from discovery through to clinical trials and more successful therapies for patient subgroups. Upheavals in existing organizational structures in the current 'conveyor belt' models of drug discovery might be required to take full advantage of these methods.

  5. Automated tumor analysis for molecular profiling in lung cancer

    PubMed Central

    Boyd, Clinton; James, Jacqueline A.; Loughrey, Maurice B.; Hougton, Joseph P.; Boyle, David P.; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G.; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel

    2015-01-01

    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics. PMID:26317646

  6. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2013-07-01

    biology, nanotechnology, and imaging technology, molecular imaging utilizes specific probes as contrast agents to visualize cellular processes at the...This reagent was covalently coupled to the oligosaccharides attached to polypeptide side-chains of extracellular membrane proteins on living cells...website. The normal tissue gene expression profile dataset was modified and processed as described by Fang (8) and mean intensities and standard

  7. Display technologies: application for the discovery of drug and gene delivery agents

    PubMed Central

    Sergeeva, Anna; Kolonin, Mikhail G.; Molldrem, Jeffrey J.; Pasqualini, Renata; Arap, Wadih

    2007-01-01

    Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed. PMID:17123658

  8. A molecular dynamics study of polymer/graphene interfacial systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  9. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    PubMed

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  10. IMPROVING THE RELIABILITY OF MICROARRAYS FOR TOXICOLOGY RESEARCH: A COLLABORATIVE APPROACH

    EPA Science Inventory

    Microarray-based gene expression profiling is a critical tool to identify molecular biomarkers of specific chemical stressors. Although current microarray technologies have progressed from their infancy, biological and technical repeatability and reliability are often still limit...

  11. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  12. Exploitation of molecular profiling techniques for GM food safety assessment.

    PubMed

    Kuiper, Harry A; Kok, Esther J; Engel, Karl-Heinz

    2003-04-01

    Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Michael R.

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologiesmore » for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?« less

  14. Quantum Dot Platform for Single-Cell Molecular Profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.

  15. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.

    PubMed

    Ali, Mehreen; Khan, Suleiman A; Wennerberg, Krister; Aittokallio, Tero

    2018-04-15

    Proteomics profiling is increasingly being used for molecular stratification of cancer patients and cell-line panels. However, systematic assessment of the predictive power of large-scale proteomic technologies across various drug classes and cancer types is currently lacking. To that end, we carried out the first pan-cancer, multi-omics comparative analysis of the relative performance of two proteomic technologies, targeted reverse phase protein array (RPPA) and global mass spectrometry (MS), in terms of their accuracy for predicting the sensitivity of cancer cells to both cytotoxic chemotherapeutics and molecularly targeted anticancer compounds. Our results in two cell-line panels demonstrate how MS profiling improves drug response predictions beyond that of the RPPA or the other omics profiles when used alone. However, frequent missing MS data values complicate its use in predictive modeling and required additional filtering, such as focusing on completely measured or known oncoproteins, to obtain maximal predictive performance. Rather strikingly, the two proteomics profiles provided complementary predictive signal both for the cytotoxic and targeted compounds. Further, information about the cellular-abundance of primary target proteins was found critical for predicting the response of targeted compounds, although the non-target features also contributed significantly to the predictive power. The clinical relevance of the selected protein markers was confirmed in cancer patient data. These results provide novel insights into the relative performance and optimal use of the widely applied proteomic technologies, MS and RPPA, which should prove useful in translational applications, such as defining the best combination of omics technologies and marker panels for understanding and predicting drug sensitivities in cancer patients. Processed datasets, R as well as Matlab implementations of the methods are available at https://github.com/mehr-een/bemkl-rbps. mehreen.ali@helsinki.fi or tero.aittokallio@fimm.fi. Supplementary data are available at Bioinformatics online.

  16. Exploring the molecular basis of antifungal synergies using genome-wide approaches

    USDA-ARS?s Scientific Manuscript database

    This is a review article summarizing genomic profiling strategies for determining the mechanism of action of antifungal synergies, and highlighting the potential applications of these technologies. Given the limitations of currently available antifungal agents and the development of drug resistance...

  17. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    PubMed

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  18. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857

  19. Challenges of microarray applications for microbial detection and gene expression profiling in food

    USDA-ARS?s Scientific Manuscript database

    Microarray technology represents one of the latest advances in molecular biology. The diverse types of microarrays have been applied to clinical and environmental microbiology, microbial ecology, and in human, veterinary, and plant diagnostics. Since multiple genes can be analyzed simultaneously, ...

  20. DNA Array-Based Gene Profiling

    PubMed Central

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  1. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.

    PubMed

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-24

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  2. The plastid genome as a platform for the expression of microbial resistance genes

    USDA-ARS?s Scientific Manuscript database

    In recent years, our fundamental understanding of host-microbe interaction has developed considerably. We have begun to tease out the genetic components that influence host resistance to microbial colonization. The use of advancing molecular technologies such as microarray expression profiling and...

  3. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist?

    PubMed

    Fassan, Matteo

    2018-03-01

    - Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings. - To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice. - Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed. - Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed-material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.

  4. Bioinformatics/biostatistics: microarray analysis.

    PubMed

    Eichler, Gabriel S

    2012-01-01

    The quantity and complexity of the molecular-level data generated in both research and clinical settings require the use of sophisticated, powerful computational interpretation techniques. It is for this reason that bioinformatic analysis of complex molecular profiling data has become a fundamental technology in the development of personalized medicine. This chapter provides a high-level overview of the field of bioinformatics and outlines several, classic bioinformatic approaches. The highlighted approaches can be aptly applied to nearly any sort of high-dimensional genomic, proteomic, or metabolomic experiments. Reviewed technologies in this chapter include traditional clustering analysis, the Gene Expression Dynamics Inspector (GEDI), GoMiner (GoMiner), Gene Set Enrichment Analysis (GSEA), and the Learner of Functional Enrichment (LeFE).

  5. Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization.

    PubMed

    Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy

    2015-01-01

    Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology.

  6. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies

    PubMed Central

    Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika

    2017-01-01

    Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475

  7. Molecular profiling of marine fauna: integration of omics with environmental assessment of the world's oceans.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Helbing, Caren C

    2012-02-01

    Many species that contribute to the commercial and ecological richness of our marine ecosystems are harbingers of environmental change. The ability of organisms to rapidly detect and respond to changes in the surrounding environment represents the foundation for application of molecular profiling technologies towards marine sentinel species in an attempt to identify signature profiles that may reside within the transcriptome, proteome, or metabolome and that are indicative of a particular environmental exposure event. The current review highlights recent examples of the biological information obtained for marine sentinel teleosts, mammals, and invertebrates. While in its infancy, such basal information can provide a systems biology framework in the detection and evaluation of environmental chemical contaminant effects on marine fauna. Repeated evaluation across different seasons and local marine environs will lead to discrimination between signature profiles representing normal variation within the complex milieu of environmental factors that trigger biological response in a given sentinel species and permit a greater understanding of normal versus anthropogenic-associated modulation of biological pathways, which prove detrimental to marine fauna. It is anticipated that incorporation of contaminant-specific molecular signatures into current risk assessment paradigms will lead to enhanced wildlife management strategies that minimize the impacts of our industrialized society on marine ecosystems. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. New horizon for breast cancer biomarker discoveries: What might the liquid biopsy of nipple aspirate fluid hold?

    PubMed

    Mannello, Ferdinando

    2017-09-01

    The existence of cellular, molecular and biochemical heterogeneity of human breast cancers reveals the intricacy of biomarkers complexity, stimulating studies on new approaches (like "liquid biopsies") for the improvements in precision medicine. Breast cancer is recognized as a leading cause of morbidity and mortality worldwide with tumors significantly diverse and containing many types of cells showing different genetic and epigenetic profiles. In this field, the technology of liquid biopsy (applied to a fluid produced by breast gland, named nipple aspirate fluids, NAF) highlights the power of combining basic and clinical research. NAF is the mirror of the entire ductal/alveolar breast tree providing almost complete proteomic profile and a valuable source for biomarker discovery, in non-invasive manner than tissue biopsies. The liquid biopsy technology using NAF may represent the outstanding breakthrough of proteomic cancer research revealing novel diagnostic and prognostic applications. In conjunction to metabolomic and degradome profiling, the use of NAF as liquid biopsy approach will improve the detection of changes in the cellular microenvironment of the breast tumors, understanding molecular and biochemical mechanisms which drive breast tumor initiation, maintenance and progression, and finally enhancing the development of novel drug targets and new treatment strategies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nitric oxide assisted C60 secondary ion mass spectrometry for molecular depth profiling of polyelectrolyte multilayers.

    PubMed

    Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A

    2015-12-15

    Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Small business development for molecular diagnostics.

    PubMed

    Anagostou, Anthanasia; Liotta, Lance A

    2012-01-01

    Molecular profiling, which is the application of molecular diagnostics technology to tissue and blood -specimens, is an integral element in the new era of molecular medicine and individualized therapy. Molecular diagnostics is a fertile ground for small business development because it can generate products that meet immediate demands in the health-care sector: (a) Detection of disease risk, or early-stage disease, with a higher specificity and sensitivity compared to previous testing methods, and (b) "Companion diagnostics" for stratifying patients to receive a treatment choice optimized to their individual disease. This chapter reviews the promise and challenges of business development in this field. Guidelines are provided for the creation of a business model and the generation of a marketing plan around a candidate molecular diagnostic product. Steps to commercialization are outlined using existing molecular diagnostics companies as learning examples.

  11. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine.

    PubMed

    Dudley, Joel T; Listgarten, Jennifer; Stegle, Oliver; Brenner, Steven E; Parts, Leopold

    2015-01-01

    Advances in molecular profiling and sensor technologies are expanding the scope of personalized medicine beyond genotypes, providing new opportunities for developing richer and more dynamic multi-scale models of individual health. Recent studies demonstrate the value of scoring high-dimensional microbiome, immune, and metabolic traits from individuals to inform personalized medicine. Efforts to integrate multiple dimensions of clinical and molecular data towards predictive multi-scale models of individual health and wellness are already underway. Improved methods for mining and discovery of clinical phenotypes from electronic medical records and technological developments in wearable sensor technologies present new opportunities for mapping and exploring the critical yet poorly characterized "phenome" and "envirome" dimensions of personalized medicine. There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, behavioral, and environmental data streams from large population cohorts longitudinally to enable more comprehensive and dynamic models of individual biology and personalized health. Personalized medicine stands to benefit from inclusion of rich new sources and dimensions of data. However, realizing these improvements in care relies upon novel informatics methodologies, tools, and systems to make full use of these data to advance both the science and translational applications of personalized medicine.

  12. Molecular therapy for acute myeloid leukaemia

    PubMed Central

    Coombs, Catherine C.; Tallman, Martin S.; Levine, Ross L.

    2017-01-01

    Acute myeloid leukaemia (AML) is a heterogeneous disease that is, in general, associated with a very poor prognosis. Multiple cytogenetic and molecular abnormalities that characterize different forms of AML have been used to better prognosticate patients and inform treatment decisions. Indeed, risk status in patients with this disease has classically been based on cytogenetic findings; however, additional molecular characteristics have been shown to inform risk assessment, including FLT3, NPM1, KIT, and CEBPA mutation status. Advances in sequencing technology have led to the discovery of novel somatic mutations in tissue samples from patients with AML, providing deeper insight into the mutational landscape of the disease. The majority of patients with AML (>97%) are found to have a clonal somatic abnormality on mutational profiling. Nevertheless, our understanding of the utility of mutation profiling in clinical practice remains incomplete and is continually evolving, and evidence-based approaches to application of these data are needed. In this Review, we discuss the evidence-base for integrating mutational data into treatment decisions for patients with AML, and propose novel therapeutic algorithms in the era of molecular medicine. PMID:26620272

  13. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.

    PubMed

    Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio

    2018-06-11

    Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.

  14. Experimental design and quantitative analysis of microbial community multiomics.

    PubMed

    Mallick, Himel; Ma, Siyuan; Franzosa, Eric A; Vatanen, Tommi; Morgan, Xochitl C; Huttenhower, Curtis

    2017-11-30

    Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.

  15. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review

    PubMed Central

    Campbell, K.; Rawn, D.F.K.; Niedzwiadek, B.; Elliott, C.T.

    2011-01-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area. PMID:21623494

  16. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review.

    PubMed

    Campbell, K; Rawn, D F K; Niedzwiadek, B; Elliott, C T

    2011-06-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.

  17. High throughput gene expression profiling: a molecular approach to integrative physiology

    PubMed Central

    Liang, Mingyu; Cowley, Allen W; Greene, Andrew S

    2004-01-01

    Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487

  18. A taxonomy of epithelial human cancer and their metastases

    PubMed Central

    2009-01-01

    Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination. Conclusion Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile. PMID:20017941

  19. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    PubMed

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  20. A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia

    PubMed Central

    Perrot, Aurore; Pionneau, Cédric; Nadaud, Sophie; Davi, Frédéric; Leblond, Véronique; Jacob, Frédéric; Merle-Béral, Hélène; Herbrecht, Raoul; Béné, Marie-Christine; Gribben, John G.; Vallat, Laurent

    2011-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease. PMID:21602524

  1. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma

    PubMed Central

    Furge, Kyle A; Dykema, Karl; Petillo, David; Westphal, Michael; Zhang, Zhongfa; Kort, Eric J; Teh, Bin Tean

    2007-01-01

    Using high-throughput gene-expression profiling technology, we can now gain a better understanding of the complex biology that is taking place in cancer cells. This complexity is largely dictated by the abnormal genetic makeup of the cancer cells. This abnormal genetic makeup can have profound effects on cellular activities such as cell growth, cell survival and other regulatory processes. Based on the pattern of gene expression, or molecular signatures of the tumours, we can distinguish or subclassify different types of cancers according to their cell of origin, behaviour, and the way they respond to therapeutic agents and radiation. These approaches will lead to better molecular subclassification of tumours, the basis of personalized medicine. We have, to date, done whole-genome microarray gene-expression profiling on several hundreds of kidney tumours. We adopt a combined bioinformatic approach, based on an integrative analysis of the gene-expression data. These data are used to identify both cytogenetic abnormalities and molecular pathways that are deregulated in renal cell carcinoma (RCC). For example, we have identified the deregulation of the VHL-hypoxia pathway in clear-cell RCC, as previously known, and the c-Myc pathway in aggressive papillary RCC. Besides the more common clear-cell, papillary and chromophobe RCCs, we are currently characterizing the molecular signatures of rarer forms of renal neoplasia such as carcinoma of the collecting ducts, mixed epithelial and stromal tumours, chromosome Xp11 translocations associated with papillary RCC, renal medullary carcinoma, mucinous tubular and spindle-cell carcinoma, and a group of unclassified tumours. Continued development and improvement in the field of molecular profiling will better characterize cancer and provide more accurate diagnosis, prognosis and prediction of drug response. PMID:18542781

  2. Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites

    PubMed Central

    Severino, Patricia; Alvares, Adriana M; Michaluart, Pedro; Okamoto, Oswaldo K; Nunes, Fabio D; Moreira-Filho, Carlos A; Tajara, Eloiza H

    2008-01-01

    Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies. PMID:19014556

  3. A statistical framework for applying RNA profiling to chemical hazard detection.

    PubMed

    Kostich, Mitchell S

    2017-12-01

    Use of 'omics technologies in environmental science is expanding. However, application is mostly restricted to characterizing molecular steps leading from toxicant interaction with molecular receptors to apical endpoints in laboratory species. Use in environmental decision-making is limited, due to difficulty in elucidating mechanisms in sufficient detail to make quantitative outcome predictions in any single species or in extending predictions to aquatic communities. Here we introduce a mechanism-agnostic statistical approach, supplementing mechanistic investigation by allowing probabilistic outcome prediction even when understanding of molecular pathways is limited, and facilitating extrapolation from results in laboratory test species to predictions about aquatic communities. We use concepts familiar to environmental managers, supplemented with techniques employed for clinical interpretation of 'omics-based biomedical tests. We describe the framework in step-wise fashion, beginning with single test replicates of a single RNA variant, then extending to multi-gene RNA profiling, collections of test replicates, and integration of complementary data. In order to simplify the presentation, we focus on using RNA profiling for distinguishing presence versus absence of chemical hazards, but the principles discussed can be extended to other types of 'omics measurements, multi-class problems, and regression. We include a supplemental file demonstrating many of the concepts using the open source R statistical package. Published by Elsevier Ltd.

  4. Transcriptome Profiling of Chironomus kiinensis under Phenol Stress Using Solexa Sequencing Technology

    PubMed Central

    Cao, Chuanwang; Wang, Zhiying; Niu, Changying; Desneux, Nicolas; Gao, Xiwu

    2013-01-01

    Phenol is a major pollutant in aquatic ecosystems due to its chemical stability, water solubility and environmental mobility. To date, little is known about the molecular modifications of invertebrates under phenol stress. In the present study, we used Solexa sequencing technology to investigate the transcriptome and differentially expressed genes (DEGs) of midges (Chironomus kiinensis) in response to phenol stress. A total of 51,518,972 and 51,150,832 clean reads in the phenol-treated and control libraries, respectively, were obtained and assembled into 51,014 non-redundant (Nr) consensus sequences. A total of 6,032 unigenes were classified by Gene Ontology (GO), and 18,366 unigenes were categorized into 238 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. These genes included representatives from almost all functional categories. A total of 10,724 differentially expressed genes (P value <0.05) were detected in a comparative analysis of the expression profiles between phenol-treated and control C. kiinensis including 8,390 upregulated and 2,334 downregulated genes. The expression levels of 20 differentially expressed genes were confirmed by real-time RT-PCR, and the trends in gene expression that were observed matched the Solexa expression profiles, although the magnitude of the variations was different. Through pathway enrichment analysis, significantly enriched pathways were identified for the DEGs, including metabolic pathways, aryl hydrocarbon receptor (AhR), pancreatic secretion and neuroactive ligand-receptor interaction pathways, which may be associated with the phenol responses of C. kiinensis. Using Solexa sequencing technology, we identified several groups of key candidate genes as well as important biological pathways involved in the molecular modifications of chironomids under phenol stress. PMID:23527048

  5. [The proteomic profiling of blood serum of children with gastroesophageal reflux disease].

    PubMed

    Korkotashvili, L V; Kolesov, S A; Jukova, E A; Vidmanova, T A; Kankova, N Yu; Bashurova, I A; Sidorova, A M; Kulakova, E V

    2015-03-01

    The mass-spectra of proteome of blood serum from healthy children and children with gastroesophageal reflux disease were received. The technology platform including direct proteome mass-spectrometer profiling after pre-fractional rectification using magnetic particles MB WCX was applied. The significant differences in mass-spectra were established manifesting in detection of more mass-spectrometer peaks and higher indicators of their intensity and area in group of healthy children. The study detected 39 particular peptides and low-molecular proteins predominantly intrinsic to healthy or ill children. It was established that two peptides with molecular mass 925 and 909 Da. are registered only in healthy patients and have no traces in group ofpatients with gastroesophageal reflux disease. The peptide 1564 Da is detected only in blood of children with gastroesophageal reflux disease and totally is absent in healthy children. The research data permitted to reveal specific patterns (signatures) of low-molecular proteins and peptides specific for blood serum of healthy children and patients with gastroesophageal reflux disease. The results testify the availability of singularities in metabolism of low-molecular proteins and can be used as a basis for development of minimally invasive mass-spectrometer system for its diagnostic.

  6. Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo.

    PubMed

    Benayahu, Dafna; Socher, Rina; Shur, Irena

    2008-01-01

    Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.

  7. Molecular classification of gastric cancer.

    PubMed

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Epigenetic regulation in gallbladder cancer: Promoter methylation profiling as emergent novel biomarkers.

    PubMed

    Tekcham, Dinesh Singh; Tiwari, Pramod Kumar

    2016-12-01

    DNA methylation, once considered to rule the sex determination in Mary Lyon's hypothesis, has now reached the epicenter of human diseases, from monogenic (e.g. Prader Willi syndrome, Angelman syndromes and Beckwith-Wiedemann syndrome) to polygenic diseases, like cancer. Technological developments from gold standard to high throughput technologies have made tremendous advancement to define the epigenetic mechanism of cancer. Gallbladder cancer (GBC) is a fatal health issue affecting mostly the middle-aged women, whose survival rate is very low due to late symptomatic diagnosis. DNA methylation has become one of the key molecular mechanisms in the tumorigenesis of gallbladder. Various molecules have been reported to be epigenetically altered in GBC. In this review, we have discussed the classes of epigenetics, an overview of DNA methylation, technological approaches for its study, profile of methylated genes, their likely roles in GBC, future prospects of biomarker development and other discovery approaches, including therapeutics. © 2016 John Wiley & Sons Australia, Ltd.

  9. Proteomics in Diagnostic Pathology

    PubMed Central

    Chaurand, Pierre; Sanders, Melinda E.; Jensen, Roy A.; Caprioli, Richard M.

    2004-01-01

    Direct tissue profiling and imaging mass spectrometry (MS) provide a molecular assessment of numerous expressed proteins within a tissue sample. MALDI MS (matrix-assisted laser desorption ionization) analysis of thin tissue sections results in the visualization of 500 to 1000 individual protein signals in the molecular weight range from 2000 to over 200,000. These signals directly correlate with protein distribution within a specific region of the tissue sample. The systematic investigation of the section allows the construction of ion density maps, or specific molecular images, for virtually every signal detected in the analysis. Ultimately, hundreds of images, each at a specific molecular weight, may be obtained. To date, profiling and imaging MS has been applied to multiple diseased tissues, including human non-small cell lung tumors, gliomas, and breast tumors. Interrogation of the resulting complex MS data sets using modern biocomputational tools has resulted in identification of both disease-state and patient-prognosis specific protein patterns. These studies suggest that such proteomic information will become more and more important in assessing disease progression, prognosis, and drug efficacy. Molecular histology has been known for some time and its value clear in the field of pathology. Imaging mass spectrometry brings a new dimension of molecular data, one focusing on the disease phenotype. The present article reviews the state of the art of the technology and its complementarity with traditional histopathological analyses. PMID:15466373

  10. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  11. Single-Cell Genomics Unravels Brain Cell-Type Complexity.

    PubMed

    Guillaumet-Adkins, Amy; Heyn, Holger

    2017-01-01

    The brain is the most complex tissue in terms of cell types that it comprises, to the extent that it is still poorly understood. Single cell genome and transcriptome profiling allow to disentangle the neuronal heterogeneity, enabling the categorization of individual neurons into groups with similar molecular signatures. Herein, we unravel the current state of knowledge in single cell neurogenomics. We describe the molecular understanding of the cellular architecture of the mammalian nervous system in health and in disease; from the discovery of unrecognized cell types to the validation of known ones, applying these state-of-the-art technologies.

  12. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  13. Role of Molecular Profiling in Soft Tissue Sarcoma.

    PubMed

    Lindsay, Timothy; Movva, Sujana

    2018-05-01

    Diagnosis and treatment of soft tissue sarcoma (STS) is a particularly daunting task, largely due to the profound heterogeneity that characterizes these malignancies. Molecular profiling has emerged as a useful tool to confirm histologic diagnoses and more accurately classify these malignancies. Recent large-scale, multiplatform analyses have begun the work of establishing a more complete understanding of molecular profiling in STS subtypes and to identify new molecular alterations that may guide the development of novel targeted therapies. This review provides a brief and general overview of the role that molecular profiling has in STS, highlighting select sarcoma subtypes that are notable for recent developments. The role of molecular profiling as it relates to diagnostic strategies is discussed, along with ways that molecular profiling may provide guidance for potential therapeutic interventions. Copyright © 2018 by the National Comprehensive Cancer Network.

  14. Pragmatic precision oncology: the secondary uses of clinical tumor molecular profiling

    PubMed Central

    Thota, Ramya; Staggs, David B; Johnson, Douglas B; Warner, Jeremy L

    2016-01-01

    Background Precision oncology increasingly utilizes molecular profiling of tumors to determine treatment decisions with targeted therapeutics. The molecular profiling data is valuable in the treatment of individual patients as well as for multiple secondary uses. Objective To automatically parse, categorize, and aggregate clinical molecular profile data generated during cancer care as well as use this data to address multiple secondary use cases. Methods A system to parse, categorize and aggregate molecular profile data was created. A naÿve Bayesian classifier categorized results according to clinical groups. The accuracy of these systems were validated against a published expertly-curated subset of molecular profiling data. Results Following one year of operation, 819 samples have been accurately parsed and categorized to generate a data repository of 10,620 genetic variants. The database has been used for operational, clinical trial, and discovery science research. Conclusions A real-time database of molecular profiling data is a pragmatic solution to several knowledge management problems in the practice and science of precision oncology. PMID:27026612

  15. Beyond laser microdissection technology: follow the yellow brick road for cancer research

    PubMed Central

    Legres, Luc G; Janin, Anne; Masselon, Christophe; Bertheau, Philippe

    2014-01-01

    Normal biological tissues harbour different populations of cells with intricate spacial distribution patterns resulting in heterogeneity of their overall cellular composition. Laser microdissection involving direct viewing and expertise by a pathologist, enables access to defined cell populations or specific region on any type of tissue sample, thus selecting near-pure populations of targeted cells. It opens the way for molecular methods directed towards well-defined populations, and provides also a powerful tool in studies focused on a limited number of cells. Laser microdissection has wide applications in oncology (diagnosis and research), cellular and molecular biology, biochemistry and forensics for tissue selection, but other areas have been gradually opened up to these new methodological approaches, such as cell cultures and cytogenetics. In clinical oncology trials, molecular profiling of microdissected samples can yield global “omics” information which, together, with the morphological analysis of cells, can provide the basis for diagnosis, prognosis and patient-tailored treatments. This remarkable technology has brought new insights in the understanding of DNA, RNA, and the biological functions and regulation of proteins to identify molecular disease signatures. We review herein the different applications of laser microdissection in a variety of fields, and we particularly focus attention on the pre-analytical steps that are crucial to successfully perform molecular-level investigations. PMID:24482735

  16. Precision medicine in the age of big data: The present and future role of large-scale unbiased sequencing in drug discovery and development.

    PubMed

    Vicini, P; Fields, O; Lai, E; Litwack, E D; Martin, A-M; Morgan, T M; Pacanowski, M A; Papaluca, M; Perez, O D; Ringel, M S; Robson, M; Sakul, H; Vockley, J; Zaks, T; Dolsten, M; Søgaard, M

    2016-02-01

    High throughput molecular and functional profiling of patients is a key driver of precision medicine. DNA and RNA characterization has been enabled at unprecedented cost and scale through rapid, disruptive progress in sequencing technology, but challenges persist in data management and interpretation. We analyze the state-of-the-art of large-scale unbiased sequencing in drug discovery and development, including technology, application, ethical, regulatory, policy and commercial considerations, and discuss issues of LUS implementation in clinical and regulatory practice. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  17. Quantitative PCR and disaccharide profiling to characterize the animal origin of low-molecular-weight heparins.

    PubMed

    Houiste, Céline; Auguste, Cécile; Macrez, Céline; Dereux, Stéphanie; Derouet, Angélique; Anger, Pascal

    2009-02-01

    Low-molecular-weight heparins (LMWHs) are widely used in the management of thrombosis and acute coronary syndromes. They are obtained by the enzymatic or chemical depolymerization of porcine intestinal heparin. Enoxaparin sodium, a widely used LMWH, has a unique and reproducible oligosaccharide profile which is determined by the origin of the starting material and a tightly controlled manufacturing process. Although other enoxaparin-like LMWHs do exist, specific release criteria including the origin of the crude heparin utilized for their production, have not been established. A quantitative polymerase chain reaction method has been developed to ensure the purity of the porcine origin of crude heparin, with a DNA detection limit as low as 1 ppm for bovine, or 10 ppm for ovine contaminants. This method is routinely used as the release acceptance criterion during enoxaparin sodium manufacturing. Furthermore, when the process removes DNA, other analytical techniques can be used to assess any contamination. Disaccharide profiling after exhaustive depolymerization can determine the presence of at least 10% bovine or 20% ovine material; multivariate analysis is useful to perform the data analysis. Consistent with the availability of newer technology, these methods should be required as acceptance criteria for crude heparins used in the manufacture of LMWHs to ensure their safety, quality, and immunologic profile.

  18. Recovering actives in multi-antitarget and target design of analogs of the myosin II inhibitor blebbistatin

    NASA Astrophysics Data System (ADS)

    Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.

    2018-05-01

    In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.

  19. Translational bioinformatics in the cloud: an affordable alternative

    PubMed Central

    2010-01-01

    With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073

  20. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behaviormore » and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.« less

  1. Identifying molecular features for prostate cancer with Gleason 7 based on microarray gene expression profiles.

    PubMed

    Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana

    2011-01-01

    Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.

  2. High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming

    DTIC Science & Technology

    2016-09-01

    network pharmacology and CRCs) to discover and test repurposed drugs that target PCa on an individual patient basis. Objective 1: We will enrich the FDA...repurposing”, for all FDA-approved and experimental drugs. We have recently integrated our proprietary TMFS with network pharmacology , which will help to...samples. In this proposal we integrate two paradigm-shifting Georgetown-Lombardi technologies (TMFS/network pharmacology and CRCs) to discover and test

  3. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Membrane insertion profiles of peptides probed by molecular dynamics simulations In-Chul Yeh,* Mark A. Olson,# Michael S. Lee,*#§ and Anders...a methodology based on molecular dynamics simulation techniques to probe the insertion profiles of small peptides across the membrane interface. The...profiles of peptides probed by molecular dynamics simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  4. Individualised cancer therapeutics: dream or reality? Therapeutics construction.

    PubMed

    Shen, Yuqiao; Senzer, Neil; Nemunaitis, John

    2005-11-01

    The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.

  5. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs.

    PubMed

    Heinemann, Jack A; Kurenbach, Brigitta; Quist, David

    2011-10-01

    Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. An update on MALDI mass spectrometry based technology for the analysis of fingermarks - stepping into operational deployment.

    PubMed

    Francese, S; Bradshaw, R; Denison, N

    2017-07-10

    Since 2009, when Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging (MALDI MSI) was firstly reported for the molecular mapping of latent fingermarks, the range of information and operational capabilities have steadily increased. Pioneering work from our Fingermark Research Group exploited different modalities, including Profiling (MALDI MSP), tandem mass spectrometry (MS/MS) and Ion Mobility MS/MS; a number of methodologies were also developed to conquer a main challenge, namely profiling the suspect and their actions prior to or whilst committing the crime. Suspect profiling here is no longer based on behavioural science but complements this discipline and the investigations by detecting and visualising the molecular make-up of fingermarks onto the identifying ridges. This forensic opportunity provides the link between the biometric information (ridge detail) and the corpus delicti or intelligence on the circumstances of the crime. In 2013, a review was published covering the research work and developments of four years supported by the Home Office, UK, and the local regional Police with some insights (and comparison) into similar research being reported employing other mass spectrometric techniques. The present review is an extensive update on the MALDI MS based methods' achievements, limitations and work in progress in fingermark analysis; it also offers an outlook on further necessary research into this subject. The main highlights are the increased number of possible information retrievable around a suspect and the more extended compatibility of this technology. The latter has allowed MALDI MS based methods to integrate well with current forensic fingerprinting, leading to the investigation of real police casework.

  7. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  8. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  9. Genomic Analysis of Childhood Brain Tumors: Methods for Genome-Wide Discovery and Precision Medicine Become Mainstream.

    PubMed

    Mack, Stephen C; Northcott, Paul A

    2017-07-20

    Recent breakthroughs in next-generation sequencing technology and complementary genomic platforms have transformed our capacity to interrogate the molecular landscapes of human cancers, including childhood brain tumors. Numerous high-throughput genomic studies have been reported for the major histologic brain tumor entities diagnosed in children, including interrogations at the level of the genome, epigenome, and transcriptome, many of which have yielded essential new insights into disease biology. The nature of these discoveries has been largely platform dependent, exemplifying the usefulness of applying different genomic and computational strategies, or integrative approaches, to address specific biologic and/or clinical questions. The goal of this article is to summarize the spectrum of molecular profiling methods available for investigating genomic aspects of childhood brain tumors in both the research and the clinical setting. We provide an overview of the main next-generation sequencing and array-based technologies currently being applied in this field and draw from key examples in the recent neuro-oncology literature to illustrate how these genomic approaches have profoundly advanced our understanding of individual tumor entities. Moreover, we discuss the current status of genomic profiling in the clinic and how different platforms are being used to improve patient diagnosis and stratification, as well as to identify actionable targets for informing molecularly guided therapies, especially for patients for whom conventional standard-of-care treatments have failed. Both the demand for genomic testing and the main challenges associated with incorporating genomics into the clinical management of pediatric patients with brain tumors are discussed, as are recommendations for incorporating these assays into future clinical trials.

  10. Using gene transcription to assess ecological and anthropological stressors in brown bears

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Gustine, Dave; Joly, Kyle; Hilderbrand, Grant V.

    2018-01-01

    Increasingly, population- and ecosystem-level health assessments are performed using sophisticated molecular tools. Advances in molecular technology enable the identification of synergistic effects of multiple stressors on the individual physiology of different species. Brown bears (Ursus arctos) are an apex predator; thus, they are ideal candidates for detecting potentially ecosystem-level systemic perturbations using molecular-based tools. We used gene transcription to analyze 130 brown bear samples from three National Parks and Preserves in Alaska. Although the populations we studied are apparently stable in abundance and exist within protected and intact environments, differences in transcript profiles were noted. The most prevalent differences were among locations. The transcript patterns among groups reflect the influence of environmental factors, such as nutritional status, disease, and xenobiotic exposure. However, these profiles also likely represent baselines for each unique environment by which future measures can be made to identify early indication of population-level changes due to, for example, increasing Arctic temperatures. Some of those environmental changes are predicted to be potentially positive for brown bears, but other effects such as the manifestation of disease or indirect effects of oceanic acidification may produce negative impacts.

  11. Transforming the practice of medicine using genomics

    PubMed Central

    Ginsburg, Geoffrey S.; Ginsburg, Geoffrey S.; J. McCarthy, Jeanette

    2009-01-01

    Recent studies have demonstrated the use of genomic data, particularly gene expression signatures, as clinical prognostic factors in complex diseases. Such studies herald the future for genomic medicine and the opportunity for personalized prognosis in a variety of clinical contexts that utilize genomescale molecular information. Several key areas represent logical and critical next steps in the use of complex genomic profiling data towards the goal of personalized medicine. First, analyses should be geared toward the development of molecular profiles that predict future events – such as major clinical events or the response, resistance, or adverse reaction to therapy. Secondly, these must move into actual clinical practice by forming the basis for the next generation of clinical trials that will employ these methodologies to stratify patients. Lastly, there remain formidable challenges is in the translation of genomic technologies into clinical medicine that will need to be addressed: professional and public education, health outcomes research, reimbursement, regulatory oversight and privacy protection. PMID:22461094

  12. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    NASA Astrophysics Data System (ADS)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  13. Pragmatic precision oncology: the secondary uses of clinical tumor molecular profiling.

    PubMed

    Rioth, Matthew J; Thota, Ramya; Staggs, David B; Johnson, Douglas B; Warner, Jeremy L

    2016-07-01

    Precision oncology increasingly utilizes molecular profiling of tumors to determine treatment decisions with targeted therapeutics. The molecular profiling data is valuable in the treatment of individual patients as well as for multiple secondary uses. To automatically parse, categorize, and aggregate clinical molecular profile data generated during cancer care as well as use this data to address multiple secondary use cases. A system to parse, categorize and aggregate molecular profile data was created. A naÿve Bayesian classifier categorized results according to clinical groups. The accuracy of these systems were validated against a published expertly-curated subset of molecular profiling data. Following one year of operation, 819 samples have been accurately parsed and categorized to generate a data repository of 10,620 genetic variants. The database has been used for operational, clinical trial, and discovery science research. A real-time database of molecular profiling data is a pragmatic solution to several knowledge management problems in the practice and science of precision oncology. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  15. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    PubMed

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  16. Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology.

    PubMed

    Tao, Jessica J; Schram, Alison M; Hyman, David M

    2018-01-29

    Understanding a tumor's detailed molecular profile has become increasingly necessary to deliver the standard of care for patients with advanced cancer. Innovations in both tumor genomic sequencing technology and the development of drugs that target molecular alterations have fueled recent gains in genome-driven oncology care. "Basket studies," or histology-agnostic clinical trials in genomically selected patients, represent one important research tool to continue making progress in this field. We review key aspects of genome-driven oncology care, including the purpose and utility of basket studies, biostatistical considerations in trial design, genomic knowledgebase development, and patient matching and enrollment models, which are critical for translating our genomic knowledge into clinically meaningful outcomes.

  17. C. elegans network biology: a beginning.

    PubMed Central

    Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc

    2006-01-01

    The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437

  18. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures.

    PubMed

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Low-cost, high-sensitivity SERS nano-bio-chip for kinase profiling, drug monitoring and environmental detection: a translational platform technology

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Liu, Logan

    2014-03-01

    The interaction of biomolecules and solid-state nanomaterials at the nano-bio interfaces is a long-lasting research topic in nanotechnology. Historically, fundamental problems, such as the electron transfer, energy transfer, and plasmonic interaction at the bio-nano interfaces, have been intensively studied, and revolutionary technologies, such as molecular electronics, peptide chips, nanoplasmonic sensors, have been created. With the combined effort of molecular dynamics simulation and surface-enhanced Raman spectroscopy, we studied the external electric field-induced conformation changes of dodecapeptide probes tethered to a nanostructured metallic surface. Through this study, we demonstrated a reversible manipulation of the biomolecule conformations as well as an in situ eletro-optical detection of the subnanometer conformational changes at the bio-nano interfaces. Based on the proof-of-concept established in this study, we further propose a novel nanophotonic peptide phosphorylation sensor for high-sensitive peptide kinase profiling. We have also demonstrated the same SERS nano-bio-chip can be used for environmental monitoring applications, such as detection of contaminants in drinking water at ultralow concentrates. The fabrication of this nanosensor is based on a single step, lithography-less nanomanufacturing process, which can produce hundreds of these chips in several minutes with nearly 100% yield and uniformity. Therefore, the demonstrated research can be readily translated into industrial mass productions.

  20. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.

    PubMed

    Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang

    2018-04-21

    The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.

  1. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)

    PubMed Central

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology. PMID:25901577

  2. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis).

    PubMed

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants' growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., 'Photosynthesis'), GO terms (e.g., 'response to karrikin') and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.

  3. Observations of winds with an incoherent lidar detector

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Hays, Paul B.

    1992-01-01

    A Fabry-Perot interferometer and image-plane detector system to be used as a receiver for a Doppler lidar have been developed. This system incorporates the latest technology in multichannel detectors, and it is an important step toward the development of operational wind profiler systems for the atmosphere. The instrumentation includes a stable high-resolution optically contacted plane etalon and a multiring anode detector to scan the image plane of the Fabry-Perot interferometer spatially. The high wavelength resolution provided by the interferometer permits the aerosol and molecular components of the backscattered signal to be distinguished, and the Doppler shift of either component can then be used to determine the wind altitude profile. The receiver performance has been tested by measuring the wind profile in the boundary layer. The Fabry-Perot interferometer and image-plane detector characteristics are described and sample measurements are presented. The potential of the system as a wind profiler in the troposphere, the stratosphere, and the mesosphere is also considered.

  4. Specific identification of Bacillus anthracis strains

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Thaiya; Deshpande, Samir; Hewel, Johannes; Liu, Hongbin; Wick, Charles H.; Yates, John R., III

    2007-01-01

    Accurate identification of human pathogens is the initial vital step in treating the civilian terrorism victims and military personnel afflicted in biological threat situations. We have applied a powerful multi-dimensional protein identification technology (MudPIT) along with newly generated software termed Profiler to identify the sequences of specific proteins observed for few strains of Bacillus anthracis, a human pathogen. Software termed Profiler was created to initially screen the MudPIT data of B. anthracis strains and establish the observed proteins specific for its strains. A database was also generated using Profiler containing marker proteins of B. anthracis and its strains, which in turn could be used for detecting the organism and its corresponding strains in samples. Analysis of the unknowns by our methodology, combining MudPIT and Profiler, led to the accurate identification of the anthracis strains present in samples. Thus, a new approach for the identification of B. anthracis strains in unknown samples, based on the molecular mass and sequences of marker proteins, has been ascertained.

  5. Flow Cytometric Methods for Circulating Tumor Cell Isolation and Molecular Analysis.

    PubMed

    Bhagwat, Neha; Carpenter, Erica L

    2017-01-01

    Circulating tumor cells provide a non-invasive source of tumor material that can be valuable at all stages of disease management, including screening and early diagnosis, monitoring response to therapy, identifying therapeutic targets, and assessing development of drug resistance. Cells isolated from the blood of cancer patients can be used for phenotypic analysis, tumor genotyping, transcriptional profiling, as well as for ex vivo culture of isolated cells. There are a variety of novel technologies currently being developed for the detection and analysis of rare cells in circulation of cancer patients. Flow cytometry is a powerful cell analysis platform that is increasingly being used in this field of study due to its relatively high throughput and versatility with respect to the large number of commercially available antibodies and fluorescent probes available to translational and clinical researchers. More importantly, it offers the ability to easily recover viable cells with high purity that are suitable for downstream molecular analysis, thus making it an attractive technology for cancer research and as a diagnostic tool.

  6. NCBI GEO: mining millions of expression profiles--database and tools.

    PubMed

    Barrett, Tanya; Suzek, Tugba O; Troup, Dennis B; Wilhite, Stephen E; Ngau, Wing-Chi; Ledoux, Pierre; Rudnev, Dmitry; Lash, Alex E; Fujibuchi, Wataru; Edgar, Ron

    2005-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest fully public repository for high-throughput molecular abundance data, primarily gene expression data. The database has a flexible and open design that allows the submission, storage and retrieval of many data types. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. GEO currently holds over 30,000 submissions representing approximately half a billion individual molecular abundance measurements, for over 100 organisms. Here, we describe recent database developments that facilitate effective mining and visualization of these data. Features are provided to examine data from both experiment- and gene-centric perspectives using user-friendly Web-based interfaces accessible to those without computational or microarray-related analytical expertise. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  7. Fuzzy Neural Network Applied to Gene Expression Profiling for Predicting the Prognosis of Diffuse Large B‐cell Lymphoma

    PubMed Central

    Ando, Tatsuya; Suguro, Miyuki; Hanai, Taizo; Kobayashi, Takeshi; Seto, Masao

    2002-01-01

    Diffuse large B‐cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long‐overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF‐4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy. PMID:12460461

  8. MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions.

    PubMed

    Maccarrone, Giuseppina; Nischwitz, Sandra; Deininger, Sören-Oliver; Hornung, Joachim; König, Fatima Barbara; Stadelmann, Christine; Turck, Christoph W; Weber, Frank

    2017-03-15

    Multiple sclerosis is a disease of the central nervous system characterized by recurrent inflammatory demyelinating lesions in the early disease stage. Lesion formation and mechanisms leading to lesion remyelination are not fully understood. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry imaging (MALDI-IMS) is a technology which analyses proteins and peptides in tissue, preserves their spatial localization, and generates molecular maps within the tissue section. In a pilot study we employed MALDI imaging mass spectrometry to profile and identify peptides and proteins expressed in normal-appearing white matter, grey matter and multiple sclerosis brain lesions with different extents of remyelination. The unsupervised clustering analysis of the mass spectra generated images which reflected the tissue section morphology in luxol fast blue stain and in myelin basic protein immunohistochemistry. Lesions with low remyelination extent were defined by compounds with molecular weight smaller than 5300Da, while more completely remyelinated lesions showed compounds with molecular weights greater than 15,200Da. An in-depth analysis of the mass spectra enabled the detection of cortical lesions which were not seen by routine luxol fast blue histology. An ion mass, mainly distributed at the rim of multiple sclerosis lesions, was identified by liquid chromatography and tandem mass spectrometry as thymosin beta-4, a protein known to be involved in cell migration and in restorative processes. The ion mass of thymosin beta-4 was profiled by MALDI imaging mass spectrometry in brain slides of 12 multiple sclerosis patients and validated by immunohistochemical analysis. In summary, our results demonstrate the ability of the MALDI-IMS technology to map proteins within the brain parenchyma and multiple sclerosis lesions and to identify potential markers involved in multiple sclerosis pathogenesis and/or remyelination. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comprehensive Molecular Profiling of African-American Prostate Cancer to Inform on Prognosis and Disease Biology

    DTIC Science & Technology

    2017-10-01

    development and patterning, and to become more knowledgeable in molecular genetics and the pathology of human prostatic diseases. Specific Aims: 1...AWARD NUMBER: W81XWH-15-1-0661 TITLE: Comprehensive Molecular Profiling of African-American Prostate Cancer to Inform on Prognosis and...COVERED 30 Sept 2016 – 29 Sept 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Comprehensive Molecular Profiling of African-American Prostate Cancer to

  10. Tuberculosis patients co-infected with Mycobacterium bovis and Mycobacterium tuberculosis in an urban area of Brazil.

    PubMed

    Silva, Marcio Roberto; Rocha, Adalgiza da Silva; da Costa, Ronaldo Rodrigues; de Alencar, Andrea Padilha; de Oliveira, Vania Maria; Fonseca Júnior, Antônio Augusto; Sales, Mariana Lázaro; Issa, Marina de Azevedo; Filho, Paulo Martins Soares; Pereira, Omara Tereza Vianello; dos Santos, Eduardo Calazans; Mendes, Rejane Silva; Ferreira, Angela Maria de Jesus; Mota, Pedro Moacyr Pinto Coelho; Suffys, Philip Noel; Guimarães, Mark Drew Crosland

    2013-05-01

    In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials.

  11. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.

  12. The technology and biology of single-cell RNA sequencing.

    PubMed

    Kolodziejczyk, Aleksandra A; Kim, Jong Kyoung; Svensson, Valentine; Marioni, John C; Teichmann, Sarah A

    2015-05-21

    The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Direct tissue analysis by matrix-assisted laser desorption ionization mass spectrometry: application to kidney biology.

    PubMed

    Herring, Kristen D; Oppenheimer, Stacey R; Caprioli, Richard M

    2007-11-01

    Direct tissue analysis using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) provides in situ molecular analysis of a wide variety of biological molecules including xenobiotics. This technology allows measurement of these species in their native biological environment without the use of target-specific reagents such as antibodies. It can be used to profile discrete cellular regions and obtain region-specific images, providing information on the relative abundance and spatial distribution of proteins, peptides, lipids, and drugs. In this article, we report the sample preparation, MS data acquisition and analysis, and protein identification methodologies used in our laboratory for profiling/imaging MS and how this has been applied to kidney disease and toxicity.

  14. Using circulating tumor cells to inform on prostate cancer biology and clinical utility

    PubMed Central

    Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.

    2016-01-01

    Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252

  15. Identification of Early Response Genes in Human Peripheral Leukocytes Infected with Orientia tsutsugamushi: The Emergent of a Unique Gene Expression Profile for Diagnosis of O. tsutsugamush Infection

    DTIC Science & Technology

    2010-01-01

    dynein to move from the cell periphery to the microtubule organizing center [22]. Therefore, the initial interactions between host and intracellular...used to study host-pathogen interactions , mainly by identifying genes from pathogens that may be involved in pathogenecity and by surveying the scope...toward understanding the host-Orientia tsutsugamushi interaction at the molecular level, we used human cDNA microarray technology to examine in detail

  16. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches.

    PubMed

    Khodakov, Dmitriy; Wang, Chunyan; Zhang, David Yu

    2016-10-01

    Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. NaviCom: a web application to create interactive molecular network portraits using multi-level omics data.

    PubMed

    Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna

    2017-01-01

    Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.

  18. System Concept for Remote Measurement of Asteroid Molecular Composition

    NASA Astrophysics Data System (ADS)

    Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.

    2016-12-01

    We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.

  19. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    PubMed

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  20. Leveling the Playing Field: Bringing Development of Biomarkers and Molecular Diagnostics up to the Standards for Drug Development

    PubMed Central

    Poste, George; Carbone, David P.; Parkinson, David R.; Verweij, Jaap; Hewitt, Stephen; Jessup, J. Milburn

    2012-01-01

    Molecular diagnostics are increasingly important in clinical research to stratify or identify molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, or to assess early response to therapy or monitor patients. Molecular diagnostics can also be used to identify pharmocogenetic risk of adverse drug reactions. The articles of this CCR Focus section on Molecular Diagnosis describe the development and use of markers for medical decision-making in the cancer patient. They define the sources of preanalytic variability to minimize as well as the regulatory and financial challenges in diagnostic development and integration into clinical practice. They also outline an NCI program to assist diagnostic development. Molecular diagnostic clinical tests require rigor in their development and clinical validation with sufficient sensitivity, specificity and validity that is comparable to that used for development of therapeutics. These diagnostics must be offered at a realistic cost that reflects both their clinical value and the costs associated with their development. When genome sequencing technologies move into the clinic, they must be integrated with and traceable to current technology because they may identify more efficient and accurate approaches to drug development. In addition, regulators may define progressive drug approval for companion diagnostics that requires further evidence regarding efficacy and safety before full approval. A way to accomplish this is to emphasize Phase IV post-marketing hypothesis driven clinical trials with biological characterization that permits accurate definition of the association of low prevalence gene alterations with toxicity or response in large cohorts. PMID:22422403

  1. Leveling the playing field: bringing development of biomarkers and molecular diagnostics up to the standards for drug development.

    PubMed

    Poste, George; Carbone, David P; Parkinson, David R; Verweij, Jaap; Hewitt, Stephen M; Jessup, J Milburn

    2012-03-15

    Molecular diagnostics are becoming increasingly important in clinical research to stratify or identify molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, and to assess early response to therapy or monitor patients. Molecular diagnostics can also be used to identify the pharmacogenetic risk of adverse drug reactions. The articles in this CCR Focus section on molecular diagnosis describe the development and use of markers to guide medical decisions regarding cancer patients. They define sources of preanalytic variability that need to be minimized, as well as the regulatory and financial challenges involved in developing diagnostics and integrating them into clinical practice. They also outline a National Cancer Institute program to assist diagnostic development. Molecular diagnostic clinical tests require rigor in their development and clinical validation, with sensitivity, specificity, and validity comparable to those required for the development of therapeutics. These diagnostics must be offered at a realistic cost that reflects both their clinical value and the costs associated with their development. When genome-sequencing technologies move into the clinic, they must be integrated with and traceable to current technology because they may identify more efficient and accurate approaches to drug development. In addition, regulators may define progressive drug approval for companion diagnostics that requires further evidence regarding efficacy and safety before full approval can be achieved. One way to accomplish this is to emphasize phase IV postmarketing, hypothesis-driven clinical trials with biological characterization that would permit an accurate definition of the association of low-prevalence gene alterations with toxicity or response in large cohorts.

  2. In Vivo Biomarkers for Targeting Colorectal Neoplasms

    PubMed Central

    Hsiung, Pei-Lin; Wang, Thomas

    2011-01-01

    Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961

  3. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications.

    PubMed

    Rydzanicz, Małgorzata; Wrzesiński, Tomasz; Bluyssen, Hans A R; Wesoły, Joanna

    2013-12-01

    Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Molecular profiling of childhood cancer: Biomarkers and novel therapies.

    PubMed

    Saletta, Federica; Wadham, Carol; Ziegler, David S; Marshall, Glenn M; Haber, Michelle; McCowage, Geoffrey; Norris, Murray D; Byrne, Jennifer A

    2014-06-01

    Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.

  5. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.

    PubMed

    Euskirchen, Philipp; Bielle, Franck; Labreche, Karim; Kloosterman, Wigard P; Rosenberg, Shai; Daniau, Mailys; Schmitt, Charlotte; Masliah-Planchon, Julien; Bourdeaut, Franck; Dehais, Caroline; Marie, Yannick; Delattre, Jean-Yves; Idbaih, Ahmed

    2017-11-01

    Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.

  6. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  7. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls velocity accuracy.

  8. Cancer diagnostics: The journey from histomorphology to molecular profiling.

    PubMed

    Ahmed, Atif A; Abedalthagafi, Malak

    2016-09-06

    Although histomorphology has made significant advances into the understanding of cancer etiology, classification and pathogenesis, it is sometimes complicated by morphologic ambiguities, and other shortcomings that necessitate the development of ancillary tests to complement its diagnostic value. A new approach to cancer patient management consists of targeting specific molecules or gene mutations in the cancer genome by inhibitory therapy. Molecular diagnostic tests and genomic profiling methods are increasingly being developed to identify tumor targeted molecular profile that is the basis of targeted therapy. Novel targeted therapy has revolutionized the treatment of gastrointestinal stromal tumor, renal cell carcinoma and other cancers that were previously difficult to treat with standard chemotherapy. In this review, we discuss the role of histomorphology in cancer diagnosis and management and the rising role of molecular profiling in targeted therapy. Molecular profiling in certain diagnostic and therapeutic difficulties may provide a practical and useful complement to histomorphology and opens new avenues for targeted therapy and alternative methods of cancer patient management.

  9. Velocity profiles of high-excitation molecular hydrogen lines

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 microns, originating from widely spaced energy levels, have been measured at a resolution of 32 km/s at Peak 1 in the Orion molecular outflow. The three lines, 1 - 0 S(1), 2 - 1 S(1), and 3 - 2 S(3), are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, and is generally consistent with emission from multiple J-type shocks.

  10. Improving the dissolution properties of curcumin using dense gas antisolvent technology.

    PubMed

    Kurniawansyah, Firman; Quachie, Lisa; Mammucari, Raffaella; Foster, Neil R

    2017-04-15

    The dissolution properties of curcumin are notoriously poor and hinder its bioavailability. To improve its dissolution properties, curcumin has been formulated with methyl-β-cyclodextrin and polyvinylpyrrolidone by the atomized rapid injection solvent extraction (ARISE) system. The compounds were co-precipitated from organic solutions using carbon dioxide at 30°C and 95bar as the antisolvent. Curcumin formulations were also produced by physical mixing and freeze drying for comparative purposes. The morphology, crystallinity, solid state molecular interactions, apparent solubility and dissolution profiles of samples were observed. The results indicate that the ARISE process is effective in the preparation of curcumin micro-composites with enhanced dissolution profiles compared to unprocessed material and products from physical mixing and freeze drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Advancing haematopoietic stem and progenitor cell biology through single-cell profiling.

    PubMed

    Hamey, Fiona K; Nestorowa, Sonia; Wilson, Nicola K; Göttgens, Berthold

    2016-11-01

    Haematopoietic stem and progenitor cells (HSPCs) sit at the top of the haematopoietic hierarchy, and their fate choices need to be carefully controlled to ensure balanced production of all mature blood cell types. As cell fate decisions are made at the level of the individual cells, recent technological advances in measuring gene and protein expression in increasingly large numbers of single cells have been rapidly adopted to study both normal and pathological HSPC function. In this review we emphasise the importance of combining the correct computational models with single-cell experimental techniques, and illustrate how such integrated approaches have been used to resolve heterogeneities in populations, reconstruct lineage differentiation, identify regulatory relationships and link molecular profiling to cellular function. © 2016 Federation of European Biochemical Societies.

  12. The Oral Microbiota in Health and Disease: An Overview of Molecular Findings.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2017-01-01

    Culture-independent nucleic acid technologies have been extensively applied to the analysis of oral bacterial communities associated with healthy and diseased conditions. These methods have confirmed and substantially expanded the findings from culture studies to reveal the oral microbial inhabitants and candidate pathogens associated with the major oral diseases. Over 1000 bacterial distinct species-level taxa have been identified in the oral cavity and studies using next-generation DNA sequencing approaches indicate that the breadth of bacterial diversity may be even much larger. Nucleic acid technologies have also been helpful in profiling bacterial communities and identifying disease-related patterns. This chapter provides an overview of the diversity and taxonomy of oral bacteria associated with health and disease.

  13. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  14. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  15. Tumor immunology.

    PubMed

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  16. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; hide

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  17. Mass spectrometry in the palm of your hand: future applications of in vivo tissue analysis.

    PubMed

    Fox, Simon A; Farah, Camile S

    2018-05-21

    Assessment and diagnosis of oral mucosal disorders continues to present clinical challenges with conventional methodologies being time consuming and hampered by subjectivity. These considerations also apply to surgical excision of malignant and potentially malignant lesions where accurate assessment of margins is critical to patient outcomes. These clinical needs are driving the development of new technologies which can enable rapid diagnosis based upon characteristic molecular profiles identified through clinical science. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Secondary Analysis and Integration of Existing Data to Elucidate the Genetic Architecture of Cancer Risk and Related Outcomes, R21 | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This funding opportunity announcement (FOA) encourages applications that propose to conduct secondary data analysis and integration of existing datasets and database resources, with the ultimate aim to elucidate the genetic architecture of cancer risk and related outcomes. The goal of this initiative is to address key scientific questions relevant to cancer epidemiology by supporting the analysis of existing genetic or genomic datasets, possibly in combination with environmental, outcomes, behavioral, lifestyle, and molecular profiles data.

  19. Secondary Analysis and Integration of Existing Data to Elucidate the Genetic Architecture of Cancer Risk and Related Outcomes, R01 | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This funding opportunity announcement (FOA) encourages applications that propose to conduct secondary data analysis and integration of existing datasets and database resources, with the ultimate aim to elucidate the genetic architecture of cancer risk and related outcomes. The goal of this initiative is to address key scientific questions relevant to cancer epidemiology by supporting the analysis of existing genetic or genomic datasets, possibly in combination with environmental, outcomes, behavioral, lifestyle, and molecular profiles data.

  20. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    PubMed

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.

    PubMed

    Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan

    2017-03-01

    Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.

  2. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    PubMed Central

    Tagliaferri, Pierosandro; Ventura, Monica; Baudi, Francesco; Cucinotto, Iole; Arbitrio, Mariamena; Di Martino, Maria Teresa; Tassone, Pierfrancesco

    2009-01-01

    Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients. PMID:19825178

  3. Keck/HIRES Spectroscopy of V838 Monocerotis in October 2005

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Schmidt, M.; Tylenda, R.; Konacki, M.; Gromadzki, M.

    2009-05-01

    V838 Monocerotis (V838 Mon) erupted at the beginning of 2002 becoming an extremely luminous star with L sime 106 L sun. Among various scenarios proposed to explain the nature of the outburst, the most promising is a stellar merger event. In this paper, we investigate the observational properties of the star and its surroundings in the post outburst phase. We have obtained a high-resolution optical spectrum of V838 Mon in 2005 October using the Keck I telescope. We have identified numerous atomic features and molecular bands present in the spectrum and provided an atlas of those features. In order to improve the spectrum interpretation, we have performed simple modeling of the molecular bands. Our analysis indicates that the spectrum is dominated by molecular absorption features arising in photospheric regions with temperatures of ~2400 K and in colder outer layers, where the temperature decreases to ~500 K. A number of resonance lines of neutral alkali metals are observed to show P Cygni profiles. Particularly interesting are numerous prominent emission lines of [Fe II]. All of them show practically the same profile, which can be well described by a Lorentzian profile. In the blue part of the spectrum, photospheric signatures of the B-type companion are easily seen. We have fitted the observed spectrum with a synthetic one and the obtained parameters are consistent with the B3V type. We have also estimated radial and rotational velocities of the companion. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Translating Metabolomics to Cardiovascular Biomarkers

    PubMed Central

    Senn, Todd; Hazen, Stanley L.; Tang, W. H. Wilson

    2012-01-01

    Metabolomics is the systematic study of the unique chemical fingerprints of small-molecules, or metabolite profiles, that are related to a variety of cellular metabolic processes in a cell, organ, or organism. While mRNA gene expression data and proteomic analyses do not tell the whole story of what might be happening in a cell, metabolic profiling provides direct and indirect physiologic insights that can potentially be detectable in a wide range of biospecimens. Although not specific to cardiac conditions, translating metabolomics to cardiovascular biomarkers has followed the traditional path of biomarker discovery from identification and confirmation to clinical validation and bedside testing. With technological advances in metabolomic tools (such as nuclear magnetic resonance spectroscopy and mass spectrometry) and more sophisticated bioinformatics and analytical techniques, the ability to measure low-molecular-weight metabolites in biospecimens provides a unique insight into established and novel metabolic pathways. Systemic metabolomics may provide physiologic understanding of cardiovascular disease states beyond traditional profiling, and may involve descriptions of metabolic responses of an individual or population to therapeutic interventions or environmental exposures. PMID:22824112

  5. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    PubMed

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  6. Application of single-cell sequencing in human cancer.

    PubMed

    Rantalainen, Mattias

    2017-11-02

    Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.

  7. Biomarkers for personalized oncology: recent advances and future challenges.

    PubMed

    Kalia, Madhu

    2015-03-01

    Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells and oncology is a branch of medicine that deals with tumors. The last decade has seen significant advances in the development of biomarkers in oncology that play a critical role in understanding molecular and cellular mechanisms which drive tumor initiation, maintenance and progression. Clinical molecular diagnostics and biomarker discoveries in oncology are advancing rapidly as we begin to understand the complex mechanisms that transform a normal cell into an abnormal one. These discoveries have fueled the development of novel drug targets and new treatment strategies. The standard of care for patients with advanced-stage cancers has shifted away from an empirical treatment strategy based on the clinical-pathological profile to one where a biomarker driven treatment algorithm based on the molecular profile of the tumor is used. Recent advances in multiplex genotyping technologies and high-throughput genomic profiling by next-generation sequencing make possible the rapid and comprehensive analysis of the cancer genome of individual patients even from very little tumor biopsy material. Predictive (diagnostic) biomarkers are helpful in matching targeted therapies with patients and in preventing toxicity of standard (systemic) therapies. Prognostic biomarkers identify somatic germ line mutations, changes in DNA methylation, elevated levels of microRNA (miRNA) and circulating tumor cells (CTC) in blood. Predictive biomarkers using molecular diagnostics are currently in use in clinical practice of personalized oncotherapy for the treatment of five diseases: chronic myeloid leukemia, colon, breast, lung cancer and melanoma and these biomarkers are being used successfully to evaluate benefits that can be achieved through targeted therapy. Examples of these molecularly targeted biomarker therapies are: tyrosine kinase inhibitors in chronic myeloid leukemia and gastrointestinal tumors; anaplastic lymphoma kinase (ALK) inhibitors in lung cancer with EML4-ALk fusion; HER2/neu blockage in HER2/neu-positive breast cancer; and epidermal growth factor receptors (EGFR) inhibition in EGFR-mutated lung cancer. This review presents the current state of our knowledge of biomarkers in five selected cancers: chronic myeloid leukemia, colorectal cancer, breast cancer, non-small cell lung cancer and melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. NCCN Oncology Research Program's Investigator Steering Committee and NCCN Best Practices Committee Molecular Profiling Surveys.

    PubMed

    Kurzrock, Razelle; Colevas, A Dimitrios; Olszanski, Anthony; Akerley, Wallace; Arteaga, Carlos L; Carson, William E; Clark, Jeffrey W; DiPersio, John F; Ettinger, David S; Morgan, Robert J; Schwartzberg, Lee S; Venook, Alan P; Gocke, Christopher D; Tait, Jonathan; Stewart, F Marc

    2015-11-01

    With advances such as next-generation sequencing (NGS) increasing understanding of the basis of cancer and its response to treatment, NCCN believes it is important to understand how molecular profiling/diagnostic testing is being performed and used at NCCN Member Institutions and their community affiliates. The NCCN Oncology Research Program's Investigator Steering Committee and the NCCN Best Practices Committee gathered baseline information on the use of cancer-related molecular testing at NCCN Member Institutions and community members of the NCCN Affiliate Research Consortium through 2 separate surveys distributed in December 2013 and September 2014, respectively. A total of 24 NCCN Member Institutions and 8 affiliate sites provided quantitative and qualitative data. In the context of these surveys, "molecular profiling/diagnostics" was defined as a panel of at least 10 genes examined as a diagnostic DNA test in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Results indicated that molecular profiling/diagnostics are used at 100% of survey respondents' institutions to make patient care decisions. However, challenges relating to reimbursement, lack of data regarding actionable targets and targeted therapies, and access to drugs on or off clinical trials were cited as barriers to integration of molecular profiling into patient care. Frameworks for using molecular diagnostic results based on levels of evidence, alongside continued research into the predictive value of biomarkers and targeted therapies, are recommended to advance understanding of the role of genomic biomarkers. Greater evidence and consensus regarding the clinical and cost-effectiveness of molecular profiling may lead to broader insurance coverage and increased integration into patient care. Copyright © 2015 by the National Comprehensive Cancer Network.

  9. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    PubMed Central

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  10. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    PubMed

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  11. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.

    2007-11-15

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. Inmore » the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G{sub 1} to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen.« less

  12. Vascular biology: cellular and molecular profiling.

    PubMed

    Baird, Alison E; Wright, Violet L

    2006-02-01

    Our understanding of the mechanisms underlying cerebrovascular atherosclerosis has improved in recent years, but significant gaps remain. New insights into the vascular biological processes that result in ischemic stroke may come from cellular and molecular profiling studies of the peripheral blood. In recent cellular profiling studies, increased levels of a proinflammatory T-cell subset (CD4 (+)CD28 (-)) have been associated with stroke recurrence and death. Expansion of this T-cell subset may occur after ischemic stroke and be a pathogenic mechanism leading to recurrent stroke and death. Increases in certain phenotypes of endothelial cell microparticles have been found in stroke patients relative to controls, possibly indicating a state of increased vascular risk. Molecular profiling approaches include gene expression profiling and proteomic methods that permit large-scale analyses of the transcriptome and the proteome, respectively. Ultimately panels of genes and proteins may be identified that are predictive of stroke risk. Cellular and molecular profiling studies of the peripheral blood and of atherosclerotic plaques may also pave the way for the development of therapeutic agents for primary and secondary stroke prevention.

  13. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  14. Molecular biomarkers to guide precision medicine in localized prostate cancer.

    PubMed

    Smits, Minke; Mehra, Niven; Sedelaar, Michiel; Gerritsen, Winald; Schalken, Jack A

    2017-08-01

    Major advances through tumor profiling technologies, that include next-generation sequencing, epigenetic, proteomic and transcriptomic methods, have been made in primary prostate cancer, providing novel biomarkers that may guide precision medicine in the near future. Areas covered: The authors provided an overview of novel molecular biomarkers in tissue, blood and urine that may be used as clinical tools to assess prognosis, improve selection criteria for active surveillance programs, and detect disease relapse early in localized prostate cancer. Expert commentary: Active surveillance (AS) in localized prostate cancer is an accepted strategy in patients with very low-risk prostate cancer. Many more patients may benefit from watchful waiting, and include patients of higher clinical stage and grade, however selection criteria have to be optimized and early recognition of transformation from localized to lethal disease has to be improved by addition of molecular biomarkers. The role of non-invasive biomarkers is challenging the need for repeat biopsies, commonly performed at 1 and 4 years in men under AS programs.

  15. Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing.

    PubMed

    Liu, Tiancheng; Yu, Lin; Liu, Lei; Li, Hong; Li, Yixue

    2015-01-01

    High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the "funnel-like" model and the "hourglass" model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.

  16. Cell and tissue microarray technologies for protein and nucleic acid expression profiling.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida

    2013-02-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.

  17. Integrated Magneto-Electrochemical Sensor for Exosome Analysis.

    PubMed

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-02-23

    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.

  18. Integrated Magneto-Electrochemical Sensor for Exosome Analysis

    PubMed Central

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M.; Weissleder, Ralph; Lee, Hakho

    2016-01-01

    Extracellular vesicles, including exosomes, are nanoscale vesicles that carry molecular information of parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magnetic-electrochemical assay: exosomes are immunomagnetically captured from patient samples, and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables i) highly sensitive, cell-specific exosome detection, and ii) sensor miniaturization and scale-up for high throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device, and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the profiling of multiple protein markers simultaneously within an hour, outperforming conventional methods in assay sensitivity and speed. PMID:26808216

  19. [Research progress in molecular classification of gastric cancer].

    PubMed

    Zhou, Menglong; Li, Guichao; Zhang, Zhen

    2016-09-25

    Gastric cancer(GC) is a highly heterogeneous malignancy. The present widely used histopathological classifications have gradually failed to meet the needs of individualized diagnosis and treatment. Development of technologies such as microarray and next-generation sequencing (NGS) has allowed GC to be studied at the molecular level. Mechanisms about tumorigenesis and progression of GC can be elucidated in the aspects of gene mutations, chromosomal alterations, transcriptional and epigenetic changes, on the basis of which GC can be divided into several subtypes. The classifications of Tan's, Lei's, TCGA and ACRG are relatively comprehensive. Especially the TCGA and ACRG classifications have large sample size and abundant molecular profiling data, thus, the genomic characteristics of GC can be depicted more accurately. However, significant differences between both classifications still exist so that they cannot be substituted for each other. So far there is no widely accepted molecular classification of GC. Compared with TCGA classification, ACRG system may have more clinical significance in Chinese GC patients since the samples are mostly from Asian population and show better association with prognosis. The molecular classification of GC may provide the theoretical and experimental basis for early diagnosis, therapeutic efficacy prediction and treatment stratification while their clinical application is still limited. Future work should involve the application of molecular classifications in the clinical settings for improving the medical management of GC.

  20. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine

    PubMed Central

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-01-01

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL). PMID:26263974

  2. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine.

    PubMed

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-07-30

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).

  3. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.

    PubMed

    Li, Chen; Shen, Weixing; Shen, Sheng; Ai, Zhilong

    2013-12-01

    To explore the molecular mechanisms of cholangiocarcinoma (CC), microarray technology was used to find biomarkers for early detection and diagnosis. The gene expression profiles from 6 patients with CC and 5 normal controls were downloaded from Gene Expression Omnibus and compared. As a result, 204 differentially co-expressed genes (DCGs) in CC patients compared to normal controls were identified using a computational bioinformatics analysis. These genes were mainly involved in coenzyme metabolic process, peptidase activity and oxidation reduction. A regulatory network was constructed by mapping the DCGs to known regulation data. Four transcription factors, FOXC1, ZIC2, NKX2-2 and GCGR, were hub nodes in the network. In conclusion, this study provides a set of targets useful for future investigations into molecular biomarker studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  5. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical resolution and less than 2 meters per second velocity accuracy. The instrument design, technologies and predicted performance will be presented.

  6. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    PubMed

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  7. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    To date, there is no study on the relationship between carbohydrate (CHO) molecular structures and nutrient availability of combined feeds in ruminants. The objective of this study was to use molecular spectroscopy to reveal the relationship between CHO molecular spectral profiles (in terms of functional groups (biomolecular, biopolymer) spectral peak area and height intensity) and CHO chemical profiles, CHO subfractions, energy values, and CHO rumen degradation kinetics of combined feeds of hulless barley with pure wheat dried distillers grains with solubles (DDGS) at five different combination ratios (hulless barley to pure wheat DDGS: 100:0, 75:25, 50:50, 25:75, 0:100). The molecular spectroscopic parameters assessed included: lignin biopolymer molecular spectra profile (peak area and height, region and baseline: ca. 1539-1504 cm-1); structural carbohydrate (STCHO, peaks area region and baseline: ca. 1485-1186 cm-1) mainly associated with hemi- and cellulosic compounds; cellulosic materials peak area (centered at ca. 1240 cm-1 with region and baseline: ca. 1272-1186 cm-1); total carbohydrate (CHO, peaks area region and baseline: ca. 1186-946 cm-1). The results showed that the functional groups (biomolecular, biopolymer) in the combined feeds are sensitive to the changes of carbohydrate chemical and nutrient profiles. The changes of the CHO molecular spectroscopic features in the combined feeds were highly correlated with CHO chemical profiles, CHO subfractions, in situ CHO rumen degradation kinetics and fermentable organic matter supply. Further study is needed to investigate possibility of using CHO molecular spectral features as a predictor to estimate nutrient availability in combined feeds for animals and quantify their relationship.

  8. Current genetic methodologies in the identification of disaster victims and in forensic analysis.

    PubMed

    Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał

    2012-02-01

    This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).

  9. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION - TECHNOLOGY PROFILES

    EPA Science Inventory

    This document is intended as a reference guide for EPA Regional decision makers and others interested in technologies in the SITE Demonstration and Emerging Technologies programs. The Technologies are described in technology profiles, presented in alphabetical order by developer ...

  10. Genomic and Epigenomic Alterations in Cancer.

    PubMed

    Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana

    2016-07-01

    Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    PubMed

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  12. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  13. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  14. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.

    PubMed

    Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.

  15. RED: a set of molecular descriptors based on Renyi entropy.

    PubMed

    Delgado-Soler, Laura; Toral, Raul; Tomás, M Santos; Rubio-Martinez, Jaime

    2009-11-01

    New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor vector. The performance of RED descriptors was tested for the analysis of different sets of molecular distances, virtual screening, and pharmacological profiling. A free parameter of the Renyi entropy has been optimized for all the considered applications.

  16. Nonculture molecular techniques for diagnosis of bacterial disease in animals: a diagnostic laboratory perspective.

    PubMed

    Cai, H Y; Caswell, J L; Prescott, J F

    2014-03-01

    The past decade has seen remarkable technical advances in infectious disease diagnosis, and the pace of innovation is likely to continue. Many of these techniques are well suited to pathogen identification directly from pathologic or clinical samples, which is the focus of this review. Polymerase chain reaction (PCR) and gene sequencing are now routinely performed on frozen or fixed tissues for diagnosis of bacterial infections of animals. These assays are most useful for pathogens that are difficult to culture or identify phenotypically, when propagation poses a biosafety hazard, or when suitable fresh tissue is not available. Multiplex PCR assays, DNA microarrays, in situ hybridization, massive parallel DNA sequencing, microbiome profiling, molecular typing of pathogens, identification of antimicrobial resistance genes, and mass spectrometry are additional emerging technologies for the diagnosis of bacterial infections from pathologic and clinical samples in animals. These technical advances come, however, with 2 caveats. First, in the age of molecular diagnosis, quality control has become more important than ever to identify and control for the presence of inhibitors, cross-contamination, inadequate templates from diagnostic specimens, and other causes of erroneous microbial identifications. Second, the attraction of these technologic advances can obscure the reality that medical diagnoses cannot be made on the basis of molecular testing alone but instead through integrated consideration of clinical, pathologic, and laboratory findings. Proper validation of the method is required. It is critical that veterinary diagnosticians understand not only the value but also the limitations of these technical advances for routine diagnosis of infectious disease.

  17. Dissecting gene expression at the blood-brain barrier

    PubMed Central

    Huntley, Melanie A.; Bien-Ly, Nga; Daneman, Richard; Watts, Ryan J.

    2014-01-01

    The availability of genome-wide expression data for the blood-brain barrier is an invaluable resource that has recently enabled the discovery of several genes and pathways involved in the development and maintenance of the blood-brain barrier, particularly in rodent models. The broad distribution of published data sets represents a viable starting point for the molecular dissection of the blood-brain barrier and will further direct the discovery of novel mechanisms of blood-brain barrier formation and function. Technical advances in purifying brain endothelial cells, the key cell that forms the critical barrier, have allowed for greater specificity in gene expression comparisons with other central nervous system cell types, and more systematic characterizations of the molecular composition of the blood-brain barrier. Nevertheless, our understanding of how the blood-brain barrier changes during aging and disease is underrepresented. Blood-brain barrier data sets from a wider range of experimental paradigms and species, including invertebrates and primates, would be invaluable for investigating the function and evolution of the blood-brain barrier. Newer technologies in gene expression profiling, such as RNA-sequencing, now allow for finer resolution of transcriptomic changes, including isoform specificity and RNA-editing. As our field continues to utilize more advanced expression profiling in its ongoing efforts to elucidate the blood-brain barrier, including in disease and drug delivery, we will continue to see rapid advances in our understanding of the molecular mediators of barrier biology. We predict that the recently published data sets, combined with forthcoming genomic and proteomic blood-brain barrier data sets, will continue to fuel the molecular genetic revolution of blood-brain barrier biology. PMID:25414634

  18. Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling

    PubMed Central

    Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale

    2013-01-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795

  19. Very Low Abundance Single-Cell Transcript Quantification with 5-Plex ddPCRTM Assays.

    PubMed

    Karlin-Neumann, George; Zhang, Bin; Litterst, Claudia

    2018-01-01

    Gene expression studies have provided one of the most accessible windows for understanding the molecular basis of cell and tissue phenotypes and how these change in response to stimuli. Current PCR-based and next generation sequencing methods offer great versatility in allowing the focused study of the roles of small numbers of genes or comprehensive profiling of the entire transcriptome of a sample at one time. Marrying of these approaches to various cell sorting technologies has recently enabled the profiling of expression in single cells, thereby increasing the resolution and sensitivity and strengthening the inferences from observed expression levels and changes. This chapter presents a quick and efficient 1-day workflow for sorting single cells with a small laboratory cell-sorter followed by an ultrahigh sensitivity, multiplexed digital PCR method for quantitative tracking of changes in 5-10 genes per single cell.

  20. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  1. Transcriptome Sequencing of Gracilariopsis lemaneiformis to Analyze the Genes Related to Optically Active Phycoerythrin Synthesis.

    PubMed

    Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu

    2017-01-01

    Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.

  2. Molecular profiling and commercial predication assays in ovarian cancer: still not ready for prime time?

    PubMed

    Kohn, Elise C

    2014-01-01

    Short of early detection to allow curative primary intervention, the other major barrier to further success in treatment of ovarian cancers is matching the best treatment to the proper ovarian cancer type and to the individual patient. There are several decades of experience applying in vitro chemoresponse testing for solid tumors including ovarian cancer. This concept, first described in 1979, has yet to receive level one evidence supporting its application, despite the testing of numerous assays commercially as well as in academic centers and its use for tens of thousands of patients at a significant cost. The approach-rather than undergoing rigorous scientific examination-is now being muddied by the development of commercial molecular profiling assays from which treatment suggestions are provided. Molecular profiling as a research tool has added value to our understanding and treatment of patients with ovarian cancer. Morphologic and histochemical characterizations coupled now with increasing knowledge of ovarian cancer type-specific molecular patterns is improving our ability to properly diagnosis ovarian cancer type and thus guide therapy. With the exception of the role of germ-line and possibly somatic BRCA1 and BRCA2 mutations and their true predictiveness for probable response to poly(ADP-ribose) polymerase inhibition, molecular typing and profiling has yet to identify druggable molecular targets in ovarian cancer. Its use should be continued as a research and learning tool, and its results should be subjected to clinical trial validation. For very different reasons, neither chemoresponse assays nor molecular profiling are ready for prime time, yet.

  3. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System

    PubMed Central

    Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013

  4. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System.

    PubMed

    Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.

  5. Technological advances and genomics in metazoan parasites.

    PubMed

    Knox, D P

    2004-02-01

    Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.

  6. Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia.

    PubMed

    Paff, T; van der Schee, M P; Daniels, J M A; Pals, G; Postmus, P E; Sterk, P J; Haarman, E G

    2013-09-01

    Early diagnosis and monitoring of disease activity are essential in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). We aimed to establish exhaled molecular profiles as the first step in assessing the potential of breath analysis. Exhaled breath was analyzed by electronic nose in 25 children with CF, 25 with PCD and 23 controls. Principle component reduction and canonical discriminant analysis were used to construct internally cross-validated ROC curves. CF and PCD patients had significantly different breath profiles when compared to healthy controls (CF: sensitivity 84%, specificity 65%; PCD: sensitivity 88%, specificity 52%) and from each other (sensitivity 84%, specificity 60%). Patients with and without exacerbations had significantly different breath profiles (CF: sensitivity 89%, specificity 56%; PCD: sensitivity 100%, specificity 90%). Exhaled molecular profiles significantly differ between patients with CF, PCD and controls. The eNose may have potential in disease monitoring based on the influence of exacerbations on the VOC-profile. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. Are three generations of quantitative molecular methods sufficient in medical virology? Brief review.

    PubMed

    Clementi, Massimo; Bagnarelli, Patrizia

    2015-10-01

    In the last two decades, development of quantitative molecular methods has characterized the evolution of clinical virology more than any other methodological advancement. Using these methods, a great deal of studies has addressed efficiently in vivo the role of viral load, viral replication activity, and viral transcriptional profiles as correlates of disease outcome and progression, and has highlighted the physio-pathology of important virus diseases of humans. Furthermore, these studies have contributed to a better understanding of virus-host interactions and have sharply revolutionized the research strategies in basic and medical virology. In addition and importantly from a medical point of view, quantitative methods have provided a rationale for the therapeutic intervention and therapy monitoring in medically important viral diseases. Despite the advances in technology and the development of three generations of molecular methods within the last two decades (competitive PCR, real-time PCR, and digital PCR), great challenges still remain for viral testing related not only to standardization, accuracy, and precision, but also to selection of the best molecular targets for clinical use and to the identification of thresholds for risk stratification and therapeutic decisions. Future research directions, novel methods and technical improvements could be important to address these challenges.

  8. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era.

    PubMed

    Diamanti-Kandarakis, Evanthia; Konstantinopoulos, Panagiotis A; Papailiou, Joanna; Kandarakis, Stylianos A; Andreopoulos, Anastasios; Sykiotis, Gerasimos P

    2005-01-01

    The administration of recombinant human erythropoietin (rhEPO) increases the maximum oxygen consumption capacity, and is therefore abused as a doping method in endurance sports. The detection of erythropoietin (EPO) abuse is based on direct pharmacological and indirect haematological approaches, both of which have several limitations. In addition, current detection methods cannot cope with the emerging doping strategies of EPO mimicry, analogues and gene doping, and thus novel detection strategies are urgently needed. Direct detection methods for EPO misuse can be either pharmacological approaches that identify exogenous substances based on their physicochemical properties, or molecular methods that recognise EPO transgenes or gene transfer vectors. Since direct detection with molecular methods requires invasive procedures, it is not appropriate for routine screening of large numbers of athletes. In contrast, novel indirect methods based on haematological and/or molecular profiling could be better suited as screening tools, and athletes who are suspect of doping would then be submitted to direct pharmacological and molecular tests. This article reviews the current state of the EPO doping field, discusses available detection methods and their shortcomings, outlines emerging pharmaceutical and genetic technologies in EPO misuse, and proposes potential directions for the development of novel detection strategies.

  9. Science Teaching Orientations and Technology-Enhanced Tools for Student Learning

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.

    2013-10-01

    This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.

  10. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  11. Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.

    PubMed

    Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han

    2016-02-01

    Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).

  12. Molecular analysis of mixed endometrial carcinomas shows clonality in most cases

    PubMed Central

    Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han

    2016-01-01

    Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180

  13. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era

    PubMed Central

    Tebani, Abdellah; Abily-Donval, Lenaig; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-01-01

    Inborn errors of metabolism (IEM) represent a group of about 500 rare genetic diseases with an overall estimated incidence of 1/2500. The diversity of metabolic pathways involved explains the difficulties in establishing their diagnosis. However, early diagnosis is usually mandatory for successful treatment. Given the considerable clinical overlap between some inborn errors, biochemical and molecular tests are crucial in making a diagnosis. Conventional biological diagnosis procedures are based on a time-consuming series of sequential and segmented biochemical tests. The rise of “omic” technologies offers holistic views of the basic molecules that build a biological system at different levels. Metabolomics is the most recent “omic” technology based on biochemical characterization of metabolites and their changes related to genetic and environmental factors. This review addresses the principles underlying metabolomics technologies that allow them to comprehensively assess an individual biochemical profile and their reported applications for IEM investigations in the precision medicine era. PMID:27447622

  14. Principles of gene microarray data analysis.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  15. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    PubMed

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept that modification allows shorter-course therapy options as a result of providing an IgG epitope repertoire important for efficacy. Additionally, the work paves the way to help further develop methods for standardising allergoid platforms.

  16. Epithelial ovarian cancer: the molecular genetics of epithelial ovarian cancer.

    PubMed

    Krzystyniak, J; Ceppi, L; Dizon, D S; Birrer, M J

    2016-04-01

    Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide, despite gains in diagnostics and treatments made over the last three decades. Existing markers of ovarian cancer possess very limited clinical relevance highlighting the emerging need for identification of novel prognostic biomarkers as well as better predictive factors that might allow the stratification of patients who could benefit from a more targeted approach. A summary of molecular genetics of EOC. Large-scale high-throughput genomic technologies appear to be powerful tools for investigations into the genetic abnormalities in ovarian tumors, including studies on dysregulated genes and aberrantly activated signaling pathways. Such technologies can complement well-established clinical histopathology analysis and tumor grading and will hope to result in better, more tailored treatments in the future. Genomic signatures obtained by gene expression profiling of EOC may be able to predict survival outcomes and other important clinical outcomes, such as the success of surgical treatment. Finally, genomic analyses may allow for the identification of novel predictive biomarkers for purposes of treatment planning. These data combined suggest a pathway to progress in the treatment of advanced ovarian cancer and the promise of fulfilling the objective of providing personalized medicine to women with ovarian cancer. The understanding of basic molecular events in the tumorigenesis and chemoresistance of EOC together with discovery of potential biomarkers may be greatly enhanced through large-scale genomic studies. In order to maximize the impact of these technologies, however, extensive validation studies are required. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato.

  18. Interaction of a sodium ion with the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  19. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.

    PubMed

    Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M

    2017-05-01

    In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.

  20. First-in-Human Ultrasound Molecular Imaging With a VEGFR2-Specific Ultrasound Molecular Contrast Agent (BR55) in Prostate Cancer: A Safety and Feasibility Pilot Study.

    PubMed

    Smeenge, Martijn; Tranquart, François; Mannaerts, Christophe K; de Reijke, Theo M; van de Vijver, Marc J; Laguna, M Pilar; Pochon, Sibylle; de la Rosette, Jean J M C H; Wijkstra, Hessel

    2017-07-01

    BR55, a vascular endothelial growth factor receptor 2 (VEGFR2)-specific ultrasound molecular contrast agent (MCA), has shown promising results in multiple preclinical models regarding cancer imaging. In this first-in-human, phase 0, exploratory study, we investigated the feasibility and safety of the MCA for the detection of prostate cancer (PCa) in men using clinical standard technology. Imaging with the MCA was performed in 24 patients with biopsy-proven PCa scheduled for radical prostatectomy using a clinical ultrasound scanner at low acoustic power. Safety monitoring was done by physical examination, blood pressure and heart rate measurements, electrocardiogram, and blood sampling. As first-in-human study, MCA dosing and imaging protocol were necessarily fine-tuned along the enrollment to improve visualization. Imaging data were correlated with radical prostatectomy histopathology to analyze the detection rate of ultrasound molecular imaging with the MCA. Imaging with MCA doses of 0.03 and 0.05 mL/kg was adequate to obtain contrast enhancement images up to 30 minutes after administration. No serious adverse events or clinically meaningful changes in safety monitoring data were identified during or after administration. BR55 dosing and imaging were fine-tuned in the first 12 patients leading to 12 subsequent patients with an improved MCA dosing and imaging protocol. Twenty-three patients underwent radical prostatectomy. A total of 52 lesions were determined to be malignant by histopathology with 26 (50%) of them seen during BR55 imaging. In the 11 patients that were scanned with the improved protocol and underwent radical prostatectomy, a total of 28 malignant lesions were determined: 19 (68%) were seen during BR55 ultrasound molecular imaging, whereas 9 (32%) were not identified. Ultrasound molecular imaging with BR55 is feasible with clinical standard technology and demonstrated a good safety profile. Detectable levels of the MCA can be reached in patients with PCa opening the way for further clinical trials.

  1. Gene Expression Profile Analysis as a Prognostic Indicator of Normal Tissue Response to Simulated Space Radiations

    NASA Technical Reports Server (NTRS)

    Story, Michael; Stivers, David N.

    2004-01-01

    This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.

  2. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.

    PubMed

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-03-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fibromodulin Reprogrammed Cells: A Novel Cell Source for Bone Regeneration

    PubMed Central

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C.; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-01-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the ‘molecular blueprint’ of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. PMID:26774565

  4. Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance

    PubMed Central

    Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue

    2017-01-01

    Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018

  5. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    DOE PAGES

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; ...

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less

  6. Expression profiling of cardiovascular disease

    PubMed Central

    2004-01-01

    Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers. PMID:15588496

  7. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  8. Point of Injury Sampling Technology for Battlefield Molecular Diagnostics

    DTIC Science & Technology

    2011-11-14

    Injury" Sampling Technology for Battlefield Molecular Diagnostics November 14, 2011 Sponsored by Defense Advanced Research Projects Agency (DOD...Date of Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract...PHASE I FINAL REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-11-C-0222 (UNCLASSIFIED) P.I: Bernardo

  9. Nutrimetabonomics:applications for nutritional sciences, with specific reference to gut microbial interactions.

    PubMed

    Claus, Sandrine P; Swann, Jonathan R

    2013-01-01

    Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.

  10. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence

    PubMed Central

    Ghazaei, Ciamak

    2018-01-01

    Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species. PMID:29445617

  11. Personal profile: interview with Bill Andrews, Ph.D.

    PubMed

    Andrews, Bill

    2011-08-01

    Dr. William H. Andrews has worked in the biotech industry for 31 years, focusing the last 19 years on finding ways to extend human life span through the intervention of telomere shortening in human cells. Dr. Andrews earned his Ph.D. in Molecular and Population Genetics at the University of Georgia. He was a Senior Scientist at Armos Corporation and Codon Corporation, Director of Molecular Biology at Codon and at Geron Corporation, and Director of Technology Development at EOS Biosciences. He is presently the founder, President, and CEO of Sierra Sciences, a biotechnology company focused exclusively on finding drugs that will transiently induce the expression of endogenous telomerase in human cells. Sierra Sciences has already identified more than 30 such drugs and is presently characterizing their mechanism of action. While Director of Molecular Biology at Geron Corporation, Dr. Andrews was one of the principal discoverers of both the RNA and protein components of human telomerase and was awarded second place as "National Inventor of the Year" in 1997 for this work. He is presently a named inventor on 43 U.S- issued telomerase patents.

  12. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  13. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  14. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  15. Molecular profiling of advanced breast cancer tumors is beneficial in assisting clinical treatment plans.

    PubMed

    Carter, Philip; Alifrangis, Costi; Cereser, Biancastella; Chandrasinghe, Pramodh; Del Bel Belluz, Lisa; Moderau, Nina; Poyia, Fotini; Schwartzberg, Lee S; Tabassum, Neha; Wen, Jinrui; Krell, Jonathan; Stebbing, Justin

    2018-04-03

    We used data obtained by Caris Life Sciences, to evaluate the benefits of tailoring treatments for a breast carcinoma cohort by using tumor molecular profiles to inform decisions. Data for 92 breast cancer patients from the commercial Caris Molecular Intelligence database was retrospectively divided into two groups, so that the first always followed treatment recommendations, whereas in the second group all patients received at least one drug after profiling that was predicted to lack benefit. The biomarker and drug associations were based on tests including fluorescent in situ hybridization and DNA sequencing, although immunohistochemistry was the main test used. Patients whose drugs matched those recommended according to their tumor profile had an average overall survival of 667 days, compared to 510 days for patients that did not (P=0.0316). In the matched treatment group, 26% of patients were deceased by the last time of monitoring, whereas this was 41% in the unmatched group (P=0.1257). We therefore confirm the ability of tumor molecular profiling to improve survival of breast cancer patients. Immunohistochemistry biomarkers for the androgen, estrogen and progesterone receptors were found to be prognostic for survival.

  16. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    NASA Astrophysics Data System (ADS)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00720j

  17. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    PubMed Central

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  18. Motor potential profile and a robust method for extracting it from time series of motor positions.

    PubMed

    Wang, Hongyun

    2006-10-21

    Molecular motors are small, and, as a result, motor operation is dominated by high-viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has hindered, in many ways, the studies of physical mechanisms of molecular motors. For a macroscopic motor, it is possible to observe/record experimentally the internal operation details of the motor. This is not yet possible for molecular motors. The chemical reaction in a molecular motor has many occupancy states, each having a different effect on the motor motion. The overall effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The potential profile reveals how the motor force changes with position in a motor step, which may lead to insights into how the chemical reaction is coupled to force generation. In this article, we propose a mathematical formulation and a robust method for constructing motor potential profiles from time series of motor positions measured in single molecule experiments. Numerical examples based on simulated data are shown to demonstrate the method. Interestingly, it is the small size of molecular motors (negligible inertia) that makes it possible to recover the potential profile from time series of motor positions. For a macroscopic motor, the variation of driving force within a cycle is smoothed out by the large inertia.

  19. Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop.

    PubMed

    Aigner, Achim; Buesen, Roland; Gant, Tim; Gooderham, Nigel; Greim, Helmut; Hackermüller, Jörg; Hubesch, Bruno; Laffont, Madeleine; Marczylo, Emma; Meister, Gunter; Petrick, Jay S; Rasoulpour, Reza J; Sauer, Ursula G; Schmidt, Kerstin; Seitz, Hervé; Slack, Frank; Sukata, Tokuo; van der Vies, Saskia M; Verhaert, Jan; Witwer, Kenneth W; Poole, Alan

    2016-12-01

    The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. ’Point of Injury’ Sampling Technology for Battlefield Molecular Diagnostics

    DTIC Science & Technology

    2012-03-17

    Injury" Sampling Technology for Battlefield Molecular Diagnostics March 17,2012 Sponsored by Defense Advanced Research Projects Agency (DOD) Defense...Contract: April 25, 2011 Short Title of Work: "Point of Injury" Sampling Technology for Battlefield Molecular Diagnostics " Contract Expiration Date...SBIR PHASE I OPTION REPORT: Point of Injury, Sampling Technology for Battlefield Molecular Diagnostics . W31P4Q-1 l-C-0222 (UNCLASSIFIED) P.I

  1. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  2. Biomarkers in bladder cancer: present status and perspectives.

    PubMed

    Kim, Wun-Jae; Park, Soongang; Kim, Yong-June

    2007-03-27

    Bladder cancers are a mixture of heterogeneous cell populations, and numerous factors are likely to be involved in dictating their recurrence, progression and the patient's survival. For any candidate prognostic marker to have considerable clinical relevance, it must add some predictive capacity beyond that offered by conventional clinical and pathologic parameters. Here, the current situation in bladder cancer research with respect to identification of suitable prognostic markers is reviewed. A number of individual molecular markers that might predict bladder cancer recurrence and progression have been identified but many are not sufficiently sensitive or specific for the whole spectrum of bladder cancer diseases seen in routine clinical practice. These limitations have led to interest in other molecular parameters that could enable more accurate prognosis for bladder cancer patients. Of particular interest is the epigenetic silencing of tumor suppressor genes. Since the methylation of these genes can correlate with a poor prognosis, the methylation profile may represent a new bio-marker that indicates the risk of transitional cell carcinoma development. In addition, bladder cancer research is likely to be revolutionized by high-throughput molecular technologies, which allow rapid and global gene expression analysis of thousands of tumor samples. Initial studies employing these technologies have considerably expanded our ability to classify bladder cancers with respect to their survivability. Future microarray analyses are likely to reveal particular gene expression signatures that predict the likelihood of bladder cancer progression and recurrence, as well as patient's survival and responsiveness to different anti-cancer therapies, with great specificity and sensitivity.

  3. Molecular Auditing: An Evaluation of Unsuspected Tissue Specimen Misidentification.

    PubMed

    Demetrick, Douglas J

    2018-06-18

    Context Specimen misidentification is the most significant error in laboratory medicine, potentially accounting for hundreds of millions of dollars in extra health care expenses and significant morbidity in patient populations in the United States alone. New technology allows the unequivocal documentation of specimen misidentification or contamination; however, the value of this technology currently depends on suspicion of the specimen integrity by a pathologist or other health care worker. Objective To test the hypothesis that there is a detectable incidence of unsuspected tissue specimen misidentification among cases submitted for routine surgical pathology examination. Design To test this hypothesis, we selected specimen pairs that were obtained at different times and/or different hospitals from the same patient, and compared their genotypes using standardized microsatellite markers used commonly for forensic human DNA comparison in order to identify unsuspected mismatches between the specimen pairs as a trial of "molecular auditing." We preferentially selected gastrointestinal, prostate, and skin biopsies because we estimated that these types of specimens had the greatest potential for misidentification. Results Of 972 specimen pairs, 1 showed an unexpected discordant genotype profile, indicating that 1 of the 2 specimens was misidentified. To date, we are unable to identify the etiology of the discordance. Conclusions These results demonstrate that, indeed, there is a low level of unsuspected tissue specimen misidentification, even in an environment with careful adherence to stringent quality assurance practices. This study demonstrates that molecular auditing of random, routine biopsy specimens can identify occult misidentified specimens, and may function as a useful quality indicator.

  4. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  5. Medulloblastomics: The End of the Beginning

    PubMed Central

    Northcott, Paul A; Jones, David TW; Kool, Marcel; Robinson, Giles W; Gilbertson, Richard J; Cho, Yoon-Jae; Pomeroy, Scott L; Korshunov, Andrey; Lichter, Peter; Taylor, Michael D; Pfister, Stefan M

    2013-01-01

    Subgrouping of medulloblastoma by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour. Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup. The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets. Here, we summarize the ’explosion’ of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups. These data are making their way into contemporary clinical trials as we seek to integrate conventional and molecularly targeted therapies. PMID:23175120

  6. Ligand-directed profiling of organelles with internalizing phage libraries

    PubMed Central

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  7. Transcriptomic and metabolomic profiles of Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae), along with pupal development provide insight into diapause program

    PubMed Central

    Fan, Huan; Xiong, Ke-Cai; Liu, Ying-Hong

    2017-01-01

    The Chinese citrus fly, Bactrocera minax (Enderlein), is a devastating citrus pest in Asia. This univoltine insect enters obligatory pupal diapause in each generation, while little is known about the course and the molecular mechanisms of diapause. In this study, the course of diapause was determined by measuring the respiratory rate throughout the pupal stage. In addition, the variation of transcriptomic and metabolomic profiles of pupae at five developmental stages (pre-, early-, middle-, late-, and post-diapause) were evaluated by next-generation sequencing technology and 1H nuclear magnetic resonance spectroscopy (NMR), respectively. A total of 4,808 genes were significantly altered in ten pairwise comparisons, representing major shifts in metabolism and signal transduction as well as endocrine system and digestive system. Gene expression profiles were validated by qRT-PCR analysis. In addition, 48 metabolites were identified and quantified by 1H NMR. Nine of which significantly contributed to the variation in the metabolomic profiles, especially proline and trehalose. Moreover, the samples collected within diapause maintenance (early-, middle-, and late-diapause) only exhibited marginal transcriptomic and metabolomic variation with each other. These findings greatly improve our understanding of B. minax diapause and lay the foundation for further pertinent studies. PMID:28704500

  8. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    PubMed

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  9. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets.

    PubMed

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin; Calvisi, Diego F; Andersen, Jesper B

    2017-04-01

    Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor. Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise to improve the prognosis of iCCA patients.

  10. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  11. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy

    PubMed Central

    2017-01-01

    Albumin is the most abundant circulating protein in plasma and has recently emerged as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein based drugs. Three drug delivery technologies related to albumin have been developed, which include the coupling of low-molecular weight drugs to exogenous or endogenous albumin, conjugating bioactive proteins by albumin fusion technology (AFT), and encapsulation of drugs into albumin nanoparticles. This review article starts with a brief introduction of human serum albumin (HSA), and then summarizes the mainstream chemical strategies of developing HSA binding molecules for coupling with drug molecules. Moreover, we also concisely condense the recent progress of the most important clinical applications of HSA-binding platforms, and specify the current challenges that need to be met for a bright future of HSA-binding. PMID:26771036

  12. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.

    PubMed

    Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew

    2016-10-10

    RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  13. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-07-29

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Advances in the molecular genetics of gliomas - implications for classification and therapy.

    PubMed

    Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael

    2017-07-01

    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.

  15. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.

    PubMed

    Ceccarelli, Michele; Barthel, Floris P; Malta, Tathiane M; Sabedot, Thais S; Salama, Sofie R; Murray, Bradley A; Morozova, Olena; Newton, Yulia; Radenbaugh, Amie; Pagnotta, Stefano M; Anjum, Samreen; Wang, Jiguang; Manyam, Ganiraju; Zoppoli, Pietro; Ling, Shiyun; Rao, Arjun A; Grifford, Mia; Cherniack, Andrew D; Zhang, Hailei; Poisson, Laila; Carlotti, Carlos Gilberto; Tirapelli, Daniela Pretti da Cunha; Rao, Arvind; Mikkelsen, Tom; Lau, Ching C; Yung, W K Alfred; Rabadan, Raul; Huse, Jason; Brat, Daniel J; Lehman, Norman L; Barnholtz-Sloan, Jill S; Zheng, Siyuan; Hess, Kenneth; Rao, Ganesh; Meyerson, Matthew; Beroukhim, Rameen; Cooper, Lee; Akbani, Rehan; Wrensch, Margaret; Haussler, David; Aldape, Kenneth D; Laird, Peter W; Gutmann, David H; Noushmehr, Houtan; Iavarone, Antonio; Verhaak, Roel G W

    2016-01-28

    Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A SELDI-TOF approach to ecotoxicology: comparative profiling of low molecular weight proteins from a marine diatom exposed to CdSe/ZnS quantum dots.

    PubMed

    Scebba, Francesca; Tognotti, Danika; Presciuttini, Gianluca; Gabellieri, Edi; Cioni, Patrizia; Angeloni, Debora; Basso, Barbara; Morelli, Elisabetta

    2016-01-01

    Quantum dots (QDs), namely semiconductor nanocrystals, due to their particular optical and electronic properties, have growing applications in device technology, biotechnology and biomedical fields. Nevertheless, the possible threat to human health and the environment have attracted increasing attention as the production and applications of QDs increases rapidly while standard evaluation of safety lags. In the present study we performed proteomic analyses, by means of 2D gel electrophoresis and Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS). We aimed to identify potential biomarkers of exposure to CdSe/ZnS quantum dots. The marine diatom Phaeodactylum tricornutum exposed to 2.5nM QDs was used as a model system. Both 2DE and SELDI showed the presence of differentially expressed proteins. By Principal Component Analysis (PCA) we were able to show that the differentially expressed proteins can discriminate between exposed and not exposed cells. Furthermore, a protein profile specific for exposed cells was obtained by SELDI analysis. To our knowledge, this is the first example of the application of SELDI technology to the analysis of microorganisms used as biological sentinel model of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Diversity Arrays Technology (DArT) for whole-genome profiling of barley

    PubMed Central

    Wenzl, Peter; Carling, Jason; Kudrna, David; Jaccoud, Damian; Huttner, Eric; Kleinhofs, Andris; Kilian, Andrzej

    2004-01-01

    Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised ≈385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics. PMID:15192146

  18. One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling.

    PubMed

    Mueller, Claudius; Harpole, Michael G; Espina, Virginia

    2017-01-01

    Bone metastasis from primary cancer sites creates diagnostic and therapeutic challenges. Calcified bone is difficult to biopsy due to tissue hardness and patient discomfort, thus limiting the frequency and availability of bone/bone marrow biopsy material for molecular profiling. In addition, bony tissue must be demineralized (decalcified) prior to histomorphologic analysis. Decalcification processes rely on three main principles: (a) solubility of calcium salts in an acid, such as formic or nitric acid; (b) calcium chelation with ethylenediaminetetraacetic acid (EDTA); or (c) ion-exchange resins in a weak acid. A major roadblock in molecular profiling of bony tissue has been the lack of a suitable demineralization process that preserves histomorphology of calcified and soft tissue elements while also preserving phosphoproteins and nucleic acids. In this chapter, we describe general issues relevant to specimen collection and preservation of osseous tissue for molecular profiling. We provide two protocols: (a) one-step preservation of tissue histomorphology and proteins and posttranslational modifications, with simultaneous decalcification of bony tissue, and (b) ethanol-based tissue processing for TheraLin-fixed bony tissue.

  19. Chemical water shutoff profile research status and development trends

    NASA Astrophysics Data System (ADS)

    Xu, L. T.

    2017-08-01

    Excess water production is now a common problem encountered in almost every water flooding mature oilfield. The exploitation of oil field is faced with great challenge because of the decrease of oil field production. For the development of high water cut rare the status quo chemical water shutoff profile control technology is an important solution to solve this problem. Oilfield chemical water shutoff has important application prospects. This paper analyzes the water shutoff profile control and water shutoff profile control agent currently oilfield applications, moreover the use and development of blocking agent profile technology is to improve reservoir recovery and propose solutions. With the constant increase in water cut, profile technology should be simple, efficient, practical and profile control agent of development should be economic, environmental, and long period

  20. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    DTIC Science & Technology

    2016-10-01

    growth and metabolism known as mammalian target of rapamycin complex 1 (mTORC1). The pathological hallmark of TSC brains are cortical tubers...molecule players that respond to or do not respond to mTORC1 inhibitors. We will examine the effects of rapamycin on the molecular changes associated...ribosome profiling and conventional ribosome profiling. Ligation-Free Ribosome Profiling in CamK2a-Cre Tsc1fl/fl Mice following Rapamycin Treatment One

  1. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  2. The development and application of a molecular community profiling strategy to identify polymicrobial bacterial DNA in the whole blood of septic patients.

    PubMed

    Faria, M M P; Conly, J M; Surette, M G

    2015-10-16

    The application of molecular based diagnostics in sepsis has had limited success to date. Molecular community profiling methods have indicated that polymicrobial infections are more common than suggested by standard clinical culture. A molecular profiling approach was developed to investigate the propensity for polymicrobial infections in patients predicted to have bacterial sepsis. Disruption of blood cells with saponin and hypotonic shock enabled the recovery of microbial cells with no significant changes in microbial growth when compared to CFU/ml values immediately prior to the addition of saponin. DNA extraction included a cell-wall digestion step with both lysozyme and mutanolysin, which increased the recovery of terminal restriction fragments by 2.4 fold from diverse organisms. Efficiencies of recovery and limits of detection using Illumina sequencing of the 16S rRNA V3 region were determined for both viable cells and DNA using mock bacterial communities inoculated into whole blood. Bacteria from pre-defined communities could be recovered following lysis and removal of host cells with >97% recovery of total DNA present. Applying the molecular profiling methodology to three septic patients in the intensive care unit revealed microbial DNA from blood had consistent alignment with cultured organisms from the primary infection site providing evidence for a bloodstream infection in the absence of a clinical lab positive blood culture result in two of the three cases. In addition, the molecular profiling indicated greater diversity was present in the primary infection sample when compared to clinical diagnostic culture. A method for analyzing bacterial DNA from whole blood was developed in order to characterize the bacterial DNA profile of sepsis infections. Preliminary results indicated that sepsis infections were polymicrobial in nature with the bacterial DNA recovered suggesting a more complex etiology when compared to blood culture data.

  3. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.

    PubMed

    Gamage, I H; Jonker, A; Zhang, X; Yu, P

    2014-01-24

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products.

  5. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  6. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?

    PubMed

    Brenton, James D; Carey, Lisa A; Ahmed, Ahmed Ashour; Caldas, Carlos

    2005-10-10

    Profiling breast cancer with expression arrays has become common, and it has been suggested that the results from early studies will lead to understanding of the molecular differences between clinical cases and allow individualization of care. We critically review two main applications of expression profiling; studies unraveling novel breast cancer classifications and those that aim to identify novel markers for prediction of clinical outcome. Breast cancer may now be subclassified into luminal, basal, and HER2 subtypes with distinct differences in prognosis and response to therapy. However, profiling studies to identify predictive markers have suffered from methodologic problems that prevent general application of their results. Future work will need to reanalyze existing microarray data sets to identify more representative sets of candidate genes for use as prognostic signatures and will need to take into account the new knowledge of molecular subtypes of breast cancer when assessing predictive effects.

  7. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  8. Infectious Disease Management through Point-of-Care Personalized Medicine Molecular Diagnostic Technologies

    PubMed Central

    Bissonnette, Luc; Bergeron, Michel G.

    2012-01-01

    Infectious disease management essentially consists in identifying the microbial cause(s) of an infection, initiating if necessary antimicrobial therapy against microbes, and controlling host reactions to infection. In clinical microbiology, the turnaround time of the diagnostic cycle (>24 hours) often leads to unnecessary suffering and deaths; approaches to relieve this burden include rapid diagnostic procedures and more efficient transmission or interpretation of molecular microbiology results. Although rapid nucleic acid-based diagnostic testing has demonstrated that it can impact on the transmission of hospital-acquired infections, we believe that such life-saving procedures should be performed closer to the patient, in dedicated 24/7 laboratories of healthcare institutions, or ideally at point of care. While personalized medicine generally aims at interrogating the genomic information of a patient, drug metabolism polymorphisms, for example, to guide drug choice and dosage, personalized medicine concepts are applicable in infectious diseases for the (rapid) identification of a disease-causing microbe and determination of its antimicrobial resistance profile, to guide an appropriate antimicrobial treatment for the proper management of the patient. The implementation of point-of-care testing for infectious diseases will require acceptance by medical authorities, new technological and communication platforms, as well as reimbursement practices such that time- and life-saving procedures become available to the largest number of patients. PMID:25562799

  9. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    PubMed Central

    Deshmukh, Atul S.

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC), MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets. PMID:28248217

  10. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  11. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma.

    PubMed

    Aukema, Sietse M; Kreuz, Markus; Kohler, Christian W; Rosolowski, Maciej; Hasenclever, Dirk; Hummel, Michael; Küppers, Ralf; Lenze, Dido; Ott, German; Pott, Christiane; Richter, Julia; Rosenwald, Andreas; Szczepanowski, Monika; Schwaenen, Carsten; Stein, Harald; Trautmann, Heiko; Wessendorf, Swen; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner

    2014-04-01

    Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC(+)) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC(+) lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC(+)-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC(+) and BCL2(+)/MYC(+) double-hit lymphomas. BCL2(+)/MYC(+) double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC(+) lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC(+) lymphomas sharing various molecular characteristics.

  12. (CICT) Computing, Information, and Communications Technology Overview

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.

    2003-01-01

    The goal of the Computing, Information, and Communications Technology (CICT) program is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communications technologies. This viewgraph presentation includes diagrams of how the political guidance behind CICT is structured. The presentation profiles each part of the NASA Mission in detail, and relates the Mission to the activities of CICT. CICT's Integrated Capability Goal is illustrated, and hypothetical missions which could be enabled by CICT are profiled. CICT technology development is profiled.

  13. Molecular Profiling of Malignant Pleural Effusion in Metastatic Non-Small-Cell Lung Carcinoma. The Effect of Preanalytical Factors.

    PubMed

    Carter, Jamal; Miller, James Adam; Feller-Kopman, David; Ettinger, David; Sidransky, David; Maleki, Zahra

    2017-07-01

    Non-small-cell lung cancer (NSCLC)-associated malignant pleural effusions (MPEs) are sometimes the only available specimens for molecular analysis. This study evaluates diagnostic yield of NSCLC-associated MPE, its adequacy for molecular profiling and the potential influence of MPE volume/cellularity on the analytic sensitivity of our assays. Molecular results of 50 NSCLC-associated MPE cases during a 5-year period were evaluated. Molecular profiling was performed on cell blocks and consisted of fluorescent in situ hybridization (FISH) for ALK gene rearrangements and the following sequencing platforms: Sanger sequencing (for EGFR) and high-throughput pyrosequencing (for KRAS and BRAF) during the first 4 years of the study period, and targeted next-generation sequencing performed thereafter. A total of 50 NSCLC-associated MPE cases were identified where molecular testing was requested. Of these, 17 cases were excluded: 14 cases (28%) due to inadequate tumor cellularity and 3 cases due to unavailability of the slides to review. A total of 27 out of 50 MPE cases (54%) underwent at least EGFR and KRAS sequencing and FISH for ALK rearrangement. Of the 27 cases with molecular testing results available, a genetic abnormality was detected in 16 cases (59%). The most common genetic aberrations identified involved EGFR ( 9 ) and KRAS ( 7 ). Six cases had ALK FISH only, of which one showed rearrangement. MPE volume was not associated with overall cellularity or tumor cellularity (P = 0.360). Molecular profiling of MPE is a viable alternative to testing solid tissue in NSCLC. This study shows successful detection of genetic aberrations in 59% of samples with minimal risk of false negative.

  14. No Heat Spray Drying Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetz, Charles

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less

  15. Integration of Antibody Array Technology into Drug Discovery and Development.

    PubMed

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  16. Clinically Applicable Inhibitors Impacting Genome Stability.

    PubMed

    Prakash, Anu; Garcia-Moreno, Juan F; Brown, James A L; Bourke, Emer

    2018-05-13

    Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.

  17. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    PubMed

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa

    PubMed Central

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas

    2016-01-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  19. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  20. Genetics and Forensics: Making the National DNA Database

    PubMed Central

    Johnson, Paul; Williams, Robin; Martin, Paul

    2005-01-01

    This paper is based on a current study of the growing police use of the epistemic authority of molecular biology for the identification of criminal suspects in support of crime investigation. It discusses the development of DNA profiling and the establishment and development of the UK National DNA Database (NDNAD) as an instance of the ‘scientification of police work’ (Ericson and Shearing 1986) in which the police uses of science and technology have a recursive effect on their future development. The NDNAD, owned by the Association of Chief Police Officers of England and Wales, is the first of its kind in the world and currently contains the genetic profiles of more than 2 million people. The paper provides a framework for the examination of this socio-technical innovation, begins to tease out the dense and compact history of the database and accounts for the way in which changes and developments across disparate scientific, governmental and policing contexts, have all contributed to the range of uses to which it is put. PMID:16467921

  1. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    DOE PAGES

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; ...

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less

  2. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  3. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates.

    PubMed

    Ullal, Adeeti V; Peterson, Vanessa; Agasti, Sarit S; Tuang, Suan; Juric, Dejan; Castro, Cesar M; Weissleder, Ralph

    2014-01-15

    Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited number of protein stains to identify and classify cancers. We introduce a technology that allows analysis of hundreds of proteins from minimally invasive fine-needle aspirates (FNAs), which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-barcoded antibody sensing, where barcodes can be photocleaved and digitally detected without any amplification steps. After extensive benchmarking in cell lines, this method showed high reproducibility and achieved single-cell sensitivity. We used this approach to profile ~90 proteins in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally, we demonstrate how the method could be used as a clinical tool to identify pathway responses to molecularly targeted drugs and to predict drug response in patient samples. This technique combines specificity with ease of use to offer a new tool for understanding human cancers and designing future clinical trials.

  4. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine needle aspirates

    PubMed Central

    Ullal, Adeeti V.; Peterson, Vanessa; Agasti, Sarit S.; Tuang, Suan; Juric, Dejan; Castro, Cesar M.; Weissleder, Ralph

    2014-01-01

    Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited number of protein stains to identify and classify cancers. Here, we introduce a technology that allows analysis of hundreds of proteins from minimally invasive fine needle aspirates (FNA), which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-barcoded antibody sensing where barcodes can be photo-cleaved and digitally detected without any amplification steps. Following extensive benchmarking in cell lines, this method showed high reproducibility and achieved single cell sensitivity. We used this approach to profile ~90 proteins in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally, we demonstrate how the method could be used as a clinical tool to identify pathway responses to molecularly targeted drugs and to predict drug response in patient samples. This technique combines specificity with ease of use to offer a new tool for understanding human cancers and designing future clinical trials. PMID:24431113

  5. Risk stratification in myelodysplastic syndromes: is there a role for gene expression profiling?

    PubMed

    Zeidan, Amer M; Prebet, Thomas; Saad Aldin, Ehab; Gore, Steven David

    2014-04-01

    Evaluation of: Pellagatti A, Benner A, Mills KI et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J. Clin. Oncol. 31(28), 3557-3564 (2013). Patients with myelodysplastic syndromes (MDS) exhibit wide heterogeneity in clinical outcomes making accurate risk-stratification an integral part of the risk-adaptive management paradigm. Current prognostic schemes for MDS rely on clinicopathological parameters. Despite the increasing knowledge of the genetic landscape of MDS and the prognostic impact of many newly discovered molecular aberrations, none to date has been incorporated formally into the major risk models. Efforts are ongoing to use data generated from genome-wide high-throughput techniques to improve the 'individualized' outcome prediction for patients. We here discuss an important paper in which gene expression profiling (GEP) technology was applied to marrow CD34(+) cells from 125 MDS patients to generate and validate a standardized GEP-based prognostic signature.

  6. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.

    PubMed

    Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick

    2018-04-01

    Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Human Disease-Drug Network Based on Genomic Expression Profiles

    PubMed Central

    Hu, Guanghui; Agarwal, Pankaj

    2009-01-01

    Background Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. Methodology/Principal Findings We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the ∼24.5 million comparisons between ∼7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the ∼37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. Conclusions/Significance We have automatically generated thousands of disease and drug expression profiles using GEO datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug target/pathway identification. PMID:19657382

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watrous, Jeramie D.; Roach, Patrick J.; Alexandrov, Theodore

    Integrating the governing chemistry with the genomics and phenotypes of microbial colonies has been a "holy grail" in microbiology. This work describes a highly sensitive, broadly applicable, and costeffective approach that allows metabolic profiling of live microbial colonies directly from a Petri dish without any sample preparation. Nanospray desorption electrospray ionization mass spectrometry (MS), combined with alignment of MS data and molecular networking, enabled monitoring of metabolite production from live microbial colonies from diverse bacterial genera, including Bacillus subtilis, Streptomyces coelicolor, Mycobacterium smegmatis, and Pseudomonas aeruginosa. This work demonstrates that, by using these tools to visualize small molecular changes withinmore » bacterial interactions, insights can be gained into bacterial developmental processes as a result of the improved organization of MS/MS data. To validate this experimental platform, metabolic profiling was performed on Pseudomonas sp. SH-C52, which protects sugar beet plants from infections by specific soil-borne fungi [R. Mendes et al. (2011) Science 332:1097–1100]. The antifungal effect of strain SHC52 was attributed to thanamycin, a predicted lipopeptide encoded by a nonribosomal peptide synthetase gene cluster. Our technology, in combination with our recently developed peptidogenomics strategy, enabled the detection and partial characterization of thanamycin and showed that it is amonochlorinated lipopeptide that belongs to the syringomycin family of antifungal agents. In conclusion, the platform presented here provides a significant advancement in our ability to understand the spatiotemporal dynamics of metabolite production in live microbial colonies and communities.« less

  9. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus

    PubMed Central

    Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867

  10. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    PubMed

    Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  11. Molecular inimitability amongst tumors: implications for precision cancer medicine in the age of personalized oncology.

    PubMed

    Patel, Sandip P; Schwaederle, Maria; Daniels, Gregory A; Fanta, Paul T; Schwab, Richard B; Shimabukuro, Kelly A; Kesari, Santosh; Piccioni, David E; Bazhenova, Lyudmila A; Helsten, Teresa L; Lippman, Scott M; Parker, Barbara A; Kurzrock, Razelle

    2015-10-20

    Tumor sequencing has revolutionized oncology, allowing for detailed interrogation of the molecular underpinnings of cancer at an individual level. With this additional insight, it is increasingly apparent that not only do tumors vary within a sample (tumor heterogeneity), but also that each patient's individual tumor is a constellation of unique molecular aberrations that will require an equally unique personalized therapeutic regimen. We report here the results of 439 patients who underwent Clinical Laboratory Improvement Amendment (CLIA)-certified next generation sequencing (NGS) across histologies. Among these patients, 98.4% had a unique molecular profile, and aside from three primary brain tumor patients with a single genetic lesion (IDH1 R132H), no two patients within a given histology were molecularly identical. Additionally, two sets of patients had identical profiles consisting of two mutations in common and no other anomalies. However, these profiles did not segregate by histology (lung adenocarcinoma-appendiceal cancer (KRAS G12D and GNAS R201C), and lung adenocarcinoma-liposarcoma (CDK4 and MDM2 amplification pairs)). These findings suggest that most advanced tumors are molecular singletons within and between histologies, and that tumors that differ in histology may still nonetheless exhibit identical molecular portraits, albeit rarely.

  12. The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

    PubMed

    Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N

    2009-07-06

    As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.

  13. Ozone Mapping and Profiler Suite: using mission performance data to refine predictive contamination modeling

    NASA Astrophysics Data System (ADS)

    Devaud, Genevieve; Jaross, Glen

    2014-09-01

    On October 28, 2011, the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched at Vandenberg Air Force base aboard a United Launch Alliance Delta II rocket. Included among the five instruments was the Ozone Mapping and Profiler Suite (OMPS), an advanced suite of three hyperspectral instruments built by Ball Aerospace and Technologies Corporation (BATC) for the NASA Goddard Space Flight Center. Molecular transport modeling is used to predict optical throughput changes due to contaminant accumulation to ensure performance margin to End Of Life. The OMPS Nadir Profiler, operating at the lowest wavelengths of 250 - 310 nm, is most sensitive to contaminant accumulation. Geometry, thermal profile and material properties must be accurately modeled in order to have confidence in the results, yet it is well known that the complex chemistry and process dependent variability of aerospace materials presents a substantial challenge to the modeler. Assumptions about the absorption coefficients, desorption and diffusion kinetics of outgassing species from polymeric materials dramatically affect the model predictions, yet it is rare indeed that on-mission data is analyzed at a later date as a means to compare with modeling results. Optical throughput measurements for the Ozone and Mapping Profiler Suite on the Suomi NPP Satellite indicate that optical throughput degradation between day 145 and day 858 is less than 0.5%. We will show how assumptions about outgassing rates and desorption energies, in particular, dramatically affect the modeled optical throughput and what assumptions represent the on-orbit data.

  14. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia.

    PubMed

    Stopka, Sylwia A; Agtuca, Beverly J; Koppenaal, David W; Paša-Tolić, Ljiljana; Stacey, Gary; Vertes, Akos; Anderton, Christopher R

    2017-07-01

    Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets.

    PubMed

    Xu, Hong-Xia; Li, Xiao-Ying; Chen, Jun-Wei

    2017-09-01

    Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.

  17. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stopka, Sylwia A.; Agtuca, Beverly J.; Koppenaal, David W.

    Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule), where the exchange of nutrients between host and endosymbiont occurs. Laser ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well-characterized symbiosis between soybean (Glycine max L. Merr.) and itsmore » compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 detected metabolites in the nodule samples. The data presented demonstrates the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth-profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.« less

  18. Evidence for the importance of personalized molecular profiling in pancreatic cancer.

    PubMed

    Lili, Loukia N; Matyunina, Lilya V; Walker, L DeEtte; Daneker, George W; McDonald, John F

    2014-03-01

    There is a growing body of evidence that targeted gene therapy holds great promise for the future treatment of cancer. A crucial step in this therapy is the accurate identification of appropriate candidate genes/pathways for targeted treatment. One approach is to identify variant genes/pathways that are significantly enriched in groups of afflicted individuals relative to control subjects. However, if there are multiple molecular pathways to the same cancer, the molecular determinants of the disease may be heterogeneous among individuals and possibly go undetected by group analyses. In an effort to explore this question in pancreatic cancer, we compared the most significantly differentially expressed genes/pathways between cancer and control patient samples as determined by group versus personalized analyses. We found little to no overlap between genes/pathways identified by gene expression profiling using group analyses relative to those identified by personalized analyses. Our results indicate that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology.

  19. Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity

    PubMed Central

    An, Na; Fleming, Aaron M.; Middleton, Eric G.; Burrows, Cynthia J.

    2014-01-01

    Human telomeric DNA consists of tandem repeats of the sequence 5′-TTAGGG-3′ that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA–protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2′-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology. PMID:25225404

  20. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation1

    PubMed Central

    Tohge, Takayuki; Scossa, Federico; Fernie, Alisdair R.

    2015-01-01

    Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process. PMID:26371234

  1. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.

    PubMed

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2016-01-01

    Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy.

    PubMed

    Luzar, J; Štrukelj, B; Lunder, M

    2016-11-01

    Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. An Integrative Bioinformatics Approach for Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Peña-Castillo, Lourdes; Phan, Sieu; Famili, Fazel

    The vast amount of data being generated by large scale omics projects and the computational approaches developed to deal with this data have the potential to accelerate the advancement of our understanding of the molecular basis of genetic diseases. This better understanding may have profound clinical implications and transform the medical practice; for instance, therapeutic management could be prescribed based on the patient’s genetic profile instead of being based on aggregate data. Current efforts have established the feasibility and utility of integrating and analysing heterogeneous genomic data to identify molecular associations to pathogenesis. However, since these initiatives are data-centric, they either restrict the research community to specific data sets or to a certain application domain, or force researchers to develop their own analysis tools. To fully exploit the potential of omics technologies, robust computational approaches need to be developed and made available to the community. This research addresses such challenge and proposes an integrative approach to facilitate knowledge discovery from diverse datasets and contribute to the advancement of genomic medicine.

  4. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  5. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  6. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  7. Protocols for In Vitro Propagation, Conservation, Synthetic Seed Production, Microrhizome Production, and Molecular Profiling in Turmeric (Curcuma longa L.).

    PubMed

    Nirmal Babu, K; Divakaran, Minoo; Pillai, Geetha S; Sumathi, V; Praveen, K; Raj, Rahul P; Akshita, H J; Ravindran, P N; Peter, K V

    2016-01-01

    Turmeric is a rhizomatous herbaceous perennial but cultivated as annual, belonging to the family Zingiberaceae. It is a native of India and South East Asia. The tuberous rhizomes or underground stems of turmeric are used from antiquity as condiments, a dye and as an aromatic stimulant in several medicines. Turmeric is an important crop in India and it is used as a spice, food preservative, coloring agent, cosmetic as well as for its medicinal properties. Propagation is done vegetatively with rhizome bits as seed materials. It is plagued by rhizome rot diseases most of which are mainly spread through infected seed rhizomes. Micropropagation will help in production of disease-free seed. Sexual reproduction is rare in turmeric, making recombinant breeding very difficult. In vitro technology can thus become the preferred choice and it can be utilized for multiplication, conservation of genetic resources, generating variability, gene transfer, molecular tagging, and their utility in crop improvement.

  8. Protocols for In Vitro Propagation, Conservation, Synthetic Seed Production, Embryo Rescue, Microrhizome Production, Molecular Profiling, and Genetic Transformation in Ginger (Zingiber officinale Roscoe.).

    PubMed

    Nirmal Babu, K; Samsudeen, K; Divakaran, Minoo; Pillai, Geetha S; Sumathi, V; Praveen, K; Ravindran, P N; Peter, K V

    2016-01-01

    Ginger is a rhizomatous plant that belongs to the family Zingiberaceae. It is a herbaceous perennial but cultivated as annual, with crop duration of 7-10 months. Ginger is native to India and Tropical South Asia. The tuberous rhizomes or underground stems of ginger are used as condiment, an aromatic stimulant, and food preservative as well as in traditional medicine. Ginger is propagated vegetatively with rhizome bits as seed material. Cultivation of ginger is plagued by rhizome rot diseases, most of which are mainly spread through infected seed rhizomes. Micropropagation will help in production of disease-free planting material. Sexual reproduction is absent in ginger, making recombinant breeding very impossible. In vitro technology can thus become the preferred choice as it can be utilized for multiplication, conservation of genetic resources, generating variability, gene transfer, molecular tagging, and their utility in crop improvement of these crops.

  9. Diagnosis and Management of Fetal Growth Restriction

    PubMed Central

    Bamfo, Jacqueline E. A. K.; Odibo, Anthony O.

    2011-01-01

    Fetal growth restriction (FGR) remains a leading contributor to perinatal mortality and morbidity and metabolic syndrome in later life. Recent advances in ultrasound and Doppler have elucidated several mechanisms in the evolution of the disease. However, consistent classification and characterization regarding the severity of FGR is lacking. There is no cure, and management is reliant on a structured antenatal surveillance program with timely intervention. Hitherto, the time to deliver is an enigma. In this paper, the challenges in the diagnosis and management of FGR are discussed. The biophysical profile, Doppler, biochemical and molecular technologies that may refine management are reviewed. Finally, a model pathway for the clinical management of pregnancies complicated by FGR is presented. PMID:21547092

  10. The Cancer Genome Atlas Pan-Cancer analysis project.

    PubMed

    Weinstein, John N; Collisson, Eric A; Mills, Gordon B; Shaw, Kenna R Mills; Ozenberger, Brad A; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M

    2013-10-01

    The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

  11. Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.

    PubMed

    Fischer, Jenny J; Michaelis, Simon; Schrey, Anna K; Graebner, Olivia Graebner nee; Glinski, Mirko; Dreger, Mathias; Kroll, Friedrich; Koester, Hubert

    2010-01-01

    Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.

  12. Leadership Profiles. Introduction; Robert J. Casey, Jr.: Professor, Humanitarian, Tinker; Tribute to Kent L. Gustafson: Professor of Instructional Technology, The University of Georgia; Tjeerd Plomp: A Citizen of the World; Allow Me To Introduce Walter Dick.

    ERIC Educational Resources Information Center

    Orey, Michael; Kwinn, Ann; Reeves, Thomas C.; Ely, Donald P.; Russell, James D.

    2002-01-01

    This section of "Educational Media and Technology Yearbook" profiles individuals who have made significant contributions to the field of instructional technology. Leaders profiled in the "Yearbook" have either held prominent offices, written important works, or made significant contributions that have in some way influenced the contemporary vision…

  13. Molecular filter-based diagnostics in high speed flows

    NASA Technical Reports Server (NTRS)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  14. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be; Watanabe, Noboru

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point outmore » in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.« less

  15. Molecular profiling of single circulating tumor cells from lung cancer patients.

    PubMed

    Park, Seung-Min; Wong, Dawson J; Ooi, Chin Chun; Kurtz, David M; Vermesh, Ophir; Aalipour, Amin; Suh, Susie; Pian, Kelsey L; Chabon, Jacob J; Lee, Sang Hun; Jamali, Mehran; Say, Carmen; Carter, Justin N; Lee, Luke P; Kuschner, Ware G; Schwartz, Erich J; Shrager, Joseph B; Neal, Joel W; Wakelee, Heather A; Diehn, Maximilian; Nair, Viswam S; Wang, Shan X; Gambhir, Sanjiv S

    2016-12-27

    Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.

  16. Molecular allergy diagnostics using multiplex assays: methodological and practical considerations for use in research and clinical routine: Part 21 of the Series Molecular Allergology.

    PubMed

    Jakob, Thilo; Forstenlechner, Peter; Matricardi, Paolo; Kleine-Tebbe, Jörg

    The availability of single allergens and their use in microarray technology enables the simultaneous determination of specific IgE (sIgE) to a multitude of different allergens (> 100) in a multiplex procedure requiring only minute amounts of serum. This allows extensive individual sensitization profiles to be determined from a single analysis. Combined with a patient's medical history, these profiles simplify identification of cross-reactivity; permit a more accurate estimation of the risk of severe reactions; and enable the indication for specific immunotherapy to be more precisely established, particularly in cases of polysensitization. Strictly speaking, a multiplex assay is not a single test, but instead more than 100 simultaneous tests. This places considerable demands on the production, quality assurance, and interpretation of data. The following chapter describes the multiplex test systems currently available and discusses their characteristics. Performance data are presented and the sIgE values obtained from multiplex and singleplex assays are compared. Finally, the advantages and limitations of molecular allergy diagnostics using multiplex assays in clinical routine are discussed, and innovative possibilities for clinical research are described. The multiplex diagnostic tests available for clinical routine have now become well established. The interpretation of test results is demanding, particularly since all individual results need to be checked for their plausibility and clinical relevance on the basis of previous history (patient history, clinical symptoms, challenge test results). There is still room for improvement in certain areas, for example with respect to the overall test sensitivity of the method, as well as the availability and quality of particular allergens. The current test systems are just the beginning of a continuous development that will influence and most likely change clinical allergology in the coming years.

  17. Electrostatic potential profiles of molecular conductors

    NASA Astrophysics Data System (ADS)

    Liang, G. C.; Ghosh, A. W.; Paulsson, M.; Datta, S.

    2004-03-01

    The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson’s equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green’s function formulation of transport. The overall shape of the potential profile (ramp versus flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube, or a close-packed self-assembled monolayer, in comparison to a thin wire, a single-walled nanotube, or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular current voltage (I V) characteristic. An external gate voltage can modify the overall potential profile, changing the I V characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the availability of metal-induced-gap states and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.

  18. Investigation of Salmonella Enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013-2015.

    PubMed

    Muvhali, Munyadziwa; Smith, Anthony Marius; Rakgantso, Andronica Moipone; Keddy, Karen Helena

    2017-10-02

    Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) has become a significant pathogen in South Africa, and the need for improved molecular surveillance of this pathogen has become important. Over the years, multi-locus variable-number tandem-repeats analysis (MLVA) has become a valuable molecular subtyping technique for Salmonella, particularly for highly homogenic serotypes such as Salmonella Enteritidis. This study describes the use of MLVA in the molecular epidemiological investigation of outbreak isolates in South Africa. Between the years 2013 and 2015, the Centre for Enteric Diseases (CED) received 39 Salmonella Enteritidis isolates from seven foodborne illness outbreaks, which occurred in six provinces. MLVA was performed on all isolates. Three MLVA profiles (MLVA profiles 21, 22 and 28) were identified among the 39 isolates. MLVA profile 28 accounted for 77% (30/39) of the isolates. Isolates from a single outbreak were grouped into a single MLVA profile. A minimum spanning tree (MST) created from the MLVA data showed a close relationship between MLVA profiles 21, 22 and 28, with a single VNTR locus difference between them. MLVA has proven to be a reliable method for the molecular epidemiological investigation of Salmonella Enteritidis outbreaks in South Africa. These foodborne outbreaks emphasize the importance of the One Health approach as an essential component for combating the spread of zoonotic pathogens such as Salmonella Enteritidis.

  19. Impact of molecular genetic research on peanut cultivar development

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea L.) has lagged other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low levels of molecular polymorphism among cultivated varieties. Recent advances in molecular genetic technology have allowed res...

  20. Theranostic Profiling for Actionable Aberrations in Advanced High Risk Osteosarcoma with Aggressive Biology Reveals High Molecular Diversity: The Human Fingerprint Hypothesis.

    PubMed

    Egas-Bejar, Daniela; Anderson, Pete M; Agarwal, Rishi; Corrales-Medina, Fernando; Devarajan, Eswaran; Huh, Winston W; Brown, Robert E; Subbiah, Vivek

    2014-03-12

    The survival of patients with advanced osteosarcoma is poor with limited therapeutic options. There is an urgent need for new targeted therapies based on biomarkers. Recently, theranostic molecular profiling services for cancer patients by CLIA-certified commercial companies as well as in-house profiling in academic medical centers have expanded exponentially. We evaluated molecular profiles of patients with advanced osteosarcoma whose tumor tissue had been analyzed by one of the following methods: 1. 182-gene next-generation exome sequencing (Foundation Medicine, Boston, MA), 2. Immunohistochemistry (IHC)/PCR-based panel (CARIS Target Now, Irving, Tx), 3.Comparative genome hybridization (Oncopath, San Antonio, TX). 4. Single-gene PCR assays, PTEN IHC (MDACC CLIA), 5. UT Houston morphoproteomics (Houston, TX). The most common actionable aberrations occur in the PI3K/PTEN/mTOR pathway. No patterns in genomic alterations beyond the above are readily identifiable, and suggest both high molecular diversity in osteosarcoma and the need for more analyses to define distinct subgroups of osteosarcoma defined by genomic alterations. Based on our preliminary observations we hypothesize that the biology of aggressive and the metastatic phenotype osteosarcoma at the molecular level is similar to human fingerprints, in that no two tumors are identical. Further large scale analyses of osteosarcoma samples are warranted to test this hypothesis.

  1. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    NASA Astrophysics Data System (ADS)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  2. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    The rationale for this research is: i) Protein expression changes with life stage, disease, tissue type and environmental stressors; ii) Technology allows rapid analysis of large numbers of proteins to provide protein expression profiles; iii) Protein profiles are used as specifi...

  3. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  4. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less

  5. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  6. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  7. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications.

    PubMed

    Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T

    2016-04-01

    We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  9. Emerging technologies in point-of-care molecular diagnostics for resource-limited settings.

    PubMed

    Peeling, Rosanna W; McNerney, Ruth

    2014-06-01

    Emerging molecular technologies to diagnose infectious diseases at the point at which care is delivered have the potential to save many lives in developing countries where access to laboratories is poor. Molecular tests are needed to improve the specificity of syndromic management, monitor progress towards disease elimination and screen for asymptomatic infections with the goal of interrupting disease transmission and preventing long-term sequelae. In simplifying laboratory-based molecular assays for use at point-of-care, there are inevitable compromises between cost, ease of use and test performance. Despite significant technological advances, many challenges remain for the development of molecular diagnostics for resource-limited settings. There needs to be more advocacy for these technologies to be applied to infectious diseases, increased efforts to lower the barriers to market entry through streamlined and harmonized regulatory approaches, faster policy development for adoption of new technologies and novel financing mechanisms to enable countries to scale up implementation.

  10. Molecular subtype classification of urothelial carcinoma in Lynch syndrome.

    PubMed

    Therkildsen, Christina; Eriksson, Pontus; Höglund, Mattias; Jönsson, Mats; Sjödahl, Gottfrid; Nilbert, Mef; Liedberg, Fredrik

    2018-05-23

    Lynch syndrome confers an increased risk for urothelial carcinoma (UC). Molecular subtypes may be relevant to prognosis and therapeutic possibilities, but have to date not been defined in Lynch syndrome-associated urothelial cancer. We aimed to provide a molecular description of Lynch syndrome-associated UC. Thus, Lynch syndrome-associated UCs of the upper urinary tract and the urinary bladder were identified in the Danish hereditary nonpolyposis colorectal cancer (HNPCC) register and were transcriptionally and immunohistochemically profiled and further related to data from 307 sporadic urothelial carcinomas. Whole-genome mRNA expression profiles of 41 tumors and immunohistochemical stainings against FGFR3, KRT5, CCNB1, RB1, and CDKN2A (p16) of 37 tumors from patients with Lynch syndrome were generated. Pathological data, microsatellite instability, anatomic location, and overall survival data were analyzed and compared with sporadic bladder cancer. The 41 Lynch syndrome-associated UC developed at a mean age of 61 years with 59% women. mRNA expression profiling and immunostaining classified the majority of the Lynch syndrome-associated UC as urothelial-like tumors with only 20% being genomically unstable, basal/SCC-like, or other subtypes. The subtypes were associated with stage, grade, and microsatellite instability. Comparison to larger datasets revealed that Lynch syndrome-associated UC shares molecular similarities with sporadic UC. In conclusion, transcriptomic and immunohistochemical profiling identifies a predominance of the urothelial-like molecular subtype in Lynch syndrome and reveals that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  11. Detecting molecular forms of antithrombin by LC-MRM-MS: defining the measurands.

    PubMed

    Ruhaak, L Renee; Romijn, Fred P H T M; Smit, Nico P M; van der Laarse, Arnoud; Pieterse, Mervin M; de Maat, Moniek P M; Haas, Fred J L M; Kluft, Cornelis; Amiral, Jean; Meijer, Piet; Cobbaert, Christa M

    2018-05-01

    Antithrombin (AT) is a critical regulator of coagulation, and its overall activity is typically measured using functional tests. A large number of molecular forms of AT have been identified and each individual carries multiple molecular proteoforms representing variable activities. Conventional functional tests are completely blind for these proteoforms. A method that ensures properly defined measurands for AT is therefore needed. We here assess whether mass spectrometry technology, in particular multiple reaction monitoring (MRM), is suitable for the quantification of AT and the qualitative detection of its molecular proteoforms. Plasma proteins were denatured, reduced and alkylated prior to enzymatic digestion. MRM transitions were developed towards tryptic peptides and glycopeptides using AT purified from human plasma. For each peptide, three transitions were measured, and stable isotope-labeled peptides were used for quantitation. Completeness of digestion was assessed using digestion time curves. MRM transitions were developed for 19 tryptic peptides and 4 glycopeptides. Two peptides, FDTISEK and FATTFYQHLADSK, were used for quantitation, and using a calibration curve of isolated AT in 40 g/L human serum albumin, CVs below 3.5% were obtained for FDTISEK, whereas CVs below 8% were obtained for FATTFYQHLADSK. Of the 26 important AT mutations, 20 can be identified using this method, while altered glycosylation profiles can also be detected. We here show the feasibility of the liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) technique for the quantitation of AT and the qualitative analysis of most of its molecular proteoforms. Knowing the measurands will enable standardization of AT tests by providing in-depth information on the molecular proteoforms of AT.

  12. Marketing Technology. FasTrak Specialization Integrated Technical and Academic Competency (ITAC). Revised.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Career-Technical and Adult Education.

    This document presents the Ohio Integrated Technical and Academic Competency profile for marketing technology. The profile is to serve as the basis for curriculum development in Ohio's secondary, adult, and postsecondary programs. The profile includes a comprehensive listing of 580 specialty and foundation key indicators for evaluating mastery of…

  13. Cancer biomarker discovery: the entropic hallmark.

    PubMed

    Berretta, Regina; Moscato, Pablo

    2010-08-18

    It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.

  14. Stand-off molecular composition analysis

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; O'Neill, Hugh; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio

    2015-09-01

    Molecular composition of distant stars is explored by observing absorption spectra. The star produces blackbody radiation that passes through the molecular cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and molecular composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Molecular clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by low blackbody temperatures. This paper describes a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2), the spot temperature rises rapidly (to ~2 500 K), and evaporation of all materials on the target surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis.

  15. An Examination of the Changes in Science Teaching Orientations and Technology-Enhanced Tools for Student Learning in the Context of Professional Development

    NASA Astrophysics Data System (ADS)

    Campbell, Todd; Zuwallack, Rebecca; Longhurst, Max; Shelton, Brett E.; Wolf, Paul G.

    2014-07-01

    This research examines how science teaching orientations and beliefs about technology-enhanced tools change over time in professional development (PD). The primary data sources for this study came from learning journals of 8 eighth grade science teachers at the beginning and conclusion of a year of PD. Based on the analysis completed, Information Transmission (IT) and Struggling with Standards-Based Reform (SSBR) profiles were found at the beginning of the PD, while SSBR and Standards-Based Reform (SBR) profiles were identified at the conclusion of PD. All profiles exhibited Vision I beliefs about the goals and purposes for science education, while only the SBR profile exhibited Vision II goals and purposes for science teaching. The IT profile demonstrated naïve or unrevealed beliefs about the nature of science, while the SSBR and SBR profiles had more sophisticated beliefs in this area. The IT profile was grounded in more teacher-centered beliefs about science teaching and learning as the other two profiles revealed more student-centered beliefs. While no beliefs about technology-enhanced tools were found for the IT profile, these were found for the other two profiles. Our findings suggest promising implications for (a) Roberts' Vision II as a central support for reform efforts, (b) situating technology-enhanced tools within the beliefs about science teaching and learning dimension of science teaching orientations, and (c) revealing how teacher orientations develop as a result of PD.

  16. Tech-Prep Competency Profiles within the Business/Computer Technologies.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for educators throughout Ohio who are involved in planning and/or delivering tech prep programs within the business/computer technologies cluster, discusses and presents tech prep competency profiles (TCPs) for 12 business/computer technology occupations. The first part of the document contains the following:…

  17. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH 3 and CH 2 (ca. 2959 and 2928 cm -1, respectively), symmetric CH 3 and CH 2 (ca. 2871 and 2954 cm -1, respectively) functional groups, carbonyl C dbnd O ester (ca. 1745 cm -1) and unsaturated groups (CH attached to C dbnd C) (ca. 3007 cm -1) spectral intensities as well as their ratios of antisymmetric CH 3 to antisymmetric CH 2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH 3-antisymmetric to CH 2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C dbnd O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn and corn DDGS in the antisymmetric and symmetric CH 3 and CH 2 spectral region (ca. 2994-2800 cm -1) and unsaturated group band region (3025-2996 cm -1). Further study is needed to quantify molecular structural changes in relation to nutrient utilization of lipid biopolymer.

  18. Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph

    2004-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  19. Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures

    PubMed Central

    Zavodszky, Maria I.

    2017-01-01

    Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747

  20. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine.

    PubMed

    Koo, Kevin M; Wee, Eugene J H; Mainwaring, Paul N; Wang, Yuling; Trau, Matt

    2016-12-01

    Cancer is a heterogeneous disease which manifests as different molecular subtypes due to the complex nature of tumor initiation, progression, and metastasis. The concept of precision medicine aims to exploit this cancer heterogeneity by incorporating diagnostic technology to characterize each cancer patient's molecular subtype for tailored treatments. To characterize cancer molecular subtypes accurately, a suite of multiplexed bioassays have currently been developed to detect multiple oncogenic biomarkers. Despite the reliability of current multiplexed detection techniques, novel strategies are still needed to resolve limitations such as long assay time, complex protocols, and difficulty in interpreting broad overlapping spectral peaks of conventional fluorescence readouts. Herein a rapid (80 min) multiplexed platform strategy for subtyping prostate cancer tumor and urine samples based on their RNA biomarker profiles is presented. This is achieved by combining rapid multiplexed isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) of target RNA biomarkers with surface-enhanced Raman spectroscopy (SERS) nanotags for "one-pot" readout. This is the first translational application of a RT-RPA/SERS-based platform for multiplexed cancer biomarker detection to address a clinical need. With excellent sensitivity of 200 zmol (100 copies) and specificity, we believed that this platform methodology could be a useful tool for rapid multiplexed subtyping of cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Defining precision: The precision medicine initiative trials NCI-MPACT and NCI-MATCH.

    PubMed

    Coyne, Geraldine O'Sullivan; Takebe, Naoko; Chen, Alice P

    "Precision" trials, using rationally incorporated biomarker targets and molecularly selective anticancer agents, have become of great interest to both patients and their physicians. In the endeavor to test the cornerstone premise of precision oncotherapy, that is, determining if modulating a specific molecular aberration in a patient's tumor with a correspondingly specific therapeutic agent improves clinical outcomes, the design of clinical trials with embedded genomic characterization platforms which guide therapy are an increasing challenge. The National Cancer Institute Precision Medicine Initiative is an unprecedented large interdisciplinary collaborative effort to conceptualize and test the feasibility of trials incorporating sequencing platforms and large-scale bioinformatics processing that are not currently uniformly available to patients. National Cancer Institute-Molecular Profiling-based Assignment of Cancer Therapy and National Cancer Institute-Molecular Analysis for Therapy Choice are 2 genomic to phenotypic trials under this National Cancer Institute initiative, where treatment is selected according to predetermined genetic alterations detected using next-generation sequencing technology across a broad range of tumor types. In this article, we discuss the objectives and trial designs that have enabled the public-private partnerships required to complete the scale of both trials, as well as interim trial updates and strategic considerations that have driven data analysis and targeted therapy assignment, with the intent of elucidating further the benefits of this treatment approach for patients. Copyright © 2017. Published by Elsevier Inc.

  2. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues.

    PubMed

    Chen, Jing; Guo, Liping; Peiffer, Daniel A; Zhou, Lixin; Chan, Owen Tsan Mo; Bibikova, Marina; Wickham-Garcia, Eliza; Lu, Shih-Hsin; Zhan, Qimin; Wang-Rodriguez, Jessica; Jiang, Wei; Fan, Jian-Bing

    2008-05-15

    We employed the BeadArraytrade mark technology to perform a genetic analysis in 33 formalin-fixed, paraffin-embedded (FFPE) human esophageal carcinomas, mostly squamous-cell-carcinoma (ESCC), and their adjacent normal tissues. A total of 1,432 single nucleotide polymorphisms (SNPs) derived from 766 cancer-related genes were genotyped with partially degraded genomic DNAs isolated from these samples. This directly targeted genomic profiling identified not only previously reported somatic gene amplifications (e.g., CCND1) and deletions (e.g., CDKN2A and CDKN2B) but also novel genomic aberrations. Among these novel targets, the most frequently deleted genomic regions were chromosome 3p (including tumor suppressor genes FANCD2 and CTNNB1) and chromosome 5 (including tumor suppressor gene APC). The most frequently amplified genomic region was chromosome 3q (containing DVL3, MLF1, ABCC5, BCL6, AGTR1 and known oncogenes TNK2, TNFSF10, FGF12). The chromosome 3p deletion and 3q amplification occurred coincidently in nearly all of the affected cases, suggesting a molecular mechanism for the generation of somatic chromosomal aberrations. We also detected significant differences in germline allele frequency between the esophageal cohort of our study and normal control samples from the International HapMap Project for 10 genes (CSF1, KIAA1804, IL2, PMS2, IRF7, FLT3, NTRK2, MAP3K9, ERBB2 and PRKAR1A), suggesting that they might play roles in esophageal cancer susceptibility and/or development. Taken together, our results demonstrated the utility of the BeadArray technology for high-throughput genetic analysis in FFPE tumor tissues and provided a detailed genetic profiling of cancer-related genes in human esophageal cancer. (c) 2008 Wiley-Liss, Inc.

  3. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  4. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications

    PubMed Central

    Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.

    2017-01-01

    Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413

  5. Genomics and Genetics in the Biology of Adaptation to Exercise

    PubMed Central

    Bouchard, Claude; Rankinen, Tuomo; Timmons, James A.

    2014-01-01

    This chapter is devoted to the role of genetic variation and gene-exercise interactions in the biology of adaptation to exercise. There is evidence from genetic epidemiology research that DNA sequence differences contribute to human variation in physical activity level, cardiorespiratory fitness in the untrained state, cardiovascular and metabolic response to acute exercise, and responsiveness to regular exercise. Methodological and technological advances have made it possible to undertake the molecular dissection of the genetic component of complex, multifactorial traits, such as those of interest to exercise biology, in terms of tissue expression profile, genes, and allelic variants. The evidence from animal models and human studies is considered. Data on candidate genes, genome-wide linkage results, genome-wide association findings, expression arrays, and combinations of these approaches are reviewed. Combining transcriptomic and genomic technologies has been shown to be more powerful as evidenced by the development of a recent molecular predictor of the ability to increase VO2max with exercise training. For exercise as a behavior and physiological fitness as a state to be major players in public health policies will require that that the role of human individuality and the influence of DNA sequence differences be understood. Likewise, progress in the use of exercise in therapeutic medicine will depend to a large extent on our ability to identify the favorable responders for given physiological properties to a given exercise regimen. PMID:23733655

  6. PROSPECT: Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification

    DTIC Science & Technology

    2012-06-01

    neoadjuvant therapies on disease-free, progression-free, and overall survival will vary across prognostically distinct groups. 3. Specific molecular... prognostically distinct subpopulations of patients with resectable NSCLC, and to assess the extent to which these molecular profiles correlate with tumor...overall survival, and will use Cox proportional hazards models and recursive partitioning methods to identify important biomarkers and prognostically

  7. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    smokers [7]. In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways...previously shown that gene-expression profiles in cytologically normal mainstem bronchus epithelium can distinguish smokers with and without lung cancer...spatially mapping the molecular field of injury associated with smoking-related lung cancer. In smokers undergoing resection of lung lesions, high

  8. Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma. | Office of Cancer Genomics

    Cancer.gov

    Background: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear.Methods: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease.

  9. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particlemore » tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)« less

  10. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Ma, Zihao; Carr, Steven A.

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less

  12. Error analyses of JEM/SMILES standard products on L2 operational system

    NASA Astrophysics Data System (ADS)

    Mitsuda, C.; Takahashi, C.; Suzuki, M.; Hayashi, H.; Imai, K.; Sano, T.; Takayanagi, M.; Iwata, Y.; Taniguchi, H.

    2009-12-01

    SMILES (Superconducting Submillimeter-wave Limb-Emission Sounder) , which has been developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT), is planned to be launched in September, 2009 and will be on board the Japanese Experiment Module (JEM) of the International Space Station (ISS). The SMILES measures the atmospheric limb emission from stratospheric minor constituents in 640 GHz band. Target species on L2 operational system are O3, ClO, HCl, HNO3, HOCl, CH3CN, HO2, BrO, and O3 isotopes (18OOO, 17OOO and O17OO). The SMILES carries 4 K cooled Superconductor-Insulator-Superconductor mixers to carry out high-sensitivity observations. In sub-millimeter band, water vapor absorption is an important factor to decide the tropospheric and stratospheric brightness temperature. The uncertainty of water vapor absorption influences the accuracy of molecular vertical profiles. Since the SMILES bands are narrow and far from H2O lines, it is a good approximation to assume this uncertainly as linear function of frequency. We include 0th and 1st coefficients of ‘baseline’ function, not water vapor profile, in state vector and retrieve them to remove influence of the water vapor uncertainty. We performed retrieval simulations using spectra computed by L2 operatinal forward model for various H2O conditions (-/+ 5, 10% difference between true profile and a priori profile in the stratosphere and -/+ 10, 20% one in the troposphere). The results show that the incremental errors of molecules are smaller than 10% of measurements errors when height correlation of baseline coefficients and temperature are assumed to be 10 km. In conclusion, the retrieval of the baseline coefficients effectively suppresses profile error due to bias of water vapor profile.

  13. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    PubMed

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Customized Molecular Phenotyping by Quantitative Gene Expression and Pattern Recognition Analysis

    PubMed Central

    Akilesh, Shreeram; Shaffer, Daniel J.; Roopenian, Derry

    2003-01-01

    Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to defining the molecular phenotype of a variety of other normal and pathological processes. PMID:12840047

  15. Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust.

    PubMed

    Božičević, Alen; Dobrzyński, Maciej; De Bie, Hans; Gafner, Frank; Garo, Eliane; Hamburger, Matthias

    2017-12-05

    The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.

  16. Technical aspects and recommendations for single-cell qPCR.

    PubMed

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.

    PubMed

    Salanova, Michele; Gambara, Guido; Moriggi, Manuela; Vasso, Michele; Ungethuem, Ute; Belavý, Daniel L; Felsenberg, Dieter; Cerretelli, Paolo; Gelfi, Cecilia; Blottner, Dieter

    2015-11-24

    Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.

  18. NASA'S Earth Science Enterprise Embraces Active Laser Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.; Paules, Granville E., III

    1999-01-01

    Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.

  19. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  20. Protein Interactome of Muscle Invasive Bladder Cancer

    PubMed Central

    Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera

    2015-01-01

    Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276

  1. Differential display in rat livers treated for 13 weeks with phenobarbital implicates a role for metabolic and oxidative stress in nongenotoxic carcinogenicity.

    PubMed

    Elrick, Mollisa M; Kramer, Jeffrey A; Alden, Carl L; Blomme, Eric A G; Bunch, Roderick T; Cabonce, Marc A; Curtiss, Sandra W; Kier, Larry D; Kolaja, Kyle L; Rodi, Charles P; Morris, Dale L

    2005-01-01

    Hepatic enzyme inducers such as phenobarbital are often nongenotoxic rodent hepatocarcinogens. Currently, nongenotoxic hepatocarcinogens can only be definitively identified through costly and extensive long-term, repeat-dose studies (e.g., 2-year rodent carcinogenicity assays). Although liver tumors caused by these compounds are often not found to be relevant to human health, the mechanism(s) by which they cause carcinogenesis are not well understood. Toxicogenomic technologies represent a new approach to understanding the molecular bases of toxicological liabilities such asnongenotoxic carcinogenicity early in the drug discovery/development process. Microarrays have been used to identify mechanistic molecular markers of nongenotoxic rodent hepatocarcinogenesis in short-term, repeat-dose preclinical safety studies. However, the initial "noise" of early adaptive changes may confound mechanistic interpretation of transcription profiling data from short-term studies, and the molecular processes triggered by treatment with a xenobiotic agent are likely to change over the course of long-term treatment. Here, we describe the use of a differential display technology to understand the molecular mechanisms related to 13 weeks of dosing with the prototype rodent nongenotoxic hepatocarcinogen, phenobarbital. These findings implicate a continuing role for oxidative stress in nongenotoxic carcinogenicity.An Excel data file containing raw data is available in full at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. Click on the issue link for 33(1), then select this article. A download option appears at the bottom of this abstract. The file contains raw data for all gene changes detected by AFLP, including novel genes and genes of unknown function; sequences of detected genes; and animal body and liver weight ratios. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org.

  2. Genetic alteration and mutation profiling of circulating cell-free tumor DNA (cfDNA) for diagnosis and targeted therapy of gastrointestinal stromal tumors.

    PubMed

    Yan, Weixin; Zhang, Aiguo; Powell, Michael J

    2016-07-21

    Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identification of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the efficacy of cancer therapy by matching targeted drugs to specific mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by the KIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target amplification technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived "driver" and "drug-resistant" alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called "liquid biopsy" allows for the dynamic monitoring of the patients' tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR amplification of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

  3. Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine.

    PubMed

    Nakazawa, Takanobu; Kikuchi, Masataka; Ishikawa, Mitsuru; Yamamori, Hidenaga; Nagayasu, Kazuki; Matsumoto, Takuya; Fujimoto, Michiko; Yasuda, Yuka; Fujiwara, Mikiya; Okada, Shota; Matsumura, Kensuke; Kasai, Atsushi; Hayata-Takano, Atsuko; Shintani, Norihito; Numata, Shusuke; Takuma, Kazuhiro; Akamatsu, Wado; Okano, Hideyuki; Nakaya, Akihiro; Hashimoto, Hitoshi; Hashimoto, Ryota

    2017-03-01

    Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions.

    PubMed

    Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F

    2014-08-28

    Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.

  5. IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.

    PubMed

    Hintzsche, Jennifer D; Yoo, Minjae; Kim, Jihye; Amato, Carol M; Robinson, William A; Tan, Aik Choon

    2018-04-20

    With the advancement of next generation sequencing technology, researchers are now able to identify important variants and structural changes in DNA and RNA in cancer patient samples. With this information, we can now correlate specific variants and/or structural changes with actionable therapeutics known to inhibit these variants. We introduce the creation of the IMPACT Web Portal, a new online resource that connects molecular profiles of tumors to approved drugs, investigational therapeutics and pharmacogenetics associated drugs. IMPACT Web Portal contains a total of 776 drugs connected to 1326 target genes and 435 target variants, fusion, and copy number alterations. The online IMPACT Web Portal allows users to search for various genetic alterations and connects them to three levels of actionable therapeutics. The results are categorized into 3 levels: Level 1 contains approved drugs separated into two groups; Level 1A contains approved drugs with variant specific information while Level 1B contains approved drugs with gene level information. Level 2 contains drugs currently in oncology clinical trials. Level 3 provides pharmacogenetic associations between approved drugs and genes. IMPACT Web Portal allows for sequencing data to be linked to actionable therapeutics for translational and drug repurposing research. The IMPACT Web Portal online resource allows users to query genes and variants to approved and investigational drugs. We envision that this resource will be a valuable database for personalized medicine and drug repurposing. IMPACT Web Portal is freely available for non-commercial use at http://tanlab.ucdenver.edu/IMPACT .

  6. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer.

    PubMed

    Xie, Yang; Zhang, Wei; Wang, Yan; Xu, Liang; Zhu, Xianwen; Muleke, Everlyne M; Liu, Liwang

    2016-09-01

    Microsporogenesis is an indispensable period for investigating microspore development and cytoplasmic male sterility (CMS) occurrence. Radish CMS line plays a critical role in elite F1 hybrid seed production and heterosis utilization. However, the molecular mechanisms of microspore development and CMS occurrence have not been thoroughly uncovered in radish. In this study, a comparative analysis of radish floral buds from a CMS line (NAU-WA) and its maintainer (NAU-WB) was conducted using next generation sequencing (NGS) technology. Digital gene expression (DGE) profiling revealed that 3504 genes were significantly differentially expressed between NAU-WA and NAU-WB library, among which 1910 were upregulated and 1594 were downregulated. Gene ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly enriched in extracellular region, catalytic activity, and response to stimulus. KEGG enrichment analysis revealed that the DEGs were predominantly associated with flavonoid biosynthesis, glycolysis, and biosynthesis of secondary metabolites. Real-time quantitative PCR analysis showed that the expression profiles of 13 randomly selected DEGs were in high agreement with results from Illumina sequencing. Several candidate genes encoding ATP synthase, auxin response factor (ARF), transcription factors (TFs), chalcone synthase (CHS), and male sterility (MS) were responsible for microsporogenesis. Furthermore, a schematic diagram for functional interaction of DEGs from NAU-WA vs. NAU-WB library in radish plants was proposed. These results could provide new information on the dissection of the molecular mechanisms underlying microspore development and CMS occurrence in radish.

  7. [Applications of DNA methylation markers in forensic medicine].

    PubMed

    Zhao, Gui-sen; Yang, Qing-en

    2005-02-01

    DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.

  8. Point-of-care technologies for molecular diagnostics using a drop of blood.

    PubMed

    Song, Yujun; Huang, Yu-Yen; Liu, Xuewu; Zhang, Xiaojing; Ferrari, Mauro; Qin, Lidong

    2014-03-01

    Molecular diagnostics is crucial for prevention, identification, and treatment of disease. Traditional technologies for molecular diagnostics using blood are limited to laboratory use because they rely on sample purification and sophisticated instruments, are labor and time intensive, expensive, and require highly trained operators. This review discusses the frontiers of point-of-care (POC) diagnostic technologies using a drop of blood obtained from a finger prick. These technologies, including emerging biotechnologies, nanotechnologies, and microfluidics, hold the potential for rapid, accurate, and inexpensive disease diagnostics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Prospects of molecular breeding in medical plants].

    PubMed

    Ma, Xiao-Jun; Mo, Chang-Ming

    2017-06-01

    The molecular-assisted breeding, transgenic breeding and molecular designing breeding are three development directions of plant molecular breeding. Base on these three development directions, this paper summarizes developing status and new tendency of research field of genetic linkage mapping, QTL mapping, association mapping, molecular-assisted selections, pollen-mediated transformations, agrobacterium-mediated transformations, particle gun-mediated transformations, genome editing technologies, whole-genome sequencing, transcriptome sequencing, proteome sequencing and varietal molecular designing. The objective and existing problem of medical plant molecular breeding were discussed the prospect of these three molecular breeding technologies application on medical plant molecular breeding was outlooked. Copyright© by the Chinese Pharmaceutical Association.

  10. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  11. Interfacial layering and capillary roughness in immiscible liquids.

    PubMed

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  12. Computer Aided Drafting and Design, Industrial Manufacturing Technician, and Mechanical Engineering Technician and Machine Tool, Die and Moldmaking Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Mid-East Ohio Tech Prep Consortium, Zanesville.

    This document contains competency profiles in four areas: computer-aided drafting and design; industrial manufacturing technician; mechanical engineering technician; and machine tool, die, and moldmaking technology occupations. The profiles are intended for use in articulating tech prep programs from high school through associate degrees in Ohio.…

  13. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  14. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    PubMed Central

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  15. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    ERIC Educational Resources Information Center

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  16. A Comprehensive Tool and Analytical Pathway for Differential Molecular Profiling and Biomarker Discovery

    DTIC Science & Technology

    2014-10-20

    three possiblities: AKR , B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), then you can view a plot of the Strain...the tags for the last two labels. Again, if the attribute Strain has three tags: AKR , B6, 74 Distribution A . Approved for public release...AFRL-RH-WP-TR-2014-0131 A COMPREHENSIVE TOOL AND ANALYTICAL PATHWAY FOR DIFFERENTIAL MOLECULAR PROFILING AND BIOMARKER DISCOVERY

  17. The Human Cell Atlas.

    PubMed

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  18. The kinematics of the molecular gas in Centaurus A

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.

    1992-01-01

    The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.

  19. The Cancer Genome Atlas Pan-Cancer Analysis Project

    PubMed Central

    Weinstein, John N.; Collisson, Eric A.; Mills, Gordon B.; Shaw, Kenna M.; Ozenberger, Brad A.; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M.

    2014-01-01

    Cancer can take hundreds of different forms depending on the location, cell of origin and spectrum of genomic alterations that promote oncogenesis and affect therapeutic response. Although many genomic events with direct phenotypic impact have been identified, much of the complex molecular landscape remains incompletely charted for most cancer lineages. For that reason, The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumours to discover molecular aberrations at the DNA, RNA, protein, and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences, and emergent themes across tumour lineages. The Pan-Cancer initiative compares the first twelve tumour types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumour types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. PMID:24071849

  20. The Human Cell Atlas

    PubMed Central

    Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community. PMID:29206104

  1. The first decade of MALDI protein profiling: a lesson in translational biomarker research.

    PubMed

    Albrethsen, Jakob

    2011-05-16

    MALDI protein profiling has identified several important challenges in omics-based biomarker research. First, research into the analytical performance of a novel omics-platform of potential diagnostic impact must be carried out in a critical manner and according to common guidelines. Evaluation studies should be performed at an early time and preferably before massive advancement into explorative biomarker research. In particular, MALDI profiling underscores the need for an adequate understanding of the causal relationship between molecular abundance and the quantitative measure in multivariate biomarker research. Secondly, MALDI profiling has raised awareness of the significant risk of false-discovery in biomarker research due to several confounding factors, including sample processing and unspecific host-response to disease. Here, the experience from MALDI profiling supports that a central challenge in unbiased molecular profiling is to pinpoint the aberrations of clinical interest among potentially massive unspecific changes that can accompany disease. The lessons from the first decade of MALDI protein profiling are relevant for future efforts in advancing omics-based biomarker research beyond the laboratory setting and into clinical verification. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Epigenetics of prostate cancer.

    PubMed

    McKee, Tawnya C; Tricoli, James V

    2015-01-01

    The introduction of novel technologies that can be applied to the investigation of the molecular underpinnings of human cancer has allowed for new insights into the mechanisms associated with tumor development and progression. They have also advanced the diagnosis, prognosis and treatment of cancer. These technologies include microarray and other analysis methods for the generation of large-scale gene expression data on both mRNA and miRNA, next-generation DNA sequencing technologies utilizing a number of platforms to perform whole genome, whole exome, or targeted DNA sequencing to determine somatic mutational differences and gene rearrangements, and a variety of proteomic analysis platforms including liquid chromatography/mass spectrometry (LC/MS) analysis to survey alterations in protein profiles in tumors. One other important advancement has been our current ability to survey the methylome of human tumors in a comprehensive fashion through the use of sequence-based and array-based methylation analysis (Bock et al., Nat Biotechnol 28:1106-1114, 2010; Harris et al., Nat Biotechnol 28:1097-1105, 2010). The focus of this chapter is to present and discuss the evidence for key genes involved in prostate tumor development, progression, or resistance to therapy that are regulated by methylation-induced silencing.

  3. Diversity arrays technology: a generic genome profiling technology on open platforms.

    PubMed

    Kilian, Andrzej; Wenzl, Peter; Huttner, Eric; Carling, Jason; Xia, Ling; Blois, Hélène; Caig, Vanessa; Heller-Uszynska, Katarzyna; Jaccoud, Damian; Hopper, Colleen; Aschenbrenner-Kilian, Malgorzata; Evers, Margaret; Peng, Kaiman; Cayla, Cyril; Hok, Puthick; Uszynski, Grzegorz

    2012-01-01

    In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.

  4. GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less

  5. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  6. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    PubMed

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  7. Gene integrated set profile analysis: a context-based approach for inferring biological endpoints

    PubMed Central

    Kowalski, Jeanne; Dwivedi, Bhakti; Newman, Scott; Switchenko, Jeffery M.; Pauly, Rini; Gutman, David A.; Arora, Jyoti; Gandhi, Khanjan; Ainslie, Kylie; Doho, Gregory; Qin, Zhaohui; Moreno, Carlos S.; Rossi, Michael R.; Vertino, Paula M.; Lonial, Sagar; Bernal-Mizrachi, Leon; Boise, Lawrence H.

    2016-01-01

    The identification of genes with specific patterns of change (e.g. down-regulated and methylated) as phenotype drivers or samples with similar profiles for a given gene set as drivers of clinical outcome, requires the integration of several genomic data types for which an ‘integrate by intersection’ (IBI) approach is often applied. In this approach, results from separate analyses of each data type are intersected, which has the limitation of a smaller intersection with more data types. We introduce a new method, GISPA (Gene Integrated Set Profile Analysis) for integrated genomic analysis and its variation, SISPA (Sample Integrated Set Profile Analysis) for defining respective genes and samples with the context of similar, a priori specified molecular profiles. With GISPA, the user defines a molecular profile that is compared among several classes and obtains ranked gene sets that satisfy the profile as drivers of each class. With SISPA, the user defines a gene set that satisfies a profile and obtains sample groups of profile activity. Our results from applying GISPA to human multiple myeloma (MM) cell lines contained genes of known profiles and importance, along with several novel targets, and their further SISPA application to MM coMMpass trial data showed clinical relevance. PMID:26826710

  8. Microfluidic technology for molecular diagnostics.

    PubMed

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  9. INCONSISTENCIES BETWEEN CYTOKINE PROFILES, ANTIBODY RESPONSES, AND RESPIRATORY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO ISOCYANATES

    EPA Science Inventory

    Cytokine profiling of local lymph node responses has been proposed as a simple test to identify chemicals, such as low molecular weight diisocyanates, that pose a significant risk of occupational asthma. Previously, we reported cytokine mRNA profiles for dinitrochlorobenzene (DNC...

  10. [Relevance of big data for molecular diagnostics].

    PubMed

    Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T

    2018-04-01

    Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.

  11. Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.

    PubMed

    Kebschull, Moritz; Papapanou, Panos N

    2017-01-01

    Although contemporary high-throughput -omics methods produce high-dimensional data, the resulting wealth of information is difficult to assess using traditional statistical procedures. Machine learning methods facilitate the detection of additional patterns, beyond the mere identification of lists of features that differ between groups.Here, we demonstrate the utility of (1) supervised classification algorithms in class validation, and (2) unsupervised clustering in class discovery. We use data from our previous work that described the transcriptional profiles of gingival tissue samples obtained from subjects suffering from chronic or aggressive periodontitis (1) to test whether the two diagnostic entities were also characterized by differences on the molecular level, and (2) to search for a novel, alternative classification of periodontitis based on the tissue transcriptomes.Using machine learning technology, we provide evidence for diagnostic imprecision in the currently accepted classification of periodontitis, and demonstrate that a novel, alternative classification based on differences in gingival tissue transcriptomes is feasible. The outlined procedures allow for the unbiased interrogation of high-dimensional datasets for characteristic underlying classes, and are applicable to a broad range of -omics data.

  12. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  13. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  14. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts.

    PubMed

    Gonçalves, Juliana Soares; Ferracin, Lara Munique; Carneiro Vieira, Maria Lucia; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Pelegrinelli Fungaro, Maria Helena

    2012-04-01

    Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within β-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles.

  15. ACOG Technology Assessment No. 11: Genetics and molecular diagnostic testing.

    PubMed

    2014-02-01

    Human genetics and molecular testing are playing an increasingly important role in medicine, including obstetric and gynecologic practice. As the genetic basis for reproductive disorders, common diseases, and cancer is elucidated with improved molecular technology, genetic testing opportunities are expanding and influencing treatment options and prevention strategies. It is essential that obstetrician-gynecologists be aware of advances in the understanding of genetic disease and the fundamental principles of genetic screening and molecular testing as genetics becomes a more integral part of routine medical practice. This document reviews the basics of genetic transmission and genetic technologies in current use.

  16. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    PubMed

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  17. Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability.

    PubMed

    Espina, Virginia; Mueller, Claudius; Edmiston, Kirsten; Sciro, Manuela; Petricoin, Emanuel F; Liotta, Lance A

    2009-08-01

    Instability of tissue protein biomarkers is a critical issue for molecular profiling. Pre-analytical variables during tissue procurement, such as time delays during which the tissue remains stored at room temperature, can cause significant variability and bias in downstream molecular analysis. Living tissue, ex vivo, goes through a defined stage of reactive changes that begin with oxidative, hypoxic and metabolic stress, and culminate in apoptosis. Depending on the delay time ex vivo, and reactive stage, protein biomarkers, such as signal pathway phosphoproteins will be elevated or suppressed in a manner which does not represent the biomarker levels at the time of excision. Proteomic data documenting reactive tissue protein changes post collection indicate the need to recognize and address tissue stability, preservation of post-translational modifications, and preservation of morphologic features for molecular analysis. Based on the analysis of phosphoproteins, one of the most labile tissue protein biomarkers, we set forth tissue procurement guidelines for clinical research. We propose technical solutions for (i) assessing the state of protein analyte preservation and specimen quality via identification of a panel of natural proteins (surrogate stability markers), and (ii) using multi-purpose fixative solution designed to stabilize, preserve and maintain proteins, nucleic acids, and tissue architecture.

  18. Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability

    PubMed Central

    Espina, Virginia; Mueller, Claudius; Edmiston, Kirsten; Sciro, Manuela; Petricoin, Emanuel F.; Liotta, Lance A.

    2010-01-01

    Instability of tissue protein biomarkers is a critical issue for molecular profiling. Pre-analytical variables during tissue procurement, such as time delays during which the tissue remains stored at room temperature, can cause significant variability and bias in downstream molecular analysis. Living tissue, ex vivo, goes through a defined stage of reactive changes that begin with oxidative, hypoxic and metabolic stress, and culminate in apoptosis. Depending on the delay time ex vivo, and reactive stage, protein biomarkers, such as signal pathway phosphoproteins will be elevated or suppressed in a manner which does not represent the biomarker levels at the time of excision. Proteomic data documenting reactive tissue protein changes post collection indicate the need to recognize and address tissue stability, preservation of post-translational modifications, and preservation of morphologic features for molecular analysis. Based on the analysis of phosphoproteins, one of the most labile tissue protein biomarkers, we set forth tissue procurement guidelines for clinical research. We propose technical solutions for (i) assessing the state of protein analyte preservation and specimen quality via identification of a panel of natural proteins (surrogate stability markers), and (ii) using multi-purpose fixative solution designed to stabilize, preserve and maintain proteins, nucleic acids, and tissue architecture. PMID:20871745

  19. Proteomics meets blood banking: identification of protein targets for the improvement of platelet quality.

    PubMed

    Schubert, Peter; Devine, Dana V

    2010-01-03

    Proteomics has brought new perspectives to the fields of hematology and transfusion medicine in the last decade. The steady improvement of proteomic technology is propelling novel discoveries of molecular mechanisms by studying protein expression, post-translational modifications and protein interactions. This review article focuses on the application of proteomics to the identification of molecular mechanisms leading to the deterioration of blood platelets during storage - a critical aspect in the provision of platelet transfusion products. Several proteomic approaches have been employed to analyse changes in the platelet protein profile during storage and the obtained data now need to be translated into platelet biochemistry in order to connect the results to platelet function. Targeted biochemical applications then allow the identification of points for intervention in signal transduction pathways. Once validated and placed in a transfusion context, these data will provide further understanding of the underlying molecular mechanisms leading to platelet storage lesion. Future aspects of proteomics in blood banking will aim to make use of protein markers identified for platelet storage lesion development to monitor proteome changes when alterations such as the use of additive solutions or pathogen reduction strategies are put in place in order to improve platelet quality for patients. (c) 2009 Elsevier B.V. All rights reserved.

  20. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  1. Integrating Genomics Into Clinical Pediatric Oncology Using the Molecular Tumor Board at the Memorial Sloan Kettering Cancer Center.

    PubMed

    Ortiz, Michael V; Kobos, Rachel; Walsh, Michael; Slotkin, Emily K; Roberts, Stephen; Berger, Michael F; Hameed, Meera; Solit, David; Ladanyi, Marc; Shukla, Neerav; Kentsis, Alex

    2016-08-01

    Pediatric oncologists have begun to leverage tumor genetic profiling to match patients with targeted therapies. At the Memorial Sloan Kettering Cancer Center (MSKCC), we developed the Pediatric Molecular Tumor Board (PMTB) to track, integrate, and interpret clinical genomic profiling and potential targeted therapeutic recommendations. This retrospective case series includes all patients reviewed by the MSKCC PMTB from July 2014 to June 2015. Cases were submitted by treating oncologists and potential treatment recommendations were based upon the modified guidelines of the Oxford Centre for Evidence-Based Medicine. There were 41 presentations of 39 individual patients during the study period. Gliomas, acute myeloid leukemia, and neuroblastoma were the most commonly reviewed cases. Thirty nine (87%) of the 45 molecular sequencing profiles utilized hybrid-capture targeted genome sequencing. In 30 (73%) of the 41 presentations, the PMTB provided therapeutic recommendations, of which 19 (46%) were implemented. Twenty-one (70%) of the recommendations involved targeted therapies. Three (14%) targeted therapy recommendations had published evidence to support the proposed recommendations (evidence levels 1-2), eight (36%) recommendations had preclinical evidence (level 3), and 11 (50%) recommendations were based upon hypothetical biological rationales (level 4). The MSKCC PMTB enabled a clinically relevant interpretation of genomic profiling. Effective use of clinical genomics is anticipated to require new and improved tools to ascribe pathogenic significance and therapeutic actionability. The development of specific rule-driven clinical protocols will be needed for the incorporation and evaluation of genomic and molecular profiling in interventional prospective clinical trials. © 2016 Wiley Periodicals, Inc.

  2. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  3. Tech-Prep Competency Profiles within the Health Technologies Cluster.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains competency profiles for Ohio tech prep courses in the following 12 health technologies occupations: radiographer, respiratory care therapist, occupational therapy assistant, physical therapist assistant, registered nurse (associate degree), pharmacy technologist, medical laboratory technician, histotechnologist, emergency…

  4. New clinical trial opens to provide evaluation, tumor profiling and follow-up of patients with gastric tumors | Center for Cancer Research

    Cancer.gov

    This new clinical trial will collect samples of gastric tumor tissue from patients with the goal to use the molecular profiles to design treatments that work better by targeting a specific cancer tumor profile.  Learn more...

  5. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients

    PubMed Central

    Borràs, Nina; Batlle, Javier; Pérez-Rodríguez, Almudena; López-Fernández, María Fernanda; Rodríguez-Trillo, Ángela; Lourés, Esther; Cid, Ana Rosa; Bonanad, Santiago; Cabrera, Noelia; Moret, Andrés; Parra, Rafael; Mingot-Castellano, María Eva; Balda, Ignacia; Altisent, Carme; Pérez-Montes, Rocío; Fisac, Rosa María; Iruín, Gemma; Herrero, Sonia; Soto, Inmaculada; de Rueda, Beatriz; Jiménez-Yuste, Víctor; Alonso, Nieves; Vilariño, Dolores; Arija, Olga; Campos, Rosa; Paloma, María José; Bermejo, Nuria; Berrueco, Rubén; Mateo, José; Arribalzaga, Karmele; Marco, Pascual; Palomo, Ángeles; Sarmiento, Lizheidy; Iñigo, Belén; Nieto, María del Mar; Vidal, Rosa; Martínez, María Paz; Aguinaco, Reyes; César, Jesús María; Ferreiro, María; García-Frade, Javier; Rodríguez-Huerta, Ana María; Cuesta, Jorge; Rodríguez-González, Ramón; García-Candel, Faustino; Cornudella, Rosa; Aguilar, Carlos; Vidal, Francisco; Corrales, Irene

    2017-01-01

    Molecular diagnosis of patients with von Willebrand disease is pending in most populations due to the complexity and high cost of conventional molecular analyses. The need for molecular and clinical characterization of von Willebrand disease in Spain prompted the creation of a multicenter project (PCM-EVW-ES) that resulted in the largest prospective cohort study of patients with all types of von Willebrand disease. Molecular analysis of relevant regions of the VWF, including intronic and promoter regions, was achieved in the 556 individuals recruited via the development of a simple, innovative, relatively low-cost protocol based on microfluidic technology and next-generation sequencing. A total of 704 variants (237 different) were identified along VWF, 155 of which had not been previously recorded in the international mutation database. The potential pathogenic effect of these variants was assessed by in silico analysis. Furthermore, four short tandem repeats were analyzed in order to evaluate the ancestral origin of recurrent mutations. The outcome of genetic analysis allowed for the reclassification of 110 patients, identification of 37 asymptomatic carriers (important for genetic counseling) and re-inclusion of 43 patients previously excluded by phenotyping results. In total, 480 patients were definitively diagnosed. Candidate mutations were identified in all patients except 13 type 1 von Willebrand disease, yielding a high genotype-phenotype correlation. Our data reinforce the capital importance and usefulness of genetics in von Willebrand disease diagnostics. The progressive implementation of molecular study as the first-line test for routine diagnosis of this condition will lead to increasingly more personalized and effective care for this patient population. PMID:28971901

  6. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients.

    PubMed

    Borràs, Nina; Batlle, Javier; Pérez-Rodríguez, Almudena; López-Fernández, María Fernanda; Rodríguez-Trillo, Ángela; Lourés, Esther; Cid, Ana Rosa; Bonanad, Santiago; Cabrera, Noelia; Moret, Andrés; Parra, Rafael; Mingot-Castellano, María Eva; Balda, Ignacia; Altisent, Carme; Pérez-Montes, Rocío; Fisac, Rosa María; Iruín, Gemma; Herrero, Sonia; Soto, Inmaculada; de Rueda, Beatriz; Jiménez-Yuste, Víctor; Alonso, Nieves; Vilariño, Dolores; Arija, Olga; Campos, Rosa; Paloma, María José; Bermejo, Nuria; Berrueco, Rubén; Mateo, José; Arribalzaga, Karmele; Marco, Pascual; Palomo, Ángeles; Sarmiento, Lizheidy; Iñigo, Belén; Nieto, María Del Mar; Vidal, Rosa; Martínez, María Paz; Aguinaco, Reyes; César, Jesús María; Ferreiro, María; García-Frade, Javier; Rodríguez-Huerta, Ana María; Cuesta, Jorge; Rodríguez-González, Ramón; García-Candel, Faustino; Cornudella, Rosa; Aguilar, Carlos; Vidal, Francisco; Corrales, Irene

    2017-12-01

    Molecular diagnosis of patients with von Willebrand disease is pending in most populations due to the complexity and high cost of conventional molecular analyses. The need for molecular and clinical characterization of von Willebrand disease in Spain prompted the creation of a multicenter project (PCM-EVW-ES) that resulted in the largest prospective cohort study of patients with all types of von Willebrand disease. Molecular analysis of relevant regions of the VWF , including intronic and promoter regions, was achieved in the 556 individuals recruited via the development of a simple, innovative, relatively low-cost protocol based on microfluidic technology and next-generation sequencing. A total of 704 variants (237 different) were identified along VWF , 155 of which had not been previously recorded in the international mutation database. The potential pathogenic effect of these variants was assessed by in silico analysis. Furthermore, four short tandem repeats were analyzed in order to evaluate the ancestral origin of recurrent mutations. The outcome of genetic analysis allowed for the reclassification of 110 patients, identification of 37 asymptomatic carriers (important for genetic counseling) and re-inclusion of 43 patients previously excluded by phenotyping results. In total, 480 patients were definitively diagnosed. Candidate mutations were identified in all patients except 13 type 1 von Willebrand disease, yielding a high genotype-phenotype correlation. Our data reinforce the capital importance and usefulness of genetics in von Willebrand disease diagnostics. The progressive implementation of molecular study as the first-line test for routine diagnosis of this condition will lead to increasingly more personalized and effective care for this patient population. Copyright© 2017 Ferrata Storti Foundation.

  7. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  8. The clinical impact of using complex molecular profiling strategies in routine oncology practice.

    PubMed

    Laes, Jean-François; Aftimos, Philippe; Barthelemy, Philippe; Bellmunt, Joaquim; Berchem, Guy; Camps, Carlos; Peñas, Ramón de Las; Finzel, Ana; García-Foncillas, Jesús; Hervonen, Petteri; Wahid, Ibrahim; Joensuu, Timo; Kathan, Louis; Kong, Anthony; Mackay, James; Mikropoulos, Christos; Mokbel, Kefah; Mouysset, Jean-Loup; Odarchenko, Sergey; Perren, Timothy J; Pienaar, Rika; Regonesi, Carlos; Alkhayyat, Shadi Salem; El Kinge, Abdul Rahman; Abulkhair, Omalkhair; Galal, Khaled Morsi; Ghanem, Hady; El Karak, Fadi; Garcia, Angel; Ghitti, Gregori; Sadik, Helen

    2018-04-17

    Molecular profiling and functional assessment of signalling pathways of advanced solid tumours are becoming increasingly available. However, their clinical utility in guiding patients' treatment remains unknown. Here, we assessed whether molecular profiling helps physicians in therapeutic decision making by analysing the molecular profiles of 1057 advanced cancer patient samples after failing at least one standard of care treatment using a combination of next-generation sequencing (NGS), immunohistochemistry (IHC) and other specific tests. The resulting information was interpreted and personalized treatments for each patient were suggested. Our data showed that NGS alone provided the oncologist with useful information in 10-50% of cases (depending on cancer type), whereas the addition of IHC/other tests increased extensively the usefulness of the information provided. Using internet surveys, we investigated how therapy recommendations influenced treatment choice of the oncologist. For patients who were still alive after the provision of the molecular information (76.8%), 60.4% of their oncologists followed report recommendations. Most treatment decisions (93.4%) were made based on the combination of NGS and IHC/other tests, and an approved drug- rather than clinical trial enrolment- was the main treatment choice. Most common reasons given by physicians to explain the non-adherence to recommendations were drug availability and cost, which remain barriers to personalised precision medicine. Finally, we observed that 27% of patients treated with the suggested therapies had an overall survival > 12 months. Our study demonstrates that the combination of NGS and IHC/other tests provides the most useful information in aiding treatment decisions by oncologists in routine clinical practice.

  9. 'Drawing' a Molecular Portrait of CIN and Cervical Cancer: a Review of Genome-Wide Molecular Profiling Data.

    PubMed

    Kurmyshkina, Olga V; Kovchur, Pavel I; Volkova, Tatyana O

    2015-01-01

    In this review we summarize the results of studies employing high-throughput methods of profiling of HPV-associated cervical intraepithelial neoplasia (CIN) and squamous cell cervical cancers at key intracellular regulatory levels to demonstrate the unique identity of the landscape of molecular changes underlying this oncopathology, and to show how these changes are related to the 'natural history' of cervical cancer progression and the formation of clinically significant properties of tumors. A step-wise character of cervical cancer progression is a morphologically well-described fact and, as evidenced by genome-wide screenings, it is indeed the consistent change of the molecular profiles of HPV-infected epithelial cells through which they progressively acquire the phenotypic hallmarks of cancerous cells. In this sense, CIN/cervical cancer is a unique model for studying the driving forces and mechanisms of carcinogenesis. Recent research has allowed definition of the whole-genome spectrum of both random and regular molecular alterations, as well as changes either common to processes of carcinogenesis or specific for cervical cancer. Despite the existence of questions that are still to be investigated, these findings are of great value for the future development of approaches for the diagnostics and treatment of cervical neoplasms.

  10. Educational technology in care management: technological profile of nurses in Portuguese hospitals.

    PubMed

    Landeiro, Maria José Lumini; Freire, Rosa Maria Albuquerque; Martins, Maria Manuela; Martins, Teresa Vieira; Peres, Heloísa Helena Ciqueto

    2015-12-01

    Objective To identify the technological profile of nurses in Portuguese hospitals. Method A quantitative exploratory study conducted in two hospitals in the northern region and one in the central region of Portugal. The sample was randomly selected and included 960 nurses. Results Of the participants, 420 (46.1%) used computers, 196 (23.4%) reported having knowledge about using computers for teaching, 174 (21.1%) used computers to teach, 112 (15.1%) recognized that using computers can be a technological means to supplement classroom training, 477 (61.6%) would like to receive training on using computers, and 382 (40.9%) reported self-learning of information technology. In relation to distance education, 706 (74.9%) reported they were familiar with it and 752 (76.4%) indicated an interest in participating in training using this modality. Conclusion Organizations should be mindful of the technological profile shown by this group of nurses and look for ways to introduce educational technologies in the management of care.

  11. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis.

    PubMed

    Hamada, Tsuyoshi; Keum, NaNa; Nishihara, Reiko; Ogino, Shuji

    2017-03-01

    Molecular pathological epidemiology (MPE) is an integrative field that utilizes molecular pathology to incorporate interpersonal heterogeneity of a disease process into epidemiology. In each individual, the development and progression of a disease are determined by a unique combination of exogenous and endogenous factors, resulting in different molecular and pathological subtypes of the disease. Based on "the unique disease principle," the primary aim of MPE is to uncover an interactive relationship between a specific environmental exposure and disease subtypes in determining disease incidence and mortality. This MPE approach can provide etiologic and pathogenic insights, potentially contributing to precision medicine for personalized prevention and treatment. Although breast, prostate, lung, and colorectal cancers have been among the most commonly studied diseases, the MPE approach can be used to study any disease. In addition to molecular features, host immune status and microbiome profile likely affect a disease process, and thus serve as informative biomarkers. As such, further integration of several disciplines into MPE has been achieved (e.g., pharmaco-MPE, immuno-MPE, and microbial MPE), to provide novel insights into underlying etiologic mechanisms. With the advent of high-throughput sequencing technologies, available genomic and epigenomic data have expanded dramatically. The MPE approach can also provide a specific risk estimate for each disease subgroup, thereby enhancing the impact of genome-wide association studies on public health. In this article, we present recent progress of MPE, and discuss the importance of accounting for the disease heterogeneity in the era of big-data health science and precision medicine.

  12. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis

    PubMed Central

    Hamada, Tsuyoshi; Keum, NaNa; Nishihara, Reiko; Ogino, Shuji

    2016-01-01

    Molecular pathological epidemiology (MPE) is an integrative field that utilizes molecular pathology to incorporate interpersonal heterogeneity of a disease process into epidemiology. In each individual, the development and progression of a disease are determined by a unique combination of exogenous and endogenous factors, resulting in different molecular and pathological subtypes of the disease. Based on “the unique disease principle,” the primary aim of MPE is to uncover an interactive relationship between a specific environmental exposure and disease subtypes in determining disease incidence and mortality. This MPE approach can provide etiologic and pathogenic insights, potentially contributing to precision medicine for personalized prevention and treatment. Although breast, prostate, lung, and colorectal cancers have been among the most commonly studied diseases, the MPE approach can be used to study any disease. In addition to molecular features, host immune status and microbiome profile likely affect a disease process, and thus serve as informative biomarkers. As such, further integration of several disciplines into MPE has been achieved (e.g., pharmaco-MPE, immuno-MPE, and microbial MPE), to provide novel insights into underlying etiologic mechanisms. With the advent of high-throughput sequencing technologies, available genomic and epigenomic data have expanded dramatically. The MPE approach can also provide a specific risk estimate for each disease subgroup, thereby enhancing the impact of genome-wide association studies on public health. In this article, we present recent progress of MPE, and discuss the importance of accounting for the disease heterogeneity in the era of big-data health science and precision medicine. PMID:27738762

  13. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    PubMed

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A novel approach for data integration and disease subtyping

    PubMed Central

    Tagett, Rebecca; Diaz, Diana

    2017-01-01

    Advances in high-throughput technologies allow for measurements of many types of omics data, yet the meaningful integration of several different data types remains a significant challenge. Another important and difficult problem is the discovery of molecular disease subtypes characterized by relevant clinical differences, such as survival. Here we present a novel approach, called perturbation clustering for data integration and disease subtyping (PINS), which is able to address both challenges. The framework has been validated on thousands of cancer samples, using gene expression, DNA methylation, noncoding microRNA, and copy number variation data available from the Gene Expression Omnibus, the Broad Institute, The Cancer Genome Atlas (TCGA), and the European Genome-Phenome Archive. This simultaneous subtyping approach accurately identifies known cancer subtypes and novel subgroups of patients with significantly different survival profiles. The results were obtained from genome-scale molecular data without any other type of prior knowledge. The approach is sufficiently general to replace existing unsupervised clustering approaches outside the scope of bio-medical research, with the additional ability to integrate multiple types of data. PMID:29066617

  15. Environmental Chemicals and Aging.

    PubMed

    Pearson, Brandon L; Ehninger, Dan

    2017-03-01

    Innovations in agriculture and medicine as well as industrial and domestic technologies are essential for the growing and aging global population. These advances generally require the use of novel natural or synthetic chemical agents with the potential to affect human health. Here, we attempt to highlight environmental chemicals and select drugs with the potential to exacerbate aging by directly affecting molecular aging cascades focusing particular attention on the brain. Finally, we call attention to some potential fruitful areas of research, particularly with advanced molecular profiling that could aid in prevention or mitigation of environmental chemical toxic influences in the periphery and the brain. We briefly summarize new research and highlight a recent study designed to prospectively identify agrochemicals with the potential to induce neurological diseases and place these discoveries into the already rich neurodegeneration and aging literature. Collectively, the research reviewed briefly here highlight chemicals with the true potential to accelerate aging, particularly in the brain, by eliciting elevated free radical stress and mitochondrial dysfunction. We make general recommendations about improved methodological approaches toward identification and regulation of chemicals that are gerontogenic to the brain.

  16. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  17. Personalized comprehensive molecular profiling of high risk osteosarcoma: Implications and limitations for precision medicine.

    PubMed

    Subbiah, Vivek; Wagner, Michael J; McGuire, Mary F; Sarwari, Nawid M; Devarajan, Eswaran; Lewis, Valerae O; Westin, Shanon; Kato, Shumei; Brown, Robert E; Anderson, Pete

    2015-12-01

    Despite advances in molecular medicine over recent decades, there has been little advancement in the treatment of osteosarcoma. We performed comprehensive molecular profiling in two cases of metastatic and chemotherapy-refractory osteosarcoma to guide molecularly targeted therapy. Hybridization capture of >300 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from tumor samples from two patients with recurrent, metastatic osteosarcoma. The DNA from each sample was sequenced to high, uniform coverage. Immunohistochemical probes and morphoproteomics analysis were performed, in addition to fluorescence in situ hybridization. All analyses were performed in CLIA-certified laboratories. Molecularly targeted therapy based on the resulting profiles was offered to the patients. Biomedical analytics were performed using QIAGEN's Ingenuity® Pathway Analysis. In Patient #1, comprehensive next-generation exome sequencing showed MET amplification, PIK3CA mutation, CCNE1 amplification, and PTPRD mutation. Immunohistochemistry-based morphoproteomic analysis revealed c-Met expression [(p)-c-Met (Tyr1234/1235)] and activation of mTOR/AKT pathway [IGF-1R (Tyr1165/1166), p-mTOR [Ser2448], p-Akt (Ser473)] and expression of SPARC and COX2. Targeted therapy was administered to match the P1K3CA, c-MET, and SPARC and COX2 aberrations with sirolimus+ crizotinib and abraxane+ celecoxib. In Patient #2, aberrations included NF2 loss in exons 2-16, PDGFRα amplification, and TP53 mutation. This patient was enrolled on a clinical trial combining targeted agents temsirolimus, sorafenib and bevacizumab, to match NF2, PDGFRα and TP53 aberrations. Both the patients did not benefit from matched therapy. Relapsed osteosarcoma is characterized by complex signaling and drug resistance pathways. Comprehensive molecular profiling holds great promise for tailoring personalized therapies for cancer. Methods for such profiling are evolving and need to be refined to better assist clinicians in making treatment decisions based on the large amount of data that results from this type of testing. Further research in this area is warranted.

  18. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    PubMed

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  19. Theoretical Compton profile anisotropies in molecules and solids. IV. Parallel--perpendicular anisotropies in alkali fluoride molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matcha, R.L.; Pettitt, B.M.; Ramirez, B.I.

    1979-07-15

    Calculations of Compton profiles and parallel--perpendicular anisotropies in alkali fluorides are presented and analyzed in terms of molecular charge distributions and wave function character. It is found that the parallel profile associated with the valence pi orbital is the principal factor determining the relative shapes of the total profile anisotropies in the low momentum region.

  20. CGDM: collaborative genomic data model for molecular profiling data using NoSQL.

    PubMed

    Wang, Shicai; Mares, Mihaela A; Guo, Yi-Ke

    2016-12-01

    High-throughput molecular profiling has greatly improved patient stratification and mechanistic understanding of diseases. With the increasing amount of data used in translational medicine studies in recent years, there is a need to improve the performance of data warehouses in terms of data retrieval and statistical processing. Both relational and Key Value models have been used for managing molecular profiling data. Key Value models such as SeqWare have been shown to be particularly advantageous in terms of query processing speed for large datasets. However, more improvement can be achieved, particularly through better indexing techniques of the Key Value models, taking advantage of the types of queries which are specific for the high-throughput molecular profiling data. In this article, we introduce a Collaborative Genomic Data Model (CGDM), aimed at significantly increasing the query processing speed for the main classes of queries on genomic databases. CGDM creates three Collaborative Global Clustering Index Tables (CGCITs) to solve the velocity and variety issues at the cost of limited extra volume. Several benchmarking experiments were carried out, comparing CGDM implemented on HBase to the traditional SQL data model (TDM) implemented on both HBase and MySQL Cluster, using large publicly available molecular profiling datasets taken from NCBI and HapMap. In the microarray case, CGDM on HBase performed up to 246 times faster than TDM on HBase and 7 times faster than TDM on MySQL Cluster. In single nucleotide polymorphism case, CGDM on HBase outperformed TDM on HBase by up to 351 times and TDM on MySQL Cluster by up to 9 times. The CGDM source code is available at https://github.com/evanswang/CGDM. y.guo@imperial.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  2. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  3. Switching benchmarks in cancer of unknown primary: from autopsy to microarray.

    PubMed

    Pentheroudakis, George; Golfinopoulos, Vassilios; Pavlidis, Nicholas

    2007-09-01

    Cancer of unknown primary (CUP) is associated with unknown biology and dismal prognosis. Information on the primary site of origin is scant and has never been analysed. We systematically reviewed all published evidence on the CUP primary site identified by two different approaches, either autopsy or microarray gene expression profiling. Published reports on identification of CUP primary site by autopsy or microarray-based multigene expression platforms were retrieved and analysed for year of publication, primary site, patient age, gender, histology, rate of primary identification, manifestations and metastatic deposits, microarray chip technology, training and validation sets, mathematical modelling, classification accuracy and number of classifying genes. From 1944 to 2000, a total of 884 CUP patients (66% males) underwent autopsy in 12 studies after presenting with metastatic or systemic symptoms and succumbing to their disease. A primary was identified in 644 (73%) of them, mostly in the lung (27%), pancreas (24%), hepatobiliary tree (8%), kidneys (8%), bowel, genital system and stomach, as a small focus of adenocarcinoma or poorly differentiated carcinoma. An unpredictable systemic dissemination was evident with high frequency of lung (46%), nodal (35%), bone (17%), brain (16%) and uncommon (18%) deposits. Between the 1944-1980 and the 1980-2000 series, female representation increased, 'undetermined neoplasm' diagnosis became rarer, pancreatic primaries were found less often while colonic ones were identified more frequently. Four studies using microarray technology profiled more than 500 CUP cases using classifier set of genes (ranging from 10 to 495) and reported strikingly dissimilar frequencies of assigned primary sites (lung 11.5%, pancreas 12.5%, bowel 12%, breast 15%, hepatobiliary tree 8%, kidneys 6%, genital system 9%, bladder 5%) in 75-90% of the cases. Evolution in medical imaging technology, diet and lifestyle habits probably account for changing epidemiology of CUP primaries in autopsies. Discrepant assignment of primary sites by microarrays may be due to the presence of 'sanctuary sites' in autopsies, molecular misclassification and the postulated presence of a pro-metastatic genetic signature. In view of the absence of patient therapeutic or prognostic benefit with primary identification, gene expression profiling should be re-orientated towards unraveling the complex pathophysiology of metastases.

  4. Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.

    2014-12-28

    We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less

  5. Wall-collision line broadening of molecular oxygen within nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressuremore » and Doppler broadening.« less

  6. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  7. Power Equipment Technology. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for power equipment technology occupations. The list contains units (with and without subunits), competencies, and…

  8. Ohio Information Technology Competency Profile.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus.

    This profile includes a comprehensive set of information technology competencies that are grounded in core academic subject areas and built around four occupational clusters (information services and support, network systems, programming and software development, and interactive media) that reflect the job opportunities and skills required for…

  9. Studying bacteria in respiratory specimens by using conventional and molecular microbiological approaches

    PubMed Central

    Rogers, Geraint B; Daniels, Thomas WV; Tuck, Andrew; Carroll, Mary P; Connett, Gary J; David, Gondi JP; Bruce, Kenneth D

    2009-01-01

    Background Drawing from previous studies, the traditional routine diagnostic microbiology evaluation of samples from chronic respiratory conditions may provide an incomplete picture of the bacteria present in airways disease. Here, the aim was to determine the extent to which routine diagnostic microbiology gave a different assessment of the species present in sputa when analysed by using culture-independent assessment. Methods Six different media used in routine diagnostic microbiology were inoculated with sputum from twelve patients. Bacterial growth on these plates was harvested and both RNA and DNA extracted. DNA and RNA were also extracted directly from the same sample of sputum. All nucleic acids served as templates for PCR and reverse transcriptase-PCR amplification of "broad range" bacterial 16S rRNA gene regions. The regions amplified were separated by Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling and compared to assess the degree of overlap between approaches. Results A mean of 16.3 (SD 10.0) separate T-RF band lengths in the profiles from each sputum sample by Direct Molecular Analysis, with a mean of 8.8 (SD 5.8) resolved by DNA profiling and 13.3 (SD 8.0) resolved by RNA profiling. In comparison, 8.8 (SD 4.4) T-RF bands were resolved in profiles generated by Culture-derived Molecular Analysis. There were a total of 184 instances of T-RF bands detected in the direct sputum profiles but not in the corresponding culture-derived profiles, representing 83 different T-RF band lengths. Amongst these were fifteen instances where the T-RF band represented more than 10% of the total band volume (with a mean value of 23.6%). Eight different T-RF band lengths were resolved as the dominant band in profiles generated directly from sputum. Of these, only three were detected in profiles generated from the corresponding set of cultures. Conclusion Due to their focus on isolation of a small group of recognised pathogens, the use of culture-dependent methods to analyse samples from chronic respiratory infections can provide a restricted understanding of the bacterial species present. The use of a culture-independent molecular approach here identifies that there are many bacterial species in samples from CF and COPD patients that may be clinically relevant. PMID:19368727

  10. Multiplex Identification of Microbes ▿ †

    PubMed Central

    Hyman, Richard W.; St.Onge, Robert P.; Allen, Edward A.; Miranda, Molly; Aparicio, Ana Maria; Fukushima, Marilyn; Davis, Ronald W.

    2010-01-01

    We have adapted molecular inversion probe technology to identify microbes in a highly multiplexed procedure. This procedure does not require growth of the microbes. Rather, the technology employs DNA homology twice: once for the molecular probe to hybridize to its homologous DNA and again for the 20-mer oligonucleotide barcode on the molecular probe to hybridize to a commercially available molecular barcode array. As proof of concept, we have designed, tested, and employed 192 molecular probes for 40 microbes. While these particular molecular probes are aimed at our interest in the microbes in the human vagina, this molecular probe method could be employed to identify the microbes in any ecological niche. PMID:20418427

  11. Profiling of differentially expressed genes critical to storage root development in hydroponically and in-vitro grown sweetpotato for space farming

    NASA Astrophysics Data System (ADS)

    Egnin, M.; Gao, H.; He, G.; Woullard, F.; Mortley, D.; Scoffield, J.; Bey, B.; Quain, M.; Prakash, C. S.; Bonsi, C.

    Environment is known to have significant effects on the nutrient content and quality of crop plants especially through its impact on the temporal and spatial expression of genes Little is known about the molecular changes and harvest index in plants in response to microgravity Sweetpotato underline Ipomoea underline batatas L Lam is one of the most important root crops and an excellent NASA crop for space farming to provide essential nutrients to sustain human life on long-term space missions The initiation and development of storage root formation is one of the most critical processes determining yield of sweetpotato The molecular mechanism of storage root initiation and development in sweetpotato is poorly understood To this end knowledge of gravity perception the genetic and molecular nature of the induction process of storage root will tremendously help improve on sweetpotato harvest index for space farming cDNA-AFLP techniques were employed to investigate temporal and spatial expressions to gain molecular insights and identify transcripts differentially expressed during early stages of sweetpotato storage root development Two hydroponically grown cultivars using Nutrient Film Technology NFT and microstorage roots were evaluated TU-82-155 an early maturing 90 DAP with orange flesh and tinge red skin and PI318846-3 a late maturing 135 DAP with white flesh and off-yellow skin were compared for differential genes expression during storage root development at 14 21 28 35 and 45 DAP Total RNA was isolated from

  12. Evaluating cell lines as tumour models by comparison of genomic profiles

    PubMed Central

    Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus

    2013-01-01

    Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242

  13. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  14. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes.

    PubMed

    Jung, Sungwon

    2018-04-20

    Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing data resources can be utilized to cover various aspects of these conditions. This review presents studies with available genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and T2D.

  15. Mass spectrometric profiling of low-molecular-weight volatile compounds--diagnostic potential and latest applications.

    PubMed

    Lechner, Matthias; Rieder, Josef

    2007-01-01

    The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.

  16. Biochemical and Molecular Analysis of Some Commercial Samples of Chilli Peppers from Mexico

    PubMed Central

    Troconis-Torres, Ivonne Guadalupe; Rojas-López, Marlon; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes; Maldonado-Mendoza, Ignacio Eduardo; Dorantes-Álvarez, Lidia; Tellez-Medina, Darío; Jaramillo-Flores, María Eugenia

    2012-01-01

    The genus Capsicum provides antioxidant compounds, such as phenolics and carotenoids, into the diet. In Mexico, there is a wide diversity of species and varieties of chilli peppers, a fruit which has local cultural and gastronomic importance. In the present study, the relationship of the carotenoid and phenolic profiles with the RAPD fingerprint of three different commercial cultivars of chilli peppers of seven regions of Mexico was investigated. Through RAPD, the species of chilli were differentiated by means of different primers (OPE-18, MFG-17, MFG-18, C51, and C52). The genetic distance found with OPE 18 was in the order of 2.6. The observed differences were maintained when the chromatographic profile of carotenoids, and the molecular markers were analyzed, which suggest a close relationship between carotenoids and the genetic profile. While the chromatographic profile of phenols and the molecular markers were unable to differentiate between genotypes of chilli peppers. In addition, by using infrared spectroscopy and statistical PCA, differences explained by geographic origin were found. Thus, this method could be an alternative for identification of chilli species with respect to their geographic origin. PMID:22665993

  17. Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations

    PubMed Central

    Lee, In-Ho; Kim, Seung-Yeon; Lee, Jooyoung

    2013-01-01

    We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature. PMID:23917881

  18. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico.

    PubMed

    Troconis-Torres, Ivonne Guadalupe; Rojas-López, Marlon; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes; Maldonado-Mendoza, Ignacio Eduardo; Dorantes-Álvarez, Lidia; Tellez-Medina, Darío; Jaramillo-Flores, María Eugenia

    2012-01-01

    The genus Capsicum provides antioxidant compounds, such as phenolics and carotenoids, into the diet. In Mexico, there is a wide diversity of species and varieties of chilli peppers, a fruit which has local cultural and gastronomic importance. In the present study, the relationship of the carotenoid and phenolic profiles with the RAPD fingerprint of three different commercial cultivars of chilli peppers of seven regions of Mexico was investigated. Through RAPD, the species of chilli were differentiated by means of different primers (OPE-18, MFG-17, MFG-18, C51, and C52). The genetic distance found with OPE 18 was in the order of 2.6. The observed differences were maintained when the chromatographic profile of carotenoids, and the molecular markers were analyzed, which suggest a close relationship between carotenoids and the genetic profile. While the chromatographic profile of phenols and the molecular markers were unable to differentiate between genotypes of chilli peppers. In addition, by using infrared spectroscopy and statistical PCA, differences explained by geographic origin were found. Thus, this method could be an alternative for identification of chilli species with respect to their geographic origin.

  19. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    NASA Astrophysics Data System (ADS)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of these two sets of states. Mapping genome-scale protein binding data using pseudoinverse projection onto patterns of RNA expression data that had been extracted by SVD and GSVD, a novel correlation between DNA replication initiation and RNA transcription during the cell cycle in yeast, that might be due to a previously unknown mechanism of regulation, is predicted. (1) Alter & Golub, Proc. Natl. Acad. Sci. USA 101, 16577 (2004). (2) Alter, Golub, Brown & Botstein, Miami Nat. Biotechnol. Winter Symp. 2004 (www.med.miami.edu/mnbws/alter-.pdf)

  20. Metabolic Profiles Predict Adverse Events Following Coronary Artery Bypass Grafting

    PubMed Central

    Shah, Asad A.; Craig, Damian M.; Sebek, Jacqueline K.; Haynes, Carol; Stevens, Robert C.; Muehlbauer, Michael J.; Granger, Christopher B.; Hauser, Elizabeth R.; Newby, L. Kristin; Newgard, Christopher B.; Kraus, William E.; Hughes, G. Chad; Shah, Svati H.

    2012-01-01

    Objectives Clinical models incompletely predict outcomes following coronary artery bypass grafting. Novel molecular technologies may identify biomarkers to improve risk stratification. We examined whether metabolic profiles can predict adverse events in patients undergoing coronary artery bypass grafting. Methods The study population comprised 478 subjects from the CATHGEN biorepository of patients referred for cardiac catheterization who underwent coronary artery bypass grafting after enrollment. Targeted mass spectrometry-based profiling of 69 metabolites was performed in frozen, fasting plasma samples collected prior to surgery. Principal-components analysis and Cox proportional hazards regression modeling were used to assess the relation between metabolite factor levels and a composite outcome of post-coronary artery bypass grafting myocardial infarction, need for percutaneous coronary intervention, repeat coronary artery bypass grafting, or death. Results Over a mean follow-up of 4.3 ± 2.4 years, 126 subjects (26.4%) suffered an adverse event. Three principal-components analysis-derived factors were significantly associated with adverse outcome in univariable analysis: short-chain dicarboxylacylcarnitines (factor 2, P=0.001); ketone-related metabolites (factor 5, P=0.02); and short-chain acylcarnitines (factor 6, P=0.004). These three factors remained independently predictive of adverse outcome after multivariable adjustment: factor 2 (adjusted hazard ratio 1.23; 95% confidence interval [1.10-1.38]; P<0.001), factor 5 (1.17 [1.01-1.37], P=0.04), and factor 6 (1.14 [1.02-1.27], P=0.03). Conclusions Metabolic profiles are independently associated with adverse outcomes following coronary artery bypass grafting. These profiles may represent novel biomarkers of risk that augment existing tools for risk stratification of coronary artery bypass grafting patients and may elucidate novel biochemical pathways that mediate risk. PMID:22306227

  1. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile for computer-integrated manufacturing technology begins with definitions for four occupations: manufacturing technician, quality technician, mechanical engineering technician, and computer-assisted design/drafting (CADD) technician. A chart lists competencies by unit and indicates whether entire or partial unit is…

  2. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  3. The reference transcriptome of the adult female biting midge (Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and sucrose feeding conditions.

    PubMed

    Nayduch, Dana; Lee, Matthew B; Saski, Christopher A

    2014-01-01

    Unlike other important vectors such as mosquitoes and sandflies, genetic and genomic tools for Culicoides biting midges are lacking, despite the fact that they vector a large number of arboviruses and other pathogens impacting humans and domestic animals world-wide. In North America, female Culicoides sonorensis midges are important vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), orbiviruses that cause significant disease in livestock and wildlife. Libraries of tissue-specific transcripts expressed in response to feeding and oral orbivirus challenge in C. sonorensis have previously been reported, but extensive genome-wide expression profiling in the midge has not. Here, we successfully used deep sequencing technologies to construct the first adult female C. sonorensis reference transcriptome, and utilized genome-wide expression profiling to elucidate the genetic response to blood and sucrose feeding over time. The adult female midge unigene consists of 19,041 genes, of which less than 7% are differentially expressed during the course of a sucrose meal, while up to 52% of the genes respond significantly in blood-fed midges, indicating hematophagy induces complex physiological processes. Many genes that were differentially expressed during blood feeding were associated with digestion (e.g. proteases, lipases), hematophagy (e.g., salivary proteins), and vitellogenesis, revealing many major metabolic and biological factors underlying these critical processes. Additionally, key genes in the vitellogenesis pathway were identified, which provides the first glimpse into the molecular basis of anautogeny for C. sonorensis. This is the first extensive transcriptome for this genus, which will serve as a framework for future expression studies, RNAi, and provide a rich dataset contributing to the ultimate goal of informing a reference genome assembly and annotation. Moreover, this study will serve as a foundation for subsequent studies of genome-wide expression analyses during early orbivirus infection and dissecting the molecular mechanisms behind vector competence in midges.

  4. Early molecular correlates of adverse events following yellow fever vaccination

    PubMed Central

    Chan, Candice Y.Y.; Chan, Kuan Rong; Chua, Camillus J.H.; nur Hazirah, Sharifah; Ghosh, Sujoy; Ooi, Eng Eong; Low, Jenny G.

    2017-01-01

    The innate immune response shapes the development of adaptive immunity following infections and vaccination. However, it can also induce symptoms such as fever and myalgia, leading to the possibility that the molecular basis of immunogenicity and reactogenicity of vaccination are inseparably linked. To test this possibility, we used the yellow fever live-attenuated vaccine (YFLAV) as a model to study the molecular correlates of reactogenicity or adverse events (AEs). We analyzed the outcome of 68 adults who completed a YFLAV clinical trial, of which 43 (63.2%) reported systemic AEs. Through whole-genome profiling of blood collected before and after YFLAV dosing, we observed that activation of innate immune genes at day 1, but not day 3 after vaccination, was directly correlated with AEs. These findings contrast with the gene expression profile at day 3 that we and others have previously shown to be correlated with immunogenicity. We conclude that although the innate immune response is a double-edged sword, its expression that induces AEs is temporally distinct from that which engenders robust immunity. The use of genomic profiling thus provides molecular insights into the biology of AEs that potentially forms a basis for the development of safer vaccines. PMID:28978802

  5. Genome-scale approaches to the epigenetics of common human disease

    PubMed Central

    2011-01-01

    Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology. PMID:19844740

  6. Histologic effects of resurfacing lasers.

    PubMed

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Biomolecular and clinical practice in malignant pleural mesothelioma and lung cancer: what thoracic surgeons should know†

    PubMed Central

    Opitz, Isabelle; Bueno, Raphael; Lim, Eric; Pass, Harvey; Pastorino, Ugo; Boeri, Mattia; Rocco, Gaetano

    2014-01-01

    Today, molecular-profile-directed therapy is a guiding principle of modern thoracic oncology. The knowledge of new biomolecular technology applied to the diagnosis, prognosis, and treatment of lung cancer and mesothelioma should be part of the 21st century thoracic surgeons' professional competence. The European Society of Thoracic Surgeons (ESTS) Biology Club aims at providing a comprehensive insight into the basic biology of the diseases we are treating. During the 2013 ESTS Annual Meeting, different experts of the field presented the current knowledge about diagnostic and prognostic biomarkers in malignant pleural mesothelioma including new perspectives as well as the role and potential application of microRNA and genomic sequencing for lung cancer, which are summarized in the present article. PMID:24623168

  8. Mining meiosis and gametogenesis with DNA microarrays.

    PubMed

    Schlecht, Ulrich; Primig, Michael

    2003-04-01

    Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.

  9. The dawn of a revolution in personalized lung cancer prevention.

    PubMed

    Khuri, Fadlo R

    2011-07-01

    Lung cancer prevention and early detection, which have fallen on hard times for more than the past 20 years, seem to have turned a corner toward better times ahead. Exciting new results of randomized controlled trials that targeted the arachidonic acid pathway, including a celecoxib trial reported by Mao and colleagues in this issue of the journal (beginning on page 984) and a trial of the prostacyclin analog iloprost, complement recently reported 20%-30% lung cancer mortality reductions, either with aspirin in targeting the arachidonic acid pathway or with computed tomography screening. The new results show encouraging activity personalized to former smokers and/or people expressing predictive biomarkers. These trials and technological advances in molecular profiling and imaging herald substantial clinical advances on the horizon of this field.

  10. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  11. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  12. Use of mutation profiles to refine the classification of endometrial carcinomas

    PubMed Central

    Cheang, Maggie CU; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P.; Mutch, David G.; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C. Blake; Huntsman, David G

    2014-01-01

    The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following 9 genes; ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF and PPP2R5C. Based on this gene panel each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles we were able to identify subtype outliers, i.e. cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours; endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations), and serous-type (TP53 and PPP2R1A mutations). While this nine gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics. PMID:22653804

  13. Effects of TT8 and HB12 Silencing on the Relations between the Molecular Structures of Alfalfa ( Medicago sativa) Plants and Their Nutritional Profiles and In Vitro Gas Production.

    PubMed

    Lei, Yaogeng; Hannoufa, Abdelali; Prates, Luciana Louzada; Shi, Haitao; Wang, Yuxi; Biligetu, Bill; Christensen, David; Yu, Peiqiang

    2018-06-06

    The objective of this study was to investigate the effects of silencing the TT8 and HB12 genes on the nutritive profiles and in vitro gas production of alfalfa in relation to the spectral molecular structures of alfalfa. TT8-silenced (TT8i, n = 5) and HB12-silenced (HB12i, n = 11) alfalfa were generated by RNA interference (RNAi) and grown with nontransgenic wild type controls (WT, n = 4) in a greenhouse. Alfalfa plants were harvested at early-to-mid vegetative stage. Samples were analyzed for their chemical compositions, CNCPS fractions, and in vitro gas production. Correlations and regressions of the nutritional profiles and in vitro gas production with the molecular spectral structures were also determined. The results showed that the transformed alfalfa had higher digestible fiber and lower crude protein with higher proportions of indigestible protein than WT. HB12 RNAi had lower gas production compared with those of the others. Some chemical, CNCPS, and gas-production profiles were closely correlated with spectral structures and could be well predicted from spectral parameters. In conclusion, the RNAi silencing of TT8 and HB12 in alfalfa altered the chemical, CNCPS and gas-production profiles of alfalfa, and such alterations were closely correlated with the inherent spectral structures of alfalfa.

  14. Molecular typing of Vibrio parahaemolyticus isolated from seafood harvested along the south-west coast of India.

    PubMed

    Bhowmick, P P; Khushiramani, R; Raghunath, P; Karunasagar, I; Karunasagar, I

    2008-02-01

    Evaluation of protein profiling for typing Vibrio parahaemolyticus using 71 strains isolated from different seafood and comparison with other molecular typing techniques such as random amplified polymorphic DNA analysis (RAPD) and enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR. Three molecular typing methods were used for the typing of 71 V. parahaemolyticus isolates from seafood. RAPD had a discriminatory index (DI) of 0.95, while ERIC-PCR showed a DI of 0.94. Though protein profiling had less discriminatory power, use of this method can be helpful in identifying new proteins which might have a role in establishment in the host or virulence of the organism. The use of protein profiling in combination with other established typing methods such as RAPD and ERIC-PCR generates useful information in the case of V. parahaemolyticus associated with seafood. The study demonstrates the usefulness of nucleic acid and protein-based studies in understanding the relationship between various isolates from seafood.

  15. Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.).

    PubMed

    Chen, Xia; Zhang, Min; Tan, Jie; Huang, Shuping; Wang, Chunli; Zhang, Hongyuan; Tan, Taiming

    2017-01-01

    Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for further investigation of key genes involved in the parthenocarpic fruit development and genomics-assisted breeding.

  16. Comparative Characterization of Biomechanical Behavior and Healing Profile of a Novel Ultra-High-Molecular-Weight Amorphous Poly-l-Lactic Acid Sirolimus-Eluting Bioresorbable Coronary Scaffold.

    PubMed

    Cheng, Yanping; Gasior, Pawel; Shibuya, Masahiko; Ramzipoor, Kamal; Lee, Chang; Estrada, Edward A; Dokko, Daniell; McGregor, Jenn C; Conditt, Gerard B; Kaluza, Greg L; Granada, Juan F

    2016-10-01

    Clinically available bioresorbable scaffolds (BRS) rely on polymer crystallinity to achieve mechanical strength resulting in limited overexpansion capabilities and structural integrity when exposed to high-loading conditions. We aimed to evaluate the biomechanical behavior and vascular healing profile of a novel, sirolimus-eluting, high-molecular-weight, amorphous poly-l-lactic acid-based BRS (Amaranth BRS). In vitro biomechanical testing was performed under static and cyclic conditions. A total of 99 devices (65 Amaranth BRS versus 34 Absorb bioresorbable vascular scaffold [BVS]) were implanted in 99 coronary arteries of 37 swine for pharmacokinetics and healing evaluation at various time points. In the Absorb BVS, the number of fractures per scaffold seen on light microscopy was 6.0 (5.0-10.5) when overexpanded 1.0 mm above nominal values (≈34%). No fractures were observed in the Amaranth BRS group at 1.3 mm above nominal values (≈48% overexpansion). The number of fractures was higher in the Absorb BVS on accelerated cycle testing over time (at 24K cycles=5.0 [5.0-9.0] Absorb BVS versus 0.0 [0.0-0.5] Amaranth BRS). Approximately 90% of sirolimus was found to be eluted by 90 days. Optical coherence tomography analysis demonstrated lower percentages of late scaffold recoil in the Amaranth BRS at 3 months (Amaranth BRS=-10±16.1% versus Absorb BVS=10.7±13.2%; P=0.004). Histopathology analysis revealed comparable levels of vascular healing and inflammatory responses between both BRSs up to 6 months. New-generation high-molecular-weight amorphous poly-l-lactic acid scaffolds have the potential to improve the clinical performance of BRS and provide the ideal platform for the future miniaturization of the technology. © 2016 American Heart Association, Inc.

  17. Health Technologies State Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This "tech prep" state competency profile contains all the competencies required and recommended for entry-level employees in occupations in the health technologies cluster. Introductory materials include the following: descriptions of the different types of competencies (essential ones that must be included in all new tech prep programs…

  18. Impact of changes in profile measurement technology on QA testing of pavement smoothness : technical report.

    DOT National Transportation Integrated Search

    2013-03-01

    This project aims to establish the impact of recent changes in profiling technology on TxDOTs implementation of the Departments Item 585 and SP247-011 ride specifications. Of particular importance to this research is verification of the ride st...

  19. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case StudyTo be

    EPA Science Inventory

    Molecular Thresholds for Early Key Events in Liver Tumorgensis: PhthalateCase StudyTriangleShort-term changes in molecular profiles are a central component of strategies to model health effects of environmental chemicals such as phthalates, for which there is widespread human exp...

  20. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds.

    PubMed

    Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A

    2009-07-01

    Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.

  1. Spintronics: The molecular way

    NASA Astrophysics Data System (ADS)

    Cornia, Andrea; Seneor, Pierre

    2017-05-01

    Molecular spintronics is an interdisciplinary field at the interface between organic spintronics, molecular magnetism, molecular electronics and quantum computing, which is advancing fast and promises large technological payoffs.

  2. Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.

    PubMed

    Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice

    2015-02-11

    Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.

  3. Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Industrial biotechnology has been defined as the use and application of biotechnology for the sustainable processing and production of chemicals, materials and fuels. It makes use of biocatalysts such as microbial communities, whole-cell microorganisms or purified enzymes. In the review these processes are described. Drug design is an iterative process which begins when a chemist identifies a compound that displays an interesting biological profile and ends when both the activity profile and the chemical synthesis of the new chemical entity are optimized. Traditional approaches to drug discovery rely on a stepwise synthesis and screening program for large numbers of compounds to optimize activity profiles. Over the past ten to twenty years, scientists have used computer models of new chemical entities to help define activity profiles, geometries and relativities. This article introduces inter alia the concepts of molecular modelling and contains references for further reading.

  4. Ex vivo tissue imaging of human glioblastoma using a small bore 7T MRI and correlation with digital pathology and proteomics profiling

    NASA Astrophysics Data System (ADS)

    Matsuda, Kant M.; Lopes-Calcas, Ana; Magyar, Thalia; O'Brien-Moran, Zoe; Buist, Richard; Martin, Melanie

    2017-03-01

    Recent advancement in MRI established multi-parametric imaging for in vivo characterization of pathologic changes in brain cancer, which is expected to play a role in imaging biomarker development. Diffusion Tensor Imaging (DTI) is a prime example, which has been deployed for assessment of therapeutic response via analysis of apparent diffusion coefficient (ADC) / mean diffusivity (MD) values. They have been speculated to reflect apoptosis/necrosis. As newer medical imaging emerges, it is essential to verify that apparent abnormal features in imaging correlate with histopathology. Furthermore, the feasibility of imaging correlation with molecular profile should be explored in order to enhance the potential of biomedical imaging as a reliable biomarker. We focus on glioblastoma, which is an aggressive brain cancer. Despite the increased number of studies involving DTI in glioblastoma; however, little has been explored to bridge the gap between the molecular biomarkers and DTI data. Due to spatial heterogeneity in, MRI signals, pathologic change and protein expression, precise correlation is required between DTI, pathology and proteomics data in a histoanatomically identical manner. The challenge is obtaining an identical plane from in vivo imaging data that exactly matches with histopathology section. Thus, we propose to incorporate ex vivo tissue imaging to bridge between in vivo imaging data and histopathology. With ex vivo scan of removed tissue, it is feasible to use high-field 7T MRI scanner, which can achieve microscopic resolution. Once histology section showing the identical plane, it is feasible to correlate protein expression by a unique technology, "multiplex tissue immunoblotting".

  5. Sexual reproduction, sporophyte development and molecular variation in the model moss Physcomitrella patens: introducing the ecotype Reute.

    PubMed

    Hiss, Manuel; Meyberg, Rabea; Westermann, Jens; Haas, Fabian B; Schneider, Lucas; Schallenberg-Rüdinger, Mareike; Ullrich, Kristian K; Rensing, Stefan A

    2017-05-01

    Rich ecotype collections are used for several plant models to unravel the molecular causes of phenotypic differences, and to investigate the effects of environmental adaption and acclimation. For the model moss Physcomitrella patens collections of accessions are available, and have been used for phylogenetic and taxonomic studies, for example, but few have been investigated further for phenotypic differences. Here, we focus on the Reute accession and provide expression profiling and comparative developmental data for several stages of sporophyte development, as well as information on genetic variation via genomic sequencing. We analysed cross-technology and cross-laboratory data to define a confident set of 15 mature sporophyte-specific genes. We find that the standard laboratory strain Gransden produces fewer sporophytes than Reute or Villersexel, although gametangia develop with the same time course and do not show evident morphological differences. Reute exhibits less genetic variation relative to Gransden than Villersexel, yet we found variation between Gransden and Reute in the expression profiles of several genes, as well as variation hot spots and genes that appear to evolve under positive Darwinian selection. We analyzed expression differences between the ecotypes for selected candidate genes in the GRAS transcription factor family, the chalcone synthase family and in genes involved in cell wall modification that are potentially related to phenotypic differences. We confirm that Reute is a P. patens ecotype, and suggest its use for reverse-genetics studies that involve progression through the life cycle and multiple generations. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Telangiectatic focal nodular hyperplasia: a variant of hepatocellular adenoma.

    PubMed

    Paradis, Valerie; Benzekri, Asmae; Dargère, Delphine; Bièche, Ivan; Laurendeau, Ingrid; Vilgrain, Valerie; Belghiti, Jacques; Vidaud, Michel; Degott, Claude; Bedossa, Pierre

    2004-05-01

    "Telangiectatic focal nodular hyperplasia" designate atypical lesions considered as variants of focal nodular hyperplasia (FNH). However, because "telangiectatic FNH" share several morphologic patterns with hepatocellular adenomas, classification of such lesions deserve further clarification. Therefore, the aim of the present study was to reconsider the classification of telangiectatic FNH with the help of a molecular approach. Ten telangiectatic FNH, 6 typical FNH, and 6 hepatocellular adenomas were studied. DNA, RNA, and protein from each lesion were extracted. Clonality was assessed by the study of the X chromosome inactivation pattern (HUMARA assay). Angiopoietin (ANGPT-1 and ANGPT-2) mRNA, genes the expression of which is typically modified in FNH, were quantified by a real-time RT-PCR procedure. Protein profiles were analyzed by SELDI-TOF PROTEINCHIP (Cyphergen Biosystem, Inc., Fremont, CA) technology. Although all informative cases of FNH (5 of 6) and hepatocellular adenomas (6 of 6) were polyclonal and monoclonal, respectively, clonal analysis showed a nonrandom pattern of X chromosome inactivation consistent with a monoclonal lesion in 6 of 8 cases of telangiectatic FNH. The mean value of the ANGPT-1/ANGPT-2 mRNA ratio was 21.4 in FNH, 2.6 in adenomas, and 2.1 in telangiectatic FNH (P

  7. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α

    PubMed Central

    Portillo-Lara, Roberto; Alvarez, Mario Moisés

    2015-01-01

    Background Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. Methodology/Principal Findings We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. Conclusions/Significance We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs. PMID:26110651

  8. AB119. Computer-aided facial recognition of Chinese individuals with 22q11.2 deletion-algorithm training using NIH atlas of human malformation syndromes from diverse population

    PubMed Central

    Mok, Gary Tsz Kin; Chung, Brian Hon-Yin

    2017-01-01

    Background 22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorder with an estimated frequency of 1/4,000. It is a multi-systemic disorder with high phenotypic variability. Our previous work showed substantial under-diagnosis of 22q11.2DS as 1 in 10 adult patients with conotruncal defects were found to have 22q11.2DS. The National Institute of Health (NIH) has created an atlas of human malformation syndrome from diverse populations to provide an easy tool to assist clinician in diagnosing the syndromic across various populations. In this study, we seek to determine whether training the computer-aided facial recognition technology using images from ethnicity-matched patients from the NIH Atlas can improve the detection performance of this technology. Methods Clinical photographs of 16 Chinese subjects with molecularly confirmed 22q11.2DS, from the NIH atlas and its related publication were used for training the facial recognition technology. The system automatically localizes hundreds of facial fiducial points and takes measurements. The final classification is based on these measurements, as well as an estimated probability of subjects having 22q11.2DS based on the entire facial image. Clinical photographs of 7 patients with molecularly confirmed 22q11.2DS were obtained with informed consent and used for testing the performance in recognizing facial profiles of the Chinese subjects before and after training. Results All 7 test cases were improved in ranking and scoring after the software training. In 4 cases, 22q11.2DS did not appear as one possible syndrome match before the training; however, it appeared within the first 10 syndrome matches after training. Conclusions The present pilot data shows that this technology can be trained to recognize patients with 22q11.2DS. It also highlights the need to collect clinical photographs of patients from diverse populations to be used as resources for training the software which can lead to improvement of the performance of computer-aided facial recognition technology.

  9. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  10. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    PubMed Central

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  11. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    PubMed

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.

  12. Enabling Equal Access to Molecular Diagnostics: What Are the Implications for Policy and Health Technology Assessment?

    PubMed

    Plun-Favreau, Juliette; Immonen-Charalambous, Kaisa; Steuten, Lotte; Strootker, Anja; Rouzier, Roman; Horgan, Denis; Lawler, Mark

    2016-01-01

    Molecular diagnostics can offer important benefits to patients and are a key enabler of the integration of personalised medicine into health care systems. However, despite their promise, few molecular diagnostics are embedded into clinical practice (especially in Europe) and access to these technologies remains unequal across countries and sometimes even within individual countries. If research translation and the regulatory environments have proven to be more challenging than expected, reimbursement and value assessment remain the main barriers to providing patients with equal access to molecular diagnostics. Unclear or non-existent reimbursement pathways, together with the lack of clear evidence requirements, have led to significant delays in the assessment of molecular diagnostics technologies in certain countries. Additionally, the lack of dedicated diagnostics budgets and the siloed nature of resource allocation within certain health care systems have significantly delayed diagnostics commissioning. This article will consider the perspectives of different stakeholders (patients, health care payers, health care professionals, and manufacturers) on the provision of a research-enabled, patient-focused molecular diagnostics platform that supports optimal patient care. Through the discussion of specific case studies, and building on the experience from countries that have successfully integrated molecular diagnostics into clinical practice, this article will discuss the necessary evolutions in policy and health technology assessment to ensure that patients can have equal access to appropriate molecular diagnostics. © 2016 S. Karger AG, Basel.

  13. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining.

    PubMed

    Potapov, Vladimir; Ong, Jennifer L; Langhorst, Bradley W; Bilotti, Katharina; Cahoon, Dan; Canton, Barry; Knight, Thomas F; Evans, Thomas C; Lohman, Gregory Js

    2018-05-08

    DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5'-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5'-TNA overhangs ligate extremely inefficiently compared to all other Watson-Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.

  14. The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling.

    PubMed

    Ferme, D; Banjac, M; Calsamiglia, S; Busquet, M; Kamel, C; Avgustin, G

    2004-01-01

    An in vitro study in dual-flow continuous-culture fermentors was conducted with two different concentrations of monensin, cinnamaldehyde or garlic extract added to 1:1 forage-to-concentrate diet in order to determine their effects on selected rumen bacterial populations. Samples were subjected to total DNA extraction, restriction analysis of PCR amplified parts of 16S rRNA genes (ARDRA) and subsequent analysis of the restriction profiles by lab-on-chip technology with the Agilent's Bioanalyser 2100. Eub338-BacPre primer pair was used to select for the bacteria from the genera Bacteroides, Porphyromonas and Prevotella, especially the latter representing the dominant Gram-negative bacterial population in the rumen. Preliminary results of HaeIII restriction analysis show that the effects of monensin, cinnamaldehyde and garlic extract on the BacPre targeted ruminal bacteria are somewhat different in regard to targeted populations and to the nature of the effect. Garlic extract was found to trigger the most intensive changes in the structure of the BacPre targeted population. Comparison of the in silico restriction analysis of BacPre sequences deposited in different DNA databanks and of the results of performed amplified ribosomal DNA restriction analysis showed differences between the predicted and obtained HaeIII restriction profiles, and suggested the presence of novel, still unknown Prevotella populations in studied samples.

  15. Massively parallel nanowell-based single-cell gene expression profiling.

    PubMed

    Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora

    2017-07-07

    Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.

  16. Reflow process stabilization by chemical characteristics and process conditions

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  17. Molecular weight profiles of proanthocyanidin polymers

    Treesearch

    Vincent M. Williams; Lawrence J. Porter; Richard W. Hemingway

    1983-01-01

    The MW profiles of proanthocyanidin polymers (condensed tannins) from 32 samples representing a wide range of plant tissues of many different species have been obtained by gel permeation chromatography of the peracetate derivatives. The tannins vary widely in MW, with M values for the peracetates in the range 1600-5500. The MW profiles vary greatly from those with...

  18. Molecular markers in pediatric neuro-oncology.

    PubMed

    Ichimura, Koichi; Nishikawa, Ryo; Matsutani, Masao

    2012-09-01

    Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment.

  19. Automation, consolidation, and integration in autoimmune diagnostics.

    PubMed

    Tozzoli, Renato; D'Aurizio, Federica; Villalta, Danilo; Bizzaro, Nicola

    2015-08-01

    Over the past two decades, we have witnessed an extraordinary change in autoimmune diagnostics, characterized by the progressive evolution of analytical technologies, the availability of new tests, and the explosive growth of molecular biology and proteomics. Aside from these huge improvements, organizational changes have also occurred which brought about a more modern vision of the autoimmune laboratory. The introduction of automation (for harmonization of testing, reduction of human error, reduction of handling steps, increase of productivity, decrease of turnaround time, improvement of safety), consolidation (combining different analytical technologies or strategies on one instrument or on one group of connected instruments) and integration (linking analytical instruments or group of instruments with pre- and post-analytical devices) opened a new era in immunodiagnostics. In this article, we review the most important changes that have occurred in autoimmune diagnostics and present some models related to the introduction of automation in the autoimmunology laboratory, such as automated indirect immunofluorescence and changes in the two-step strategy for detection of autoantibodies; automated monoplex immunoassays and reduction of turnaround time; and automated multiplex immunoassays for autoantibody profiling.

  20. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  1. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  3. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    PubMed

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular classification of breast cancer: what the pathologist needs to know.

    PubMed

    Rakha, Emad A; Green, Andrew R

    2017-02-01

    Breast cancer is a heterogeneous disease featuring distinct histological, molecular and clinical phenotypes. Although traditional classification systems utilising clinicopathological and few molecular markers are well established and validated, they remain insufficient to reflect the diverse biological and clinical heterogeneity of breast cancer. Advancements in high-throughput molecular techniques and bioinformatics have contributed to the improved understanding of breast cancer biology, refinement of molecular taxonomies and the development of novel prognostic and predictive molecular assays. Application of such technologies is already underway, and is expected to change the way we manage breast cancer. Despite the enormous amount of work that has been carried out to develop and refine breast cancer molecular prognostic and predictive assays, molecular testing is still in evolution. Pathologists should be aware of the new technology and be ready for the challenge. In this review, we provide an update on the application of molecular techniques with regard to breast cancer diagnosis, prognosis and outcome prediction. The current contribution of emerging technology to our understanding of breast cancer is also highlighted. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  5. The Postmodern Perfectionist, the Pragmatic Hedonist and the Materialist Maximalist: Understanding High School Students' Profile Choices towards or away from Mathematics, Science and Technology (MST) Fields in the Netherlands

    ERIC Educational Resources Information Center

    Yazilitas, D.; Saharso, S.; de Vries, G. C.; Svensson, J. S.

    2017-01-01

    This study focuses on high school students' profile choices and the choice for or against the Nature and Technology (NT) profile in the Netherlands. A mixed-methods approach is used to study cultural values that affect this choice. The quantitative part of the study shows that being female is negatively correlated with the choice for the…

  6. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    NASA Astrophysics Data System (ADS)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  7. NAIT CPD. Competency Profile Development: A Systems Approach for Program Review Projects.

    ERIC Educational Resources Information Center

    Dhariwal, Mave

    The Engineering Technologies Division of the Northern Alberta Institute of Technology (NAIT) in Canada has developed a systems approach to program review called Competency Profile Development (CPD). This approach utilizes a combination of organizational communication, project management, management-by-objectives, a modified Developing A Curriculum…

  8. Pennsylvania College of Technology Sourcebook, 1996-97.

    ERIC Educational Resources Information Center

    Cunningham, Stephen

    This report provides a statistical profile of Pennsylvania College of Technology (PCT) and its service area for 1996-97. The first two sections provide a profile and history of the college, organizational charts, and a description of the governance system. Section III provides tables on students, including numbers of applications, enrollments, and…

  9. Pennsylvania College of Technology Sourcebook, 1993-1994.

    ERIC Educational Resources Information Center

    Pennsylvania Coll. of Technology, Williamsport.

    This report provides a statistical profile of Pennsylvania College of Technology (Penn College) and its environment for 1993-94. The first two sections provide a profile and history of the college, organizational charts, and a description of the governance system. Section III provides tables on students, including numbers of applications,…

  10. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  11. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    Hemmer, Michael J., Robert T. Hudson and Calvin C. Walker. In press. Development of Protein Profile Technology to Evaluate Ecological Effects of Environmental Chemicals Using a Small Fish Model (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosyste...

  12. Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities.

    PubMed

    Chen, Chun-Chun; Winkler, Candace M; Pfenning, Andreas R; Jarvis, Erich D

    2013-11-01

    In our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  13. Molecular profiling of permafrost soil organic carbon composition and degradation

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  14. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.

    PubMed

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan

    2016-01-29

    A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that form 'activity cliffs'. In all, prioritization strategies for the NAA were proposed. Chemo-informatic profiling of NAA and CRAD have produced a wealth of information that may guide decisions and facilitate anti-malarial drug development from natural products. Articulation of the information provided within an interactive data-mining environment led to a prioritized list of NAA.

  15. [Study on molecular recognition technology in active constituents extracted and isolated from Aconitum pendulum].

    PubMed

    Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu

    2011-03-01

    To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.

  16. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  17. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation.

    PubMed

    Barros, Frederico; Awika, Joseph; Rooney, Lloyd W

    2014-04-01

    There is a growing interest to increase resistant starch (RS) in foods through natural modification of starch. Sorghum tannins (proanthocyanidins, PAs) were recently reported to interact with starch, increasing RS. However, there is no information about how the molecular weight profile of PAs affects RS formation. This study investigated how different-molecular-weight PAs from sorghum affected RS formation in different starch models. The levels of RS were higher (331-437 mg g(-1)) when high-amylose starch was cooked with phenolic extracts containing mostly high-molecular-weight PAs compared with extracts containing lower-molecular-weight PAs or monomeric catechin (249-285 mg g(-1)). In general, binding capacity of PAs with amylose increased proportionally with molecular weight. For example, the percentage of PAs bound to amylose increased from 45% (PAs with degree of polymerization (DP) = 6) to 94% (polymeric PAs, DP > 10). The results demonstrate that molecular weight of the PAs directly affects their interaction with starch: the higher the molecular weight, the stronger the binding to amylose and the higher the RS formation. Polymeric PAs from sorghum can naturally modify starch by interacting strongly with amylose and are thus most suitable to produce foods with higher RS. © 2013 Society of Chemical Industry.

  18. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  19. Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology.

    PubMed

    Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun

    2018-05-01

    Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.

  20. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  1. Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria.

    PubMed

    Aroonnual, Amornrat; Janvilisri, Tavan; Ounjai, Puey; Chankhamhaengdecha, Surang

    2017-02-28

    The emergence of antibiotic-resistant bacteria has become a major global health concern. Rapid and accurate diagnostic strategies to determine the antibiotic susceptibility profile prior to antibiotic prescription and treatment are critical to control drug resistance. The standard diagnostic procedures for the detection of antibiotic-resistant bacteria, which rely mostly on phenotypic characterization, are time consuming, insensitive and often require skilled personnel, making them unsuitable for point-of-care (POC) diagnosis. Various molecular techniques have therefore been implemented to help speed up the process and increase sensitivity. Over the past decade, microfluidic technology has gained great momentum in medical diagnosis as a series of fluid handling steps in a laboratory can be simplified and miniaturized on to a small platform, allowing marked reduction of sample amount, high portability and tremendous possibility for integration with other detection technologies. These advantages render the microfluidic system a great candidate to be developed into an easy-to-use sample-to-answer POC diagnosis suitable for application in remote clinical settings. This review provides an overview of the current development of microfluidic technologies for the nucleic acid based and phenotypic-based detections of antibiotic resistance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Geographical markers for Saccharomyces cerevisiae strains with similar technological origins domesticated for rice-based ethnic fermented beverages production in North East India.

    PubMed

    Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash; Capece, Angela; Romano, Patrizia

    2011-11-01

    Autochthonous strains of Saccharomyces cerevisiae from traditional starters used for the production of rice-based ethnic fermented beverage in North East India were examined for their genetic polymorphism using mitochondrial DNA-RFLP and electrophoretic karyotyping. Mitochondrial DNA-RFLP analysis of S. cerevisiae strains with similar technological origins from hamei starter of Manipur and marcha starter of Sikkim revealed widely separated clusters based on their geographical origin. Electrophoretic karyotyping showed high polymorphism amongst the hamei strains within similar mitochondrial DNA-RFLP cluster and one unique karyotype of marcha strain was widely distributed in the Sikkim-Himalayan region. We conceptualized the possibility of separate domestication events for hamei strains in Manipur (located in the Indo-Burma biodiversity hotspot) and marcha strains in Sikkim (located in Himalayan biodiversity hotspot), as a consequence of less homogeneity in the genomic structure between these two groups, their clear separation being based on geographical origin, but not on technological origin and low strain level diversity within each group. The molecular markers developed based on HinfI-mtDNA-RFLP profile and the chromosomal doublets in chromosome VIII position of Sikkim-Himalayan strains could be effectively used as geographical markers for authenticating the above starter strains and differentiating them from other commercial strains.

  3. At the Tipping Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, H. S.

    There comes a time in every field of science when things suddenly change. While it might not be immediately apparent that things are different, a tipping point has occurred. Biology is now at such a point. The reason is the introduction of high-throughput genomics-based technologies. I am not talking about the consequences of the sequencing of the human genome (and every other genome within reach). The change is due to new technologies that generate an enormous amount of data about the molecular composition of cells. These include proteomics, transcriptional profiling by sequencing, and the ability to globally measure microRNAs andmore » post-translational modifications of proteins. These mountains of digital data can be mapped to a common frame of reference: the organism’s genome. With the new high-throughput technologies, we can generate tens of thousands of data points from each sample. Data are now measured in terabytes and the time necessary to analyze data can now require years. Obviously, we can’t wait to interpret the data fully before the next experiment. In fact, we might never be able to even look at all of it, much less understand it. This volume of data requires sophisticated computational and statistical methods for its analysis and is forcing biologists to approach data interpretation as a collaborative venture.« less

  4. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.

    2017-06-01

    Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.

  5. Non-linear optical techniques and optical properties of condensed molecular systems

    NASA Astrophysics Data System (ADS)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  6. The emerging genomics and systems biology research lead to systems genomics studies.

    PubMed

    Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A; Chen, Zhongxue; Arbania, Hamid R; Liu, Jun S; Niemierko, Andrzej; Yang, Jack Y

    2014-01-01

    Synergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.

  7. Rapid Molecular Identification of Pathogenic Yeasts by Pyrosequencing Analysis of 35 Nucleotides of Internal Transcribed Spacer 2 ▿

    PubMed Central

    Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.

    2010-01-01

    Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674

  8. Molecular Composition Analysis of Distant Targets

    NASA Technical Reports Server (NTRS)

    Hughes, Gary B.; Lubin, Philip

    2017-01-01

    This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the absorption profile at a distant spectrometer. Results obtained by executing simulations based on the model provide compelling evidence that the concept of remote laser evaporative molecular absorption spectroscopy is feasible. In this document, technical details of the model are presented, and results of simulations are described that indicate the utility of the proposed sensor system. Additionally, an asteroid rendezvous mission is analyzed, with a survey of system requirements to accomplish molecular composition analysis of the asteroid. Based on positive theoretical results obtained during Phase I, the estimated TRL of the system is now TRL-2. This document also describes potential future research and experimentation that could push the system to TRL-4 within 2 years. Steps required for construction of a laboratory prototype are described. An experiment to test predictions of the theory is described, based on the laboratory prototype setup.

  9. PCR-Restriction Fragment Length Polymorphism Analysis of the Phospholipase B (PLB1) Gene for Subtyping of Cryptococcus neoformans Isolates

    PubMed Central

    Latouche, G. Nicolas; Huynh, Matthew; Sorrell, Tania C.; Meyer, Wieland

    2003-01-01

    Cryptococcus neoformans is a pathogenic yeast that is currently divided into three varieties, five serotypes, and eight molecular types. The following report describes the use of PCR-restriction fragment length polymorphism (RFLP) analysis of the phospholipase B gene (PLB1) as a simple tool to differentiate between C. neoformans subgroups. A PLB1 fragment, 1,970 bp, was amplified and digested with either AvaI or HindIII. Both sets of profiles grouped the isolates into their respective varieties, but only the AvaI profiles allowed for the identification of the eight molecular types via the corresponding RFLP profiles A1 to A8. Digestion of the same fragments with HindIII resulted in RFLP profiles H1 to H5, which distinguished only between serotype A, AD, D, and B/C. Neither enzyme distinguished serotype B from serotype C. The serotype AD profile was a composite of the serotype A and D profiles. Further investigation showed that the serotype AD isolates used in this study are heterozygous, with one allele of PLB1 originating from a serotype A parent and the other from a serotype D parent. PMID:12676686

  10. Identification of Potential Chemical Carcinogens in Compendia of Gene Expression Profiles

    EPA Science Inventory

    Chemicals induce cancer through partially characterized adverse outcome pathways (AOPs) that include molecular initiating events (MIEs) and downstream key events (KEs). Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput form...

  11. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  12. Country profile: Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary`s energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit ofmore » reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.« less

  13. Country profile: Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary's energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit ofmore » reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.« less

  14. Tech-Prep Competency Profiles within the Engineering Technologies Cluster.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 12 competency profiles for tech prep courses within the engineering technologies cluster. The document consists of the following sections: (1) systemic curriculum reform philosophy--Ohio's vision of tech prep and its six critical components; (2) an explanation of the process of developing the tech prep competencies; (3) a…

  15. Promising Practices in Career and Technology Studies (CTS).

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Learning and Teaching Resources Branch.

    This document contains profiles of 130 successful programs and partnerships in Career and Technology Studies (CTS) in Alberta, Canada. Following an introduction to the CTS program and its implementation, the profiles are organized into 23 sections that follow the strands of the program. The sections cover the following topics: CTS general;…

  16. The Computer Industry. High Technology Industries: Profiles and Outlooks.

    ERIC Educational Resources Information Center

    International Trade Administration (DOC), Washington, DC.

    A series of meetings was held to assess future problems in United States high technology, particularly in the fields of robotics, computers, semiconductors, and telecommunications. This report, which focuses on the computer industry, includes a profile of this industry and the papers presented by industry speakers during the meetings. The profile…

  17. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    PubMed

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  18. Characterizations of structural, biochemical, and nutritive profiles in silage among cool-season corn cultivars in relation to heat units (aCHU, dCHU) with curvilinear response and multivariate analyses.

    PubMed

    Abeysekara, Saman; Christensen, David A; Yu, Peiqiang

    2013-12-18

    Molecular spectroscopy is able to reveal structural features of biomaterials. Corn grown in Canadian prairies is known as cool-season corn, which is different from warm-season corn varieties. To our knowledge, to date, there has been no study on the magnitude difference in structure on a molecular basis among cultivars, no study on biochemical and nutritive profiles associated with heat unit, and no study on how heat unit affects the molecular structure and biochemical and nutritive profiles. This study investigates how corn varieties grown in cooler climates are affected by crop heat units (CHU) in relation to molecular spectral profiles, nutrient storage, biochemical composition, and nutritive value of silage among different cool-season corn cultivars. Corn cultivars (Pioneer and Dekalb) were from seven farm locations, and samples were analyzed for major nutrients (digestible and metabolic energy and protein). The Fourier transform infrared (FT/IR) spectroscopic technique was applied to understand and differentiate molecular structural spectral profiles in silage. A correlation (P < 0.05) of CHU with some nutrients (mean ± SD, %DM) (CP, 8.1 ± 1.3, r = 0.56; NDF, 56.3 ± 3.5, r = -0.54; ADF, 33.6 ± 2.3, r = -0.71; NDICP, 1.6 ± 0.4, r = -0.66; SCP, 4.2 ± 1.3, r = 0.61), protein and carbohydrate fractions (mean ± SD, %DM) (PB1 (= fast degradable protein fraction), 1.3 ± 0.4, r = 0.54; PB3 (= slowly degradable protein fraction), 1.5 ± 0.4, r = -0.74; CB2 (= medium degradable carbohydrate fraction), 45.1 ± 2.8, r = -0.65; CB3 (= slowly degradable carbohydrate fraction), 13.9 ± 0.9, r = -0.54) and intestinal availability of ruminally degraded fractions (mean ± SD, %DM) (rdPB1, 1.1 ± 0.3, r = 0.54; rdPB3, 1.0 ± 0.3, r = -0.74; RDP, 6.6 ± 1.2, r = 0.59; rdCB2, 40.0 ± 2.5, r = -0.65; rdCB3, 8.9 ± 0.6, r = 0.54; RDCHO, 50.1 ± 2.9, r = -0.65) was found contentious. Molecular spectral data indicated many similarities and few differences among the cultivars. However, CHU correlated (r = -0.4, P < 0.05) with molecular spectral intensity ratio of carbohydrate to amide I. This result indicates that molecular structural differences may be influenced by epiphytic bacterial compounds. Cool corn cultivars were grown acceptably well in cooler dry climates, and those silages had acceptable nutrient levels for cattle. Cultivars that reached target CHU were found to be optimal in nutrient and energy synchronization aspect.

  19. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  20. [Molecular biology in clinical cancer research: the example of digestive cancers].

    PubMed

    Lièvre, A; Laurent-Puig, P

    2005-06-01

    Cancer is a DNA disease characterized by uncontrolled cell proliferation due to the accumulation of genetic alterations. Recent progress in molecular biology allowed the identification of markers potentially usefull for patients management through the identification of these genetic alterations and a best understanding of chemotherapy molecular targets. Several examples in digestive oncology underline the relevance of molecular biology in clinical research. If almost all colorectal cancers (CRC) correspond to the same histopathological type (adenocarcinoma), molecular biology allowed the identification of two different molecular mechanisms of colorectal carcinogenesis: chromosomal instability characterized by recurrent allelic losses on chromosomes 17, 5, 18, 8 and 22 that contribute to the inactivation of tumor suppressor genes, and genetic instability characterized by the instability of microsatellite loci due to an alteration of DNA mismatch repair leading to the accumulation of mutations in genes involved in the control of cell cycle and apoptosis. These data are potentially interesting for the management of CRC patients. Indeed, microsatellite instability seems not only to be a good prognostic factor but also a molecular factor that can predict response to adjuvant 5-fluorouracil based chemotherapy. Therapeutic clinical trials taking into account these molecular parameters are still going on. DNA microarray-based gene expression profiling technology that allows the simultaneous analysis of thousand of tumor genes represents also an interesting approach in oncology with the recent identification of a "genetic signature" as a risk factor of tumor recurrence in stage II CRC, a setting in which the benefit of adjuvant chemotherapy remains on debate. At last, a best understanding of chemotherapy molecular targets allowed the identification of genetic markers that can predict the response and/or the toxicity of anti-cancer drugs used in gastrointestinal cancers, which could be helpful in the future to propose for each patient a personalized treatment. Mutations that can predict the response of new target therapies such as the inhibitors of the c-KIT tyrosine kinase activity in gastrointestinal stromal tumors have also been found and will allow the selection of patients who can have benefit from these new therapeutic drugs.

Top