Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.
Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano; López-García, Sergio; Navarro, Eusebio; Vila, Ana
2012-01-01
The carotene producer fungus Mucor circinelloides is the zygomycete more amenable to genetic manipulations by using molecular tools. Since the initial development of an effective procedure of genetic transformation, more than two decades ago, the availability of new molecular approaches such as gene replacement techniques and gene expression inactivation by RNA silencing, in addition to the sequencing of its genome, has made Mucor a valuable organism for the study of a number of processes. Here we describe in detail the main techniques and methods currently used to manipulate M. circinelloides, including transformation, gene replacement, gene silencing, RNAi, and immunoprecipitation.
Macromolecular powder diffraction : structure solution via molecular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebbler, J.; Von Dreele, R.; X-Ray Science Division
Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer.more » To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagadeesan, G.; Malathy, P.; Gunasekaran, K.
2014-10-25
The great cormorant hemoglobin has been isolated, purified and crystallized and the three dimensional structure is solved using molecular replacement technique. Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to themore » trigonal system P3{sub 1}21, with unit-cell parameters a = b = 55.64, c = 153.38 Å, β = 120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.« less
Integrated Multiscale Modeling of Molecular Computing Devices. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Schulze
2012-11-01
The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.
Considerations for standardizing predictive molecular pathology for cancer prognosis.
Fiorentino, Michelangelo; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo
2017-01-01
Molecular tests that were once ancillary to the core business of cyto-histopathology are becoming the most relevant workload in pathology departments after histopathology/cytopathology and before autopsies. This has resulted from innovations in molecular biology techniques, which have developed at an incredibly fast pace. Areas covered: Most of the current widely used techniques in molecular pathology such as FISH, direct sequencing, pyrosequencing, and allele-specific PCR will be replaced by massive parallel sequencing that will not be considered next generation, but rather, will be considered to be current generation sequencing. The pre-analytical steps of molecular techniques such as DNA extraction or sample preparation will be largely automated. Moreover, all the molecular pathology instruments will be part of an integrated workflow that traces the sample from extraction to the analytical steps until the results are reported; these steps will be guided by expert laboratory information systems. In situ hybridization and immunohistochemistry for quantification will be largely digitalized as much as histology will be mostly digitalized rather than viewed using microscopy. Expert commentary: This review summarizes the technical and regulatory issues concerning the standardization of molecular tests in pathology. A vision of the future perspectives of technological changes is also provided.
Ghita, Adrian; Pascut, Flavius C; Sottile, Virginie; Denning, Chris; Notingher, Ioan
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.
Hybrid CARS for Non-Invasive Blood Glucose Monitoring
NASA Astrophysics Data System (ADS)
Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan
2007-10-01
We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.
Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.
DiMaio, Frank
2017-01-01
Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.
From lows to highs: using low-resolution models to phase X-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, David I.; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot; Abrescia, Nicola G. A., E-mail: nabrescia@cicbiogune.es
2013-11-01
An unusual example of how virus structure determination pushes the limits of the molecular replacement method is presented. The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here,more » the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ∼13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.« less
Genetic analysis of neuronal ionotropic glutamate receptor subunits
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-01-01
Abstract In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca2+ permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein. PMID:21768264
Genetic analysis of neuronal ionotropic glutamate receptor subunits.
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-09-01
In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.
Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS
2016-01-01
Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183
Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy
2015-01-01
Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology.
Immunohistochemistry as a surrogate for molecular testing: a review.
Swanson, Paul E
2015-02-01
Despite the myriad of genetic and epigenetic alterations in human neoplasms that seem to demand specific molecular probes for their identification and practical application to diagnostic pathology, immunohistochemistry (IHC) remains a vital component of laboratory testing in the emerging molecular era. The development and proper application of sensitive and specific antibodies raised against cryptic proteins only expressed in quantity after gene translocation, translocation-specific chimeric fusion peptides, and gene products overexpressed because of gene amplification demonstrate that IHC is a legitimate surrogate for traditional cytogenetic and in situ hybridization-based identification of chromosomal abnormalities, if not a viable molecular technique in its own right. Similarly, the detection of mutational events, through the reliable demonstration of protein loss, the identification of proteins overexpressed because of activating mutations, the specific visualization of mutant gene products, and the localization of splice variant gene products emphasizes the potential value of IHC as a surrogate for mutational analyses of genes important to both diagnosis and prediction of therapeutic response. In the latter setting IHC also provides a means of approximating gene expression profiles in the molecular classification and risk stratification of human neoplasms. For time being, the application of appropriately targeted sensitive and specific antibodies provides a cost-effective screening modality, if not replacement, for selected molecular techniques, but IHC will lose its value if the development of companion tests for emerging novel biomarkers does not keep pace with molecular techniques, particularly as the costs and time constraints of genomic sequencing diminish over time.
Fadel, Valmir; Canduri, Fernanda; Olivieri, Johnny R; Smarra, André L S; Colombo, Marcio F; Bonilla-Rodriguez, Gustavo O; de Azevedo, Walter F
2003-12-01
Crystal structure of hemoglobin isolated from the Brazilian maned wolf (Chrysocyon brachyurus) was determined using standard molecular replacement technique and refined using maximum-likelihood and simulated annealing protocols to 1.87A resolution. Structural and functional comparisons between hemoglobins from the Chrysocyon brachyurus and Homo sapiens are discussed, in order to provide further insights in the comparative biochemistry of vertebrate hemoglobins.
[Criteria of the molecular pathology testing of lung cancer].
Tímár, József
2014-06-01
From the aspect of the contemporary pathologic diagnostics of lung cancer the tissue obtained is a key issue since small biopsies and cytology still play a major role. In the non-small cell lung cancer era cytology is considered equal to biopsy however, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Moreover, tumor cell-normal cell ratio in the obtained tissue, as well as the absolute tumor cell number have great significance, which information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorithms, affordable technology and appropriate reimbursement are equally necessary.
Minimal requirements for the molecular testing of lung cancer.
Popper, Helmut H; Tímár, József; Ryska, Ales; Olszewski, Wlodzimierz
2014-10-01
From the aspect of the contemporary pathologic diagnostics of lung cancer, it is a key issue of the tissue obtained since small biopsies and cytology still play a major role. In the non-small cell lung cancer era, cytology considered equal to biopsy. However, in recent years it is unable to provide quality diagnosis and must be replaced by biopsy. Various molecular techniques can handle various different tissue samples which must be considered during molecular pathology diagnosis. Besides, tumor cell-normal cell ratio in the obtained tissue as well as the absolute tumor cell number have great significance whose information must be provided in the primary lung cancer diagnosis. Last but not least, for continuous sustainable molecular diagnostics of lung cancer rational algorythms, affordable technology and appropriate reimbursement are equally necessary.
Breeding of lilies and tulips—Interspecific hybridization and genetic background—
Marasek-Ciolakowska, Agnieszka; Nishikawa, Tomotaro; Shea, Daniel J.; Okazaki, Keiichi
2018-01-01
Lilies and tulips (Liliaceae family) are economically very important ornamental bulbous plants. Here, we summarize major breeding goals, the role of an integrated method of cut-style pollination and fertilization followed by embryo rescue and mitotic and meiotic polyploidization involved in new assortment development. Both crops have been subjected to extensive interspecific hybridization followed by selection. Additionally, spontaneous polyploidization has played a role in their evolution. In lilies, there is a tendency to replace diploids with polyploid cultivars, whereas in tulip a majority of the cultivars that exist today are still diploid except for triploid Darwin hybrid tulips. The introduction of molecular cytogenetic techniques such as genomic in situ hybridization (GISH) permitted the detailed studies of genome composition in lily and tulip interspecific hybrids and to follow the chromosome inheritance in interspecific crosses. In addition, this review presents the latest information on phylogenetic relationship in lily and tulip and recent developments in molecular mapping using different DNA molecular techniques. PMID:29681746
Does Nosema ceranae Wipe Out Nosema apis in Turkey?
Ivgin Tunca, Rahşan; Oskay, Devrim; Gosterit, Ayhan; Tekin, Olgay Kaan
2016-01-01
The aim of this study was to determine the prevalence of the Nosema ceranae and Nosema apis among apiaries using both spore counts and multiplex PCR and the replacement of N. apis by N. ceranae in some regions of Turkey. A hundred honey bee samples were collected from 99 apiaries in 11 different locations in 2011-2012 in Turkey. Nosema infection degree from collected samples was determined using light microscope and molecular detection of Nosema spp. ( N. ceranae and N. apis ) was performed using specific primers by multiplex PCR. N. ceranae was only found spores in sampling areas using molecular diagnosis. N. apis was not detected in whole sampling areas using both techniques. There are no Nosema spores detected in Konya one location using two techniques. The nucleotide sequences from amplification products of the Nosema infested honeybee samples were (98%) identical with the sequence of N. ceranae for many countries deposited in the GenBank database in this study. The present study illustrated that N. ceranae is the only spores for sampled areas in 2011-2012. The study could also indicate that N. ceranae has been replaced instead of N . apis in Turkey. In addition, the prevalence of N. ceranae and two microsporodia spores effects on honey bee colonies in Turkey were needed to determine with intensive sampling, periodically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vordtriede, Paul B.; Yoder, Marilyn D., E-mail: yoderm@umkc.edu
2008-07-01
The acidic polygalacturonase PehA from A. vitis has been crystallized. A molecular-replacement solution indicated a right-handed parallel β-helix fold. Polygalacturonases are pectate-degrading enzymes that belong to glycoside hydrolase family 28 and hydrolyze the α-1,4 glycosidic bond between neighboring galacturonasyl residues of the homogalacturonan substrate. The acidic polygalacturonase PehA from Agrobacterium vitis was overexpressed in Escherichia coli, where it accumulated in the periplasmic fraction. It was purified to homogeneity via a two-step chromatography procedure and crystallized using the hanging-drop vapour-diffusion technique. PehA crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 52.387, b = 62.738, c = 149.165more » Å, β = 89.98°. Crystals diffracted to 1.59 Å resolution and contained two molecules per asymmetric unit. An initial structure determination by molecular replacement indicated a right-handed parallel β-helix fold.« less
Therapeutic plasma exchange: a technical and operational review.
Kaplan, Andre A
2013-02-01
Therapeutic plasma exchange (TPE) is an extracorporeal blood purification technique designed for the removal of large molecular weight substances. Examples of these substances include pathogenic autoantibodies, immune complexes, cryoglobulins, myeloma light chains, endotoxin and cholesterol containing lipoproteins. The basic premise of the treatment is that removal of these substances will allow for the reversal of the pathologic processes related to their presence. This review will cover the techniques for performing TPE, the kinetics of the removal of large molecules from the plasma and the benefits and risks of the different types of replacement fluids. Copyright © 2013 Wiley Periodicals, Inc.
Dutta, Debashis; Johnson, Samuel; Dalal, Alisha; Deymier, Martin J.; Hunter, Eric
2018-01-01
Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV) and simian tropic HIV (stHIV). This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies. PMID:29758076
Circulating Cell-Free Tumour DNA in the Management of Cancer
Francis, Glenn; Stein, Sandra
2015-01-01
With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease. PMID:26101870
Kinematic cooling of molecules in a magneto-optical trap
NASA Astrophysics Data System (ADS)
Takase, Ken; Chandler, David W.; Strecker, Kevin E.
2008-05-01
We will present our current progress on a new experimental technique aimed at slowing and cooling hot molecules using a single collision with magneto-optically trapped atoms. Kinematic cooling, unlike buffer gas and sympathetic cooling, relies only on a single collision between the molecule and atom to stop the molecule in the laboratory frame. This technique has recently been demonstrated in a crossed atomic and molecular beam machine to produce 35mK samples of nitric oxide via a single collision with argon [1]. In this technique we replace the atomic beam with a sample magneto-optically trapped atoms. We are currently designing and building a new apparatus to attempt these experiments. [1] Kevin E. Strecker and David W. Chandler (to be published)
Light-neuron interactions: key to understanding the brain
NASA Astrophysics Data System (ADS)
Go, Mary Ann; Daria, Vincent R.
2017-02-01
In recent years, advances in light-based technology have driven an ongoing optical revolution in neuroscience. Synergistic technologies in laser microscopy, molecular biology, organic and synthetic chemistry, genetic engineering and materials science have allowed light to overcome the limitations of and to replace many conventional tools used by physiologists to record from and to manipulate single cells or whole cellular networks. Here we review the different optical techniques for stimulating neurons, influencing neuronal growth, manipulating neuronal structures and neurosurgery.
Concepts and applications of "natural computing" techniques in de novo drug and peptide design.
Hiss, Jan A; Hartenfeller, Markus; Schneider, Gisbert
2010-05-01
Evolutionary algorithms, particle swarm optimization, and ant colony optimization have emerged as robust optimization methods for molecular modeling and peptide design. Such algorithms mimic combinatorial molecule assembly by using molecular fragments as building-blocks for compound construction, and relying on adaptation and emergence of desired pharmacological properties in a population of virtual molecules. Nature-inspired algorithms might be particularly suited for bioisosteric replacement or scaffold-hopping from complex natural products to synthetically more easily accessible compounds that are amenable to optimization by medicinal chemistry. The theory and applications of selected nature-inspired algorithms for drug design are reviewed, together with practical applications and a discussion of their advantages and limitations.
NASA Astrophysics Data System (ADS)
Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating
2018-06-01
The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.
Mitochondrial replacement techniques: egg donation, genealogy and eugenics.
Palacios-González, César
2016-03-01
Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier, E-mail: fjljara@ugr.es; Bernier-Villamor, Laura
2006-07-01
The isolation, purification, crystallization and molecular-replacement solution of mitochondrial type II peroxiredoxin from P. sativum is reported. A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooledmore » at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.« less
Hemodiafiltration history, technology, and clinical results.
Ronco, Claudio; Cruz, Dinna
2007-07-01
Hemodiafiltration (HDF) is an extracorporeal renal-replacement technique using a highly permeable membrane, in which diffusion and convection are conveniently combined to enhance solute removal in a wide spectrum of molecular weights. In this modality, ultrafiltration exceeds the desired fluid loss in the patient, and replacement fluid must be administered to achieve the target fluid balance. Over the years, various HDF variants have emerged, including acetate-free biofiltration, high-volume HDF, internal HDF, paired-filtration dialysis, middilution HDF, double high-flux HDF, push-pull HDF, and online HDF. Recent technology has allowed online production of large volumes of microbiologically ultrapure fluid for reinfusion, greatly simplifying the practice of HDF. Several advantages of HDF over purely diffusive hemodialysis techniques have been described in the literature, including a greater clearance of urea, phosphate, beta(2)-microglobulin and other larger solutes, reduction in dialysis hypotension, and improved anemia management. Although randomized controlled trials have failed to show a survival benefit of HDF, recent data from large observational studies suggest a positive effect of HDF on survival. This article provides a brief review of the history of HDF, the various HDF techniques, and summary of their clinical effects.
Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang
2016-01-01
It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071
Development of Pantothenate Analogs That Can Treat Combat-Related Infections
2014-04-01
determined by the molecular replacement method using the structure of S. aureus PanK excluding bound AMPPNP as a search model ( PDB code 2EWS). The...were solved by molecular replacement using the program PHASER11 and the EcPanK structure as a search model ( PDB : 1SQ5). The models went through...aureus PanK (SaPanK) complexed with N5- Pan (months 1-3) We solved the structure of the SaPanK�N5-Pan complex by the molecular replacement method
Molecular replacement: tricks and treats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abergel, Chantal, E-mail: chantal.abergel@igs.cnrs-mrs.fr
2013-11-01
To be successful, molecular replacement relies on the quality of the model and of the crystallographic data. Some tricks that could be applied to the models or to the crystal to increase the success rate of MR are discussed here. Molecular replacement is the method of choice for X-ray crystallographic structure determination provided that suitable structural homologues are available in the PDB. Presently, there are ∼80 000 structures in the PDB (8074 were deposited in the year 2012 alone), of which ∼70% have been solved by molecular replacement. For successful molecular replacement the model must cover at least 50% ofmore » the total structure and the C{sub α} r.m.s.d. between the core model and the structure to be solved must be less than 2 Å. Here, an approach originally implemented in the CaspR server (http://www.igs.cnrs-mrs.fr/Caspr2/index.cgi) based on homology modelling to search for a molecular-replacement solution is discussed. How the use of as much information as possible from different sources can improve the model(s) is briefly described. The combination of structural information with distantly related sequences is crucial to optimize the multiple alignment that will define the boundaries of the core domains. PDB clusters (sequences with ≥30% identical residues) can also provide information on the eventual changes in conformation and will help to explore the relative orientations assumed by protein subdomains. Normal-mode analysis can also help in generating series of conformational models in the search for a molecular-replacement solution. Of course, finding a correct solution is only the first step and the accuracy of the identified solution is as important as the data quality to proceed through refinement. Here, some possible reasons for failure are discussed and solutions are proposed using a set of successful examples.« less
Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibby, Jaclyn; Keegan, Ronan M.; Mayans, Olga
2013-11-01
Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.
New method for stock-tank oil compositional analysis.
McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut
2009-01-01
A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A. Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods. PMID:25822486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammar, Thoraya; Rio, Alan; Ampong, Mary Ann
2010-06-15
Radiologic inserted gastrostomy (RIG) is the preferred method in our institution for enteral feeding in amyotrophic lateral sclerosis (ALS). Skin-level primary-placed mushroom cage gastrostomy tubes become tight with weight gain. We describe a minimally invasive radiologic technique for replacing mushroom gastrostomy tubes with endoscopic mushroom cage tubes in ALS. All patients with ALS who underwent replacement of a RIG tube were included. Patients were selected for a modified replacement when the tube length of the primary placed RIG tube was insufficient to allow like-for-like replacement. Replacement was performed under local anesthetic and fluoroscopic guidance according to a preset technique, withmore » modification of an endoscopic mushroom cage gastrostomy tube to allow percutaneous placement. Assessment of the success, safety, and durability of the modified technique was undertaken. Over a 60-month period, 104 primary placement mushroom cage tubes in ALS were performed. A total of 20 (19.2%) of 104 patients had a replacement tube positioned, 10 (9.6%) of 104 with the modified technique (male n = 4, female n = 6, mean age 65.5 years, range 48-85 years). All tubes were successfully replaced using this modified technique, with two minor complications (superficial wound infection and minor hemorrhage). The mean length of time of tube durability was 158.5 days (range 6-471 days), with all but one patient dying with a functional tube in place. We have devised a modification to allow percutaneous replacement of mushroom cage gastrostomy feeding tubes with minimal compromise to ALS patients. This technique allows tube replacement under local anesthetic, without the need for sedation, an important consideration in ALS.« less
Ab initio solution of macromolecular crystal structures without direct methods.
McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J
2017-04-04
The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.
Automatic Molecular Design using Evolutionary Techniques
NASA Technical Reports Server (NTRS)
Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)
1998-01-01
Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.
Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase
NASA Astrophysics Data System (ADS)
Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.
2006-03-01
Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sibani; Biswas, Sampa; Chakrabarti, Chandana
2005-06-01
Ervatamin A is a papain-family cysteine protease with high activity and stability. It has been isolated and purified from the latex of the medicinal flowering plant E. coronaria and crystallized by the vapour-diffusion technique. Crystals diffracted to 2.1 Å and the structure was solved by molecular replacement. The ervatamins are highly stable cysteine proteases that are present in the latex of the medicinal plant Ervatamia coronaria and belong to the papain family, members of which share similar amino-acid sequences and also a similar fold comprising two domains. Ervatamin A from this family, a highly active protease compared with others frommore » the same source, has been purified to homogeneity by ion-exchange chromatography and crystallized by the vapour-diffusion method. Needle-shaped crystals of ervatamin A diffract to 2.1 Å resolution and belong to space group C222{sub 1}, with unit-cell parameters a = 31.10, b = 144.17, c = 108.61 Å. The solvent content using an ervatamin A molecular weight of 27.6 kDa is 43.9%, with a V{sub M} value of 2.19 Å{sup 3} Da{sup −1} assuming one protein molecule in the asymmetric unit. A molecular-replacement solution has been found using the structure of ervatamin C as a search model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz
Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of themore » domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.« less
Prosthetic valve sparing aortic root replacement: an improved technique.
Leacche, Marzia; Balaguer, Jorge M; Umakanthan, Ramanan; Byrne, John G
2008-10-01
We describe a modified surgical technique to treat patients with a previous history of isolated aortic valve replacement who now require aortic root replacement for an aneurysmal or dissected aorta. This technique consists of replacing the aortic root with a Dacron conduit, leaving intact the previously implanted prosthesis, and re-implanting the coronary arteries in the Dacron graft. Our technique differs from other techniques in that we do not leave behind any aortic tissue remnant and also in that we use a felt strip to obliterate any gap between the old sewing ring and the newly implanted graft. In our opinion, this promotes better hemostasis. We demonstrate that this technique is safe, feasible, and results in acceptable outcomes.
NASA Astrophysics Data System (ADS)
Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.
2016-11-01
Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P1211 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, β = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.
Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...
2015-07-30
Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Seale, D. B.; Boraas, M. E.; Sommer, C. V.
1989-01-01
The probable sources and implications of microbial contamination on the proposed Space Station are discussed. Because of the limited availability of material, facilities and time on the Space Station, we are exploring the feasibility of replacing traditional incubation methods for assessing microbial contamination with rapid, automated methods. Some possibilities include: ATP measurement, microscopy and telecommunications, and molecular techniques such as DNA probes or monoclonal antibodies. Some of the important ecological factors that could alter microbes in space include microgravity, exposure to radiation, and antibiotic resistance.
Histological Stains: A Literature Review and Case Study
Alturkistani, Hani A; Tashkandi, Faris M; Mohammedsaleh, Zuhair M
2016-01-01
The history of histology indicates that there have been significant changes in the techniques used for histological staining through chemical, molecular biology assays and immunological techniques, collectively referred to as histochemistry. Early histologists used the readily available chemicals to prepare tissues for microscopic studies; these laboratory chemicals were potassium dichromate, alcohol and the mercuric chloride to harden cellular tissues. Staining techniques used were carmine, silver nitrate, Giemsa, Trichrome Stains, Gram Stain and Hematoxylin among others. The purpose of this research was to assess past and current literature reviews, as well as case studies, with the aim of informing ways in which histological stains have been improved in the modern age. Results from the literature review has indicated that there has been an improvement in histopathology and histotechnology in stains used. There has been a rising need for efficient, accurate and less complex staining procedures. Many stain procedures are still in use today, and many others have been replaced with new immunostaining, molecular, non-culture and other advanced staining techniques. Some staining methods have been abandoned because the chemicals required have been medically proven to be toxic. The case studies indicated that in modern histology a combination of different stain techniques are used to enhance the effectiveness of the staining process. Currently, improved histological stains, have been modified and combined with other stains to improve their effectiveness. PMID:26493433
Histological Stains: A Literature Review and Case Study.
Alturkistani, Hani A; Tashkandi, Faris M; Mohammedsaleh, Zuhair M
2015-06-25
The history of histology indicates that there have been significant changes in the techniques used for histological staining through chemical, molecular biology assays and immunological techniques, collectively referred to as histochemistry. Early histologists used the readily available chemicals to prepare tissues for microscopic studies; these laboratory chemicals were potassium dichromate, alcohol and the mercuric chloride to harden cellular tissues. Staining techniques used were carmine, silver nitrate, Giemsa, Trichrome Stains, Gram Stain and Hematoxylin among others. The purpose of this research was to assess past and current literature reviews, as well as case studies, with the aim of informing ways in which histological stains have been improved in the modern age. Results from the literature review has indicated that there has been an improvement in histopathology and histotechnology in stains used. There has been a rising need for efficient, accurate and less complex staining procedures. Many stain procedures are still in use today, and many others have been replaced with new immunostaining, molecular, non-culture and other advanced staining techniques. Some staining methods have been abandoned because the chemicals required have been medically proven to be toxic. The case studies indicated that in modern histology a combination of different stain techniques are used to enhance the effectiveness of the staining process. Currently, improved histological stains, have been modified and combined with other stains to improve their effectiveness.
NASA Astrophysics Data System (ADS)
Arirajan, K. A.; Chockalingam, K.; Vignesh, C.
2018-04-01
Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.
Dobrovol'skaya, T G; Golovchenko, A V; Yakushev, A V; Manucharova, N A; Yurchenko, E N
2014-01-01
The microcosm method was used to demonstrate an increase in bacterial numbers and drastic changes in the taxonomic structure of saprotrophic bacteria as a result of mechanical grinding of Sphagnum moss. Ekkrisotrophic agrobacteria predominant in untreated moss were replaced by hydrolytic bacteria. Molecular biological approaches revealed such specific hydrolytic bacteria as Janthinobacterium agaricum and Streptomyces purpurascens among the dominant taxa. The application of kinetic technique for determination of the physiological state of bacteria in situ revealed higher functional diversity of hydrolytic bacteria in ground moss than in untreated samples. A considerable decrease of the C/N ratio in ground samples of living Sphagnum incubated using the microcosm technique indicated decomposition of this substrate.
Baffelli, Renata; Notarangelo, Lucia D; Imberti, Luisa; Hershfield, Michael S; Serana, Federico; Santisteban, Ines; Bolda, Federica; Porta, Fulvio; Lanfranchi, Arnalda
2015-10-01
We carried out a retrospective analysis of 27 patients with Adenosine Deaminase (ADA) deficiency diagnosed in a single center from 1997 to the 2013, for evaluating whether data regarding types of disease-inducing mutations, biochemical and immunological features as well as clinical outcomes of patients treated with enzyme replacement or transplantation, were comparable to those obtained in multicenter studies. The ADA deficiency diagnosis was performed with biochemical, immunological and molecular techniques. Ten patients treated with hematopoietic stem cell transplantation and three in treatment with enzyme replacement were followed up in our center. Twenty-four different mutations were identified and five were not previously reported. Identical mutations were found among patients from the same Romani ethnic group or from the same geographical region. A more rapid recovery was observed in enzyme replacement treated patients in comparison with those transplanted that, however, showed a continuous and long-lasting improvement both in terms of immune and metabolic recovery. The data obtained in our single center are comparable with those that have been reported in multicenter surveys.
Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques.
Splettstoesser, W D; Tomaso, H; Al Dahouk, S; Neubauer, H; Schuff-Werner, P
2005-08-01
Tularaemia is a severe bacterial zoonosis caused by the highly infectious agent Francisella tularensis. It is endemic in countries of the northern hemisphere ranging from North America to Europe, Asia and Japan. Very recently, Francisella-like strains causing disease in humans were described from tropical northern Australia. In the last decade, efforts have been made to develop sensitive and specific immunological and molecular techniques for the laboratory diagnosis of tularaemia and also for the definite identification of members of the species F. tularensis and its four subspecies. Screening for the keyword 'Francisella' a Medline search over the last decade was performed and articles describing diagnostic methods for tularaemia and its causative agent were selected. Besides classical microbiological techniques (cultivation, biochemical profiling, susceptibility testing) several new immunological and molecular approaches to identify F. tularensis have been introduced employing highly specific antibodies and various polymerase chain reaction (PCR)-based methods. Whereas direct antigen detection by enzyme-linked immunosorbent assay (ELISA) or immunofluorescence might allow early presumptive diagnosis of tularaemia, these methods--like all PCR techniques--still await further evaluation. Therefore, diagnosis of tularaemia still relies mainly on the demonstration of specific antibodies in the host. ELISA and immunoblot methods started to replace the standard tube or micro-agglutination assays. However, the diagnostic value of antibody detection in the very early clinical phase of tularaemia is limited. Francisella tularensis is regarded as a 'highest priority' biological agent (category 'A' according to the CDC, Atlanta, GA, USA), thus rapid and reliable diagnosis of tularaemia is required not only for a timely onset of therapy, the handling of outbreak investigations but also for the surveillance of endemic foci. Only very recently, evaluated test kits for serological diagnosis of human tularaemia became available, while the introduction of standardized molecular techniques for detection and typing is still missing.
Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R
2011-05-01
Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.
2016-11-15
Ribokinase from a thermophilic strain of Thermus species 2.9 belonging to the carbohydrate ribokinase family (EC 2.7.1.15) was isolated, purified, and crystallized. The crystallization conditions were found by the vapor-diffusion technique and were then optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals, which were grown by the counter-diffusion technique, at the SPring-8 synchrotron radiation facility to 2.87 Å resolution. The crystals belong to sp. gr. P12{sub 1}1 and have the following unit-cell parameters: a = 81.613 Å, b = 156.132 Å, c = 87.714 Å, α = γ = 90°, βmore » = 103.819°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the protein by the molecular-replacement method.« less
Brunger, Axel T; Das, Debanu; Deacon, Ashley M; Grant, Joanna; Terwilliger, Thomas C; Read, Randy J; Adams, Paul D; Levitt, Michael; Schröder, Gunnar F
2012-04-01
Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.
Brunger, Axel T.; Das, Debanu; Deacon, Ashley M.; Grant, Joanna; Terwilliger, Thomas C.; Read, Randy J.; Adams, Paul D.; Levitt, Michael; Schröder, Gunnar F.
2012-01-01
Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence. PMID:22505259
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-03-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.
Initiating heavy-atom-based phasing by multi-dimensional molecular replacement
Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul
2016-01-01
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts. PMID:26960131
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Hongxing; Fang, Hengrui; Miller, Mitchell D.
2016-07-15
An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationshipmore » of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.« less
Enhancing quantum annealing performance for the molecular similarity problem
NASA Astrophysics Data System (ADS)
Hernandez, Maritza; Aramon, Maliheh
2017-05-01
Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware's performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.
Phaser.MRage: automated molecular replacement
Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J.; Oeffner, Robert D.; Adams, Paul D.; Read, Randy J.
2013-01-01
Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement. PMID:24189240
Phaser.MRage: automated molecular replacement.
Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J; Oeffner, Robert D; Adams, Paul D; Read, Randy J
2013-11-01
Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement.
Artificial viscosity to cure the carbuncle phenomenon: The three-dimensional case
NASA Astrophysics Data System (ADS)
Rodionov, Alexander V.
2018-05-01
The carbuncle phenomenon (also known as the shock instability) has remained a serious computational challenge since it was first noticed and described [1,2]. In [3] the author presented a summary on this subject and proposed a new technique for curing the problem. Its idea is to introduce some dissipation in the form of right-hand sides of the Navier-Stokes equations into the basic method of solving Euler equations; in so doing, the molecular viscosity coefficient is replaced by the artificial viscosity coefficient. The new cure for the carbuncle flaw was tested and tuned for the case of using first-order schemes in two-dimensional simulations. Its efficiency was demonstrated on several well-known test problems. In this paper we extend the technique of [3] to the case of three-dimensional simulations.
Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.
Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele
2014-09-23
Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.
Fukuta, Yuriko; Yildiz-Aktas, Isil Z; William Pasculle, A; Veldkamp, Peter J
2012-06-01
Legionella endocarditis is extremely uncommon, and embolic phenomena have never been reported. We report the first case of Legionella micdadei prosthetic valve endocarditis complicated by brain abscess. A 57-y-old immunocompromised woman with a history of mitral valve replacement developed confusion and left-sided weakness. Brain magnetic resonance imaging showed a 3-cm peripheral-enhancing mass. Transoesophageal echocardiography suggested a perivalvular abscess. Blood cultures and valve cultures were negative. She was diagnosed with 16S rRNA polymerase chain reaction and silver stain, and was discharged with levofloxacin after a redo mitral valve replacement. Twelve cases of Legionella endocarditis were reviewed. Only one case had a native valve, and her endocarditis occurred after pneumonia. All cases were cured. The duration of antibiotic therapy was variable. Legionella species should be considered in the differential diagnosis of culture-negative endocarditis in both immunocompetent and immunocompromised patients. Molecular techniques and silver impregnation stains are useful, especially when cultures using buffered charcoal-yeast extract agar are negative.
Determination and Quantification of Molecular Interactions in Protein Films: A Review.
Hammann, Felicia; Schmid, Markus
2014-12-10
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.
Determination Quantification of Molecular Interactions in Protein Films: A Review
Hammann, Felicia; Schmid, Markus
2014-01-01
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins. PMID:28788285
Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.
Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C
2013-12-01
Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.
NASA Astrophysics Data System (ADS)
Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Popov, V. O.
2017-11-01
The spatial organization of the genome is controlled by a special class of architectural proteins, including proteins containing BTB domains that are able to dimerize or multimerize. The centrosomal protein 190 is one of such architectural proteins. The purification, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 are reported. The crystallization conditions were found by the vapor-diffusion technique. The crystals diffracted to 1.5 Å resolution and belonged to sp. gr. P3221. The structure was solved by the molecular replacement method. The structure refinement is currently underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br
2006-10-01
Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less
NASA Technical Reports Server (NTRS)
Holmquist, R.; Pearl, D.
1980-01-01
Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.
Measuring Conformational Dynamics of Single Biomolecules Using Nanoscale Electronic Devices
NASA Astrophysics Data System (ADS)
Akhterov, Maxim V.; Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Gul, O. Tolga; Corso, Brad L.; Weiss, Gregory A.; Collins, Philip G.
2014-03-01
Molecular motion can be a rate-limiting step of enzyme catalysis, but motions are typically too quick to resolve with fluorescent single molecule techniques. Recently, we demonstrated a label-free technique that replaced fluorophores with nano-electronic circuits to monitor protein motions. The solid-state electronic technique used single-walled carbon nanotube (SWNT) transistors to monitor conformational motions of a single molecule of T4 lysozyme while processing its substrate, peptidoglycan. As lysozyme catalyzes the hydrolysis of glycosidic bonds, two protein domains undergo 8 Å hinge bending motion that generates an electronic signal in the SWNT transistor. We describe improvements to the system that have extended our temporal resolution to 2 μs . Electronic recordings at this level of detail directly resolve not just transitions between open and closed conformations but also the durations for those transition events. Statistical analysis of many events determines transition timescales characteristic of enzyme activity and shows a high degree of variability within nominally identical chemical events. The high resolution technique can be readily applied to other complex biomolecules to gain insights into their kinetic parameters and catalytic function.
Shi, Zhenyu; Vickers, Claudia E
2016-12-01
Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.
Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.
Leone, Serena; Picone, Delia
2016-01-01
MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.
A fragmentation and reassembly method for ab initio phasing.
Shrestha, Rojan; Zhang, Kam Y J
2015-02-01
Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy.
My daily constitutional in martinsried.
Allen, James P
2004-01-01
The three-dimensional structures of bacterial reaction centers have served as the framework for much of our understanding of anoxygenic photosynthesis. A key step in the determination of the structure of the reaction center from Rhodobacter sphaeroides was the use the molecular replacement technique. For this technique, we made use of two sets of data. First, X-ray diffraction data had been measured from crystals of the reaction center from R. sphaeroides by our research group in California, led by George Feher and Douglas Rees. The second data set consisted of the coordinates of the three-dimensional structure of the reaction center from Rhodopseudomonas (now Blastochloris) viridis, which had been solved in the pioneering efforts of a group in Martinsried, led by Johann Deisenhofer, Robert Huber and Hartmut Michel. The collaborative efforts of these two groups to determine the structure of the reaction center from R. sphaeroides is described.
Mulloy, B; Heath, A; Behr-Gross, M-E
2007-12-01
An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees continuity with the current CRS batch. In phase 2, participants also determined molecular weight parameters for the seven different LMM heparin samples using both the 1st IRR (90/686) and its Broad Standard Table and the candidate World Health Organization (WHO) 2nd International Standard (05/112) (2nd IS) using a Broad Standard Table established in phase 1. Mean molecular weights calculated using 2nd IS were slightly higher than with 1st IRR, and participants in the study indicated that this systematic difference precluded establishment of 2nd IS with the table supplied. A replacement Broad Standard Table has been devised on the basis of the central recalculations of raw data supplied by participants; this table gives improved agreement between values derived using the 1st IRR and the candidate 2nd IS. On the basis of this study a recommendation was made for the establishment of 2nd IS and its proposed Broad Standard Table as a replacement for the 1st International Reference Reagent Low Molecular Weight Heparin for Molecular Weight Calibration. Unlike the 1st IRR however, the candidate material 2nd IS is not suitable for use with the method of Nielsen. The candidate materials were established as heparin low-molecular-mass for calibration batches 2 and 3 by the Ph. Eur. Commission in March 2007 and as 2nd IS low-molecular-weight heparin for molecular weight calibration (05/112) by the Expert Committee on Biological Standardization in November 2007.
Almasi, Mohammad Amin; Erfan Manesh, Maryam; Jafary, Hossein; Dehabadi, Seyed Mohammad Hosseini
2013-09-01
The most common virus affecting potatoes in the field worldwide is Potato Leafroll virus (PLRV), belonging to the family Luteoviridae, genius Plerovirus. There are several molecular methods to detect PLRV including polymerase chain reaction (PCR), Multiplex AmpliDet RNA and double antibody sandwich ELISA (DAS-ELISA). But these techniques take a long time for 3h to two days, requiring sophisticated tools. The aim of this study was to reduce the time required to detect PLRV, using a newly designed loop-mediated isothermal amplification (LAMP) technique requiring only an ordinary water bath or thermoblock. PLRV RNA was extracted from overall 80 infected naturally potato leaves. A set of six novel primers for the LAMP reaction was designed according to the highly conserved sequence of the viral coat protein (CP) gene. LAMP was carried out under isothermal conditions, applying the Bst DNA polymerase enzyme; the LAMP products were detected visually using the GeneFinder™ florescence dye. A positive result using the GeneFinder™ dye was a color change from the original orange to green. Results confirmed LAMP with GeneFinder™ provides a rapid and safe assay for detection of PLRV. Since with other molecular methods, equipping laboratories with a thermocycler or expensive detector systems is unavoidable, this assay was found to be a simple, cost-effective molecular method that has the potential to replace other diagnostic methods in primary laboratories without the need for expensive equipment or specialized techniques. It can also be considered as a reliable alternative viral detection system in further investigations. Copyright © 2013 Elsevier B.V. All rights reserved.
Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection
Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season
2016-01-01
Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424
Bardakci, Hasmet; Altıntaş, Garip; Çiçek, Omer Faruk; Kervan, Umit; Yilmaz, Sevinc; Kaplan, Sadi; Birincioglu, Cemal Levent
2013-05-01
To compare the international normalised ratio (INR) value of patients evaluated using the CoaguChek XS versus conventional laboratory methods, in the period after open-heart surgery for mechanical valve replacement until a therapeutic range is achieved using vitamin K antagonists (VKA) together with low molecular weight heparin (LMWH). One hundred and five patients undergoing open-heart surgery for mechanical valve replacement were enrolled. Blood samples were collected from patients before surgery, and on the second and fifth postoperative days, simultaneously for both the point of care device and conventional laboratory techniques. Patients were administered VKA together with LMWH at therapeutic doses (enoxaparin 100 IU/kg twice daily) subcutaneously, until an effective range was achieved on approximately the fifth day after surgery. The mean INR values using the CoaguChek XS preoperatively and on the second and fifth days postoperatively were 1.20 (SD ± 0.09), 1.82 (SD ± 0.45), and 2.55 (SD ± 0.55), respectively. Corresponding results obtained using conventional laboratory techniques were 1.18 (SD ± 0.1), 1.81 (SD ± 0.43), and 2.51 (SD ± 0.58). The correlation coefficient was r = 0.77 preoperatively, r = 0.981 on postoperative day 2, and r = 0.983 on postoperative day 5. Results using the CoaguChek XS Handheld Coagulation Analyzer correlated strongly with conventional laboratory methods, in the bridging period between open-heart surgery for mechanical valve replacement and the achievement of a therapeutic range on warfarin and LMWH. © 2013 Wiley Periodicals, Inc.
Iván, Kristóf; Maráz, Anna
2015-12-20
Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.
The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...
Usman, Afia; Ahmad, Masood
2017-08-01
BPF (Bisphenol-F), a member of the bisphenol family, having a wide range of industrial applications is gradually replacing Bisphenol-A. It is a recognized endocrine disrupting chemical (EDC). EDCs have been implicated in increased incidences of breast, prostate and testis cancers besides diabetes, obesity and decreased fertility. Due to the adverse effects of EDCs on human health, attempts have been directed towards their mechanism of toxicity especially at the molecular level. Hence, to understand the mechanism at the DNA level, interaction of BPF with calf thymus DNA was studied employing multi-spectroscopic, voltammetric and molecular docking techniques. Fluorescence spectra, cyclic voltammetry (CV), circular dichroism (CD) and molecular docking studies of BPF with DNA were suggestive of minor groove binding of BPF. UV-visible absorption and fluorescence spectra suggested static quenching due to complex formation between BPF and ctDNA. Hoechst 33258 (HO) and ethidium bromide (EB) displacement studies further confirmed such mode of BPF interaction. Thermodynamic and molecular docking parameters revealed the mechanism of binding of BPF with ctDNA to be favorable and spontaneous due to negative ΔG and occurring through hydrogen bonds and van der waals interactions. BPF induced DNA cleavage under in vitro conditions by plasmid nicking assay suggested it to be genotoxic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Garlicki, Miroslaw; Roguski, K; Puchniewicz, M; Ehrlich, Marek P
2006-08-01
We report in this study our results with composite aortic root replacement (CVR) using the classic or modified Cabrol coronary implantation technique. From October 2001 to March 2005, 25 patients underwent aortic root replacement. In all cases, the indication for surgery was a degenerative aneurysm with a diameter of more than 6 cm. Seven patients had undergone a previous aortic operation on the ascending aorta. Mean age was 53+/-13 years and 22 patients were male. Mean Euroscore was 5.2+/-2.4. Aortic insufficiency was present in all patients. Two patients had Marfan syndrome. The 30-day mortality was 0%. Two patients required profound hypothermic circulatory arrest. Mean aortic cross-clamp time was 91+/-24 minutes and the mean circulatory arrest time was 24+/-15 minutes. No patients developed a pseudoaneurysm after the operation. We conclude that composite aortic root replacement with the classic or modified Cabrol technique results in a low operative mortality. However, it should be only used when a "button" technique is not feasible.
Larenas-Linnemann, Désirée; Luna-Pech, Jorge A; Mösges, Ralph
2017-01-01
Percutaneous skin prick tests (SPT) have been considered the preferred method for confirming IgE-mediated sensitization. This reliable and minimally invasive technique correlates with in vivo challenges, has good reproducibility, is easily quantified, and allows analyzing multiple allergens simultaneously. Potent extracts and a proficient tester improve its accuracy. Molecular-based allergy diagnostics (MA-Dx) quantifies allergenic components obtained either from purification of natural sources or recombinant technology to identify the patient's reactivity to those specific allergenic protein components. For a correct allergy diagnosis, the patient selection is crucial. MA-Dx has been shown to have a high specificity, however, as MA-Dx testing can be ordered by any physician, the pre-selection of patients might not always be optimal, reducing test specificity. Also, MA-Dx is less sensitive than in vitro testing with the whole allergen or SPT. Secondly, no allergen-specific immunotherapy (AIT) trial has yet shown efficacy with patients selected on the basis of their MA-Dx results. Thirdly, why would we need molecular diagnosis, as no molecular treatment can yet be offered? Then there are the practical arguments of costs (SPT highly cost-efficient), test availability for MA-Dx still lacking in wide areas of the world and scarce in others. As such, it is hard physicians can build confidence in the test and their interpretation of the MA-Dx results. as of now these techniques should be reserved for situations of complex allergies and polysensitization; in the future MA-Dx might help to reduce the number of allergens for AIT, but trials are needed to prove this concept.
Esophageal replacement in children: Challenges and long-term outcomes.
Soccorso, Giampiero; Parikh, Dakshesh H
2016-01-01
Replacement of a nonexistent or damaged esophagus continues to pose a significant challenge to pediatric surgeons. Various esophageal replacement grafts and techniques have not produced consistently good outcomes to emulate normal esophagus. Therefore, many techniques are still being practiced and recommended with no clear consensus. We present a concise literature review of the currently used techniques and with discussions on the advantages and anticipated morbidity. There are no randomized controlled pediatric studies to compare different types of esophageal replacements. Management and graft choice are based on geographical and personal predilections rather than on any discernible objective data. The biggest series with long-term outcome are reported for gastric transposition and colonic replacement. Comparison of different studies shows no significant difference in early (graft necrosis and anastomotic leaks) or late complications (strictures, poor feeding, gastro-esophageal reflux, tortuosity of the graft, and Barrett's esophagus). The biggest series seem to have lower complications than small series reflecting the decennials experience in their respective centers. Long-term follow-up is recommended following esophageal replacement for the development of late strictures, excessive tortuosity, and Barrett's changes within the graft. Once child overcomes initial morbidity and establishes oral feeding, long-term consequences and complications of pediatric esophageal replacement should be monitored and managed in adult life.
Esophageal replacement in children: Challenges and long-term outcomes
Soccorso, Giampiero; Parikh, Dakshesh H.
2016-01-01
Replacement of a nonexistent or damaged esophagus continues to pose a significant challenge to pediatric surgeons. Various esophageal replacement grafts and techniques have not produced consistently good outcomes to emulate normal esophagus. Therefore, many techniques are still being practiced and recommended with no clear consensus. We present a concise literature review of the currently used techniques and with discussions on the advantages and anticipated morbidity. There are no randomized controlled pediatric studies to compare different types of esophageal replacements. Management and graft choice are based on geographical and personal predilections rather than on any discernible objective data. The biggest series with long-term outcome are reported for gastric transposition and colonic replacement. Comparison of different studies shows no significant difference in early (graft necrosis and anastomotic leaks) or late complications (strictures, poor feeding, gastro-esophageal reflux, tortuosity of the graft, and Barrett's esophagus). The biggest series seem to have lower complications than small series reflecting the decennials experience in their respective centers. Long-term follow-up is recommended following esophageal replacement for the development of late strictures, excessive tortuosity, and Barrett's changes within the graft. Once child overcomes initial morbidity and establishes oral feeding, long-term consequences and complications of pediatric esophageal replacement should be monitored and managed in adult life. PMID:27365900
A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions
NASA Astrophysics Data System (ADS)
Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya
2010-05-01
In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.
Molecular recognition on a cavitand-functionalized silicon surface.
Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico
2009-06-03
A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.
Common developmental pathways link tooth shape to regeneration
Fraser, Gareth J.; Bloomquist, Ryan F.; Streelman, J. Todd
2013-01-01
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry. PMID:23422830
The Use of Monoclonal Antibodies in Human Prion Disease
NASA Astrophysics Data System (ADS)
Bodemer, Walter
Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.
MrGrid: A Portable Grid Based Molecular Replacement Pipeline
Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.
2010-01-01
Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynes, Laura; /Rensselaer Poly.
2007-10-31
Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, butmore » its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.« less
Spencer, Brian A; Mont, Michael A; McGrath, Mike S; Boyd, Bradley; Mitrick, Michael F
2009-12-01
New technology using magnetic resonance imaging (MRI) allows the surgeon to place total knee replacement components into each patient's pre-arthritic natural alignment. This study evaluated the initial intra-operative experience using this technique. Twenty-one patients had a sagittal MRI of their arthritic knee to determine component placement for a total knee replacement. Cutting guides were machined to control all intra-operative cuts. Intra-operative events were recorded and these knees were compared to a matching cohort of the senior surgeon's previous 30 conventional total knee replacements. Post-operative scanograms were obtained from each patient and coronal alignment was compared to previous studies using conventional and computer-assisted techniques. There were no intra-operative or acute post-operative complications. There were no differences in blood loss and there was a mean decrease in operative time of 14% compared to a cohort of patients with conventional knee replacements. The average deviation from the mechanical axis was 1.2 degrees of varus, which was comparable to previously reported conventional and computer-assisted techniques. Custom-fit total knee replacement appeared to be a safe procedure for uncomplicated cases of osteoarthritis.
Morinaga, Takao; Nguyễn, Thảo Thi Thanh; Zhong, Boya; Hanazono, Michiko; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi
2017-11-10
Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.
Hierarchy, determinism, and specificity in theories of development and evolution.
Deichmann, Ute
2017-10-16
The concepts of hierarchical organization, genetic determinism and biological specificity (for example of species, biologically relevant macromolecules, or genes) have played a crucial role in biology as a modern experimental science since its beginnings in the nineteenth century. The idea of genetic information (specificity) and genetic determination was at the basis of molecular biology that developed in the 1940s with macromolecules, viruses and prokaryotes as major objects of research often labelled "reductionist". However, the concepts have been marginalized or rejected in some of the research that in the late 1960s began to focus additionally on the molecularization of complex biological structures and functions using systems approaches. This paper challenges the view that 'molecular reductionism' has been successfully replaced by holism and a focus on the collective behaviour of cellular entities. It argues instead that there are more fertile replacements for molecular 'reductionism', in which genomics, embryology, biochemistry, and computer science intertwine and result in research that is as exact and causally predictive as earlier molecular biology.
Molecular Design and Evaluation of Biodegradable Polymers Using a Statistical Approach
Lewitus, Dan; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim
2013-01-01
The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond (MPFB) analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60% within the first 24 hours. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications. PMID:23888354
NASA Technical Reports Server (NTRS)
Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.
2008-01-01
The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.
Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein
Picone, Delia
2016-01-01
MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques. PMID:27340829
Behr, Luc; Chetboul, Valérie; Sampedrano, Carolina Carlos; Vassiliki, Gouni; Pouchelon, Jean-Louis; Laborde, François; Borenstein, Nicolas
2007-04-01
To describe an open, beating heart surgical technique and use of a bovine pericardial prosthetic valve for mitral valve replacement (MVR) in the dog. Clinical case report. Male Bull Terrier (17-month-old, 26 kg) with mitral valve dysplasia and severe regurgitation. A bovine pericardial bioprosthesis was used to replace the mitral valve using an open beating heart surgical technique and cardiopulmonary bypass. Successful MVR was achieved using a beating heart technique. Mitral regurgitation resolved and cardiac performances improved (left ventricular end-diastolic diameter decreased from 57.6 to 48.7 mm, and left atrium/aorta ratio returned to almost normal, from 1.62 to 1.19). Cardiopulmonary by-pass time and total surgical duration were decreased compared with standard cardioplegic techniques. Surgical recovery was uneventful and on echocardiography 6 months later valve function was excellent. Considering the technique advantages (no cardiac arrest, ischemic reperfusion injury, and hypothermia, or the need for aortic dissection and cannulation for administration of cardioplegic solution), short-term mortality and morbidity may be reduced compared with standard cardioplegic techniques. Based on experience in this dog, beating heart mitral valvular replacement is a seemingly safe and viable option for the dog and bovine pericardial prosthesis may provide better long-term survival than mechanical prostheses.
Incorporating molecular breeding values with variable call rates into genetic evaluations
USDA-ARS?s Scientific Manuscript database
A partial genotype for an animal can result from panels with low call rates used to calculate a molecular breeding value. A molecular breeding value can still be calculated using a partial genotype by replacing the missing marker covariates with their mean value. This approach is expected to chang...
Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2014-02-03
SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled
Medina-Arellano, María de Jesús
2017-01-01
Abstract News about the first baby born after a mitochondrial replacement technique (MRT; specifically maternal spindle transfer) broke on September 27, 2016 and, in a matter of hours, went global. Of special interest was the fact that the mitochondrial replacement procedure happened in Mexico. One of the scientists behind this world first was quoted as having said that he and his team went to Mexico to carry out the procedure because, in Mexico, there are no rules. In this paper, we explore Mexico's rule of law in relation to mitochondrial replacement techniques and show that, in fact, certain instances of MRTs are prohibited at the federal level and others are prohibited at the state level. According to our interpretation of the law, the scientists behind this first successful MRT procedure broke federal regulations regarding assisted fertilization research. PMID:28852557
Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makino, Debora Lika, E-mail: dmakino@biochem.mpg.de; Conti, Elena
The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryoticmore » exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.« less
Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki
2015-06-01
Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.
A search for new glucophores by isosteric replacement of carboxylic function.
Polański, J; Jarzembek, K; Łysiak, V
2000-11-01
We used arylsulfonylalkanoic acids as parent structures for designing new potential sweeteners. The Kohonen maps of the molecular electrostatic potential of the possible bioisosteric replacements of carboxylic function have been simulated and used for the selection of the potential synthetic targets which are now under synthesis.
Qiu, Yimin; Mekkat, Arya; Yu, Hongtao; Yigit, Sezin; Hamaia, Samir; Farndale, Richard W; Kaplan, David L; Lin, Yu-Shan; Brodsky, Barbara
2018-05-11
Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa) n sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding 502 GFPGER 507 sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system. Recombinant collagens were constructed with Gly substituted by Ala, Ser or Val at four positions within the integrin binding region. All constructs formed a stable triple-helix structure with a small decrease in melting temperature. Trypsin was used to probe local disruption of the triple helix, and Gly to Val replacements made the triple helix trypsin sensitive at three of the four sites. Any mutation at Gly505, eliminated integrin binding, while decreased integrin binding affinity was observed in the replacement of Gly residues at Gly502 following the order Val > Ser > Ala. Molecular dynamics simulations indicated that all Gly replacements led to transient disruption of triple-helix interchain hydrogen bonds in the region of the Gly replacement. These computational and experimental results lend insight into the complex molecular basis of the varying clinical severity of OI. Copyright © 2018. Published by Elsevier Inc.
Nucleic acid duplexes incorporating a dissociable covalent base pair
NASA Technical Reports Server (NTRS)
Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.
Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R
2018-01-01
The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.
Canfarotta, Francesco; Smolinska-Kempisty, Katarzyna; Piletsky, Sergey
2017-01-01
The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified. Thanks to their robustness and low cost, molecularly imprinted polymer nanoparticles (nanoMIPs) are a viable alternative to antibodies. Herein, we describe the synthesis of nanoMIPs imprinted for vancomycin and their subsequent application in an ELISA-like format for direct replacement of antibodies.
Continuous tooth replacement: the possible involvement of epithelial stem cells.
Huysseune, Ann; Thesleff, Irma
2004-06-01
Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry. Copyright 2004 Wiley Periodicals, Inc.
Keegan, Ronan M; McNicholas, Stuart J; Thomas, Jens M H; Simpkin, Adam J; Simkovic, Felix; Uski, Ville; Ballard, Charles C; Winn, Martyn D; Wilson, Keith S; Rigden, Daniel J
2018-03-01
Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case.
Keegan, Ronan M.; McNicholas, Stuart J.; Thomas, Jens M. H.; Simpkin, Adam J.; Uski, Ville; Ballard, Charles C.
2018-01-01
Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case. PMID:29533225
Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke
2016-10-30
A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of species origin of meat and meat products on the DNA basis: a review.
Kumar, Arun; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Gokulakrishnan, Palanisamy; Mendiratta, Sanjod Kumar; Sharma, Deepak
2015-01-01
The adulteration/substitution of meat has always been a concern for various reasons such as public health, religious factors, wholesomeness, and unhealthy competition in meat market. Consumer should be protected from these malicious practices of meat adulterations by quick, precise, and specific identification of meat animal species. Several analytical methodologies have been employed for meat speciation based on anatomical, histological, microscopic, organoleptic, chemical, electrophoretic, chromatographic, or immunological principles. However, by virtue of their inherent limitations, most of these techniques have been replaced by the recent DNA-based molecular techniques. In the last decades, several methods based on polymerase chain reaction have been proposed as useful means for identifying the species origin in meat and meat products, due to their high specificity and sensitivity, as well as rapid processing time and low cost. This review intends to provide an updated and extensive overview on the DNA-based methods for species identification in meat and meat products.
The successes and future prospects of the linear antisense RNA amplification methodology.
Li, Jifen; Eberwine, James
2018-05-01
It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.
Digital I and C system upgrade integration technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H. W.; Shih, C.; Wang, J. R.
2012-07-01
This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digitalmore » Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A solid review can assure the quality of the digital I and C system replacement. (authors)« less
Mitochondrial Replacement Techniques: Divergence in Global Policy.
Schandera, Johanna; Mackey, Tim K
2016-07-01
In 2015, the UK became the first country permitting the clinical application of mitochondrial replacement techniques (MRT). Here, we explore how MRT have led to diverging international policy. In response, we recommend focused regulatory efforts coupled with United Nations (UN) leadership to build international consensus on the future of MRT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2.
Eames, B Frank; Sharpe, Paul T; Helms, Jill A
2004-10-01
Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.
Arsiccio, Andrea; Pisano, Roberto
2017-09-21
Molecular dynamics is here used to elucidate the mechanism of protein stabilization by carbohydrates and other additives during freezing. More specifically, we used molecular dynamics simulations to obtain a quantitative estimation of the capability of various cryoprotectants to preserve a model protein, the human growth hormone, against freezing stresses. Three mechanisms were investigated, preferential exclusion, water replacement, and vitrification. Model simulations were finally validated upon experimental data in terms of the ability of excipients to prevent protein aggregation. Overall, we found that the preferential exclusion and vitrification mechanisms are important during the whole freezing process, while water replacement becomes dominant only toward the end of the cryoconcentration phase. The disaccharides were found to be the most efficient excipients, in regard to both preferential exclusion and water replacement. Moreover, sugars were in general more efficient than other excipients, such as glycine or sorbitol.
Boeckel, Daniel Gonçalves; Shinkai, Rosemary Sadami Arai; Grossi, Márcio Lima; Teixeira, Eduardo Rolim
2012-09-01
Several biomaterials and techniques for bone grafting have been described in the literature for atresic bone tissue replacement caused by edentulism, surgical resectioning, and traumas. A new technique involves tissue engineering, a promising option to replace bone tissue and solve problems associated with morbidity of autogenous grafting. This literature review aims to describe tissue-engineering techniques using ex vivo cell culture as an alternative to repair bone maxillary atresias and discuss the concepts and potentials of bone regeneration through cell culture techniques as an option for restorative maxillofacial surgery.
Toshimitsu, Fumiyuki; Nakashima, Naotoshi
2015-12-14
The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.
BALBES: a molecular-replacement pipeline.
Long, Fei; Vagin, Alexei A; Young, Paul; Murshudov, Garib N
2008-01-01
The number of macromolecular structures solved and deposited in the Protein Data Bank (PDB) is higher than 40 000. Using this information in macromolecular crystallography (MX) should in principle increase the efficiency of MX structure solution. This paper describes a molecular-replacement pipeline, BALBES, that makes extensive use of this repository. It uses a reorganized database taken from the PDB with multimeric as well as domain organization. A system manager written in Python controls the workflow of the process. Testing the current version of the pipeline using entries from the PDB has shown that this approach has huge potential and that around 75% of structures can be solved automatically without user intervention.
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Evaluating the solution from MrBUMP and BALBES
Keegan, Ronan M.; Long, Fei; Fazio, Vincent J.; Winn, Martyn D.; Murshudov, Garib N.; Vagin, Alexei A.
2011-01-01
Molecular replacement is one of the key methods used to solve the problem of determining the phases of structure factors in protein structure solution from X-ray image diffraction data. Its success rate has been steadily improving with the development of improved software methods and the increasing number of structures available in the PDB for use as search models. Despite this, in cases where there is low sequence identity between the target-structure sequence and that of its set of possible homologues it can be a difficult and time-consuming chore to isolate and prepare the best search model for molecular replacement. MrBUMP and BALBES are two recent developments from CCP4 that have been designed to automate and speed up the process of determining and preparing the best search models and putting them through molecular replacement. Their intention is to provide the user with a broad set of results using many search models and to highlight the best of these for further processing. An overview of both programs is presented along with a description of how best to use them, citing case studies and the results of large-scale testing of the software. PMID:21460449
Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.
Roukis, Thomas S; Simonson, Devin C
2015-10-01
Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented. Copyright © 2015 Elsevier Inc. All rights reserved.
Terao, E; Daas, A; Rautmann, G; Buchheit, K-H
2010-10-01
A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruschak, M.L.; Syty, A.
1982-08-01
A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less
Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan José
2006-07-01
A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 angstroms from a single crystal flash-cooled at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 angstroms, alpha = 102.90, beta = 104.40, gamma = 99.07 degrees, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.
Del Carratore, Francesco; Jankevics, Andris; Eisinga, Rob; Heskes, Tom; Hong, Fangxin; Breitling, Rainer
2017-09-01
The Rank Product (RP) is a statistical technique widely used to detect differentially expressed features in molecular profiling experiments such as transcriptomics, metabolomics and proteomics studies. An implementation of the RP and the closely related Rank Sum (RS) statistics has been available in the RankProd Bioconductor package for several years. However, several recent advances in the understanding of the statistical foundations of the method have made a complete refactoring of the existing package desirable. We implemented a completely refactored version of the RankProd package, which provides a more principled implementation of the statistics for unpaired datasets. Moreover, the permutation-based P -value estimation methods have been replaced by exact methods, providing faster and more accurate results. RankProd 2.0 is available at Bioconductor ( https://www.bioconductor.org/packages/devel/bioc/html/RankProd.html ) and as part of the mzMatch pipeline ( http://www.mzmatch.sourceforge.net ). rainer.breitling@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Technical Advances in the Measurement of Residual Disease in Acute Myeloid Leukemia
Roloff, Gregory W.; Lai, Catherine; Dillon, Laura W.
2017-01-01
Outcomes for those diagnosed with acute myeloid leukemia (AML) remain poor. It has been widely established that persistent residual leukemic burden, often referred to as measurable or minimal residual disease (MRD), after induction therapy or at the time of hematopoietic stem cell transplant (HSCT) is highly predictive for adverse clinical outcomes and can be used to identify patients likely to experience clinically evident relapse. As a result of inherent genetic and molecular heterogeneity in AML, there is no uniform method or protocol for MRD measurement to encompass all cases. Several techniques focusing on identifying recurrent molecular and cytogenetic aberrations or leukemia-associated immunophenotypes have been described, each with their own strengths and weaknesses. Modern technologies enabling the digital quantification and tracking of individual DNA or RNA molecules, next-generation sequencing (NGS) platforms, and high-resolution imaging capabilities are among several new avenues under development to supplement or replace the current standard of flow cytometry. In this review, we outline emerging modalities positioned to enhance MRD detection and discuss factors surrounding their integration into clinical practice. PMID:28925935
Janus nanoparticles for stable microemulsions with ultra-low IFT values
NASA Astrophysics Data System (ADS)
Nava, Ilse; Diaz, Agustin; Yu, Yi-Hsien; Cheng, Zhengdong
2015-03-01
Janus particles are an influential type of materials used in foams, detergents, surfactants and cosmetics. Due to their demonstrated flexibility and non-toxicity, they have the potential to replace molecular surfactants, and thanks to their amphiphilicity, they can stabilize immiscible biphasic systems. Disk-based Janus particles best perform this stabilization. Graphene has been used to manufacture this class of particles; however, their fabrication in high yield by short and atomically economic syntheses remains a challenge. In this project we report the first synthesis of monolayer disks by a one pot reaction under microwave energy. Using a scalable method, these disks were synthesized, emulsified (in an oil/water system), and chemically reacted to obtain the Janus nanodisks with an efficient method. Our nanosheets production technique is a promising approach for the fabrication of Janus nanodisks via emulsification as it produces IFT (interfacial tension) values in a lower range than that of the molecular surfactants. These ultra-low values, in conjunction with the sheets' salt resistance, temperature resistance, and non-toxicity position Janus particles as the next generation of nanosurfactants.
Diversification of land plants: insights from a family-level phylogenetic analysis.
Fiz-Palacios, Omar; Schneider, Harald; Heinrichs, Jochen; Savolainen, Vincent
2011-11-21
Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.
Mourino-Alvarez, Laura; Iloro, Ibon; de la Cuesta, Fernando; Azkargorta, Mikel; Sastre-Oliva, Tamara; Escobes, Iraide; Lopez-Almodovar, Luis F; Sanchez, Pedro L; Urreta, Harkaitz; Fernandez-Aviles, Francisco; Pinto, Angel; Padial, Luis R; Akerström, Finn; Elortza, Felix; Barderas, Maria G
2016-06-03
Aortic stenosis (AS) is the most common form of valve disease. Once symptoms develop, there is an inexorable deterioration with a poor prognosis; currently there are no therapies capable of modifying disease progression, and aortic valve replacement is the only available treatment. Our goal is to study the progression of calcification by matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) and get new insights at molecular level that could help in the understanding of this disease. In this work, we analyzed consecutive slices from aortic valve tissue by MALDI-IMS, to establish the spatial distribution of proteins and peptides directly from the surface of the histological sections. The analysis showed different structures corresponding to regions observed in conventional histology, including large calcification areas and zones rich in collagen and elastic fibers. Peptide extraction from the tissue, followed by liquid chromatography mass spectrometry analysis, provided the identification of collagen VI α-3 and NDRG2 proteins which correlated with the masses obtained by MALDI-IMS and were confirmed by immunohistochemistry. These results highlighted the molecular mechanism implied in AS using MALDI-IMS, a novel technique never used before in this pathology. In addition, we can define specific regions proving a complementary resolution of the molecular histology.
Keeler, Geoffrey D; Durdik, Jeannine M; Stenken, Julie A
2014-06-16
Microdialysis sampling is a commonly used technique for collecting solutes from the extracellular space of tissues in laboratory animals and humans. Large molecular weight solutes can be collected using high molecular weight cutoff (MWCO) membranes (100kDa or greater). High MWCO membranes require addition of high molecular weight dextrans or albumin to the perfusion fluid to prevent fluid loss via ultrafiltration. While these perfusion fluid additives are commonly used during microdialysis sampling, the tissue response to the loss of these compounds across the membrane is poorly understood. Tissue reactions to implanted microdialysis sampling probes containing different microdialysis perfusion fluids were compared over a 7-day time period in rats. The base perfusion fluid was Ringer's solution supplemented with either bovine serum albumin (BSA), rat serum albumin (RSA), Dextran-70, or Dextran-500. A significant inflammatory response to Dextran-70 was observed. No differences in the tissue response between BSA and RSA were observed. Among these agents, the BSA, RSA, and Dextran-500 produced a significantly reduced inflammatory response compared to the Dextran-70. This work demonstrates that use of Dextran-70 in microdialysis sampling perfusion fluids should be eliminated and replaced with Dextran-500 or other alternatives. Copyright © 2013 Elsevier B.V. All rights reserved.
Optical diffraction for measurements of nano-mechanical bending
NASA Astrophysics Data System (ADS)
Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel
2016-06-01
We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.
A Practical Approach to Protein Crystallography.
Ilari, Andrea; Savino, Carmelinda
2017-01-01
Macromolecular crystallography is a powerful tool for structural biology. The resolution of a protein crystal structure is becoming much easier than in the past, thanks to developments in computing, automation of crystallization techniques and high-flux synchrotron sources to collect diffraction datasets. The aim of this chapter is to provide practical procedures to determine a protein crystal structure, illustrating the new techniques, experimental methods, and software that have made protein crystallography a tool accessible to a larger scientific community.It is impossible to give more than a taste of what the X-ray crystallographic technique entails in one brief chapter and there are different ways to solve a protein structure. Since the number of structures available in the Protein Data Bank (PDB) is becoming ever larger (the protein data bank now contains more than 100,000 entries) and therefore the probability to find a good model to solve the structure is ever increasing, we focus our attention on the Molecular Replacement method. Indeed, whenever applicable, this method allows the resolution of macromolecular structures starting from a single data set and a search model downloaded from the PDB, with the aid only of computer work.
Mizuno, T; Mizukoshi, T; Uechi, M
2013-02-01
Mitral valve repair under cardiopulmonary bypass was performed in three dogs with clinical signs associated with mitral regurgitation that were not controlled by medication. Mitral valve repair comprised circumferential annuloplasty and chordal replacement with expanded polytetrafluoroethylene. One dog died 2 years after surgery because of severe mitral regurgitation resulting from partial circumferential suture detachment. The others survived for over 5 years, but mild mitral valve stenosis persisted in one. The replaced chordae did not rupture in any dog. Mitral valve repair appears to be an effective treatment for mitral regurgitation in dogs. Chordal replacement with expanded polytetrafluoroethylene is a feasible technique, demonstrating long-term durability in dogs. However, mitral annuloplasty techniques need improvement. © 2012 British Small Animal Veterinary Association.
Structural Genomics of Bacterial Virulence Factors
2006-05-01
positioned in the unit cell by Molecular Replacement (Protein Data Bank ( PDB ) ID code 1acc)6 using MOLREP, and refined with REFMAC version 5.0 (ref. 24...increase our understanding of the molecular mechanisms of pathogenicity, putting us in a stronger position to anticipate and react to emerging...term, the accumulated structural information will generate important and testable hypotheses that will increase our understanding of the molecular
Nucleic acid duplexes incorporating a dissociable covalent base pair
Gao, Kui; Orgel, Leslie E.
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299
Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell
2014-01-01
Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more aggressive disease course. When a secondary malignancy has already been established or is strongly suspected, combining molecular imaging techniques (e.g. (18)F-FDG PET and (68)Ga-DOTA PET) takes advantage of the diverse avidities of different tumor types to differentiate lesions of different origins. All the above-mentioned molecular imaging studies should always be reviewed and interpreted in a multidisciplinary (tumor board) meeting in combination with the conventional cross-sectional imaging, as the latter remains the imaging of choice for the evaluation of treatment response and disease follow-up. © 2014 S. Karger AG, Basel
[Optimizing primary total hip replacement--a technique to effect saving of manpower].
Huber, J F; Rink, M; Broger, I; Zumstein, M; Ruflin, G B
2003-01-01
Development of a standardized surgical technique for total hip replacement thereby saving manpower (one assistant) by using a retractor system. Total hip replacement is performed with the patient in a true lateral position on a tunnel cushion. By means of a direct lateral approach the pelvitrochanteric muscles are partially detached using an omega-shaped cut. The Bookwalter retractor is fixed dorsally on the operating table. The ring is centered keeping the greater trochanter in the middle. The Hohmann retractors are fixed to the ring to sufficiently expose the acetabulum. To insert the femoral stem the ring needs to be opened dorsally and the patient's leg is bent 90 degrees in the hip and the knee over the tunnel cushion. The muscles inserting at the greater trochanter are retracted by a separate Hohmann retractor with weight. In a case control study with matched pairs the patients treated with this technique were compared with those treated in supine position with the transgluteal approach. The number of assistants required and the operating time were assessed. All the hip replacements with the patient in side position were performed with one assistant, in supine position with two assistants. The operating time did not differ significantly (supine position 110 min/side position 112 min). The complication rate in both groups was comparable (one secondary wound healing, one transient ischalgia). The process of total hip replacement can be optimized. The described technique allows to spare one surgical assistant without prolonging the operating time.
Current and innovative pain management techniques in total knee arthroplasty.
Dalury, David F; Lieberman, Jay R; Macdonald, Steven J
2012-01-01
Pain management is a major concern for patients contemplating total knee replacement surgery and is one of the leading causes of dissatisfaction after knee replacement. Substantial progress has been made over the past several years in improving pain control after total knee replacement using multimodal pain control, preemptive analgesia, and periarticular injections.
NASA Astrophysics Data System (ADS)
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate
NASA Astrophysics Data System (ADS)
Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang
2017-03-01
Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.
Virological investigation of hand, foot, and mouth disease in a tertiary care center in South India.
Vijayaraghavan, Pavithra M; Chandy, Sara; Selvaraj, Kavitha; Pulimood, Susanne; Abraham, Asha M
2012-07-01
Hand, foot, and mouth disease (HFMD) remains a common problem in India, yet its etiology is largely unknown as diagnosis is based on clinical characteristics. There are very few laboratory-based molecular studies on HFMD outbreaks. The aim of this study was to characterize HFMD-related isolates by molecular techniques. Between 2005 and 2008, during two documented HFMD outbreaks, 30 suspected HFMD cases presented at the Outpatient Unit of the Department of Dermatology, Christian Medical College (CMC), Vellore. Seventy-eight clinical specimens (swabs from throat, mouth, rectum, anus, buttocks, tongue, forearm, sole, and foot) were received from these patients at the Department of Clinical Virology, CMC, for routine diagnosis of hand, foot, and mouth disease. Samples from these patients were cultured in Vero and rhabdomyosarcoma (RD) cell lines. Isolates producing enterovirus-like cytopathogenic effect (CPE) in cell culture were identified by a nested reverse transcription-based polymerase chain reaction (RT-PCR) and sequenced. The nucleotide sequences were analyzed using the BioEdit sequence program. Homology searches were performed using the Basic Local Alignment Search Tool (BLAST) algorithm. The statistical analysis was performed using Epi Info version 6.04b and Microsoft Excel 2002 (Microsoft Office XP). Of the 30 suspected HFMD cases, only 17 (57%) were laboratory confirmed and Coxsackievirus A16 (CVA16) was identified as the etiological agent in all these cases. Coxsackievirus A16 (CVA16) was identified as the virus that caused the HFMD outbreaks in Vellore between 2005 and 2008. Early confirmation of HFMD helps to initiate control measures to interrupt virus transmission. In the laboratory, classical diagnostic methods, culture and serological tests are being replaced by molecular techniques. Routine surveillance systems will help understand the epidemiology of HFMD in India.
Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariza, Antonio; Vickers, Tim J.; Greig, Neil
2005-08-01
The detoxification enzyme glyoxalase I from L. major has been crystallized. Preliminary molecular-replacement calculations indicate the presence of three glyoxalase I dimers in the asymmetric unit. Glyoxalase I (GLO1) is a putative drug target for trypanosomatids, which are pathogenic protozoa that include the causative agents of leishmaniasis. Significant sequence and functional differences between Leishmania major and human GLO1 suggest that it may make a suitable template for rational inhibitor design. L. major GLO1 was crystallized in two forms: the first is extremely disordered and does not diffract, while the second, an orthorhombic form, produces diffraction to 2.0 Å. Molecular-replacement calculationsmore » indicate that there are three GLO1 dimers in the asymmetric unit, which take up a helical arrangement with their molecular dyads arranged approximately perpendicular to the c axis. Further analysis of these data are under way.« less
A subtype specific function for the extracellular domain of neuroligin 1 in hippocampal LTP
Shipman, Seth L.; Nicoll, Roger A.
2014-01-01
Summary At neuronal excitatory synapses, two major subtypes of the synaptic adhesion molecule neuroligin are present. These subtypes, neuroligin 1 and neuroligin 3, have roles in synaptogenesis and synaptic maintenance that appear largely overlapping. In this study we combine electrophysiology with molecular deletion and replacement of these proteins to identify similarities and differences between these subtypes. In doing so, we identify a subtype specific role in LTP for neuroligin 1 in young CA1, which persists into adulthood in the dentate gyrus. As neuroligin 3 showed no requirement for LTP, we constructed chimeric proteins of the two excitatory neuroligin subtypes to identify the molecular determinants particular to the unique function of neuroligin 1. Using in vivo molecular replacement experiments, we find that these unique functions depend on a region in its extracellular domain containing the B site splice insertion previously shown to determine specificity of neurexin binding. PMID:23083734
Ikhlas, Shoeb; Usman, Afia; Ahmad, Masood
2018-04-24
Interaction studies of bisphenol analogues; biphenol-A (BPA), bisphenol-B (BPB), and bisphenol-F (BPF) with bovine serum albumin (BSA) were performed using multi-spectroscopic and molecular docking studies at the protein level. The mechanism of binding of bisphenols with BSA was dynamic in nature. SDS refolding experiments demonstrated no stabilization of BSA structure denatured by BPB, however, BSA denatured by BPA and BPF was found to get stabilized. Also, CD spectra and molecular docking studies revealed that BPB bound more strongly and induced more conformational changes in BSA in comparison to BPA. Hence, this study throws light on the replacement of BPA by its analogues and whether the replacement is associated with a possible risk, raising a doubt that perhaps BPB is not a good substitute of BPA.
Sartaj, Rachel; Sharpe, Paul
2006-01-01
Teeth develop from a series of reciprocal interactions that take place between epithelium and mesenchyme during development of the mouth that begin early in mammalian embryogenesis. The molecular control of key processes in tooth development such as initiation, morphogenesis and cytodifferentiation are being increasingly better understood, to the point where this information can be used as the basis for approaches to produce biological replacement teeth (BioTeeth). This review outlines the current approaches, ideas and progress towards the production of BioTeeth that could form an alternative method for replacing lost or damaged teeth. PMID:17005022
[Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].
Nyporko, A Iu; Demchuk, O N; Blium, Ia B
2003-01-01
The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).
The future of rapid bridge deck replacement.
DOT National Transportation Integrated Search
2015-06-01
Replacing aging, deteriorated infrastructure often requires road closures and traffic detours which impose : inconvenience and delay on commerce and members of the motoring public. Accelerated bridge construction : techniques often use precast member...
Shevah, Orit; Rubinstein, Menachem; Laron, Zvi
2004-10-01
Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.
Trapani, Stefano; Navaza, Jorge
2006-07-01
The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.
Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.
2015-01-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744
Approaches to ab initio molecular replacement of α-helical transmembrane proteins.
Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J
2017-12-01
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.
Cost-effective and rapid concrete repair techniques.
DOT National Transportation Integrated Search
2016-02-08
Concrete is a principal component of many transportation structures. While highly durable, a : variety of processes degrade and damage concrete. Replacement is expensive. Many cases : warrant repair instead of replacement. Since many damage processes...
de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M
1985-11-01
The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.
Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit.
Dou, Chuandong; Ding, Zicheng; Zhang, Zijian; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang
2015-03-16
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C-C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6.
Yu, Xiaojuan; Hou, Hua; Wang, Baoshan
2017-04-15
Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF 6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF 6 by various functional groups was studied systematically. It was found that CF 3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF 6 because the molecular hardness decreases. The balance between E r and T b could be achieved by minimizing the local polarity of the molecules. SF 5 CN and SF 5 CFO were found to be the potent candidates to replace SF 6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
He, Tao; Zhang, Haijun; Wang, Jing; Wu, Shugeng; Yue, Hongyuan; Qi, Guanghai
2017-01-01
Cottonseed meal (CSM) is commonly used in hens’ diets to replace soybean meal (SBM). However, the molecular consequences of this substitution remains unclear. To investigate the impact of this substitution at the molecular level, iTRAQ combined with biochemical analysis was performed in Hy-Line W-36 hens supplemented with a mixed diet of CSM and SBM. Egg weight, albumen height, and Haugh unit were significantly reduced in the CSM100 group (100% crude protein of SBM replaced by CSM) compared with the SBM group (P<0.05). A total of 15 proteins, accounting for 75% of egg white proteins with various biological functions of egg whites, were found to be reduced. This finding may relate to the decrease of albumen quality in the CSM100 group. Oviduct magnum morphology and hormone analysis indicated that a reduced level of plasma progesterone caused reduced growth of the tubular gland and epithelial cells in the magnum, further decreasing egg white protein synthesis in the magnum. These findings help demonstrate the molecular mechanisms of a CSM diet that cause adverse effects on albumen quality, while also showing that SBM should not be totally replaced with CSM in a hen diet. PMID:28813468
Pezzotti, Giuseppe; Kumakura, Tsuyoshi; Yamada, Kiyotaka; Tateiwa, Toshiyuki; Puppulin, Leonardo; Zhu, Wenliang; Yamamoto, Kengo
2007-01-01
Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.
Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.
2011-01-01
Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016
Biological treatment strategies for disc degeneration: potentials and shortcomings
Nerlich, Andreas G.; Boos, Norbert
2006-01-01
Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559
NASA Astrophysics Data System (ADS)
Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben
2018-03-01
In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.
Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.
Visick, K G; Ruby, E G
1996-10-10
Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.
Gaździk, Tadeusz Szymon; Kotas-Strzoda, Justyna; Bozek, Marek
2004-01-01
Knee arthrodesis is the method of choice in treatment of failed total knee replacement. It is recommended when revisory total knee replacement is impossible. The authors present 2 cases of knee fusions using intramedullary nails after prosthesis loosening (1 aseptic, 1 septic). In both cases good results were achieved, with no complications observed during convalescence.
Pledget Induced Cardiogenic Shock Following a Minimally Invasive Aortic Valve Replacement.
Tedesco, Alexandra E; Tedesco, Victor E
2017-01-01
Within the last decade, minimally invasive valve replacements have become exceedingly popular, and as a result, so has the rise of technology aimed at refining and simplifying these techniques. With new technology, new complications are inevitable. We present a routine Minimally invasive aortic valve replacement through a right anterior minithoracotomy complicated by pledget impaction in a coronary artery.
The new era of biotech insulin analogues.
Brange, J
1997-07-01
Many of the structural properties of insulin have evolved in response to the requirements of biosynthesis, processing, transport and storage in the pancreatic beta cells, properties that are not necessary for the biological action of the hormone. It is therefore not surprising that wild-type insulin has far from optimal characteristics for replacement therapy. For example, native human insulin self-associates to hexameric units, which limits the possibilities for the absorption of the molecule by various routes. During the last decade new techniques of molecular design have emerged and recombinant DNA technology offers new and exciting opportunities for rational protein drug design. This review describes examples of recent advances in insulin engineering aimed at optimizing the hormone for therapy. Such approaches focus on improvements in the pharmacokinetic properties, storage stability, and feasibility for less intrusive routes of administration.
The Ross operation: a 12-year experience.
Elkins, R C
1999-09-01
The Ross operation, originally introduced as a scalloped subcoronary implant with an 80% survival and 85% freedom from reoperation, has recently been modified to a root replacement which is now the most utilized implant technique. The mid and late results of this operative technique and comparison of intra-aortic implants and root replacement in a single institution are reported. The records of 328 patients who had a Ross operation at the University of Oklahoma (August 1986 to July 1998) were reviewed to assess operative technique and patient-related factors on survival, autograft valve function, homograft valve function, valve-related complications, and need for reoperation. Operative survival was 95.4% with an actuarial survival of 89% +/- 5% at 8 years. Freedom from replacement of the pulmonary autograft was 94% +/- 3% at 8 years, freedom from reoperation on the pulmonary homograft was 90% +/- 4% at 8 years, and freedom from autograft valve reoperation or dysfunction (3+ autograft valve insufficiency) was 83% +/- 6% at 9 years. The incidence of autograft valve reoperation and late autograft valve dysfunction was decreased by root replacement. Annulus reduction and fixation improved early results in patients with aortic insufficiency and annulus dilatation. Early results have been excellent, as the development of late autograft valve dysfunction or dilatation has been rare. The excellent hemodynamic results with a limited incidence of reoperation and replacement of the autograft valve justify its continued use.
Melt Stirring by Horizontal Crucible Vibration
NASA Technical Reports Server (NTRS)
Wolf, M. F.; Elwell, D.; Feigelson, R. S.
1985-01-01
Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.
Salvage of infected total knee fusion: the last option.
Wiedel, Jerome D
2002-11-01
Currently the most common indication for an arthrodesis of the knee is a failed infected total knee prosthesis. Other causes of a failed total knee replacement that might necessitate a knee fusion include aseptic loosening, deficient extensor mechanism, poor soft tissues, and Charcot joint. Techniques available for achieving a knee fusion are external fixation and internal fixation methods. The external fixation compression devices have been the most widely used for knee fusion and have been successful until the indications for fusion changed to mostly failed prosthetic knee replacement. With failed total knee replacement, the problem of severe bone loss became an issue, and the external fixation compression devices, even including the biplane external fixators, have been the least successful method reported for gaining fusion. The Ilizarov technique has been shown to achieve rigid fixation despite this bone loss, and a review of reports are showing high fusion rates using this method. Internal fixation methods including plate fixation and intramedullary nails have had the best success in gaining fusion in the face of this bone loss and have replaced external fixation methods as the technique of choice for knee fusion when severe bone loss is present. A review of the literature and a discussion of different fusion techniques are presented including a discussion of the influence that infection has on the success of fusion.
The Benefit of Modified Rehabilitation and Minimally Invasive Techniques in Total Hip Replacement
Lilikakis, Anastasios K; Gillespie, Beryl; Villar, Richard N
2008-01-01
INTRODUCTION We wished to assess if an intensive rehabilitation regimen alone, or one combined with modified anaesthetic and surgical techniques, can change the speed of rehabilitation or the length of hospital stay after total hip replacement. PATIENTS AND METHODS We compared 44 patients who had followed a traditional care pathway, with 38 patients who had rehabilitated under a new rehabilitation protocol, with 40 patients who had also received modified, minimally invasive techniques. The speed of rehabilitation was measured in terms of three specific milestones accomplished on the day after surgery. RESULTS We found a statistically significant improvement in the day after surgery each activity was possible. The length of hospital stay was reduced from 6.5 days to 5.4 days to 4.1 days, a difference which was also statistically significant. CONCLUSIONS The data support the view that a new rehabilitation protocol alone can reduce the length of hospital stay and hasten rehabilitation. The combination of modified anaesthetic and minimally invasive surgical techniques with the new rehabilitation regimen can further improve short-term outcome after total hip replacement. PMID:18634739
Mitral valve replacement with preservation of the subvalvular apparatus.
Reardon, M J; David, T E
1999-03-01
The introduction of the Starr-Edwards valve allowed complete replacement of diseased left-sided heart valves. With improved cardiopulmonary bypass, myocardial protection, and surgical techniques the mortality rate from aortic valve replacement decreased substantially, whereas the mortality rate from mitral valve replacement remained high, largely because of low cardiac output syndrome. Increasing use of mitral valve repair techniques resulted in a marked decrease in short-term and long-term morbidity and mortality when treating patients with mitral regurgitation. Some believed that this resulted from maintenance of the mitral annular papillary muscle continuity during mitral valve repair. Subsequent experimental and clinical studies have validated the positive short-term and long-term effects of maintaining the integrity of the mitral valve subvalvular apparatus. This article considers the history of the clinical use of preservation of the subvalvular apparatus, the physiologic studies examining this concept, and the clinical data available on its use. It also examines the following: 1) mitral stenosis versus mitral regurgitation and the preservation of the subvalvular apparatus; 2) whether the anterior, posterior, or both areas of the subvalvular apparatus should be preserved; and 3) the surgical techniques for the preservation of the subvalvular apparatus and valve implantation.
Evaluation of mitral valve replacement anchoring in a phantom
NASA Astrophysics Data System (ADS)
McLeod, A. Jonathan; Moore, John; Lang, Pencilla; Bainbridge, Dan; Campbell, Gordon; Jones, Doug L.; Guiraudon, Gerard M.; Peters, Terry M.
2012-02-01
Conventional mitral valve replacement requires a median sternotomy and cardio-pulmonary bypass with aortic crossclamping and is associated with significant mortality and morbidity which could be reduced by performing the procedure off-pump. Replacing the mitral valve in the closed, off-pump, beating heart requires extensive development and validation of surgical and imaging techniques. Image guidance systems and surgical access for off-pump mitral valve replacement have been previously developed, allowing the prosthetic valve to be safely introduced into the left atrium and inserted into the mitral annulus. The major remaining challenge is to design a method of securely anchoring the prosthetic valve inside the beating heart. The development of anchoring techniques has been hampered by the expense and difficulty in conducting large animal studies. In this paper, we demonstrate how prosthetic valve anchoring may be evaluated in a dynamic phantom. The phantom provides a consistent testing environment where pressure measurements and Doppler ultrasound can be used to monitor and assess the valve anchoring procedures, detecting pararvalvular leak when valve anchoring is inadequate. Minimally invasive anchoring techniques may be directly compared to the current gold standard of valves sutured under direct vision, providing a useful tool for the validation of new surgical instruments.
Hermida-Carrera, Carmen; Fares, Mario A; Fernández, Ángel; Gil-Pelegrín, Eustaquio; Kapralov, Maxim V; Mir, Arnau; Molins, Arántzazu; Peguero-Pina, José Javier; Rocha, Jairo; Sancho-Knapik, Domingo; Galmés, Jeroni
2017-01-01
Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity. It has been hypothesized that RuBisCO has evolved differentially depending on the environmental conditions and leaf traits governing internal gas diffusion patterns. Here, we show, using PAML, that amino acid replacements at the residue positions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of positive selection along particular Quercus lineages associated with the leaf traits and climate characteristics. In parallel, the DT model identified amino acid replacements at sites 95, 219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting partial overlap with the results obtained using PAML.
Directional Darwinian Selection in proteins.
McClellan, David A
2013-01-01
Molecular evolution is a very active field of research, with several complementary approaches, including dN/dS, HON90, MM01, and others. Each has documented strengths and weaknesses, and no one approach provides a clear picture of how natural selection works at the molecular level. The purpose of this work is to present a simple new method that uses quantitative amino acid properties to identify and characterize directional selection in proteins. Inferred amino acid replacements are viewed through the prism of a single physicochemical property to determine the amount and direction of change caused by each replacement. This allows the calculation of the probability that the mean change in the single property associated with the amino acid replacements is equal to zero (H0: μ = 0; i.e., no net change) using a simple two-tailed t-test. Example data from calanoid and cyclopoid copepod cytochrome oxidase subunit I sequence pairs are presented to demonstrate how directional selection may be linked to major shifts in adaptive zones, and that convergent evolution at the whole organism level may be the result of convergent protein adaptations. Rather than replace previous methods, this new method further complements existing methods to provide a holistic glimpse of how natural selection shapes protein structure and function over evolutionary time.
Hermida-Carrera, Carmen; Fares, Mario A.; Fernández, Ángel; Gil-Pelegrín, Eustaquio; Kapralov, Maxim V.; Mir, Arnau; Molins, Arántzazu; Peguero-Pina, José Javier; Rocha, Jairo; Sancho-Knapik, Domingo
2017-01-01
Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity. It has been hypothesized that RuBisCO has evolved differentially depending on the environmental conditions and leaf traits governing internal gas diffusion patterns. Here, we show, using PAML, that amino acid replacements at the residue positions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of positive selection along particular Quercus lineages associated with the leaf traits and climate characteristics. In parallel, the DT model identified amino acid replacements at sites 95, 219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting partial overlap with the results obtained using PAML. PMID:28859145
[Plasma exchange in nephrology: Indications and technique].
Ridel, Christophe; Kissling, Sébastien; Mesnard, Laurent; Hertig, Alexandre; Rondeau, Éric
2017-02-01
Plasma exchange is a non-selective apheresis technique that can be performed by filtration or centrifugation allowing rapid purification of high molecular weight pathogens. An immunosuppressive treatment is generally associated to reduce the rebound effect of the purified substance. Substitution solutes such as human albumin and macromolecules are needed to compensate for plasma extraction. Compensation by viro-attenuated plasma is reserved solely for the treatment of thrombotic microangiopathies or when there is a risk of bleeding, because this product is very allergenic and expensive. The treatment goal for a plasma exchange session should be between one and one and one-half times the patient's plasma volume estimated at 40 mL/kg body weight. The anticoagulation is best ensured by the citrate. Complications of plasma exchange are quite rare according to the French hemapheresis registry. The level of evidence of efficacy of plasma exchange in nephrology varies from one pathology to another. Main indications of plasma exchange in nephrology are Goodpasture syndrome, antineutrophil cytoplasmic antibody vasculitis when plasma creatinine is greater than 500 μmol/L, and thrombotic microangiopathies. During renal transplantation, plasma exchange may be proposed in the context of human leukocyte antigen (HLA) desensitization protocols or ABO-incompatible graft. After renal transplantation, plasma exchange is indicated as part of the treatment of acute humoral rejection or recurrent focal segmental glomerulosclerosis on the graft. Plasma exchanges are also proposed in the management of cryoglobulinemia or polyarteritis nodosa. Hemodialysis with membranes of very high permeability tends to replace plasma exchange for myeloma nephropathy. The benefit from plasma exchange has not been formally demonstrated for the treatment of severe lupus or antiphospholipid antibody syndrome. There is no indication of plasma exchange in the treatment of scleroderma or nephrogenic systemic fibrosis. More selective apheresis techniques such as immunoadsorption are currently proposed to replace plasma exchange. Copyright © 2016. Published by Elsevier SAS.
Brunton, Paul A; Ghazali, Amna; Tarif, Zahidah H; Loch, Carolina; Lynch, Christopher; Wilson, Nairn; Blum, Igor R
2017-04-01
To evaluate the teaching and operative techniques for the repair and/or replacement of direct resin-based composite restorations (DCRs) in dental schools in Oceania. A 14-item questionnaire was mailed to the heads of operative dentistry in 16 dental schools in Oceania (Australia, New Zealand, Fiji and Papua New Guinea). The survey asked whether the repair of DCRs was taught within the curriculum; the rationale behind the teaching; how techniques were taught, indications for repair, operative techniques, materials used, patient acceptability, expected longevity and recall systems. All 16 schools participated in the study. Thirteen (81%) reported the teaching of composite repairs as an alternative to replacement. Most schools taught the theoretical and practical aspects of repair at a clinical level only. All 13 schools (100%) agreed on tooth substance preservation being the main reason for teaching repair. The main indications for repair were marginal defects (100%), followed by secondary caries (69%). All 13 schools that performed repairs reported high patient acceptability, and considered it a definitive measure. Only three schools (23%) claimed to have a recall system in place following repair of DCRs. Most respondents either did not know or did not answer when asked about the longevity of DCRs. Repair of DCRs seems to be a viable alternative to replacement, which is actively taught within Oceania. Advantages include it being minimally invasive, preserving tooth structure, and time and money saving. However, standardised guidelines need to be developed and further clinical long-term studies need to be carried out. The decision between replacing or repairing a defective composite restoration tends to be based on what clinicians have been taught, tempered by experience and judgement. This study investigated the current status of teaching and operative techniques of repair of direct composite restorations in dental schools in Oceania. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tanaka, Akiko; Estrera, Anthony L
2018-01-01
Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field-and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution.
Tanaka, Akiko
2018-01-01
Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field—and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution. PMID:29682460
PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration
NASA Astrophysics Data System (ADS)
Corredor, Raul G.; Goldberg, Jeffrey L.
2009-10-01
The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.
Transverse joint configuration development and testing for a modular bridge deck replacement system.
DOT National Transportation Integrated Search
2011-03-01
According to the 2009 Report Card for Americas Infrastructure, one in four of the nations bridges are listed as : structurally deficient of functionally obsolete, establishing a dire need for new and innovative repair and replacement : techniqu...
Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina
2014-10-07
Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).
Enhanced recovery in total hip replacement: a clinical review.
Ibrahim, M S; Twaij, H; Giebaly, D E; Nizam, I; Haddad, F S
2013-12-01
The outcome after total hip replacement has improved with the development of surgical techniques, better pain management and the introduction of enhanced recovery pathways. These pathways require a multidisciplinary team to manage pre-operative education, multimodal pain control and accelerated rehabilitation. The current economic climate and restricted budgets favour brief hospitalisation while minimising costs. This has put considerable pressure on hospitals to combine excellent results, early functional recovery and shorter admissions. In this review we present an evidence-based summary of some common interventions and methods, including pre-operative patient education, pre-emptive analgesia, local infiltration analgesia, pre-operative nutrition, the use of pulsed electromagnetic fields, peri-operative rehabilitation, wound dressings, different surgical techniques, minimally invasive surgery and fast-track joint replacement units.
Shoulder arthroplasty in osteoarthritis: current concepts in biomechanics and surgical technique
Merolla, G; Nastrucci, G; Porcellini, G
Shoulder arthroplasty is a technically demanding procedure to restore shoulder function in patients with severe osteoarthritis of the glenohumeral joint. The modern prosthetic system exploit the benefits of modularity and the availibility of additional sizes of the prosthetic components. In this paper we describe the biomechanics of shoulder arthroplasty and the technique for shoulder replacement including total shoulder arthroplasty (TSA) with all-polyethylene and metal-backed glenoid component, humeral head resurfacing and stemless humeral replacement. PMID:24251240
Diversification of land plants: insights from a family-level phylogenetic analysis
2011-01-01
Background Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. Results We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. Conclusions This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario. PMID:22103931
Synthesis, characterization and biological evaluation of novel α, β unsaturated amides.
Esmailzadeh, K; Housaindokht, M R; Moradi, A; Esmaeili, A A; Sharifi, Z
2016-05-15
Three derivatives of α,β unsaturated amides have been successfully synthesized via Ugi-four component (U-4CR) reaction. The interactions of the amides with calf thymus deoxyribonucleic acid (ct-DNA) have been investigated in the Tris-HCl buffer (pH=7.4) using viscometric, spectroscopic, thermal denaturation studies, and also molecular docking. By UV-Vis absorption spectroscopy studies, adding CT-DNA to the compound solution caused the hypochromism indicates that there are interactions between the compounds and DNA base pairs. In competitive fluorescence with methylene blue as an intercalator probe, adding compounds to DNA-MB solution caused an increase in emission spectra of the complex. This could be because of compound replacing, with similar binding mode of MB, between the DNA base pairs due to release of bonded MB molecules from DNA-MB complex. Thermal denaturation studies and viscometric experiments also indicated that all three investigated compounds bind to CT-DNA by non-classical intercalation mode. Additionally, molecular docking technique predicted partial intercalation binding mode for the compounds. Also, the highest binding energy was obtained for compound 5a. These results are in agreement with results obtained by empirical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Chianella, Iva; Guerreiro, Antonio; Moczko, Ewa; Caygill, J. Sarah; Piletska, Elena V.; Perez De Vargas Sansalvador, Isabel M.; Whitcombe, Michael J.; Piletsky, Sergey A.
2016-01-01
A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop ELISA type assays is presented here for the first time. NanoMIPs were synthesized by a solid phase approach with immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering and electron microscopy. Immobilization, blocking and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a HRP-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was three orders of magnitude better than a previously described ELISA based on antibodies. In these experiments nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA. PMID:23947402
An adaptive replacement algorithm for paged-memory computer systems.
NASA Technical Reports Server (NTRS)
Thorington, J. M., Jr.; Irwin, J. D.
1972-01-01
A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.
NASA Astrophysics Data System (ADS)
Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen
2016-03-01
To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.
JSF/F-35 Pollution Prevention Activities
2006-05-01
Liquid Oxygen •Produces Oxygen-Rich Breathing Gas From Engine Bleed Air Using Molecular Sieve Technology •No Exotic Cleaning Solutions •Military No...Explosion from Bullets/Shrapnel •On-Board Inert Gas Generating System (OBIGGS) Replaced Halon 1301 •Filters out Oxygen from Ambient Air to Create...Supply System •Supply System Must Be Perfectly Clean •Best Cleaning Solutions Freon CFC-113 and HCFC-141b •On-Board Oxygen Generating System Replaced
Fatty Acid Synthase Inhibitors Engage the Cell Death Program Through the Endoplasmic Reticulum
2007-12-01
suite26 (Table 1). The structure was solved by molecular replacement using PHASER27 with the native, uncomplexed structure of the thioesterase domain ( PDB ...groups and molecular weight. Using a 96-well format, we screened compounds at 10 μM and used 40% inhibition at a single time point as our threshold for...thioesterase domain of human fatty acid synthase inhibited by Orlistat. (2007) Nature Structural and Molecular Biology 14(8): 704-709. (Article of the
Ritchie, Timothy J; Macdonald, Simon J F
2016-11-29
The impact of replacing a mono-substituted benzene (phenyl) ring with thirty three aromatic and nine aliphatic heterocycles on nine ADME-related screens (solubility, lipophilicity, permeability, protein binding CYP450 inhibition and metabolic clearance) was assessed using matched molecular pair analysis. The results indicate that the influence on the ADME profile can differ significantly depending on the ring identity and importantly on the individual regioisomers that are possible for some rings. This information enables the medicinal chemist to make an informed choice about which rings and regioisomers to employ as mono-substituted benzene replacements, based upon the knowledge of how such replacements are likely to influence ADME-related parameters, for example to target higher solubility whilst avoiding CYP450 liabilities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Combustibility Tests of 1,1,1,2-tetrafluoroethane in a Simulated Compressor Cylinder
NASA Technical Reports Server (NTRS)
Babcock, Dale A.; Bruce, Robert A.
1997-01-01
The advantages of high-molecular-weight gas (heavy gas) as a wind-tunnel medium have been recognized for some time. The current heavy gas of choice chlorofluorocarbon-12(CFC-12) (refrigerant R12) for the Transonic Dynamics Tunnel(TDT) must be replaced because manufacture of this gas ceased in 1995. An attractive replacement is 1,1,1,2-tetrafluoroethane (refrigerant R134a). Acceptable properties of this gas include molecular weight and speed of sound. Its vapor pressure allows simplified reclamation from mixtures with air. However, it is recognized that R134a is combustible under certain conditions of temperature, pressure, and concentration. A comprehensive study was conducted to identify those conditions and the influence of various parameters on the combustibility of the gas-air mixture.
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.
2010-01-01
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308
[Tailored cranioplasty using CAD-CAM technology].
Vitanovics, Dusán; Major, Ottó; Lovas, László; Banczerowski, Péter
2014-11-30
The majority of cranial defects are results of surgical intervention. The defect must be covered within resonable period of time usually after 4-6 week given the fact that the replacement of bone improve the brain circulation. Number of surgical techniques and materials are available to perform cranioplasty. Due to favorable properties we chosed ultra high molecular weight polyethylene as material. In this paper the authors show a procedure which allows tailored artificial bone replacement using state of art medical and engineering techniques. between 2004 and 2012, 19 patients were operated on cranial bone defect and a total of 22 3D custom-designed implants were implanted. The average age of patients was 35.4 years. In 12 patients we performed primary cranioplasty, while seven patients had the replacement at least once. Later the implants had to be removed due to infection or other causes (bone necrosis, fracture). All patients had native and bone-windowed 1 mm resolution CT. The 3D design was made using the original CT images and with design program. Computer controlled lathe was used to prepare a precise-fitting model. During surgery, the defect was exposed and the implant was fixed to normal bone using mini titanium plates and screws. All of our patients had control CT at 3, 6 and 12 months after surgery and at the same time neurological examination. Twenty-one polyethylene and one titanium implants were inserted. The average follow-up of the patients was 21.5 months, ranged from two to 96 months. We follow 12 patients (63.15%) more than one year. No intraoperative implant modifications had to be made. Each of the 22 implant exactly matched the bone defect proved by CT scan. No one of our patients reported aesthetic problems and we did not notice any kind of aesthetic complication. We had short term complication in three cases due to cranioplasty, subdural, epidural haemorrhage and skin defect. Polyethylene is in all respects suitable for primary and secondary cranioplasty. Combined with 3D CAD- CAM method excellent aesthetic and functional result was achieved. In our study no case of infection occured. Proper preoperative preparation is important.
Ethics of Mitochondrial Replacement Techniques: A Habermasian Perspective.
Palacios-González, César
2017-01-01
Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at. © 2017 The Authors Bioethics Published by John Wiley & Sons Ltd.
Ethics of Mitochondrial Replacement Techniques: A Habermasian Perspective
2016-01-01
Abstract Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at. PMID:27973714
Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E
2017-09-01
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamazaki, Masataka; Kin, Hajime; Kitamoto, Shohei; Yamanaka, Shota; Nishida, Hidefumi; Nishigawa, Kosaku; Takanashi, Shuichiro
2017-02-20
Minimally invasive cardiac surgeries for aortic valve replacement (AVR) are still a technical challenge for surgeons because these procedures are undertaken through small incisions and deep surgical fields. Although AVR via vertical infraaxillary thoracotomy can be a cosmetically superior option, a disadvantage of this approach is the distance between the thoracotomy incision and the ascending aorta. Therefore, we devised a technique to perform all manipulations using the fingertips without the aid of a knot pusher or long-shafted surgical instruments. This was achieved by particular placement of several retracted sutures to the right chest wall. We named placement of these sutures the "Stonehenge technique." In conclusion, AVR via vertical infraaxillary thoracotomy with our Stonehenge technique can be safely and simply performed with superior cosmetic advantages.
Crystallization of PTP Domains.
Levy, Colin; Adams, James; Tabernero, Lydia
2016-01-01
Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.
Diffusion of gas mixtures in the sI hydrate structure
NASA Astrophysics Data System (ADS)
Waage, Magnus H.; Trinh, Thuat T.; van Erp, Titus S.
2018-06-01
Replacing methane with carbon dioxide in gas hydrates has been suggested as a way of harvesting methane, while at the same time storing carbon dioxide. Experimental evidence suggests that this process is facilitated if gas mixtures are used instead of pure carbon dioxide. We studied the free energy barriers for diffusion of methane, carbon dioxide, nitrogen, and hydrogen in the sI hydrate structure using molecular simulation techniques. Cage hops between neighboring cages were considered with and without a water vacancy and with a potential inclusion of an additional gas molecule in either the initial or final cage. Our results give little evidence for enhanced methane and carbon dioxide diffusion if nitrogen is present as well. However, the inclusion of hydrogen seems to have a substantial effect as it diffuses rapidly and can easily enter occupied cages, which reduces the barriers of diffusion for the gas molecules that co-occupy a cage with hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspuru-Guzik, Alan
2016-11-04
Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties ofmore » OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.« less
High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy
NASA Astrophysics Data System (ADS)
Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding
2016-02-01
Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.
Percutaneous transluminal alcohol septal myocardial ablation after aortic valve replacement
NASA Technical Reports Server (NTRS)
Sitges, M.; Kapadia, S.; Rubin, D. N.; Thomas, J. D.; Tuzcu, M. E.; Lever, H. M.
2001-01-01
When left ventricular outflow tract obstruction develops after aortic valve replacement, few treatment choices have been available until now. We present a patient with prior aortic valve replacement who developed left ventricle outflow tract obstruction that was successfully treated with a percutaneous transcoronary myocardial septal alcohol ablation. This technique is a useful tool for the treatment of obstructive hypertrophic cardiomyopathy, especially in those patients with prior heart surgery. Copyright 2001 Wiley-Liss, Inc.
Sutton, Steve W.; Marcel, Randy
2007-01-01
We present the first reported case of an aortic valve replacement operation without blood transfusion in a 62-year-old Jehovah's Witness with dialysis-dependent chronic renal failure, severe anemia, severe aortic stenosis, and symptomatic angina with minimal exertion after an accident in which she suffered fractures of both her right arm and leg. She underwent successful valve replacement surgery after preoperative stabilization of her fractures and high-dose erythropoietin and iron supplement therapy preoperatively and postoperatively. The intraoperative blood conservation technique included a novel approach with a miniature cardiopulmonary bypass circuit and microplegia with limited hemodilution. High-risk valve surgery in patients who are Jehovah's Witnesses can be successful with a carefully planned multimodality blood conservation strategy. PMID:17256040
Paschos, Nikolaos K
2015-01-01
In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242
Terao, E; Daas, A
2016-01-01
The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively.
Manouguian, S; Abu-Aishah, N; Neitzel, J
1979-09-01
The experimental results of patch enlargement of the aortic and mitral valve rings with aortic and mitral double valve replacement are reported. The operative technique of this new surgical method is described and the indications are discussed.
Honeyborne, Isobella; Mtafya, Bariki; Phillips, Patrick P J; Hoelscher, Michael; Ntinginya, Elias N; Kohlenberg, Anke; Rachow, Andrea; Rojas-Ponce, Gabriel; McHugh, Timothy D; Heinrich, Norbert
2014-08-01
We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Student Aggression: Prevention, Management, and Replacement Training.
ERIC Educational Resources Information Center
Goldstein, Arnold P.; And Others
American society is violent, a fact which is well-reflected in schools. This book, designed specifically for school personnel, presents the primary techniques currently being employed by educators to prevent, manage, and replace student aggression. The volume opens with a description of the origins of aggressive behavior and offers some…
Prioritization Methodology for Chemical Replacement
NASA Technical Reports Server (NTRS)
Cruit, W.; Schutzenhofer, S.; Goldberg, B.; Everhart, K.
1993-01-01
This project serves to define an appropriate methodology for effective prioritization of efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weigh the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results are being implemented as a guideline for consideration for current NASA propulsion systems.
Aston, Karl; Ramos, Joseph P.; Koeller, Kevin J.; Nanjunda, Rupesh; He, Gaofei
2012-01-01
Rules for polyamide DNA recognition have proved invaluable for the design of sequence-selective DNA-binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methyl pyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327–339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition. PMID:23023196
Blunt, L A; Bills, P J; Jiang, X-Q; Chakrabarty, G
2008-04-01
Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5x 10(6) operations performed annually. Currently joint replacements are expected to function for 10-15 years; however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer-term improved quality of life for patients. Wear analysis of total joint replacements has long been an important means in determining failure mechanisms and improving longevity of these devices. The effectiveness of the coordinate-measuring machine (CMM) technique for assessing volumetric material loss during simulated life testing of a replacement knee joint has been proved previously by the present authors. The purpose of the current work is to present an improvement to this method for situations where no pre-wear data are available. To validate the method, simulator tests were run and gravimetric measurements taken throughout the test, such that the components measured had a known wear value. The implications of the results are then discussed in terms of assessment of joint functionality and development of standardized CMM-based product standards. The method was then expanded to allow assessment of clinically retrieved bearings so as to ascertain a measure of true clinical wear.
Münnich, Matthias; Khol-Parisini, Annabella; Klevenhusen, Fenja; Metzler-Zebeli, Barbara U; Zebeli, Qendrim
2018-02-01
Molassed sugar beet pulp (Bp) is a viable alternative to grains in cattle nutrition for reducing human edible energy input. Yet little is known about the effects of high inclusion rates of Bp on rumen microbiota. This study used an in vitro approach and the quantitative polymerase chain reaction technique to establish the effects of a graded replacement of maize grain (MG) by Bp on the ruminal microbial community, fermentation profile and nutrient degradation. Six different amounts of Bp (0-400 g kg -1 ), which replaced MG in the diet, were tested using the in vitro semi-continuous rumen simulation technique. The increased inclusion of Bp resulted in greater dietary content and degradation of neutral detergent fibre (P < 0.01). Further, Bp feeding enhanced (P < 0.01) the abundance of genus Prevotella and shifted (P < 0.01) the short-chain fatty acid patterns in favour of acetate and propionate and at the expense of butyrate. A total replacement of MG with Bp resulted in an increased daily methane production (P < 0.01). Results suggest positive effects of the replacement of MG by Bp especially in terms of stimulating ruminal acetate and propionate fermentation. However, high replacement rates of Bp resulted in lowered utilization of ammonia and higher ruminal methane production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Position-specific 13C distributions within propane from experiments and natural gas samples
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Position-specific 13C distributions within propane from experiments and natural gas samples
Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Christopher; Isupov, Michail N.; Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk
2007-02-01
An ω-amino acid:pyruvate transaminase from C. violaceum has been purified and crystallized in two crystal forms. The structure has been solved using molecular replacement. The enzyme ω-transaminase catalyses the conversion of chiral ω-amines to ketones. The recombinant enzyme from Chromobacterium violaceum has been purified to homogeneity. The enzyme was crystallized from PEG 4000 using the microbatch method. Data were collected to 1.7 Å resolution from a crystal belonging to the triclinic space group P1, with unit-cell parameters a = 58.9, b = 61.9, c = 63.9 Å, α = 71.9, β = 87.0, γ = 74.6°. Data were also collectedmore » to 1.95 Å from a second triclinic crystal form. The structure has been solved using the molecular-replacement method.« less
Johnson, Robert L.; Stevens, Mikel R.; Johnson, Leigh A.; Robbins, Matthew D.; Anderson, Chris D.; Ricks, Nathan J.; Farley, Kevin M.
2016-01-01
Abstract Penstemon luculentus R.L.Johnson & M.R.Stevens, nom. nov. replaces Penstemon fremontii var. glabrescens Dorn & Lichvar. The varietal name glabrescens was not elevated because it was already occupied by Penstemon glabrescens Pennell, a different species. This new arrangement is supported by molecular and morphological evidence. An analysis of genetic diversity in populations of both varieties of Penstemon fremontii Torr. & A. Gray (glabrescens and fremontii) from the Piceance Basin, Colorado, using SSR (simple sequences repeats) or microsatellites markers, revealed significant genetic differentiation between the two. Penstemon fremontii var. glabrescens was also genetically different from Penstemon gibbensii Dorn and Penstemon scariosus var. garrettii (Pennell) N.H. Holmgren. The combination of hirtellous stems, glabrous leaves, non-glandular inflorescence, and long anther hairs distinguish Penstemon luculentus from other morphologically similar species. PMID:27489478
[The use of molecular biology techniques in the articles published in Revista Médica de Chile].
Herskovic, V; Jacard, M; Reyes, H
2000-04-01
Molecular biology is a new branch of biological sciences, with novel laboratory techniques that are being progressively applied into biomedical and clinical research and, furthermore, into medical practice. To evaluate the use of molecular biology techniques in Chilean biomedical and clinical research and its evolution in the recent decade. All papers published as research articles, clinical experiences or case reports, in Revista Médica de Chile, during two time periods: 1987-1989 and 1997-1999, were reviewed to find out whether molecular biology techniques had been used or not. This journal publishes roughly 40% of papers generated in Chile, in biomedical or clinical topics, while another 15% appears in foreign journals. Among 341 papers published in 1987-1989, 57 (16.7%) had used one or more molecular biology techniques; in contrast, among 318 papers published in 1997-1999, 91 (28.8%) had used them (p < 0.001). Most papers using molecular biology techniques were research articles. Immunology, genetics, endocrinology, hematology, hepatology and rheumatology were the specialties providing a greater number and proportion of papers using molecular biology techniques. Chilean universities were the main institutions sponsoring these articles and FONDECYT (the Chilean Government Research Granting Office) was the main source of funding. The University of Chile (State-owned) provided most centers where these publications had been generated, followed by the Pontifical Catholic University of Chile. Molecular biology techniques have been rapidly and progressively incorporated as research tools in biomedicine and clinical medicine, in Chile. At the present time, these techniques are predominantly used in research conducted in University settings and funded by Governmental research grants.
New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology
Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying
2014-01-01
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2014 CFR
2014-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2011 CFR
2011-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2013 CFR
2013-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2010 CFR
2010-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2012 CFR
2012-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
Singisetti, Kiran; Muthumayandi, Karthikeyan; Abual-Rub, Zaid; Weir, David
2015-11-01
Navigation technique for total knee replacement has been shown to improve accuracy of prosthesis alignment in several studies. The purpose was to compare the patient-reported outcome measures in primary total knee replacement (TKR) using navigation versus conventional surgical technique at 1- and 2-year follow-up. A retrospective review of prospectively collected patient-reported outcome data for 351 consecutively performed primary TKR was included in the study. The study group (N = 113) included patients who had Triathlon TKR using articular surface mounted (ASM Stryker) navigation technique and control group (N = 238) included patients who had Triathlon TKR using conventional jig. In addition to the WOMAC (Western Ontario and McMaster University Osteoarthritis Index) and SF-36 (Medical Outcomes Trust Short Form-36), a short self-report questionnaire evaluating the level of satisfaction, quality of life and whether patients would undergo knee replacement again. WOMAC: no significant difference between the groups was noted in mean WOMAC pain, function and stiffness scores at 1- and 2-year follow-up. SF-36: no significant difference between the groups was seen except in the physical function component of score at 1 year (p = 0.019). Navigation group mean 56.78 (CI 51.06-62.5) versus conventional group mean 48.34 (44.68-52.01) but this difference was not observed at 2-year follow-up. The overall patient-reported outcome scores improved after total knee replacement but appear to be comparable in both groups at 1- and 2-year follow-up.
Kin, Hajime; Kitamoto, Shohei; Yamanaka, Shota; Nishida, Hidefumi; Nishigawa, Kosaku; Takanashi, Shuichiro
2017-01-01
Minimally invasive cardiac surgeries for aortic valve replacement (AVR) are still a technical challenge for surgeons because these procedures are undertaken through small incisions and deep surgical fields. Although AVR via vertical infraaxillary thoracotomy can be a cosmetically superior option, a disadvantage of this approach is the distance between the thoracotomy incision and the ascending aorta. Therefore, we devised a technique to perform all manipulations using the fingertips without the aid of a knot pusher or long-shafted surgical instruments. This was achieved by particular placement of several retracted sutures to the right chest wall. We named placement of these sutures the “Stonehenge technique.” In conclusion, AVR via vertical infraaxillary thoracotomy with our Stonehenge technique can be safely and simply performed with superior cosmetic advantages. PMID:28123153
Tribological characteristics of a composite total-surface hip replacement
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Roberts, J. C.; Ling, F. F.
1982-01-01
Continuous fiber, woven E glass composite femoral shells having the same elastic properties as bone were fabricated. The shells were then encrusted with filled epoxy wear resistant coatings and run dry against ultrahigh molecular weight polyethylene acetabular cups in 42,000 and 250,000 cycle wear tests on a total hip simulator. The tribological characteristics of these continuous fiber particulate composite femoral shells articulating with ultrahigh molecular weight polyethylene acetabular cups were comparable to those of a vitallium ball articulating with an ultrahigh molecular weight polyethylene acetabular cup.
Zuckerkandl, Emile
2012-06-01
In 1962, a young post-doctoral fellow and a prominent Nobel Prize winner, Emile Zuckerkandl and Linus Pauling, published a seminal paper that described the relationship between the average number of aminoacid replacements and divergence time, known as the molecular clock (Zuckerkandl and Pauling 1962). Fifty years after the original publication, I was fortunate enough to interview Emile Zuckerkandl. We shared thoughts on his life and the historical events that led to the discovery of the molecular clock.
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.
Future Technology-Driven Revolutions in Military Operations. Results of a Workshop
1994-01-01
sensor missions. "• Biomolecular Electronics - The use of techniques from molecular biology and biotechnology to develop new molecular electronic materials...34* Biomolecular electronics - The use of techniques from molecular biology and biotechnology to develop new molecular electronic materials, components, and...occurring in molecular biology . 42 Biotechnology Molecular Biologists Arm Develoni "Magical" Caoabilitles "• To mynthsieh genm (frm satch) with conboi
One Stage Conversion of an Infected Fused Knee to Total Knee Replacement - A Surgical Challenge
Ravikumar, Mukartihal; Kendoff, Daniel; Citak, Mustafa; Luck, Stefan; Gehrke, Thorsten; Zahar, Akos
2013-01-01
Background and Purpose: Two-stage revision arthroplasty is a common technique for the treatment of infected total knee replacement. Few reports have addressed the conversion of a fused knee into a total knee replacement. However, there is no case reported of converting an infected fused knee into a hinge knee using a one-stage procedure. Methods: We report on a 51-year old male patient with an infected fused knee after multiple surgeries. Results and Interpretation: A one-stage conversion of septic fused knee into total knee arthroplasty by a rotational hinge prosthesis was performed. The case highlights that with profound preoperative assessment, meticulous surgical technique, combined antibiotic treatment and the right implant, one-stage revision in a surgical challenge may have a role as a treatment option with good functional outcome. PMID:23526706
[Minimally invasive approaches to hip and knee joints for total joint replacement].
Rittmeister, M; König, D P; Eysel, P; Kerschbaumer, F
2004-11-01
The manuscript features the different minimally invasive approaches to the hip for joint replacement. These include medial, anterior, anterolateral, and posterior approaches. The concept of minimally invasive hip arthroplasty makes sense if it is an integral part of a larger concept to lower postoperative morbidity. Besides minimal soft tissue trauma, this concept involves preoperative patient education, preemptive analgesia, and postoperative physiotherapy. It is our belief that minimal incision techniques for the hip are not suited for all patients and all surgeons. The different minimally invasive approaches to the knee joint for implantation of a knee arthroplasty are described and discussed. There have been no studies published yet that fulfill EBM criteria. The data so far show that minimally invasive approaches and implantation techniques for total knee replacements lead to quicker rehabilitation of patients.
Generalized Green's function molecular dynamics for canonical ensemble simulations
NASA Astrophysics Data System (ADS)
Coluci, V. R.; Dantas, S. O.; Tewary, V. K.
2018-05-01
The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.
Choi, Chang Kyoung; Fowlkes, Jason D; Retterer, Scott T; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J
2010-06-22
The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.
Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki
2016-01-01
Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named "myPresto/omegagene" that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g. , the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/.
Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing
2017-04-01
The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.
Evaluation of anesthetic technique on surgical site infections (SSIs) at a single institution.
Curry, Craig S; Smith, Kahsi A; Allyn, John W
2014-12-01
To determine whether the previously published relationship between anesthetic technique and rate of surgical site infections (SSIs) was influenced by institution specific effects. Retrospective Review of Quality Assurance and Hospital Epidemiology databases. Metropolitan medical center. The records of 7,751 patients who underwent knee or hip joint replacement from 2004 to 2010 were analyzed. Data regarding anesthetic technique, age, ASA status, gender, postoperative temperature, duration of anesthesia and type of surgery were from the department of anesthesiology quality assurance database and SSI cases were identified from the department of epidemiology database. The impact of anesthetic technique and other variables was assessed using bivariate and multivariate techniques. There was no association of anesthetic technique on the rate of SSI. Duration of anesthesia and ASA status were associated with effects on the rate of SSI. The impact of anesthetic technique on SSI following hip and knee replacement surgery may be site specific and using locally gathered quality data may assist in assessing specific institutional impact. Copyright © 2014 Elsevier Inc. All rights reserved.
Physical Limitations in Lithography for Microelectronics.
ERIC Educational Resources Information Center
Flavin, P. G.
1981-01-01
Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)
Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-01
This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.
Prioritization methodology for chemical replacement
NASA Technical Reports Server (NTRS)
Goldberg, Ben; Cruit, Wendy; Schutzenhofer, Scott
1995-01-01
This methodology serves to define a system for effective prioritization of efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi quantitative approach derived from quality function deployment techniques (QFD Matrix). QFD is a conceptual map that provides a method of transforming customer wants and needs into quantitative engineering terms. This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives.
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
NASA Astrophysics Data System (ADS)
Dinari, Mohammad; Gharahi, Fateme; Asadi, Parvin
2018-03-01
A new series of 1,3,5-triazine incorporating aromatic quinazolinone moieties as a potential antimicrobial agents is reported. The first chlorine group of the cyanuric chloride (1) was replaced by aniline and the second one was replaced by various aromatic amines. The prepared monochlorotriazine was allowed to react with hydrazine and subsequently it was reacted with 2-methyl-4H-benzo[1,3]oxazin-4-one to obtain novel triazine-quinazolinone based hybrids (9a-f). The chemical structure and purity of the hybrid compounds were evaluated by different techniques such as thin layer chromatography, melting point, Fourier-transform infrared (FTIR), 1H and 13C NMR spectra and elemental analysis. Antimicrobial activity of the hybrid compounds were study by three Gram-negative bacteria (Salmonella entritidis, Escherichia coli, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Listeria monocitogenes, Bacillus subtilis) as well as Candida albicansas a yeast-like fungus using the serial broth dilution method. Among them, compound 9d with benzenesulfonamide group showed higher antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/mL. Furthermore, compounds 5d, 9a and 9b showed good activity against several tested strains. In addition, docking simulation was perform to position best antibacterial compounds in to the S. aureus dihydrofolate reductase (DHFR) active site to determine the probable binding conformations.
Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang
2018-02-16
The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.
Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
Sommer, Martha E; Elgeti, Matthias; Hildebrand, Peter W; Szczepek, Michal; Hofmann, Klaus Peter; Scheerer, Patrick
2015-01-01
In this chapter, we describe a set of complementary techniques that we use to study the activation of rhodopsin, a G protein-coupled receptor (GPCR), and its functional interactions with G protein and arrestin. The protein reagents used for these studies come from native disc membranes or heterologous expression, and G protein and arrestin are often replaced with less complex synthetic peptides derived from key interaction sites of these binding partners (BPs). We first report on our approach to protein X-ray crystallography and describe how protein crystals from native membranes are obtained. The crystal structures provide invaluable resolution, but other techniques are required to assess the dynamic equilibria characteristic for active GPCRs. The simplest approach is "Extra Meta II," which uses UV/Vis absorption spectroscopy to monitor the equilibrium of photoactivated states. Site-specific information about the BPs (e.g., arrestin) is added by fluorescence techniques employing mutants labeled with reporter groups. All functional changes in both the receptor and interacting proteins or peptides are seen with highest precision using Fourier transform infrared (FTIR) difference spectroscopy. In our approach, the lack of site-specific information in FTIR is overcome by parallel molecular dynamics simulations, which are employed to interpret the results and to extend the timescale down to the range of conformational substates. © 2015 Elsevier Inc. All rights reserved.
Hip arthroplasty today and tomorrow.
Amstutz, H C
1987-12-01
Acrylic-fixed total hip and surface replacement arthroplasty have been very effective in affording immediate relief of pain and providing improved function. Complications have been reduced by improvements in design, materials, and especially technique. They are now very low in the elderly, and the stem type acrylic-fixed design remains the procedure of choice. The failure rates in youthful patients and those with bone-stock deficiencies have been high in both THR and surface types, although the latter had the advantage of preserving femoral stock. On the femoral side, the new "macro" femoral designs from Europe and "micro" femoral porous designs have shown promise, but thigh pain, incomplete and difficult to predict bone ingrowth patterns, coupled with removal problems have influenced design and technique changes. Both press-fit stem types and porous surface replacements have produced promising initial results with less potential downside risks. On the acetabular side, both the cementless hemispherical with screw-type adjuvant fixation, or the chamfered cylinder designs, used primarily with the UCLA porous surface replacements, but also with stem-type devices, appear to achieve best short-term results, while the entire variety of screw rings are disappointing. The future will bring further refinements in technique and specific indications for certain types of replacement stem in specific types of bone stock deficiencies. The all ceramic-ceramic and ceramic-polyethylene bearings show promise of reducing wear and, hence, should improve longevity of implant fixation.
Modified Nance palatal arch appliance for anterior tooth replacement.
Sethi, Ntasha; Shanthraj, Srinivas L; Muraleedharan, Manju; Mallikarjuna, Rachappa
2013-06-07
The following case report presents a new and an innovative technique for the postextraction replacement of maxillary central incisors using the natural teeth as pontics. The novel appliance fabricated fully satisfied the demands of the adolescent patient for a fixed prosthetic, while fulfilling the aesthetic and functional requirements presented by the case.
Modified Nance palatal arch appliance for anterior tooth replacement
Sethi, Ntasha; Shanthraj, Srinivas L; Muraleedharan, Manju; Mallikarjuna, Rachappa
2013-01-01
The following case report presents a new and an innovative technique for the postextraction replacement of maxillary central incisors using the natural teeth as pontics. The novel appliance fabricated fully satisfied the demands of the adolescent patient for a fixed prosthetic, while fulfilling the aesthetic and functional requirements presented by the case. PMID:23749860
Esophageal tissue engineering: Current status and perspectives.
Poghosyan, T; Catry, J; Luong-Nguyen, M; Bruneval, P; Domet, T; Arakelian, L; Sfeir, R; Michaud, L; Vanneaux, V; Gottrand, F; Larghero, J; Cattan, P
2016-02-01
Tissue engineering, which consists of the combination and in vivo implantation of elements required for tissue remodeling toward a specific organ phenotype, could be an alternative for classical techniques of esophageal replacement. The current hybrid approach entails creation of an esophageal substitute composed of an acellular matrix and autologous epithelial and muscle cells provides the most successful results. Current research is based on the use of mesenchymal stem cells, whose potential for differentiation and proangioogenic, immune-modulator and anti-inflammatory properties are important assets. In the near future, esophageal substitutes could be constructed from acellular "intelligent matrices" that contain the molecules necessary for tissue regeneration; this should allow circumvention of the implantation step and still obtain standardized in vivo biological responses. At present, tissue engineering applications to esophageal replacement are limited to enlargement plasties with absorbable, non-cellular matrices. Nevertheless, the application of existing clinical techniques for replacement of other organs by tissue engineering in combination with a multiplication of translational research protocols for esophageal replacement in large animals should soon pave the way for health agencies to authorize clinical trials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Molecular detection of pathogens in water--the pros and cons of molecular techniques.
Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia
2010-08-01
Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.
Ulf Fernström (1915-1985) and his Contributions to the Development of Artificial Disc Replacements.
Fisahn, Christian; Burgess, Brittni; Iwanaga, Joe; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane
2017-02-01
Artificial disc replacements, which serve the function of separating vertebrae to allow for proper spinal alignment, can help treat debilitating low back pain in patients who have failed other conservative methods of treatment. A Swedish surgeon, Ulf Fernström, was the pioneer of artificial disc replacement, and his contribution in the form of Fernström balls dramatically altered spinal surgery and technique by showing the proper technique and implant that should be used for areas requiring motion in many planes. Ulf Fernström created his artificial disc inspired by the movement of the hip and knee joints. His implants attempted to restore disc spacing and articulation in patients who had failed conservative measures of treatment. Fernström balls were the first implants of their kind and represent the first attempt at artificial disc replacement. However, many surgeons and researchers questioned Fernström balls, claiming that their lack of elastic properties could damage patients. Of the wide range of implants on the market for the intervertebral disc space, all designs and applications of products stem from the initial discovery made by Fernström, thus making him a pioneer in disc replacement. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variants
Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D.; Pape, Jean William; Nair, G. Balakrish; Kim, Dong Wook
2014-01-01
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor. PMID:25233006
Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar
2018-02-26
Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.
Duplication methods for replacement of broken orthoses.
Bradbury, R L; Gastwirth, B W; O'Connor, K J; Bloom, J
1988-04-01
The methods presented for replacement of broken orthoses have proved very effective (Fig. 9). In more than 5 years of employing such duplication techniques, we have found patient satisfaction in the product to be commensurate with that for their originally prescribed devices. The techniques presented are not the only methods by which orthoses can be duplicated. We recognize that the clinician should refabricate the same orthosis only when the cause of breakage has been determined to be material fatigue or stress. Should the patient's weight, foot structure, or activities have changed, new orthoses should be fabricated with those factors in mind.
Designs for surge immunity in critical electronic facilities
NASA Technical Reports Server (NTRS)
Roberts, Edward F., Jr.
1991-01-01
In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Chianella, Iva; Guerreiro, Antonio; Moczko, Ewa; Caygill, J Sarah; Piletska, Elena V; De Vargas Sansalvador, Isabel M Perez; Whitcombe, Michael J; Piletsky, Sergey A
2013-09-03
A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop assays similar to the enzyme-linked immunosorbent assay (ELISA) is presented here for the first time. NanoMIPs were synthesized by a solid-phase approach with an immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering, and electron microscopy. Immobilization, blocking, and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a horseradish peroxidase-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range of 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was 3 orders of magnitude better than a previously described ELISA based on antibodies. In these experiments, nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA.
Deep patch technique for landslide repair. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helwany, B.M.
1994-10-01
The report describes the laboratory testing of the `USFS deep patch` technique and a CTI modification of this technique for repairing landslides with geosynthetic reinforcement. The technique involves replacing sections of roadway lost due to landslides on top of a geosynthetically-reinforced embankment. The CTI modification involves replacing the reinforced slope with a geosynthetically-reinforced retaining wall with a truncated base. Both techniques rely on the cantilevering ability of the reinforced mass to limit the load on the foundation with a high slide potential. The tests with road base showed that (1) both the USFS and CTI repair reduced effectively the adversemore » effects of local landsliding on the highway pavement by preventing crack propagation; (2) the USFS repair increased the stability of the repaired slope, which was in progressive failure, by reducing the stresses exerted on it; and (3) the CTI repair produced substantially greater stresses on its foundation due to the truncated base of the reinforced mass.« less
Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation
Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael
2015-01-01
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Strategic Vision for Adopting 21st Century Science Methodologies
To better protect human health and the environment, EPA’s OPP is developing and evaluating new technologies in molecular, cellular, computational sciences to supplement or replace more traditional methods of toxicity testing and risk assessment.
Jagadeesan, G; Malathy, P; Gunasekaran, K; Harikrishna Etti, S; Aravindhan, S
2014-11-01
Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3₁21, with unit-cell parameters a=b=55.64, c=153.38 Å, β=120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.
Rossi, P; Oldner, A; Wanecek, M; Leksell, L G; Rudehill, A; Konrad, D; Weitzberg, E
2003-03-01
To compare a molecular double-indicator dilution technique with the gravimetrical reference method for measurement of extra-vascular lung water in porcine endotoxin shock. Open comparative experimental study. Animal research laboratory. In fourteen anaesthetised, mechanically ventilated landrace pigs, central and pulmonary haemodynamics as well as pulmonary gas exchange were measured. Extra-vascular lung water was quantitated gravimetrically as well as with a molecular double indicator dilution technique. Eight of these animals were subjected to endotoxaemia, the rest serving as sham controls. No difference in extra-vascular lung water was observed between the two methods in sham animals. Furthermore, extra-vascular lung water assessed with the molecular double-indicator dilution technique at the initiation of endotoxin infusion did not differ significantly from the corresponding values for sham animals. Endotoxaemia induced a hypodynamic shock with concurrent pulmonary hypertension and a pronounced deterioration in gas exchange. No increase in extra-vascular lung water was detected with the molecular double-indicator dilution technique in response to endotoxin, whereas this parameter was significantly higher when assessed with the gravimetric method. The molecular double-indicator dilution technique showed similar results as the gravimetrical method for assessment of extra-vascular lung water in non-endotoxaemic conditions. However, during endotoxin-induced lung injury the molecular double indicator dilution technique failed to detect the significant increase in extra-vascular lung water as measured by the gravimetric method. These data suggest that the molecular double indicator dilution technique may be of limited value during sepsis-induced lung injury.
Andreev, V P; Dwivedi, R C; Paz-Filho, G; Krokhin, O V; Wong, M-L; Wilkins, J A; Licinio, J
2011-06-01
The effects of leptin-replacement therapy on the plasma proteome of three unique adults with genetically based leptin deficiency were studied longitudinally during the course of recombinant human leptin-replacement treatment. Quantitative proteomics analysis was performed in plasma samples collected during four stages: before leptin treatment was initiated, after 1.5 and 6 years of leptin-replacement treatment, and after 7 weeks of temporary interruption of leptin-replacement therapy. Of 500 proteins reliably identified and quantitated in those four stages, about 100 were differentially abundant twofold or more in one or more stages. Synchronous dynamics of abundances of about 90 proteins was observed reflecting both short- and long-term effects of leptin-replacement therapy. Pathways and processes enriched with overabundant synchronous proteins were cell adhesion, cytoskeleton remodeling, cell cycle, blood coagulation, glycolysis, and gluconeogenesis. Plausible common regulators of the above synchronous proteins were identified using transcription regulation network analysis. The generated network included two transcription factors (c-Myc and androgen receptor) that are known to activate each other through a double-positive feedback loop, which may represent a potential molecular mechanism for the long-term effects of leptin-replacement therapy. Our findings may help to elucidate the effects of leptin on insulin resistance.
Iodinated contrast media and the role of renal replacement therapy.
Weisbord, Steven D; Palevsky, Paul M
2011-05-01
Iodinated contrast media are among the most commonly used pharmacologic agents in medicine. Although generally highly safe, iodinated contrast media are associated with several adverse effects, most significantly the risk of acute kidney injury, particularly in patients with underlying renal dysfunction. By virtue of their pharmacokinetic characteristics, these contrast agents are efficiently cleared by hemodialysis and to a lesser extent, hemofiltration. This has led to research into the capacity for renal replacement therapies to prevent certain adverse effects of iodinated contrast. This review examines the molecular and pharmacokinetic characteristics of iodinated contrast media and critically analyzes data from past studies on the role of renal replacement therapy to prevent adverse effects of these diagnostic agents. Published by Elsevier Inc.
Improved memory loading techniques for the TSRV display system
NASA Technical Reports Server (NTRS)
Easley, W. C.; Lynn, W. A.; Mcluer, D. G.
1986-01-01
A recent upgrade of the TSRV research flight system at NASA Langley Research Center retained the original monochrome display system. However, the display memory loading equipment was replaced requiring design and development of new methods of performing this task. This paper describes the new techniques developed to load memory in the display system. An outdated paper tape method for loading the BOOTSTRAP control program was replaced by EPROM storage of the characters contained on the tape. Rather than move a tape past an optical reader, a counter was implemented which steps sequentially through EPROM addresses and presents the same data to the loader circuitry. A cumbersome cassette tape method for loading the applications software was replaced with a floppy disk method using a microprocessor terminal installed as part of the upgrade. The cassette memory image was transferred to disk and a specific software loader was written for the terminal which duplicates the function of the cassette loader.
North Carolina Biomolecular Engineering and Materials Applications Center (NC-BEMAC).
1987-12-29
enzyme has been replaced with cobalt(II). A further objective was to investigate Co2 activation by low molecular weight transition metal complexes as...Characterization of Low Molecular Weight Metal Complexes as Potential Models for IBio-Catalytic Processes. A number of transit ion met~~il oom~pi cxe; hive...binding, the enzyme suffered loss of activity during radiation polymerization. When covalent binding was u:sed it was necessary to introduce suitably
Characterizing high-energy-density propellants for space propulsion applications
NASA Astrophysics Data System (ADS)
Kokan, Timothy
There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administration's (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.
Arthrodesis of the knee after failed knee replacement.
Wade, P J; Denham, R A
1984-05-01
Arthrodesis of the knee is sometimes needed for failed total knee replacement, but fusion can be difficult to obtain. We describe a method of arthrodesis that uses the simple, inexpensive, Portsmouth external fixator. Bony union was obtained in all six patients treated with this technique. These results are compared with those obtained by other methods of arthrodesis.
[Total hip arthroplasty through anterior "minimal invasive" approach].
Moerenhout, Kevin G; Cherix, Stéphane; Rüdiger, Hannes A
2012-12-19
Total hip replacement has seen a tremendous development and has become one of the most successful surgical interventions in orthopaedics. While during the first decades of development of total hip arthroplasty the fixation of the implant into the bone was the main concern, the focus has shifted towards surgical technique and soft tissue handling. In order to avoid permanent soft tissue damage, muscular dysfunction and concerns in regards to cosmetics, minimal invasive and anatomic approaches have been developed. We here provide a short overview on various methods of total hip replacements and we describe our technique through a minimal invasive direct anterior approach. While muscle and nerve damage is minimal, this technique allows for a rapid rehabilitation and is associated with an excellent functional outcome and a minimal risk for dislocation.
Cardiomyopathy and response to enzyme replacement therapy in a male mouse model for Fabry disease.
Nguyen Dinh Cat, Aurelie; Escoubet, Brigitte; Agrapart, Vincent; Griol-Charhbili, Violaine; Schoeb, Trenton; Feng, Wenguang; Jaimes, Edgar; Warnock, David G; Jaisser, Frederic
2012-01-01
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3-4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sliwiak, Joanna; Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl; A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan
With the implementation of a molecular-replacement likelihood target that accounts for translational noncrystallographic symmetry, it became possible to solve the crystal structure of a protein with seven tetrameric assemblies arrayed translationally along the c axis. The new algorithm found 56 protein molecules in reduced symmetry (P1), which was used to resolve space-group ambiguity caused by severe twinning. Translational noncrystallographic symmetry (tNCS) is a pathology of protein crystals in which multiple copies of a molecule or assembly are found in similar orientations. Structure solution is problematic because this breaks the assumptions used in current likelihood-based methods. To cope with such cases,more » new likelihood approaches have been developed and implemented in Phaser to account for the statistical effects of tNCS in molecular replacement. Using these new approaches, it was possible to solve the crystal structure of a protein exhibiting an extreme form of this pathology with seven tetrameric assemblies arrayed along the c axis. To resolve space-group ambiguities caused by tetartohedral twinning, the structure was initially solved by placing 56 copies of the monomer in space group P1 and using the symmetry of the solution to define the true space group, C2. The resulting structure of Hyp-1, a pathogenesis-related class 10 (PR-10) protein from the medicinal herb St John’s wort, reveals the binding modes of the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS), providing insight into the function of the protein in binding or storing hydrophobic ligands.« less
Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun
2017-12-08
Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B
2016-08-01
During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate anion is bound tightly between the two domains of the protein and interacts with conserved residues and a number of helix dipoles.
Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang
2018-04-13
To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.
Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee.
McDermott, Ian
2011-04-01
The menisci of the knee are important load sharers and shock absorbers in the joint. Meniscal tears are common, and whenever possible meniscal tears should be surgically repaired. Meniscectomy leads to a significant increased risk of osteoarthritis, and various options now exist for replacing missing menisci, including the use of meniscal scaffolds or the replacement of the entire meniscus by meniscal allograft transplantation. The field of meniscal surgery continues to develop apace, and the future may lie in growing new menisci by tissue engineering techniques.
Boer, Kimberly R.; Dyserinck, Heleen C.; Büscher, Philippe; Schallig, Henk D. H. F.; Leeflang, Mariska M. G.
2012-01-01
Background A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Methodology Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. Results 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Conclusion Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and direct resources appropriately. PMID:22253934
Mugasa, Claire M; Adams, Emily R; Boer, Kimberly R; Dyserinck, Heleen C; Büscher, Philippe; Schallig, Henk D H F; Leeflang, Mariska M G
2012-01-01
A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and direct resources appropriately.
Marine molecular biology: an emerging field of biological sciences.
Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G
2008-01-01
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.
Zhang, Shuping
2008-05-01
Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a research project-based and self-determined teaching system of molecular biology techniques for undergraduates. Its aim is to create an environment mimicking real research programs and to help students build up confidence in their research skills. The students are allowed to explore a set of commonly used molecular biology techniques to solve some fundamental problems about genes on their own. They find a gene of interest, write a mini-proposal, and give an oral presentation. This course provides students a foundation before entering the research laboratory and allows them to adapt easily to real research programs. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.
2012-08-01
carboxylic, amine, hydroxyl). Molasses produced more carboxylic acid groups than the corn syrup -based material and was composed of high ...molecular weight EPS units (as high as 800 KDa). Corn syrup -derived biopolymer, on the other hand, showed a greater number of small molecular weight...biopolymer by R. tropici: corn syrup , maltose, sorghum, and molasses. The maltose, being a very expensive carbon source, has been replaced by the sorghum
2012-08-01
carboxylic, amine, hydroxyl). Molasses produced more carboxylic acid groups than the corn syrup -based material and was composed of high ...molecular weight EPS units (as high as 800 KDa). Corn syrup -derived biopolymer, on the other hand, showed a greater number of small molecular weight...biopolymer by R. tropici: corn syrup , maltose, sorghum, and molasses. The maltose, being a very expensive carbon source, has been replaced by the sorghum
In brief: the (molecular) pathogenesis of Barrett's oesophagus.
Aichler, Michaela; Walch, Axel
2014-03-01
Barrett's oesophagus is a metaplastic change, such that the normal squamous epithelial lining of the oesophagus is replaced by specialized columnar-lined epithelium. Barrett's oesophagus is clinically significant and has a high health economic impact as it is associated with heightened risk of progression to oesophageal adenocarcinoma. This review discusses the pathogenesis of Barrett's oesophagus with an emphasis on the underlying molecular events. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Application of response surface techniques to helicopter rotor blade optimization procedure
NASA Technical Reports Server (NTRS)
Henderson, Joseph Lynn; Walsh, Joanne L.; Young, Katherine C.
1995-01-01
In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.
Locomotor exercise in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, W.; Whitmore, H.
1991-01-01
The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.
Temporary bypass for superior vena cava reconstruction with Anthron bypass tubeTM
Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi
2017-01-01
Total superior vena cava (SVC) clamping for SVC replacement or repair can be used in thoracic surgery. A bypass technique is an option to avoid hemodynamic instability and cerebral venous hypertension and hypoperfusion. The present report describes a venous bypass technique using Anthron bypass tubeTM for total SVC clamping. Indications for this procedure include the need for a temporary bypass between the brachiocephalic vein and atrium for complete tumor resection. This procedure allows the surgeons sufficient time to complete replacement of SVC or partial resection of SVC without adverse effects. Further, it is a relatively simple procedure requiring minimal time. PMID:28840027
NASA Technical Reports Server (NTRS)
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
Thomason, K; Eyres, K S
2008-07-01
Salvage of a failed total ankle replacement is technically challenging and although a revision procedure may be desirable, a large amount of bone loss or infection may preclude this. Arthrodesis can be difficult to achieve and is usually associated with considerable shortening of the limb. We describe a technique for restoring talar height using an allograft from the femoral head compressed by an intramedullary nail. Three patients with aseptic loosening were treated successfully by this method with excellent symptomatic relief at a mean follow-up of 32 months (13 to 50).
Basel, Halil; Aydin, Unal; Kutlu, Hakan; Dostbil, Aysenur; Karadag, Melike; Odabasi, Dolunay; Aydin, Cemalettin
2010-08-01
The aim of this study was to compare De Vega semicircular annuloplasty and a new biodegradable ring annuloplasty technique in patients requiring surgical intervention for tricuspid valve disease with concomitant disease of the mitral valve. Between January 2004 and May 2008, 129 consecutive patients underwent annuloplasty procedures to correct tricuspid valve regurgitation during a concomitant mitral valve operation requiring replacement. Additionally, 24 patients underwent aortic valve replacement (AVR), 11 underwent coronary artery bypass grafting (CABG), 5 underwent AVR plus CABG, 3 underwent mitral valve replacement plus atrial septal defect (ASD) closure, and 2 underwent ASD closure. The patients in this study were assigned to 2 groups: Kalangos ring annuloplasty was performed in 67 patients (group 1), and De Vega semicircular annuloplasty was performed in the remaining 62 patients (group 2). Both tricuspid valve repair techniques produced a low rate of complications; however, the number of patients who developed residual tricuspid regurgitation was significantly lower in group 1. The biodegradable ring annuloplasty technique may be used easily and safely in moderate and severe cases of tricuspid regurgitation; however, larger clinical series are necessary to confirm our promising results.
Molecular evolution of cyclin proteins in animals and fungi
2011-01-01
Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. PMID:21798004
Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung
2016-07-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures.
Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek
2015-02-03
In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.
Aortic valve replacement for papillary fibroelastoma.
Arikan, Ali Ahmet; Omay, Oğuz; Aydın, Fatih; Kanko, Muhip; Gür, Sibel; Derviş, Emir; Yılmaz, Cansu Eda; Müezzinoğlu, Bahar
2017-06-01
Surgery is indicated for symptomatic patients with papillary fibroelastomas (PFE) on the aortic valve. The valve is commonly spared during tumor excision. Rarely, aortic valve replacement (AVR) is needed. We present a case requiring AVR for an aortic valve PFE and review the literature to determine the risk factors for failure of aortic valve-sparing techniques in patients with PFE. © 2017 Wiley Periodicals, Inc.
Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats.
Thomsen, Klaus; Shirley, David G
2007-01-01
Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment of a suitably high urine flow rate by constant infusion of hypotonic glucose solution. The second series of experiments showed that replacement of blood samples with donor blood can also lead to increases in fractional lithium excretion and accompanying increases in water and sodium excretion, a problem not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without interference from unwanted changes in extracellular volume. 2007 S. Karger AG, Basel
Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr
2017-07-01
Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Structure and Thermodynamic Stability of Islet Amyloid Polypeptide Monomers and Small Aggregates
NASA Astrophysics Data System (ADS)
Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan
2013-03-01
Human islet amyloid polypeptide (hIAPP, also known as human amylin) is associated with the development of type II diabetes. It is known to form amyloid fibrils that are found in pancreatic islets. Pramlintide, a synthetic analog of hIAPP with three proline substitutions, is not amyloidogenic and has been applied in amylin replacement treatments. In this work, we use molecular simulations with advanced sampling techniques to examine the effect of these proline substitutions on hIAPP monomer conformations. We find that all three proline substitutions are required to attenuate the formation of β-sheets encountered in amylin. Furthermore, we investigate the formation of hIAPP dimers and trimers, and investigate how that process is affected by the presence of various additives. Our simulations show that hIAPP can form a β-sheet at the N-terminus and the C-terminus independently, in agreement with experimental observations. Our results provide valuable insights into the mechanism of hIAPP early aggregation and the design of fibril formation inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping
Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less
Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.
Britton, Joshua; Chalker, Justin M; Raston, Colin L
2015-07-20
Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour.
Świeca, Michał; Dziki, Dariusz; Gawlik-Dziki, Urszula
2017-08-01
Wheat flour in the bread formula was replaced with sprouted wheat flour (SF) characterized by enhanced nutraceutical properties, at 5%, 10%, 15% and 20% levels. The addition of SF slightly increased the total protein content; however, it decreased their digestibility. Some qualitative and quantitative changes in the electrophoretic pattern of proteins were also observed; especially, in the bands corresponding with 27kDa and 15-17kDa proteins. These results were also confirmed by SE-HPLC technique, where a significant increase in the content of proteins and peptides (molecular masses <20kDa) was determined for breads with 20% of SF. Bread enriched with sprouted wheat flour had more resistant starch, but less total starch, compared to control bread. The highest in vitro starch digestibility was determined for the control bread. The studied bread with lowered nutritional value but increased nutritional quality can be used for special groups of consumers (obese, diabetic). Copyright © 2017 Elsevier Ltd. All rights reserved.
Badiee, Parisa; Nejabat, Mahmood; Alborzi, Abdolvahab; Keshavarz, Fatemeh; Shakiba, Elaheh
2010-01-01
This study seeks to evaluate the efficacy and practicality of the molecular method, compared to the standard microbiological techniques for diagnosing fungal keratitis (FK). Patients with eye findings suspected of FK were enrolled for cornea sampling. Scrapings from the affected areas of the infected corneas were obtained and were divided into two parts: one for smears and cultures, and the other for nested PCR analysis. Of the 38 eyes, 28 were judged to have fungal infections based on clinical and positive findings in the culture, smear and responses to antifungal treatment. Potassium hydroxide, Gram staining, culture and nested PCR results (either positive or negative) matched in 76.3, 42.1, 68.4 and 81.6%, respectively. PCR is a sensitive method but due to the lack of sophisticated facilities in routine laboratory procedures, it can serve only complementarily and cannot replace conventional methods. Copyright © 2010 S. Karger AG, Basel.
Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.
Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe
2016-06-08
Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.
DNA-based random number generation in security circuitry.
Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C
2010-06-01
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.
Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R
2017-09-05
Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.
Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; ...
2016-07-28
Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less
NASA Astrophysics Data System (ADS)
Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.
2013-12-01
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.
Application of bioinformatics in chronobiology research.
Lopes, Robson da Silva; Resende, Nathalia Maria; Honorio-França, Adenilda Cristina; França, Eduardo Luzía
2013-01-01
Bioinformatics and other well-established sciences, such as molecular biology, genetics, and biochemistry, provide a scientific approach for the analysis of data generated through "omics" projects that may be used in studies of chronobiology. The results of studies that apply these techniques demonstrate how they significantly aided the understanding of chronobiology. However, bioinformatics tools alone cannot eliminate the need for an understanding of the field of research or the data to be considered, nor can such tools replace analysts and researchers. It is often necessary to conduct an evaluation of the results of a data mining effort to determine the degree of reliability. To this end, familiarity with the field of investigation is necessary. It is evident that the knowledge that has been accumulated through chronobiology and the use of tools derived from bioinformatics has contributed to the recognition and understanding of the patterns and biological rhythms found in living organisms. The current work aims to develop new and important applications in the near future through chronobiology research.
Ren, Jiaqiang; Jin, Ping; Wang, Ena; Liu, Eric; Harlan, David M; Li, Xin; Stroncek, David F
2007-01-03
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Ren, Jiaqiang; Jin, Ping; Wang, Ena; Liu, Eric; Harlan, David M; Li, Xin; Stroncek, David F
2007-01-01
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called β cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding β-cell function at the molecular level will likely facilitate the development of techniques to manufacture β-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release. PMID:17201925
2011-01-01
Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267
Molecular Imprinting Techniques Used for the Preparation of Biosensors
Ertürk, Gizem; Mattiasson, Bo
2017-01-01
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419
ERIC Educational Resources Information Center
Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.
2017-01-01
The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…
Bayse, Craig A; Merz, Kenneth M
2014-08-05
Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
Kolli, Nivya; Lu, Ming; Maiti, Panchanan; Rossignol, Julien; Dunbar, Gary L
2018-01-01
Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir
2018-05-01
In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.
Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates
ERIC Educational Resources Information Center
Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang
2009-01-01
We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…
Apico-Aortic Conduit for severe aortic stenosis: Technique, applications, and systematic review
Elmistekawy, Elsayed; Lapierre, Harry; Mesana, Thierry; Ruel, Marc
2010-01-01
Patients referred for aortic valve replacement are often elderly and may have increased surgical risk associated with ascending aortic calcification, left ventricular dysfunction, presence of coronary artery disease, previous surgery, and/or presence of several co-morbidities. Some of these patients may not be considered candidates for conventional surgery because of their high risk profile. While transcatheter aortic valve replacement constitutes a widely accepted alternative, some patients may not be eligible for this modality due to anatomic factors. Apico-Aortic Conduit (AAC) insertion (aortic valve bypass surgery) constitutes a possible option in those patients. Apico-Aortic Conduit is not a new technique, as it has been used for decades in both pediatric and adult populations. However, there is a resurging interest in this technique due to the expanding scope of elderly patients being considered for the treatment of aortic stenosis. Herein, we describe our surgical technique and provide a systematic review of recent publications on AAC insertion, reporting that there is continued use and several modifications of this technique, such as performing it through a small thoracotomy without the use of the cardiopulmonary bypass. PMID:23960619
Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction
Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J
2016-01-01
Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568
Merchandising Techniques and Libraries.
ERIC Educational Resources Information Center
Green, Sylvie A.
1981-01-01
Proposes that libraries employ modern booksellers' merchandising techniques to improve circulation of library materials. Using displays in various ways, the methods and reasons for weeding out books, replacing worn book jackets, and selecting new books are discussed. Suggestions for learning how to market and 11 references are provided. (RBF)
Bazot, Marc; Daraï, Emile
2017-12-01
The aim of the present review was to evaluate the contribution of clinical examination and imaging techniques, mainly transvaginal sonography and magnetic resonance imaging (MRI) to diagnose deep infiltrating (DE) locations using prisma statement recommendations. Clinical examination has a relative low sensitivity and specificity to diagnose DE. Independently of DE locations, for all transvaginal sonography techniques a pooled sensitivity and specificity of 79% and 94% are observed approaching criteria for a triage test. Whatever the protocol and MRI devices, the pooled sensitivity and specificity for pelvic endometriosis diagnosis were 94% and 77%, respectively. For rectosigmoid endometriosis, pooled sensitivity and specificity of MRI were 92% and 96%, respectively fulfilling criteria of replacement test. In conclusion, advances in imaging techniques offer high sensitivity and specificity to diagnose DE with at least triage value and for rectosigmoid endometriosis replacement value imposing a revision of the concept of laparoscopy as the gold standard. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Fabrication and wear test of a continuous fiber/particulate composite total surface hip replacement
NASA Technical Reports Server (NTRS)
Roberts, J. C.; Ling, F. F.; Jones, W. R., Jr.
1981-01-01
Continuous fiber woven E-glass composite femoral shells having the ame elastic properties as bone were fabricated. The shells were then encrusted with filled epoxy wear resistant coatings and run dry against ultrahigh molecular weight polyethylene acetabular cups in 42,000 and 250,000 cycle were tests on a total hip simulator. The tribological characteristics of these shells atriculating with the acetabular cups are comparable to a vitallium bal articulating with an ultrahigh molecular weight polyethylene cup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fu-Peng; Un, Hio-Ieng; Li, Yongxi
A new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta- 4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm2 V-1 s-1, which indicates that the BBI is a promising ntype semiconductor for optoelectronics.
Introducing MINA--The Molecularly Imprinted Nanoparticle Assay.
Shutov, Roman V; Guerreiro, Antonio; Moczko, Ewa; de Vargas-Sansalvador, Isabel Perez; Chianella, Iva; Whitcombe, Michael J; Piletsky, Sergey A
2014-03-26
A new ELISA- (enzyme-linked immunosorbent assay)-like assay is demonstrated in which no elements of biological origin are used for molecular recognition or signaling. Composite imprinted nanoparticles that contain a catalytic core and which are synthesized by using a solid-phase approach can simultaneously act as recognition/signaling elements, and be used with minimal modifications to standard assay protocols. This assay provides a new route towards replacement of unstable biomolecules in immunoassays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP
NASA Astrophysics Data System (ADS)
Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.
2016-05-01
Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g
Emerging molecular phenotypes of asthma
Ray, Anuradha; Oriss, Timothy B.
2014-01-01
Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577
Molecular plant breeding: methodology and achievements.
Varshney, Rajeev K; Hoisington, Dave A; Nayak, Spurthi N; Graner, Andreas
2009-01-01
The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F(1)s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.
Wright, T M; Rimnac, C M; Faris, P M; Bansal, M
1988-10-01
The performance of carbon fiber-reinforced ultra-high molecular weight polyethylene was compared with that of plain (non-reinforced) polyethylene on the basis of the damage that was observed on the articulating surfaces of retrieved tibial components of total knee prostheses. Established microscopy techniques for subjectively grading the presence and extent of surface damage and the histological structure of the surrounding tissues were used to evaluate twenty-six carbon fiber-reinforced and twenty plain polyethylene components that had been retrieved after an average of twenty-one months of implantation. All of the tibial components were from the same design of total knee replacement. The two groups of patients from whom the components were retrieved did not differ with regard to weight, the length of time that the component had been implanted, the radiographic position and angular alignment of the component, the original diagnosis, or the reason for removal of the component. The amounts and types of damage that were observed did not differ for the two materials. For both materials, the amount of damage was directly related to the length of time that the component had been implanted. The histological appearance of tissues from the area around the component did not differ for the two materials, except for the presence of fragments of carbon fiber in many of the samples from the areas around carbon fiber-reinforced components.
2012-01-01
Background To demonstrate the use of risk-benefit analysis for comparing multiple competing interventions in the absence of randomized trials, we applied this approach to the evaluation of five anticoagulants to prevent thrombosis in patients undergoing orthopedic surgery. Methods Using a cost-effectiveness approach from a clinical perspective (i.e. risk benefit analysis) we compared thromboprophylaxis with warfarin, low molecular weight heparin, unfractionated heparin, fondaparinux or ximelagatran in patients undergoing major orthopedic surgery, with sub-analyses according to surgery type. Proportions and variances of events defining risk (major bleeding) and benefit (thrombosis averted) were obtained through a meta-analysis and used to define beta distributions. Monte Carlo simulations were conducted and used to calculate incremental risks, benefits, and risk-benefit ratios. Finally, net clinical benefit was calculated for all replications across a range of risk-benefit acceptability thresholds, with a reference range obtained by estimating the case fatality rate - ratio of thrombosis to bleeding. Results The analysis showed that compared to placebo ximelagatran was superior to other options but final results were influenced by type of surgery, since ximelagatran was superior in total knee replacement but not in total hip replacement. Conclusions Using simulation and economic techniques we demonstrate a method that allows comparing multiple competing interventions in the absence of randomized trials with multiple arms by determining the option with the best risk-benefit profile. It can be helpful in clinical decision making since it incorporates risk, benefit, and personal risk acceptance. PMID:22233221
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Cardiomyopathy and Response to Enzyme Replacement Therapy in a Male Mouse Model for Fabry Disease
Nguyen Dinh Cat, Aurelie; Escoubet, Brigitte; Agrapart, Vincent; Griol-Charhbili, Violaine; Schoeb, Trenton; Feng, Wenguang; Jaimes, Edgar; Warnock, David G.; Jaisser, Frederic
2012-01-01
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3–4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose. PMID:22574107
Significance and integration of molecular diagnostics in the framework of veterinary practice.
Aranaz, Alicia
2015-01-01
The field of molecular diagnostics in veterinary practice is rapidly evolving. An array of molecular techniques of different complexity is available to facilitate the fast and specific diagnosis of animal diseases. The choice for the adequate technique is dependent on the mission and attributions of the laboratory and requires both a knowledge of the molecular biology basis and of its limitations. The ability to quickly detect pathogens and their characteristics would allow for precise decision-making and target measures such as prophylaxis, appropriate therapy, and biosafety plans to control disease outbreaks. In practice, taking benefit of the huge amount of data that can be obtained using molecular techniques highlights the need of collaboration between veterinarians in the laboratory and practitioners.
Re-do aortic root replacement after an allograft aortic root replacement.
Vrtik, Marian; Tesar, Peter J
2009-10-01
Structural degeneration of allograft aortic root is a global process. In addition to valvular degeneration, the allograft wall calcification poses a risk of systemic calcific embolization and late phase anastomotic aneurysm formation and rupture (anecdotal). Furthermore, the valve annulus is often small, and the tissues are rigid making the implantation of an adequately sized prosthesis within the allograft wall difficult. To avoid these issues, we routinely perform re-do aortic root replacement with either a mechanical valve conduit or bio-root composite graft. The technique has been successfully used in 22 consecutive patients with no operative mortality and minimal morbidity.
Reconstruction of the replaced right hepatic artery at the time of pancreaticoduodenectomy.
Allendorf, John D; Bellemare, Sarah
2009-03-01
The arterial anatomy supplying the liver is highly variable. One of the most common variants is a completely replaced right hepatic artery which is seen in about 11% of the population. Interruption of arterial flow to the right hepatic artery at the time of pancreaticoduodenectomy has been associated with biliary fistula and the consequent complications, as well as stenosis of the biliary enteric anastomosis. Malignancies of the posterior aspect of the head of the pancreas can encase a replaced right hepatic artery without involvement of other vascular structures. In this situation, it is possible to resect and reconstruct the replaced right hepatic artery to maintain oxygen delivery to the biliary enteric anastomosis. Herein we describe a technique to reconstruct a replaced right hepatic artery following resection of the vessel en bloc with the tumor during a pancreaticoduodenectomy, using inflow from the gastroduodenal artery.
Alexander, William G; Doering, Drew T; Hittinger, Chris Todd
2014-11-01
Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.
A microprocessor application to a strapdown laser gyro navigator
NASA Technical Reports Server (NTRS)
Giardina, C.; Luxford, E.
1980-01-01
The replacement of analog circuit control loops for laser gyros (path length control, cross axis temperature compensation loops, dither servo and current regulators) with digital filters residing in microcomputers is addressed. In addition to the control loops, a discussion is given on applying the microprocessor hardware to compensation for coning and skulling motion where simple algorithms are processed at high speeds to compensate component output data (digital pulses) for linear and angular vibration motions. Highlights are given on the methodology and system approaches used in replacing differential equations describing the analog system in terms of the mechanized difference equations of the microprocessor. Standard one for one frequency domain techniques are employed in replacing analog transfer functions by their transform counterparts. Direct digital design techniques are also discussed along with their associated benefits. Time and memory loading analyses are also summarized, as well as signal and microprocessor architecture. Trade offs in algorithm, mechanization, time/memory loading, accuracy, and microprocessor architecture are also given.
Cowie, Raelene M; Carbone, Silvia; Aiken, Sean; Cooper, John J; Jennings, Louise M
2016-01-01
Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan® (Biocomposites Ltd., Keele, UK) and Osteoset® (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan® was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset® led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches were not of sufficient magnitude to increase the wear of ultra-high-molecular-weight polyethylene above that of the negative controls. PMID:27312481
Li, Yang; Zhang, Zhenjun; Liao, Zhenhua; Mo, Zhongjun; Liu, Weiqiang
2017-10-01
Finite element models have been widely used to predict biomechanical parameters of the cervical spine. Previous studies investigated the influence of position of rotational centers of prostheses on cervical biomechanical parameters after 1-level total disc replacement. The purpose of this study was to explore the effects of axial position of rotational centers of prostheses on cervical biomechanics after 2-level total disc replacement. A validated finite element model of C3-C7 segments and 2 prostheses, including the rotational center located at the superior endplate (SE) and inferior endplate (IE), was developed. Four total disc replacement models were used: 1) IE inserted at C4-C5 disc space and IE inserted at C5-C6 disc space (IE-IE), 2) IE-SE, 3) SE-IE, and 4) SE-SE. All models were subjected to displacement control combined with a 50 N follower load to simulate flexion and extension motions in the sagittal plane. For each case, biomechanical parameters, including predicted moments, range of rotation at each level, facet joint stress, and von Mises stress on the ultra-high-molecular-weight polyethylene core of the prostheses, were calculated. The SE-IE model resulted in significantly lower stress at the cartilage level during extension and at the ultra-high-molecular-weight polyethylene cores when compared with the SE-SE construct and did not generate hypermotion at the C4-C5 level compared with the IE-SE and IE-IE constructs. Based on the present analysis, the SE-IE construct is recommended for treating cervical disease at the C4-C6 level. This study may provide a useful model to inform clinical operations. Copyright © 2017 Elsevier Inc. All rights reserved.
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
A Comparison of Collaborative and Traditional Instruction in Higher Education
ERIC Educational Resources Information Center
Gubera, Chip; Aruguete, Mara S.
2013-01-01
Although collaborative instructional techniques have become popular in college courses, it is unclear whether collaborative techniques can replace more traditional instructional methods. We examined the efficacy of collaborative courses (in-class, collaborative activities with no lectures) compared to traditional lecture courses (in-class,…
Teaching Molecular Biological Techniques in a Research Content
ERIC Educational Resources Information Center
Stiller, John W.; Coggins, T. Chad
2006-01-01
Molecular biological methods, such as the polymerase chain reaction (PCR) and gel electrophoresis, are now commonly taught to students in introductory biology courses at the college and even high school levels. This often includes hands-on experience with one or more molecular techniques as part of a general biology laboratory. To assure that most…
Tissue Engineering and Cellular Regeneration at NASA Report to Regenetech SAB
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2004-01-01
A project overview describing three dimensional tissue models is shown. The topics include: 1) cellular regeneration; 2) haemopoietic replacement; 3) novel vaccine development; 4) pharmacology and toxicology interventions; 5) development of synthetic viruses; and 6) molecular genetics and proteomics of recapitulated models.
Using biotechnology and genomics to improve biotic and abiotic stress in apple
USDA-ARS?s Scientific Manuscript database
Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...
Gene replacement in Penicillium roqueforti.
Goarin, Anne; Silar, Philippe; Malagnac, Fabienne
2015-05-01
Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.
Phaser crystallographic software.
McCoy, Airlie J; Grosse-Kunstleve, Ralf W; Adams, Paul D; Winn, Martyn D; Storoni, Laurent C; Read, Randy J
2007-08-01
Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F(+) and F(-), give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences DeltaF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.
Reddy, Vinod; Swanson, Stanley M; Segelke, Brent; Kantardjieff, Katherine A; Sacchettini, James C; Rupp, Bernhard
2003-12-01
Anticipating a continuing increase in the number of structures solved by molecular replacement in high-throughput crystallography and drug-discovery programs, a user-friendly web service for automated molecular replacement, map improvement, bias removal and real-space correlation structure validation has been implemented. The service is based on an efficient bias-removal protocol, Shake&wARP, and implemented using EPMR and the CCP4 suite of programs, combined with various shell scripts and Fortran90 routines. The service returns improved maps, converted data files and real-space correlation and B-factor plots. User data are uploaded through a web interface and the CPU-intensive iteration cycles are executed on a low-cost Linux multi-CPU cluster using the Condor job-queuing package. Examples of map improvement at various resolutions are provided and include model completion and reconstruction of absent parts, sequence correction, and ligand validation in drug-target structures.
Liao, Lingwen; Zhou, Shiming; Dai, Yafei; Liu, Liren; Yao, Chuanhao; Fu, Cenfeng; Yang, Jinlong; Wu, Zhikun
2015-08-05
Controlling the bimetal nanoparticle with atomic monodispersity is still challenging. Herein, a monodisperse bimetal nanoparticle is synthesized in 25% yield (on gold atom basis) by an unusual replacement method. The formula of the nanoparticle is determined to be Au24Hg1(PET)18 (PET: phenylethanethiolate) by high-resolution ESI-MS spectrometry in conjunction with multiple analyses including X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). X-ray single-crystal diffraction reveals that the structure of Au24Hg1(PET)18 remains the structural framework of Au25(PET)18 with one of the outer-shell gold atoms replaced by one Hg atom, which is further supported by theoretical calculations and experimental results as well. Importantly, differential pulse voltammetry (DPV) is first employed to estimate the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energies of Au24Hg1(PET)18 based on previous calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.
2005-06-01
The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by themore » virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trincão, José; Sousa Silva, Marta; Barata, Lídia
2006-08-01
A glyoxalase II from L. infantum was cloned, purified and crystallized and its structure was solved by X-ray crystallography. In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C222{sub 1} (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyondmore » 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano-somatids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Raka; Chakrabarti, Chandana, E-mail: chandana.chakrabarti@saha.ac.in
2005-08-01
A thaumatin-like antifungal protein, NP24-I, has been isolated from ripe tomato fruits. It was crystallized by the vapour-diffusion method and data were collected to 2.45 Å. The structure was solved by molecular replacement. NP24 is a 24 kDa (207-amino-acid) antifungal thaumatin-like protein (TLP) found in tomato fruits. An isoform of the protein, NP24-I, is reported to play a possible role in ripening of the fruit in addition to its antifungal properties. The protein has been isolated and purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P4{sub 3}, with unit-cell parameters a =more » b = 61.01, c = 62.90 Å and one molecule per asymmetric unit. X-ray diffraction data were processed to a resolution of 2.45 Å and the structure was solved by molecular replacement.« less
Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential.
Thompson, Brian R; Metzger, Joseph M
2014-09-01
The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia-mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease. © 2014 Wiley Periodicals, Inc.
Mitochondrial Replacement: Ethics and Identity
Wilkinson, Stephen; Appleby, John B.
2015-01-01
Abstract Mitochondrial replacement techniques (MRTs) have the potential to allow prospective parents who are at risk of passing on debilitating or even life‐threatening mitochondrial disorders to have healthy children to whom they are genetically related. Ethical concerns have however been raised about these techniques. This article focuses on one aspect of the ethical debate, the question of whether there is any moral difference between the two types of MRT proposed: Pronuclear Transfer (PNT) and Maternal Spindle Transfer (MST). It examines how questions of identity impact on the ethical evaluation of each technique and argues that there is an important difference between the two. PNT, it is argued, is a form of therapy based on embryo modification while MST is, instead, an instance of selective reproduction. The article's main ethical conclusion is that, in some circumstances, there is a stronger obligation to use PNT than MST. PMID:26481204
Current and future treatment options for gonorrhoea.
Ison, Catherine A; Deal, Carolyn; Unemo, Magnus
2013-12-01
The delivery of effective antimicrobial therapy is essential for public health control of gonorrhoea, in the absence of a suitable vaccine. The antimicrobial agent chosen should have high efficacy and quality, lack toxicity and give >95% success when given empirically. Guidelines, which are informed by surveillance data, are used to aid clinicians in their choice of appropriate agent. Historically, gonorrhoea treatment has been delivered as a single, directly observed dose but this has resulted in failure of successive antimicrobial agents which have been replaced by a new antimicrobial to which resistance has been rare or non-existing. Following the drift towards decreased susceptibility and treatment failure to the extended spectrum cephalosporins, and the lack of 'new' alternative antimicrobials, the threat of difficult to treat or untreatable gonorrhoea has emerged. The challenge of maintaining gonorrhoea as a treatable infection has resulted in national, regional and global response or action plans. This review discusses different approaches to the future treatment of gonorrhoea including; use of ceftriaxone, the injectable cephalosporin at increased dosage; dual antimicrobial therapy; use of drugs developed for other infections and use of older agents, directed by rapid point of care tests, to susceptible infections. Finally, it is considered whether the time is right to readdress the possibility of developing an effective gonococcal vaccine, given the major advances in our understanding of natural infection, molecular pathogenesis and the revolution in molecular biology techniques.
Visible Light Crosslinking of Methacrylated Hyaluronan Hydrogels for Injectable Tissue Repair
Fenn, Spencer L.; Oldinski, Rachael A.
2015-01-01
Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by 1H-NMR spectroscopy. UV activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic affects towards human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. PMID:26097172
Zaveri, Toral D.; Dolgova, Natalia V.; Lewis, Jamal S.; Hamaker, Kiri; Clare-Salzler, Michael J.; Keselowsky, Benjamin G.
2016-01-01
Aseptic loosening due to peri-prosthetic osteolysis is one of the primary causes for failure of artificial joint replacements. Implant-derived wear particles, often ultra-high molecular weight polyethylene (UHMWPE) microparticles, initiate an inflammatory cascade upon phagocytosis by macrophages, which leads to osteoclast recruitment and activation, ultimately resulting in osteolysis. Investigation into integrin receptors, involved in cellular interactions with biomaterial-adsorbed adhesive proteins, is of interest to understand and modulate inflammatory processes. In this work, we investigate the role of macrophage integrins Mac-1 and RGD-binding integrins in response to UHMWPE wear particles. Using integrin knockout mice as well as integrin blocking techniques, reduction in macrophage phagocytosis and inflammatory cytokine secretion is demonstrated when these receptors are either absent or blocked. Along this line, various opsonizing proteins are shown to differentially modulate microparticle uptake and macrophage secretion of inflammatory cytokines. Furthermore, using a calvarial osteolysis model it is demonstrated that both Mac-1 integrin and RGD-binding integrins modulate the particle induced osteolysis response to UHMWPE microparticles, with a 40% decrease in the area of osteolysis by the absence or blocking of these integrins, in vivo. Altogether, these findings indicate Mac-1 and RGD-binding integrins are involved in macrophage-directed inflammatory responses to UHMWPE and may serve as therapeutic targets to mitigate wear particle induced peri-prosthetic osteolysis for improved performance of implanted joints. PMID:27889664
Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility
Cerutti, David S.; Duke, Robert E.; Darden, Thomas A.; Lybrand, Terry P.
2009-01-01
We draw on an old technique for improving the accuracy of mesh-based field calculations to extend the popular Smooth Particle Mesh Ewald (SPME) algorithm as the Staggered Mesh Ewald (StME) algorithm. StME improves the accuracy of computed forces by up to 1.2 orders of magnitude and also reduces the drift in system momentum inherent in the SPME method by averaging the results of two separate reciprocal space calculations. StME can use charge mesh spacings roughly 1.5× larger than SPME to obtain comparable levels of accuracy; the one mesh in an SPME calculation can therefore be replaced with two separate meshes, each less than one third of the original size. Coarsening the charge mesh can be balanced with reductions in the direct space cutoff to optimize performance: the efficiency of StME rivals or exceeds that of SPME calculations with similarly optimized parameters. StME may also offer advantages for parallel molecular dynamics simulations because it permits the use of coarser meshes without requiring higher orders of charge interpolation and also because the two reciprocal space calculations can be run independently if that is most suitable for the machine architecture. We are planning other improvements to the standard SPME algorithm, and anticipate that StME will work synergistically will all of them to dramatically improve the efficiency and parallel scaling of molecular simulations. PMID:20174456
Two different techniques of manufacturing TMJ replacements - A technical report.
Kozakiewicz, Marcin; Wach, Tomasz; Szymor, Piotr; Zieliński, Rafał
2017-09-01
Presently, during the surgical treatment of the patients in maxillofacial surgery, one can use various medical implants. Moreover custom made implants are being used. Replacements may be fitted to the structure and shape of the human skull owing to CAD/CAM (custom aided design/manufacture) called customized implants. This study was aimed to report for the first time clinical material from which custom implants, using two different techniques, were manufactured to reconstruct the temporomandibular joint (TMJ). In this study, eleven patients with an average age of 54 years were included. All of the patients underwent TMJ reconstruction using direct metal laser sintering (DMLS) or computer numerical control milling (CNC) techniques for implant manufacture. Four of the eleven patients had a malignancy diagnosis, and seven had a benign diagnosis. Patients complained of hypomobility of the TMJ, facial asymmetry, pain and swelling of the preauricular region. Treatment included 7 CNC milled implants and 4 implants in DMLS. More metallic implant parts with a rough surface were associated with the DMLS technique. Post operational, uneventful healing was observed in all clinical cases during an average of 26.8 months of follow-up. Three months post-operation, facial nerve palsy, swallowing disturbances and pain were not observed. Infections, allergic reactions to materials and re-ankylosis were also not observed. Replacements received correct forms and functions owing to the CAM techniques. Post-operational maximal interincisal opening improved (p < 0.01) and was not significantly related to preoperational opening, age, sex, diagnosis or adjuvant radiotherapy. Considering both methods, the feature that differentiates the manufacture technique is the more subtractive surface finishing required for the DMLS implant than the CNC implant. Both techniques resulted the same clinical outcomes and can be used successfully in patients with neoplastic lesions and other TMJ disorders. Unfortunately, DMLS is more vulnerable to fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Araki, Haruna; Kitamura, Tadashi; Horai, Tetsuya; Shibata, Ko; Miyaji, Kagami
2014-12-01
The elephant trunk technique for aortic dissection is useful for reducing false lumen pressure; however, a folded vascular prosthesis inside the aorta can cause haemolysis. The purpose of this study was to investigate whether an elephant trunk in a small-calibre lumen can cause haemolysis. Inpatient and outpatient records were retrospectively reviewed. Two cases of haemolytic anaemia after aortic surgery using the elephant trunk technique were identified from 2011 to 2013. A 64-year-old man, who underwent graft replacement of the ascending aorta for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta and moderate aortic regurgitation. A two-stage surgery was scheduled. Total arch replacement with an elephant trunk in the true lumen and concomitant aortic valve replacement were performed. Postoperatively, he developed severe haemolytic anaemia because of the folded elephant trunk. The anaemia improved after the second surgery, including graft replacement of the descending aorta. Similarly, a 61-year-old man, who underwent total arch replacement for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta. Graft replacement of the descending aorta with an elephant trunk inserted into the true lumen was performed. The patient postoperatively developed haemolytic anaemia because of the folded elephant trunk, which improved after additional stent grafting into the elephant trunk. A folded elephant trunk in a small-calibre lumen can cause haemolysis. Therefore, inserting an elephant trunk in a small-calibre true lumen during surgery for chronic aortic dissection should be avoided. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Ding, Mingyue; Yuchi, Ming; Hou, Wenguang; Ye, Huashan; Qiu, Wu
2010-03-01
Factor analysis is an efficient technique to the analysis of dynamic structures in medical image sequences and recently has been used in contrast-enhanced ultrasound (CEUS) of hepatic perfusion. Time-intensity curves (TICs) extracted by factor analysis can provide much more diagnostic information for radiologists and improve the diagnostic rate of focal liver lesions (FLLs). However, one of the major drawbacks of factor analysis of dynamic structures (FADS) is nonuniqueness of the result when only the non-negativity criterion is used. In this paper, we propose a new method of replace-approximation based on apex-seeking for ambiguous FADS solutions. Due to a partial overlap of different structures, factor curves are assumed to be approximately replaced by the curves existing in medical image sequences. Therefore, how to find optimal curves is the key point of the technique. No matter how many structures are assumed, our method always starts to seek apexes from one-dimensional space where the original high-dimensional data is mapped. By finding two stable apexes from one dimensional space, the method can ascertain the third one. The process can be continued until all structures are found. This technique were tested on two phantoms of blood perfusion and compared to the two variants of apex-seeking method. The results showed that the technique outperformed two variants in comparison of region of interest measurements from phantom data. It can be applied to the estimation of TICs derived from CEUS images and separation of different physiological regions in hepatic perfusion.
Henderson, Fraser; Takacs, Istvan
2017-01-01
Troubleshooting of deep brain stimulators (DBSs, Activa SC/PC/RC Medtronic PLC, Minneapolis, Minnesota, USA) sometimes results in a decision to replace a tunneled stretch-coil extension cable. We present a simple technique to accomplish this atraumatically without a tunneling tool. In the treatment of patients with a DBS, complication avoidance and efficiency of operative time are paramount. We sought to find the safest, most effective, and fastest method of performing the conceptually simple yet technically nuanced act of replacing lead extension cables. We connected #6 (8.0 metric) surgical steel 18″ (45-cm) monofilament (Ethicon US, LLC, Somerville, New Jersey, USA), also known as #6 sternal wire, in line with DBS extension cables (Medtronic DBS Extension 37086-60) in novel fashion to overcome intraprocedural hurdles encountered during the past decade in a busy functional neurosurgery service. Patients tolerate the procedure well and return home shortly after recovery with no complications. A less expensive and faster technique for passing pulse generator extension cables may be the use of a sternal wire. Using the described technique, pulse generators may be quickly and safely adjusted from side to side and site to site as the clinical situation dictates. Copyright © 2016 Elsevier Inc. All rights reserved.
Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung
2016-01-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Detection of boundary-layer transitions in wind tunnels
NASA Technical Reports Server (NTRS)
Wood, W. R.; Somers, D. M.
1978-01-01
Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.
Treatment of Renal Calculi with Extracorporeal Shock Wave Lithotripsy
Eberwein, P. M.; Denstedt, J. D.
1992-01-01
In 12 years, extracorporeal shock wave lithotripsy has replaced other treatment techniques for most surgical calculi in the upper urinary tract. Worldwide clinical series have documented its efficacy. Technological advances and modifications have significantly expanded the clinical applications of this technique. Imagesp1673-aFigure 3 PMID:21221368
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
An Update on in Vivo Imaging of Extracellular Vesicles as Drug Delivery Vehicles
Gangadaran, Prakash; Hong, Chae Moon; Ahn, Byeong-Cheol
2018-01-01
Extracellular vesicles (EVs) are currently being considered as promising drug delivery vehicles. EVs are naturally occurring vesicles that exhibit many characteristics favorable to serve as drug delivery vehicles. In addition, EVs have inherent properties for treatment of cancers and other diseases. For research and clinical translation of use of EVs as drug delivery vehicles, in vivo tracking of EVs is essential. The latest molecular imaging techniques enable the tracking of EVs in living animals. However, each molecular imaging technique has its certain advantages and limitations for the in vivo imaging of EVs; therefore, understanding the molecular imaging techniques is essential to select the most appropriate imaging technology to achieve the desired imaging goal. In this review, we summarize the characteristics of EVs as drug delivery vehicles and the molecular imaging techniques used in visualizing and monitoring EVs in in vivo environments. Furthermore, we provide a perceptual vision of EVs as drug delivery vehicles and in vivo monitoring of EVs using molecular imaging technologies. PMID:29541030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre
2007-04-01
Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{submore » 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.« less
The Hall Effect in Hydrided Rare Earth Films
NASA Astrophysics Data System (ADS)
Koon, D. W.; Azofeifa, D. E.; Clark, N.
We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.
Surgical Approaches to Aortic Valve Replacement and Repair—Insights and Challenges
Ramchandani, Mahesh; Reardon, Michael J
2014-01-01
Since 1960, surgical aortic valve replacement (sAVR) had been the only effective treatment for symptomatic severe aortic stenosis until the recent development of transcatheter aortic valve replacement (TAVR). TAVR has offered an alternative, minimally invasive treatment approach particularly for patients whose age or co-morbidities make them unsuitable for sAVR. The rapid and enthusiastic utilization of this new technique has triggered some speculation about the imminent demise of sAVR. We believe that despite the recent advances in TAVR, surgical approach to aortic valve replacement has continued to develop and will continue to be highly relevant in the future. This article will discuss the recent developments and current approaches for sAVR, and how these approaches will keep pace with catheter-based technologies. PMID:29588775
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialist Wendy Lawrence look over mission equipment in the Space Station Processing Facility. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas works on equipment in the Space Station Processing Facility. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
Chaware, Suresh M.; Bagaria, Vaibhav; Kuthe, Abhay
2009-01-01
Anthropometric variations in humans make it difficult to replace a temporomandibular joint (TMJ), successfully using a standard “one-size-fits-all” prosthesis. The case report presents a unique concept of total TMJ replacement with customized and modified TMJ prosthesis, which is cost-effective and provides the best fit for the patient. The process involved in designing and modifications over the existing prosthesis are also described. A 12-year- old female who presented for treatment of left unilateral TMJ ankylosis underwent the surgery for total TMJ replacement. A three-dimensional computed tomography (CT) scan suggested features of bony ankylosis of left TMJ. CT images were converted to a sterolithographic model using CAD software and a rapid prototyping machine. A process of rapid manufacturing was then used to manufacture the customized prosthesis. Postoperative recovery was uneventful, with an improvement in mouth opening of 3.5 cm and painless jaw movements. Three years postsurgery, the patient is pain-free, has a mouth opening of about 4.0 cm and enjoys a normal diet. The postoperative radiographs concur with the excellent clinical results. The use of CAD/CAM technique to design the custom-made prosthesis, using orthopaedically proven structural materials, significantly improves the predictability and success rates of TMJ replacement surgery. PMID:19881026
Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory
ERIC Educational Resources Information Center
Black, Michael W.; Tuan, Alice; Jonasson, Erin
2008-01-01
The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…
High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library
A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...
Bonora, M; Wieckowsk, M R; Chinopoulos, C; Kepp, O; Kroemer, G; Galluzzi, L; Pinton, P
2015-03-19
Correction to: Oncogene (2015) 34, 1475–1486; doi:10.1038/ onc.2014.96; published online 14 April 2014 .The authors wish to amend the wording of the following sentence on page 2, replacing ‘intracellular acidification’ with ‘intracellular alkalinization’
Paul, Subrata; Paul, Sandip
2015-07-30
To provide the underlying mechanism of the inhibiting effect of trehalose on the urea denatured protein, we perform classical molecular dynamics simulations of N-methylacetamide (NMA) in aqueous urea and/or trehalose solution. The site-site radial distribution functions and hydrogen bond properties indicate in binary urea solution the replacement of NMA-water hydrogen bonds by NMA-urea hydrogen bonds. On the other hand, in ternary urea and trehalose solution, trehalose does not replace the NMA-urea hydrogen bonds significantly; rather, it forms hydrogen bonds with the NMA molecule. The calculation of a preferential interaction parameter shows that, at the NMA surface, trehalose molecules are preferred and the preference for urea decreases slightly in ternary solution with respect to the binary solution. The exclusion of urea molecules in the ternary urea-NMA-trehalose system causes alleviation in van der Waals interaction energy between urea and NMA molecules. Our findings also reveal the following: (a) trehalose and urea induced second shell collapse of water structure, (b) a reduction in the mean trehalose cluster size in ternary solution, and (c) slowing down of translational motion of solution species in the presence of osmolytes. Implications of these results for the molecular explanations of the counteracting mechanism of trehalose on urea induced protein denaturation are discussed.
A molecular trigger for intercontinental epidemics of group A Streptococcus
Zhu, Luchang; Olsen, Randall J.; Nasser, Waleed; Beres, Stephen B.; Vuopio, Jaana; Kristinsson, Karl G.; Gottfredsson, Magnus; Porter, Adeline R.; DeLeo, Frank R.; Musser, James M.
2015-01-01
The identification of the molecular events responsible for strain emergence, enhanced virulence, and epidemicity has been a long-pursued goal in infectious diseases research. A recent analysis of 3,615 genomes of serotype M1 group A Streptococcus strains (the so-called “flesh-eating” bacterium) identified a recombination event that coincides with the global M1 pandemic beginning in the early 1980s. Here, we have shown that the allelic variation that results from this recombination event, which replaces the chromosomal region encoding secreted NADase and streptolysin O, is the key driver of increased toxin production and enhanced infection severity of the M1 pandemic strains. Using isoallelic mutant strains, we found that 3 polymorphisms in this toxin gene region increase resistance to killing by human polymorphonuclear leukocytes, increase bacterial proliferation, and increase virulence in animal models of pharyngitis and necrotizing fasciitis. Genome sequencing of an additional 1,125 streptococcal strains and virulence studies revealed that a highly similar recombinational replacement event underlies an ongoing intercontinental epidemic of serotype M89 group A Streptococcus infections. By identifying the molecular changes that enhance upper respiratory tract fitness, increased resistance to innate immunity, and increased tissue destruction, we describe a mechanism that underpins epidemic streptococcal infections, which have affected many millions of people. PMID:26258415
Freyhof, JÖrg; Kaya, CÜneyt; BayÇelebİ, Esra; Geiger, Matthias; Turan, Davut
2018-04-16
The generic position of Leuciscus kurui Bogutskaya, 1995 is reviewed through a comparison of morphological and molecular characters (COI). The molecular data place L. kurui in Alburnus, close to Alburnus timarensis from the Lake Van basin. Alburnus kurui (Bogutskaya) is distinguished from this species by lacking a ventral keel and possessing both a very low number of gill rakers and midlateral scales. Alburnus selcuklui, from the upper Tigris drainage, cannot be distinguished from the widespread A. sellal and is therefore treated as a synonym of this species. Alburnus kurui Mangit Yerli, 2018 is a junior secondary homonym of A. kurui (Bogutskaya, 1995) and A. carianorum is proposed as its replacement name. Several specimens of Alburnus caeruleus and Alburnus heckeli shared the same haplotypes as some A. sellal and therefore these species cannot always be distinguished by mitochondrial molecular characters. Alburnus caeruleus and A. heckeli are treated as valid species. Other individuals of A. caeruleus have haplotypes very different from A. sellal, and A. heckeli is well distinguished from A. sellal by having more gill rakers. The Lake Van basin as a separate freshwater ecoregion and the treatment of several species of Alburnus in synonymy of A. mento are discussed.
Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.
Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S
2016-06-07
Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogeley, Lutz; Luecke, Hartmut, E-mail: hudel@uci.edu
2006-04-01
Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2{sub 1}2{sub 1}2{sub 1} diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2{sub 1}2{sub 1}2{sub 1}). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2more » and P2{sub 1}2{sub 1}2{sub 1}, which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form.« less
Triple valve surgery: a 25-year experience.
Yilmaz, Mustafa; Ozkan, Murat; Böke, Erkmen
2004-09-01
Surgical treatment of rheumatic valvular disease still constitutes a significant number of cardiac operations in developing countries. Despite improvements in myocardial protection and cardiopulmonary bypass techniques, triple valve operations (aortic, mitral and tricuspid valves) are still challenging because of longer duration of cardiopulmonary bypass and higher degree of myocardial decompensation. This study was instituted in order to assess results of triple valve surgery. Between 1977 and 2002, 34 patients underwent triple valve surgery in our clinic by the same surgeon (EB). Eleven patients underwent triple valve replacement (32.4%) and 23 underwent tricuspid valve annuloplasty with aortic and mitral valve replacements (67.6%). There was no significant difference between the two groups of patients who underwent triple valve replacement and aortic and mitral valve replacement with tricuspid valve annuloplasty. There were 4 hospital deaths (11.8%) occurring within 30 days. The duration of follow-up for 30 survivors ranged from 6 to 202 months (mean 97 months). The actuarial survival rates were 85%, 72%, and 48% at 5, 10, and 15 years respectively. Actuarial freedom from reoperation rates at 5, 10, and 15 years was 86.3%, 71.9%, and 51.2%, respectively. Freedom from cerebral thromboembolism and anticoagulation-related hemorrhage rates, expressed in actuarial terms was 75.9% and 62.9% at 5 and 10 years. Major cerebral complications occurred in 10 of the 30 patients. We prefer replacing, if repairing is not possible, the tricuspid valve, with a bileaflet mechanical prosthesis in a patient with valve replacement of the left heart who will be anticoagulated in order to avoid unfavorable properties of bioprosthesis like degeneration and of old generation mechanical prosthesis like thrombosis and poor hemodynamic function. In recent years, results of triple valve surgery either with tricuspid valve conservation or valve replacement in suitable cases have become encouraging with improvements in surgical techniques and myocardial preservation methods.
Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin
1998-01-01
Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.
Gebhard, Harry; James, Andrew R.; Bowles, Robby D.; Dyke, Jonathan P.; Saleh, Tatianna; Doty, Stephen P.; Bonassar, Lawrence J.; Härtl, Roger
2011-01-01
Study design: Prospective randomized animal study. Objective: To determine a surgical technique for reproducible and functional intervertebral disc replacement in an orthotopic animal model. Methods: The caudal 3/4 intervertebral disc (IVD) of the rat tail was approached by two surgical techniques: blunt dissection, stripping and retracting (Technique 1) or incising and repairing (Technique 2) the dorsal longitudinal tendons. The intervertebral disc was dissected and removed, and then either discarded or reinserted. Outcome measures were perioperative complications, spontaneous tail movement, 7T MRI (T1- and T2-sequences for measurement of disc space height (DSH) and disc hydration). Microcomputed tomographic imaging (micro CT) was additionally performed postmortem. Results: No vascular injuries occurred and no systemic or local infections were observed over the course of 1 month. Tail movements were maintained. With tendon retraction (Technique 1) gross loss of DSH occurred with both discectomy and reinsertion. Tendon division (Technique 2) maintained DSH with IVD reinsertion but not without. The DSH was demonstrated on MRI measurement. A new scoring system to assess IVD appearances was described. Conclusions: The rat tail model, with a tendon dividing surgical technique, can function as an orthotopic animal model for IVD research. Mechanical stimulation is maintained by preserved tail movements. 7T MRI is a feasible modality for longitudinal monitoring for the rat caudal disc. PMID:22956934
Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs.
Heinemann, Jack A; Kurenbach, Brigitta; Quist, David
2011-10-01
Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Donner, Erica; Punshon, Tracy; Guerinot, Mary Lou; Lombi, Enzo
2013-01-01
Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus of crop biofortification, phytoremediation, and food security research. This paper focuses on the potential for advancing plant metal(loid) research by combining molecular biology and synchrotron-based techniques. Recent advances in x-ray focussing optics and fluorescence detection have greatly improved the potential of synchrotron techniques for plant science research, allowing metal(loids) to be imaged in vivo in hydrated plant tissues at sub-micron resolution. Laterally resolved metal(loid) speciation can also be determined. By using molecular techniques to probe the location of gene expression and protein localisation and combining it with this synchrotron-derived data, functional information can be effectively and efficiently assigned to specific genes. This paper provides a review of the state of the art in this field, and provides examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. PMID:22200921
Rethinking developmental toxicity testing: Evolution or revolution?
Scialli, Anthony R; Daston, George; Chen, Connie; Coder, Prägati S; Euling, Susan Y; Foreman, Jennifer; Hoberman, Alan M; Hui, Julia; Knudsen, Thomas; Makris, Susan L; Morford, LaRonda; Piersma, Aldert H; Stanislaus, Dinesh; Thompson, Kary E
2018-06-01
Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach. © 2018 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.
From 3D to 2D: A Review of the Molecular Imprinting of Proteins
Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.
2008-01-01
Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches. PMID:17137293
From 3D to 2D: a review of the molecular imprinting of proteins.
Turner, Nicholas W; Jeans, Christopher W; Brain, Keith R; Allender, Christopher J; Hlady, Vladimir; Britt, David W
2006-01-01
Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches.
[Molecular techniques in mycology].
Rodríguez-Tudela, Juan Luis; Cuesta, Isabel; Gómez-López, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martínez, Leticia; Cuenca-Estrella, Manuel
2008-11-01
An increasing number of molecular techniques for the diagnosis of fungal infections have been developed in the last few years, due to the growing prevalence of mycoses and the length of time required for diagnosis when classical microbiological methods are used. These methods are designed to resolve the following aspects of mycological diagnosis: a) Identification of fungi to species level by means of sequencing relevant taxonomic targets; b) early clinical diagnosis of invasive fungal infections; c) detection of molecular mechanisms of resistance to antifungal agents; and d) molecular typing of fungi. Currently, these methods are restricted to highly developed laboratories. However, some of these techniques will probably be available in daily clinical practice in the near future.
[Total and unicompartmental knee replacement. Patient-specific Instrumentation].
Köster, G; Biró, C
2016-04-01
The objective of patient-specific instrumentation (PSI Zimmer®) technology is to optimize positioning and selection of components as well as surgical procedure in uni- and bicompartimental knee replacement. The article contains a description of the planning and surgical technique and evaluates the method based on own results and literature. Using MRI or CT scans a virtual 3D model of the joint is created in order to simulate and plan the implant positioning. According to these data, pin placement and/or cutting guides are produced, which enable the surgeon to transfer the planning to the surgical procedure. In a prospective comparative study 88 patients (44 per each of the two techniques) were operated by one surgeon receiving the same TKA using either MRI-based PSI or a conventional technique. The number of surgical trays, operating time, intraoperative changes and frontal alignment using a full leg x‑ray (70 cases) were compared. In 17 patients the method was applied with unicondylar knee replacement. Anatomical abnormalities could be detected preoperatively and considered during the operation. With PSI the number of trays could be reduced and predictability of the component size was more precise. Intraoperative changes became necessary only for distal femoral (25 %) and proximal tibial (36 %) resection and tibial rotation (40 %). Alignment was more precise in the PSI cases PSI using the applied technique proved to be practicable and reliable. The advantages of precise planning became obvious. Results concerning alignment are inconsistent in the literature. Soft tissue balancing has only been included in the technique to a limited degree so far. PSI is still in an early stage of development and further development opportunities should be exploited before final assessment.
A stand-replacing fire history in upper montane forests of the southern Rocky Mountains
Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.
2007-01-01
Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.
Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C
2004-09-30
Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.
Mourtzoukou, Despoina; Fisher, Cyril; Thway, Khin
2015-12-01
The accurate diagnosis of soft tissue neoplasms has crucial therapeutic and prognostic importance. There is frequent morphologic overlap between entities, and ancillary modalities are used in the vast majority of diagnoses. Immunohistochemistry is rapid and inexpensive, and in addition to the older markers that mainly detected cytoplasmic proteins, antibodies can indirectly detect tumor-specific genetic and molecular abnormalities. The use of molecular diagnostic techniques is now widespread, with molecular services often integrated into routine histopathology laboratories; as their cost and turnaround times begin to parallel those for immunohistochemistry, we compared the usefulness of ancillary immunohistochemistry, molecular genetic, and molecular cytogenetic techniques in the diagnosis of soft tissue lesions. We evaluated the number and contribution of immunohistochemical tests and panels and of ancillary molecular techniques in the primary histopathologic diagnosis of 150 soft tissue lesions. Ninety of 150 cases required either only one immunohistochemical panel or minimal immunohistochemistry for diagnosis, while 39/150 required 2 to 4 panels. In 5/150, ancillary molecular tests alone (without immunohistochemistry) were diagnostically sufficient. The majority of cases required one immunohistochemical panel for diagnosis, with a smaller proportion requiring a second, and a minority requiring a third or fourth (which mainly comprised neoplasms for which the final diagnosis was uncertain). Certain neoplasms required both extensive immunohistochemistry and ancillary molecular testing, despite which the final diagnosis was inconclusive. Ancillary molecular techniques now make a significant contribution to soft tissue tumor diagnosis, being required in over one third (52/150) of cases, and were useful in confirming or excluding tumors that were not possible to conclusively diagnose with histology and immunohistochemistry. Only a small proportion of soft tissue neoplasms (16/150; all benign) did not require immunohistochemistry or ancillary molecular methods, with morphology alone being sufficient for diagnosis. © The Author(s) 2015.
The temperature of large dust grains in molecular clouds
NASA Technical Reports Server (NTRS)
Clark, F. O.; Laureijs, R. J.; Prusti, T.
1991-01-01
The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.
78 FR 56720 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
...-valve replacement in high-risk patients. N Engl J Med. 2011 Jun 9;364(23):2187-98. [PMID 21639811... be activated upon demand to release the therapeutic agent at the desired site. The concurrent release... streamlined for high-throughput analysis. Quantitative molecular diagnostics. Unique microRNAs and/or mRNAs...
Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.
Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid
2013-03-01
Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.
Paul, A.; Mishra, A.; Surolia, A.; Vijayan, M.
2013-01-01
The last enzyme in the arginine-biosynthesis pathway, argininosuccinate lyase, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized, and preliminary X-ray studies have been carried out on the crystals. The His-tagged tetrameric enzyme with a subunit molecular weight of 50.9 kDa crystallized with two tetramers in the asymmetric unit of the orthorhombic unit cell, space group P212121. Molecular-replacement calculations and self-rotation calculations confirmed the space group and the tetrameric nature of the molecule. PMID:24316845
ERIC Educational Resources Information Center
Zhang, Shuping
2008-01-01
Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a…
Gofton, Wade; Fitch, David A
2016-03-01
The purpose of this study was to compare the in-hospital costs associated with the tissue-sparing supercapsular percutaneously-assisted total hip (SuperPath) and traditional Lateral surgical techniques for total hip replacement (THR). Between April 2013 and January 2014, in-hospital costs were reviewed for all THRs performed using the SuperPath technique by a single surgeon and all THRs performed using the Lateral technique by another surgeon at the same institution. Overall, costs were 28.4% higher in the Lateral group. This was largely attributable to increased costs associated with transfusion (+92.5%), patient rooms (+60.4%), patient food (+62.8%), narcotics (+42.5%), physical therapy (+52.5%), occupational therapy (+88.6%), and social work (+92.9%). The only costs noticeably increased for SuperPath were for imaging (+105.9%), and this was because the SuperPath surgeon performed intraoperative radiographs on all patients while the Lateral surgeon did not. The use of the SuperPath technique resulted in in-hospital cost reductions of over 28%, suggesting that this tissue-sparing surgical technique can be cost-effective primarily by facilitating early mobilisation and patient discharge even during a surgeon's initial experience with the approach.
Introduction to interventional radiology for the criticalist.
Weisse, Chick
2011-04-01
To introduce the basic equipment necessary to perform interventional radiology (IR) techniques in the veterinary setting, particularly those procedures of interest to the criticalist. Veterinary and human literature as well as author's experience. Since the 1950s, diagnostic angiography has played an important role in human medicine. However, over the last 2-3 decades, this once purely diagnostic modality has become a subspecialty in human medicine with vast applications throughout the body. These techniques have replaced more invasive surgeries as the standard-of-care in many circumstances. Although comparable data are not available in the veterinary literature, many IR and interventional endoscopy techniques are poised to replace more invasive procedures in veterinary medicine. In addition, these techniques have already been shown to offer treatment options for patients in whom more traditional therapies have failed, have been declined, or are not indicated due to comorbidities or substantial risk to patient health. Like our human medical counterparts, the use of IR techniques will likely play and increasingly important role in the care of veterinary patients. With this in mind, it is important to become familiar with both the equipment used in these techniques as well as their applications both currently in clinical cases and in the near future. © Veterinary Emergency and Critical Care Society 2011.
Design, fabrication, and operation of hybrid bionanodevices for biomedical applications
NASA Astrophysics Data System (ADS)
Tucker, Robert Matthew
Cells are the fundamental building blocks of life. Despite their simplicity, cells are extremely versatile, performing a variety of functions including detection, signaling, and repair. While current biomedical devices operate at the organ level, the next generation will operate at the cellular level, combining the nanoscale machinery of cells with the mechanical robustness of synthetic materials in the form of new hybrid devices. This thesis presents advances in four topics concerning the development of nanomedical devices: fabrication, stabilization, control, and operation. First, as feature sizes decrease from the milli- and microscale towards the nanoscale, new fabrication methods must be developed. A new rapid prototyping technique using confocal microscopy was used to produce freely-programmable high-resolution protein patterns of functional motor proteins on thermo-responsive polymer surfaces. Second, hybrid device operation should be temperature-independent, but most biological components have strong responses to temperature fluctuations. To counter operational fluctuations, the temperature-dependent enzymatic activity was characterized for two types of molecular motors with the goal of developing a bionanosystem which is stabilized against temperature fluctuations. Third, replacing electromechanical systems consisting of pumps and batteries with proteins that directly convert chemical potential into mechanical energy increases the efficiency and decreases the size of the bionanodevice, but requires new control methods. An enzymatic network was developed in which fuel was photolytically released to activate molecular shuttles, excess fuel was sequestered using an enzyme, and spatial and temporal control of the system was achieved. Finally, chemically powered bionanodevices will require high-precision nano- and microscale actuators. A two-part hybrid actuator was designed, which consists of a molecular motor-coated synthetic macroscale forcer and a microtubule-based stator. Methods to create and characterize the stator were developed, which can be used to optimize the force generation of the device.
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-06-22
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-01-01
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202
NASA Astrophysics Data System (ADS)
Stangner, Tim; Angioletti-Uberti, Stefano; Knappe, Daniel; Singer, David; Wagner, Carolin; Hoffmann, Ralf; Kremer, Friedrich
2015-12-01
By combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime {τ }0, binding length {x}{ts}, free energy of activation {{Δ }}G (DFS) and affinity constant {K}{{a}} (ELISA, DFS). Based on these quantities, we propose criteria to identify essential, secondary and non-essential amino acids, being representative of the antibody binding epitope. The obtained results are found to be in full accord for both experimental techniques. In order to elucidate the microscopic origin of the change in binding parameters, we perform molecular dynamics (MD) simulations of the free epitope in solution for both its parent and modified form. By taking the end-to-end distance {d}{{E}-{{E}}} and the distance between the α-carbons {d}{{C}-{{C}}} of the phosphorylated residues as gauging parameters, we measure how the structure of the epitope depends on the type of substitution. In particular, whereas {d}{{C}-{{C}}} is sometimes conserved between the parent and modified form, {d}{{E}-{{E}}} strongly changes depending on the type of substitution, correlating well with the experimental data. These results are highly significant, offering a detailed microscopic picture of molecular recognition.
Ugwu, David I; Okoro, Uchechukwu C; Mishra, Narendra K; Okafor, Sunday N
2018-05-22
The use of statin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for the treatment of dyslipidemia has been associated with dose limiting hepatoxicity, mytotoxicity and tolerability due to myalgias thereby necessitating the synthesis of new drug candidates for the treatment of lipid disorder. The reaction of appropriate benzenesulphonamide with substituted phenoxazinone in the presence of phenylboronic acid gave the targeted compounds. The molecular docking study were carried out using autodock tool against peroxisome proliferator activated receptor alpha. The in vivo lipid profile were assayed using conventional methods. The kidney and liver function test were carried out to assess the effect of the derivatives on the organs. The LD 50 of the most active derivatives were determined using mice. The targeted compounds were successfully synthesized in excellent yields and characterized using spectroscopic techniques. The results of the molecular docking experiment showed that they were good stimulant of peroxisome proliferator activated receptor alpha. Compound 9f showed activity at Ki of 2.8 nM and binding energy of 12.6 kcal/mol. All the compounds tested reduced triglyceride, total cholesterol, low density lipoprotein cholesterol and very low density lipoprotein cholesterol level in the mice model. Some of the reported compounds also increased high density lipoprotein cholesterol level in the mice. The compounds did not have appreciable effect on the kidney and liver of the mice used. The LD 50 showed that the novel compounds have improved toxicity profile. The synthesis of fifteen new derivatives of carboxamides bearing phenoxazinone and sulphonamide were successful. The compounds possessed comparable activity to gemfibrozil. The reported compounds had better toxicity profile than gemfibrozil and could serve as a replacement for the statins and fibrate class of lipid agents.
Glaves, Rachel; Baer, Marcel; Schreiner, Eduard; Stoll, Raphael; Marx, Dominik
2008-12-22
Previous molecular dynamics studies of the elastin-like peptide (ELP) GVG(VPGVG) predict that this ELP undergoes a conformational transition from an open to a more compact closed state upon an increase in temperature. These structural changes occurring in this minimal elastin model at the so-called inverse temperature transition (ITT), which takes place when elastin is heated to temperatures of about 20-40 (omicron)C, are investigated further in this work by means of a combined theoretical and experimental approach. To do this, additional extensive classical molecular dynamics (MD) simulations of the capped octapeptide are carried out, analyzed, and compared to data obtained from homonuclear magnetic resonance (NMR) spectroscopy of the same octapeptide. Moreover, in the previous simulations, the proline residue in the ELP is found to act as a hinge, thereby allowing for the large-amplitude opening and closing conformational motion of the ITT. To explore the role of proline in such elastin repeating units, a point mutant (P5I), which replaces the proline residue with an isoleucine residue, is also investigated using the aforementioned theoretical and experimental techniques. The results show that the site-directed mutation completely alters the properties of this ELP, thus confirming the importance of the highly conserved proline residue in the ITT. Furthermore, a correlation between the two different methods employed is seen. Both methods predict the mutant ELP to be present in an unstructured form and the wild type ELP to have a beta-turn-like structure. Finally, the role of the peptidyl cis to trans isomerization of the proline hinge is assessed in detail.
Background and survey of bioreplication techniques.
Pulsifer, Drew Patrick; Lakhtakia, Akhlesh
2011-09-01
Bioreplication is the direct reproduction of a biological structure in order to realize at least one specific functionality. Current bioreplication techniques include the sol-gel technique, atomic layer deposition, physical vapor deposition, and imprint lithography and casting. The combined use of a focused ion beam and a scanning electron microscope could develop into a bioreplication technique as well. Some of these techniques are more suitable for reproducing surface features, others for bulk three-dimensional structures. Industrial upscaling appears possible only for imprint lithography and casting (which can be replaced by stamping).
Valve sparing aortic replacement - root remodeling.
Lausberg, Henning F; Schäfers, Hans-Joachim
2006-01-01
Aortic root remodeling restores aortic root geometry and improves valve competence. We have used this technique whenever aorto-ventricular diameter is preserved. The operative technique is detained in this presentation. As a result of our 10-year experience with root remodeling we propose this operation as a reproducible option for patients with dilatation of the aortic root.
USDA-ARS?s Scientific Manuscript database
Objective: To prepare a new fluorescent tracer against common mycotoxins such as fumonisin B1 in order to replace 6-(4,6-Dichlorotriazinyl) aminofluorescein (6-DTAF), an expensive marker, and to develop a technique for quick detection of fumonisin B1 based on the principle of fluorescence polarizati...
[Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.
Ying, Bin-Wu
2016-11-01
Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.
NASA Astrophysics Data System (ADS)
Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang
2017-08-01
The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.; Yang, K.
1977-01-01
The crystal-growth method under investigation is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable dye. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. The configuration of the technique used in our initial studies is shown. The crystal-growth method has been applied to silicon ribbons it was found that substantial improvements in ribbon surface quality could be achieved with a higher melt meniscus than that attainable with the EFG technique.
Jin, Z M; Dowson, D; Fisher, J
1997-01-01
Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David
2016-11-01
Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.
Muonic alchemy: Transmuting elements with the inclusion of negative muons
NASA Astrophysics Data System (ADS)
Moncada, Félix; Cruz, Daniel; Reyes, Andrés
2012-06-01
In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.
Molecular tagging techniques and their applications to the study of complex thermal flow phenomena
NASA Astrophysics Data System (ADS)
Chen, Fang; Li, Haixing; Hu, Hui
2015-08-01
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.
1973-01-01
A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.
Lee, Jasper; Zhang, Jianguo; Park, Ryan; Dagliyan, Grant; Liu, Brent; Huang, H K
2012-07-01
A Molecular Imaging Data Grid (MIDG) was developed to address current informatics challenges in archival, sharing, search, and distribution of preclinical imaging studies between animal imaging facilities and investigator sites. This manuscript presents a 2nd generation MIDG replacing the Globus Toolkit with a new system architecture that implements the IHE XDS-i integration profile. Implementation and evaluation were conducted using a 3-site interdisciplinary test-bed at the University of Southern California. The 2nd generation MIDG design architecture replaces the initial design's Globus Toolkit with dedicated web services and XML-based messaging for dedicated management and delivery of multi-modality DICOM imaging datasets. The Cross-enterprise Document Sharing for Imaging (XDS-i) integration profile from the field of enterprise radiology informatics was adopted into the MIDG design because streamlined image registration, management, and distribution dataflow are likewise needed in preclinical imaging informatics systems as in enterprise PACS application. Implementation of the MIDG is demonstrated at the University of Southern California Molecular Imaging Center (MIC) and two other sites with specified hardware, software, and network bandwidth. Evaluation of the MIDG involves data upload, download, and fault-tolerance testing scenarios using multi-modality animal imaging datasets collected at the USC Molecular Imaging Center. The upload, download, and fault-tolerance tests of the MIDG were performed multiple times using 12 collected animal study datasets. Upload and download times demonstrated reproducibility and improved real-world performance. Fault-tolerance tests showed that automated failover between Grid Node Servers has minimal impact on normal download times. Building upon the 1st generation concepts and experiences, the 2nd generation MIDG system improves accessibility of disparate animal-model molecular imaging datasets to users outside a molecular imaging facility's LAN using a new architecture, dataflow, and dedicated DICOM-based management web services. Productivity and efficiency of preclinical research for translational sciences investigators has been further streamlined for multi-center study data registration, management, and distribution.
Molecular contributions to conservation
Haig, Susan M.
1998-01-01
Recent advances in molecular technology have opened a new chapter in species conservation efforts, as well as population biology. DNA sequencing, MHC (major histocompatibility complex), minisatellite, microsatellite, and RAPD (random amplified polymorphic DNA) procedures allow for identification of parentage, more distant relatives, founders to new populations, unidentified individuals, population structure, effective population size, population-specific markers, etc. PCR (polymerase chain reaction) amplification of mitochondrial DNA, nuclear DNA, ribosomal DNA, chloroplast DNA, and other systems provide for more sophisticated analyses of metapopulation structure, hybridization events, and delineation of species, subspecies, and races, all of which aid in setting species recovery priorities. Each technique can be powerful in its own right but is most credible when used in conjunction with other molecular techniques and, most importantly, with ecological and demographic data collected from the field. Surprisingly few taxa of concern have been assayed with any molecular technique. Thus, rather than showcasing exhaustive details from a few well-known examples, this paper attempts to present a broad range of cases in which molecular techniques have been used to provide insight into conservation efforts.
Free-Energy Profiles of Membrane Insertion of the M2 Transmembrane Peptide from Influenza A Virus
2008-12-01
ABSTRACT The insertion of the M2 transmembrane peptide from influenza A virus into a membrane has been studied with molecular - dynamics simulations ...performed replica-exchange molecular - dynamics simulations with umbrella-sampling techniques to characterize the probability distribution and conformation...atomic- detailed molecular dynamics (MD) simulation techniques represent a valuable complementary methodology to inves- tigate membrane-insertion of
NASA Technical Reports Server (NTRS)
2000-01-01
The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.
Generator replacement is associated with an increased rate of ICD lead alerts.
Lovelock, Joshua D; Cruz, Cesar; Hoskins, Michael H; Jones, Paul; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel; DeLurgio, David B; Langberg, Jonathan J
2014-10-01
Lead malfunction is an important cause of morbidity and mortality in patients with an implantable cardioverter-defibrillator (ICD). We have shown that the failure of recalled high-voltage leads significantly increases after ICD generator replacement. However, generator replacement has not been recognized as a predictor of lead failure in general. The purpose of this study is to assess the effect of ICD generator exchange on the rate of ICD lead alerts. A time-dependent Cox proportional hazards model was used to analyze a database of remotely monitored ICDs. The model assessed the impact of generator exchange on the rate of lead alerts after ICD generator replacement. The analysis included 60,219 patients followed for 37 ± 19 months. The 5-year lead survival was 99.3% (95% confidence interval 99.2%-99.4%). Of 60,219 patients, 7458 patients (12.9%) underwent ICD generator exchange without lead replacement. After generator replacement, the rate of lead alerts was more than 5-fold higher than in controls with leads of the same age without generator replacement (hazard ratio 5.19; 95% confidence interval 3.45-7.84). A large number of lead alerted within 3 months of generator replacement. Lead alerts were more common in patients with single- vs dual-chamber ICDs and in younger patients. Sex was not associated with lead alerts. Routine generator replacement is associated with a 5-fold higher risk of lead alert compared to age-matched leads without generator replacement. This suggests the need for intense surveillance after generator replacement and the development of techniques to minimize the risk of lead damage during generator replacement. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK.
Chen, Bo-En; Lin, Min-Guan; Lo, Huei-Fen; Wang, Tzu-Fan; Chi, Meng-Chun; Lin, Long-Liu
2013-01-01
Site-directed mutagenesis together with biochemical and biophysical techniques were used to probe effects of single-tryptophan-incorporated mutations on a bacterial molecular chaperone, Bacillus licheniformis DnaK (BlDnaK). Specifically, five phenylalanine residues (Phe(120), Phe(174), Phe(186), Phe(378) and Phe(396)) of BlDnaK were individually replaced by single tryptophans, thus creating site-specific probes for the fluorescence analysis of the protein. The steady-state ATPase activity for BlDnaK, F120W, F174W, F186W, F378W, and F396W was determined to be 76.01, 52.82, 25.32, 53.31, 58.84, and 47.53 nmol Pi/min/mg, respectively. Complementation test revealed that the single mutation at codons 120, 186, and 378 of the dnaK gene still allowed an Escherichia coli dnaK756-Ts strain to grow at a stringent temperature of 44°C. Simultaneous addition of co-chaperones and NR-peptide did not synergistically stimulate the ATPase activity of F174W and F396W, and these two proteins were unable to assist the refolding of GdnHCl-denatured luciferase. The heat-induced denaturation of all variants could be fitted adequately to a three-state model, in agreement with the observation for the wild-type protein. By CD spectral analysis, GdnHCl-induced unfolding transition for BlDnaK was 1.51 M corresponding to ΔG(N-U) of 1.69 kcal/mol; however, the transitions for mutant proteins were 1.07-1.55 M equivalent to ΔG(N-U) of 0.94-2.93 kcal/mol. The emission maximum of single-tryptophan-incorporated variants was in the range of 333.2-335.8 nm. Acrylamide quenching analysis showed that the mutant proteins had a dynamic quenching constant of 3.0-4.2 M(-1). Taken together, these results suggest that the molecular properties of BlDnaK have been significantly changed upon the individual replacement of selected phenylalanine residues by tryptophan. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Esposito, Alessandro
2006-05-01
This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.
Bah, Mamadou T; Nair, Prasanth B; Browne, Martin
2009-12-01
Finite element (FE) analysis of the effect of implant positioning on the performance of cementless total hip replacements (THRs) requires the generation of multiple meshes to account for positioning variability. This process can be labour intensive and time consuming as CAD operations are needed each time a specific orientation is to be analysed. In the present work, a mesh morphing technique is developed to automate the model generation process. The volume mesh of a baseline femur with the implant in a nominal position is deformed as the prosthesis location is varied. A virtual deformation field, obtained by solving a linear elasticity problem with appropriate boundary conditions, is applied. The effectiveness of the technique is evaluated using two metrics: the percentages of morphed elements exceeding an aspect ratio of 20 and an angle of 165 degrees between the adjacent edges of each tetrahedron. Results show that for 100 different implant positions, the first and second metrics never exceed 3% and 3.5%, respectively. To further validate the proposed technique, FE contact analyses are conducted using three selected morphed models to predict the strain distribution in the bone and the implant micromotion under joint and muscle loading. The entire bone strain distribution is well captured and both percentages of bone volume with strain exceeding 0.7% and bone average strains are accurately computed. The results generated from the morphed mesh models correlate well with those for models generated from scratch, increasing confidence in the methodology. This morphing technique forms an accurate and efficient basis for FE based implant orientation and stability analysis of cementless hip replacements.
Techniques for Investigating Molecular Toxicology of Nanomaterials.
Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong
2016-06-01
Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.
Molecular ecology of aquatic communities: Reflections and future directions
Zehr, J.P.; Voytek, M.A.
1999-01-01
During the 1980s, many new molecular biology techniques were developed, providing new capabilities for studying the genetics and activities of organisms. Biologists and ecologists saw the promise that these techniques held for studying different aspects of organisms, both in culture and in the natural environment. In less than a decade, these techniques were adopted by a large number of researchers studying many types of organisms in diverse environments. Much of the molecular-level information acquired has been used to address questions of evolution, biogeography, population structure and biodiversity. At this juncture, molecular ecologists are poised to contribute to the study of the fundamental characteristics underlying aquatic community structure. The goal of this overview is to assess where we have been, where we are now and what the future holds for revealing the basis of community structure and function with molecular-level information.
[Molecular Genetics as Best Evidence in Glioma Diagnostics].
Masui, Kenta; Komori, Takashi
2016-03-01
The development of a genomic landscape of gliomas has led to the internally consistent, molecularly-based classifiers. However, development of a biologically insightful classification to guide therapy is still ongoing. Further, tumors are heterogeneous, and they change and adapt in response to drugs. The challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. Therefore, by incorporating molecular markers into the new World Health Organization (WHO) classification of tumors of the central nervous system, the traditional principle of diagnosis based on histologic criteria will be replaced by a multilayered approach combining histologic features and molecular information in an "integrated diagnosis", to define tumor entities as narrowly as possible. We herein review the current status of diagnostic molecular markers for gliomas, focusing on IDH mutation, ATRX mutation, 1p/19q co-deletion, and TERT promoter mutation in adult tumors, as well as BRAF and H3F3A aberrations in pediatric gliomas, the combination of which will be a promising endeavor to render molecular genetics as a best evidence in the glioma diagnositics.
Immune disorders in sepsis and their treatment as a significant problem of modern intensive care.
Łysenko, Lidia; Leśnik, Patrycja; Nelke, Kamil; Gerber, Hanna
2017-08-22
Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt "bedside" diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.
Prioritization methodology for chemical replacement
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Goldberg, Ben; Schutzenhofer, Scott
1995-01-01
Since United States of America federal legislation has required ozone depleting chemicals (class 1 & 2) to be banned from production, The National Aeronautics and Space Administration (NASA) and industry have been required to find other chemicals and methods to replace these target chemicals. This project was initiated as a development of a prioritization methodology suitable for assessing and ranking existing processes for replacement 'urgency.' The methodology was produced in the form of a workbook (NASA Technical Paper 3421). The final workbook contains two tools, one for evaluation and one for prioritization. The two tools are interconnected in that they were developed from one central theme - chemical replacement due to imposed laws and regulations. This workbook provides matrices, detailed explanations of how to use them, and a detailed methodology for prioritization of replacement technology. The main objective is to provide a GUIDELINE to help direct the research for replacement technology. The approach for prioritization called for a system which would result in a numerical rating for the chemicals and processes being assessed. A Quality Function Deployment (QFD) technique was used in order to determine numerical values which would correspond to the concerns raised and their respective importance to the process. This workbook defines the approach and the application of the QFD matrix. This technique: (1) provides a standard database for technology that can be easily reviewed, and (2) provides a standard format for information when requesting resources for further research for chemical replacement technology. Originally, this workbook was to be used for Class 1 and Class 2 chemicals, but it was specifically designed to be flexible enough to be used for any chemical used in a process (if the chemical and/or process needs to be replaced). The methodology consists of comparison matrices (and the smaller comparison components) which allow replacement technology to be quantitatively compared in several categories, and a QFD matrix which allows process/chemical pairs to be rated against one another for importance (using consistent categories). Depending on the need for application, one can choose the part(s) needed or have the methodology completed in its entirety. For example, if a program needs to show the risk of changing a process/chemical one may choose to use part of Matrix A and Matrix C. If a chemical is being used, and the process must be changed; one might use the Process Concerns part of Matrix D for the existing process and all possible replacement processes. If an overall analysis of a program is needed, one may request the QFD to be completed.
Krishnamoorthy, Vignesh P; Perumal, Rajamani; Daniel, Alfred J; Poonnoose, Pradeep M
2015-12-01
Templating of the acetabular cup size in Total Hip Replacement (THR) is normally done using conventional radiographs. As these are being replaced by digital radiographs, it has become essential to create a technique of templating using digital films. We describe a technique that involves templating the digital films using the universally available acetate templates for THR without the use of special software. Preoperative digital radiographs of the pelvis were taken with a 30 mm diameter spherical metal ball strapped over the greater trochanter. Using standard acetate templates provided by the implant company on magnified digital radiographs, the size of the metal ball (X mm) and acetabular cup (Y mm) were determined. The size of the acetabular cup to be implanted was estimated using the formula 30*Y/X. The estimated size was compared with the actual size of the cup used at surgery. Using this technique, it was possible to accurately predict the acetabular cup size in 28/40 (70%) of the hips. When the accuracy to within one size was considered, templating was correct in 90% (36/40). When assessed by two independent observers, there was good intra-observer and inter-observer reliability with intra-class correlation coefficient values greater than 0.8. It was possible to accurately and reliably predict the size of the acetabular cup, using acetate templates on digital films, without any digital templates.
Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013
Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
Visualizing functional motions of membrane transporters with molecular dynamics simulations.
Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad
2013-01-29
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.
Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations
2013-01-01
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176
Menopause and the vaginal microbiome.
Muhleisen, Alicia L; Herbst-Kralovetz, Melissa M
2016-09-01
For over a century it has been well documented that bacteria in the vagina maintain vaginal homeostasis, and that an imbalance or dysbiosis may be associated with poor reproductive and gynecologic health outcomes. Vaginal microbiota are of particular significance to postmenopausal women and may have a profound effect on vulvovaginal atrophy, vaginal dryness, sexual health and overall quality of life. As molecular-based techniques have evolved, our understanding of the diversity and complexity of this bacterial community has expanded. The objective of this review is to compare the changes that have been identified in the vaginal microbiota of menopausal women, outline alterations in the microbiome associated with specific menopausal symptoms, and define how hormone replacement therapy impacts the vaginal microbiome and menopausal symptoms; it concludes by considering the potential of probiotics to reinstate vaginal homeostasis following menopause. This review details the studies that support the role of Lactobacillus species in maintaining vaginal homeostasis and how the vaginal microbiome structure in postmenopausal women changes with decreasing levels of circulating estrogen. In addition, the associated transformations in the microanatomical features of the vaginal epithelium that can lead to vaginal symptoms associated with menopause are described. Furthermore, hormone replacement therapy directly influences the dominance of Lactobacillus in the microbiota and can resolve vaginal symptoms. Oral and vaginal probiotics hold great promise and initial studies complement the findings of previous research efforts concerning menopause and the vaginal microbiome; however, additional trials are required to determine the efficacy of bacterial therapeutics to modulate or restore vaginal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liagkouridis, Ioannis; Cousins, Anna Palm; Cousins, Ian T
2015-08-15
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
A "turn-on" fluorescent microbead sensor for detecting nitric oxide.
Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae
2015-01-01
Nitric oxide (NO) is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip), and quenched when the fluorophore is coordinated with a rhodium (Rh)-complex, ie, Rh2(AcO(-))4(Ds-pip). In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the "on/off" mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS) package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO(-))4-(Ds-pip). Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular orbital energy level.
Huebner, Kyla D; O'Brien, Etienne J O; Heard, Bryan J; Chung, May; Achari, Yamini; Shrive, Nigel G; Frank, Cyril B
2012-01-01
The human anterior cruciate ligament (ACL) is a composite structure of two anatomically distinct bundles: an anteromedial (AM) and posterolateral (PL) bundles. Tendons are often used as autografts for surgical reconstruction of ACL following severe injury. However, despite successful surgical reconstruction, some people experience re-rupture and later development of osteoarthritis. Understanding the structure and molecular makeup of normal ACL is essential for its optimal replacement. Reportedly the two bundles display different tensions throughout joint motion and may be fundamentally different. This study assessed the similarities and differences in ultrastructure and molecular composition of the AM and PL bundles to test the hypothesis that the two bundles of the ACL develop unique characteristics with maturation. ACLs from nine mature and six immature sheep were compared. The bundles were examined for mRNA and protein levels of collagen types I, III, V, and VI, and two proteoglycans. The fibril diameter composition of the two bundles was examined with transmission electron microscopy. Maturation does alter the molecular and structural composition of the two bundles of ACL. Although the PL band appears to mature slower than the AM band, no significant differences were detected between the bundles in the mature animals. We thus reject our hypothesis that the two ACL bundles are distinct. The two anatomically distinct bundles of the sheep ACL can be considered as two parts of one structure at maturity and material that would result in a structure of similar functionality can be used to replace each ACL bundle in the sheep.
Wittmann, F W; Ring, P A
1984-01-01
In a retrospective comparison of blood loss following uncemented total knee replacement, in which either continuous or intermittent suction drainage was used, measured blood loss was significantly greater with continuous drainage. However, a method of calculating actual blood loss demonstrated no significant difference. With intermittent drainage, more blood remains undetected around the knee joint; this technique should therefore be abandoned in favour of continuous suction drainage. PMID:6747978
Total Hip Joint Replacement Biotelemetry System
NASA Technical Reports Server (NTRS)
Boreham, J. F.; Postal, R. B.; Luntz, R. A.
1981-01-01
The development of a biotelemetry system that is hermetically sealed within a total hip replacement implant is reported. The telemetry system transmits six channels of stress data to reconstruct the major forces acting on the neck of the prosthesis and uses an induction power coupling technique to eliminate the need for internal batteries. The activities associated with the telemetry microminiaturization, data recovery console, hardware fabrications, power induction systems, electrical and mechanical testing and hermetic sealing test results are discussed.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1998-01-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1997-12-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Sancho, Leyla Gomes; Dain, Sulamis
2008-06-01
This study aims to contribute to the discussion on the possibility of applying health economics assessment, specifically the cost-effectiveness technique, to renal replacement therapies for end-stage renal failure. A review was conducted on the interventions and their alternative courses from the perspective of the various methodological proposals in the literature, considering the availability of data and information in Brazil to back this type of research.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, with the Japanese Aerospace Exploration Agency (JAXA), handles equipment that will be used on the mission. He and other crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
2004-01-27
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda (left) watches as Mission Specialist Andrew Thomas manipulates equipment that will be used on the mission. Crew members are at KSC for equipment familiarization. STS-114 is classified as Logistics Flight 1 to the International Space Station, delivering new supplies and replacing one of the orbital outpost’s Control Moment Gyroscopes (CMGs). STS-114 will also carry a Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. The crew is slated to conduct at least three spacewalks: They will demonstrate repair techniques of the Shuttle’s Thermal Protection System, replace the failed CMG with one delivered by the Shuttle, and install the External Stowage Platform.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-04-26
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-01-01
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393
NASA Astrophysics Data System (ADS)
Yu, Peiqiang
2012-05-01
Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research
ERIC Educational Resources Information Center
Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing
2010-01-01
In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…
A Software Architecture for the Construction and Management of Real-Time Virtual Worlds
1993-06-01
University of California, Berkeley [FUNK921. The second improvement was the addition of a radiosity light model. The use of radiosity and its use of diffuse...the viewpoint is stationary, the coarse polygon model is replaced by progressively more complex radiosity lit scenes. The area of molecular modeling
Biomolecules in the Computer: Jmol to the Rescue
ERIC Educational Resources Information Center
Herraez, Angel
2006-01-01
Jmol is free, open source software for interactive molecular visualization. Since it is written in the Java[TM] programming language, it is compatible with all major operating systems and, in the applet form, with most modern web browsers. This article summarizes Jmol development and features that make it a valid and promising replacement for…
Restoration of tropical moist forest on bauxite mined lands in the Brazilian Amazon
John A Parrotta; Oliver H. Knowles
1999-01-01
We evaluated forest structure and composition in 9- to 13-year-old stands established on a bauxite-mined site at Trombetas (Pará), Brazil, using four different reforestation techniques following initial site preparation and topsoil replacement. These techniques included reliance on natural forest regeneration, mixed commercial species plantings of mostly exotic timber...
Buss, Maren; Geerds, Christina; Patschkowski, Thomas; Niehaus, Karsten; Niemann, Hartmut H
2018-06-01
Flavin-dependent halogenases can be used as biocatalysts because they regioselectively halogenate their substrates under mild reaction conditions. New halogenases with novel substrate specificities will add to the toolbox of enzymes available to organic chemists. HalX, the product of the xcc-b100_4193 gene, is a putative flavin-dependent halogenase from Xanthomonas campestris. The enzyme was recombinantly expressed and crystallized in order to aid in identifying its hitherto unknown substrate. Native data collected to a resolution of 2.5 Å showed indications of merohedral twinning in a hexagonal lattice. Attempts to solve the phase problem by molecular replacement failed. Here, a detailed analysis of the suspected twinning is presented. It is most likely that the crystals are trigonal (point group 3) and exhibit perfect hemihedral twinning so that they appear to be hexagonal (point group 6). As there are several molecules in the asymmetric unit, noncrystallographic symmetry may complicate twinning analysis and structure determination.
Ascending Aortic Stenting for Acute Supraaortic Stenosis From Graft Collapse.
Lader, Joshua M; Smith, Deane E; Staniloae, Cezar; Fallahi, Arzhang; Iqbal, Sohah N; Galloway, Aubrey C; Williams, Mathew R
2018-06-01
A 78-year-old man with remote type-A dissection presented with acute-onset dyspnea. Twenty-two years prior, treatment for his aortic disease required replacement of ascending and arch aneurysms with a polyester graft (Dacron) using the graft inclusion technique. He presented currently in cardiogenic shock. Echocardiography demonstrated new severe hypokinesis of all apical segments. Left-heart catheterization revealed a 120 mm Hg intragraft gradient. Computed tomography arteriography was unrevealing, but intraaortic ultrasound demonstrated critical intragraft stenosis. A balloon expandable stent (Palmaz stent, Cordis, Milpitas, CA) was deployed in the stenotic region with gradient resolution. The patient later underwent aortic root replacement and ascending aneurysm repair (Bio-Bentall technique) and is doing well at 24 months. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye
NASA Astrophysics Data System (ADS)
Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena
2010-02-01
Molecular imaging provides the in vivo characterization of cellular molecular events involved in normal and pathologic processes. With the advent of optical molecular imaging, specific molecules, proteins and genes may be tagged with a luminescent reporter and visualized in small animals. This powerful new tool has pushed in vivo optical imaging to the forefront as it allows for direct determination of drug bio-distribution and uptake kinetics as well as an indicator of biochemical activity and drug efficacy. Although optical imaging encompasses diverse techniques and makes use of various wavelengths of light, a great deal of excitement in molecular research lies in the use of tomographic and fluorescence techniques to image living tissues with near-infrared (NIR) light. Nonionizing, noninvasive near-infrared optical imaging has great potential to become promising alternative for breast cancer detection. Fluorescence spectroscopy studies of human tissue suggest that a variety of lesions show distinct fluorescence spectra compared to those of normal tissue. It has also been shown that exogenous dyes exhibit selective uptake in neoplastic lesions and may offer the best contrast for optical imaging. Use of exogenous agents would provide fluorescent markers, which could serve to detect embedded tumors in the breast. In particular, the ability to monitor the fluorescent yield and lifetime may also enable biochemical specificity if the fluorophore is sensitive to a specific metabolite, such as oxygen. As a first step, we have synthesized and characterized one such NIR fluorescent dye conjugate, which could potentially be used to detect estrogen receptors (ER)[2] . The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of indocyanine green (ICG) cyanine dye, bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5- carboxylic acid, sodium salt. The ester formed was found to have an extra binding ability with the receptor cites as compared to ICG, which was established by the partition coefficient studies. The replacement of the sodium ion in the ester by a larger glucosammonium ion was found to enhance the hydrophilicity and reduce the toxic effect on the cell lines. The excitation and emission peaks for the conjugate were recorded in the NIR region as 750nm and 788nm respectively. The ester was found nontoxic on adenocarcinoma breast cancer cell lines MCF-7/MDA-MB-231. Specific binding and endocytosis of the estrogen-labeled conjugate was studied on the MCF-7 (ER positive) and MDA-MB-231 (ER negative). Conjugate staining of MCF-7 cells showed ~ 4-fold increase in signal intensity compared to MDA-MB- 231. Further, estrogen molecules were found to be specifically localized to the nuclear region of MCF-7 cells, whereas MDA-MB-231 showed plasma membrane staining. This technique offers the potential of noninvasive detection of hormone receptor status in breast cancer cells and would help in decreasing the load of unnecessary biopsies. Here, we have reported the progress made in the development of a novel NIR external contrast agent and the work is in progress to use this conjugate for the molecular based, diagnostic imaging of breast cancer.
Webb, Camille; Cabada, Miguel M
2017-10-01
Cestodes infections in humans are among the most prevalent parasitosis worldwide. Although tapeworm infection is often asymptomatic, they can be associated with a range of symptoms. The landscape of cestode infections is changing with rapid diagnosis techniques and advanced molecular diagnosis aiding in identification of species specific epidemiology. Traditional descriptions of species by location have been challenged with molecular diagnostic techniques, which show variation in distribution of species, thought to be because of globalization and importation of disease. Epidemiology, molecular diagnostic techniques. Infection by tapeworms is often asymptomatic or accompanied by mild symptoms though can occasionally cause severe disease and contribute to anemia and malnutrition. Tapeworm infection is most prevalent in resource-poor countries but the distribution is worldwide. Epidemiology of infection is changing because of molecular diagnostics, which allow more accurate tracking of species.
Lin, Jolinta; Kligerman, Seth; Goel, Rakhi; Sajedi, Payam; Suntharalingam, Mohan
2015-01-01
Molecular imaging techniques are increasingly being used in addition to standard imaging methods such as endoscopic ultrasound (EUS) and computed tomography (CT) for many cancers including those of the esophagus. In this review, we will discuss the utility of the most widely used molecular imaging technique, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). 18F-FDG PET has a variety of potential applications ranging from improving staging accuracy at the time of initial diagnosis to assisting in radiation target volume delineation. Furthermore, 18F-FDG PET can be used to evaluate treatment response after completion of neoadjuvant therapy or potentially during neoadjuvant therapy. Finally, we will also discuss other novel molecular imaging techniques that have potential to further improve cancer care. PMID:25642333
Unraveling Selection in the Mitochondrial Genome of Drosophila
Ballard, JWO.; Kreitman, M.
1994-01-01
We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral'' molecular marker. PMID:7851772
Scheer, A; Fanelli, F; Costa, T; De Benedetti, P G; Cotecchia, S
1996-01-01
Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors. Images PMID:8670860
Dyskinesia in Parkinson's disease: mechanisms and current non-pharmacological interventions.
Heumann, Rolf; Moratalla, Rosario; Herrero, Maria Trinidad; Chakrabarty, Koushik; Drucker-Colín, René; Garcia-Montes, Jose Ruben; Simola, Nicola; Morelli, Micaela
2014-08-01
Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine-cAMP-regulated neuronal phosphoprotein, extracellular signal-regulated kinase, mammalian target of rapamycin, mitogen and stress-activated kinase-1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non-pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease-associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non-pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. © 2014 International Society for Neurochemistry.
In silico molecular engineering for a targeted replacement in a tumor-homing peptide
Zanuy, David; Flores-Ortega, Alejandra; Jiménez, Ana I.; Calaza, M. Isabel; Cativiela, Carlos; Nussinov, Ruth; Ruoslahti, Erkki; Alemán, Carlos
2009-01-01
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and Molecular Dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone···backbone and side chain···side chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptide exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu and Lys side chains face the same side of the molecule, which is considered essential for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity. PMID:19432404
Re-refinement of the spliceosomal U4 snRNP core-domain structure
Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi
2016-01-01
The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541
Pabst, R; Kamran, D
1983-06-01
In minipigs 1 ureter was replaced by a loop of the terminal ileum and the contralateral kidney removed. After 2.5 to 3 years the morphology of the replaced ureter was compared with the normal ileum. Independent of the 3 different operative techniques used, in about half of the pigs there was loss or flattening of the villi. In the other pigs the morphometrically determined number of intraepithelial lymphocytes, the cell density in the lamina propria and the length of the villi did not differ significantly compared with the normal ileum. There was no increase in goblet cells in the crypts. The transitional epithelium covered only a short distance at the anastomotic junctions. Peyer's patches of normal age-related size were found in the replaced ureter. Despite the long-term contact with urine instead of gut contents, in many pigs a normal amount of lymphocytes remained in the "ileal ureter".
Recent Patents and Designs on Hip Replacement Prostheses
Derar, H; Shahinpoor, M
2015-01-01
Hip replacement surgery has gone through tremendous evolution since the first procedure in 1840. In the past five decades the advances that have been made in technology, advanced and smart materials innovations, surgical techniques, robotic surgery and methods of fixations and sterilization, facilitated hip implants that undergo multiple design revolutions seeking the least problematic implants and a longer survivorship. Hip surgery has become a solution for many in need of hip joint remedy and replacement across the globe. Nevertheless, there are still long-term problems that are essential to search and resolve to find the optimum implant. This paper reviews several recent patents on hip replacement surgery. The patents present various designs of prostheses, different materials as well as methods of fixation. Each of the patents presents a new design as a solution to different issues ranging from the longevity of the hip prostheses to discomfort and inconvenience experienced by patients in the long-term. PMID:25893020
Microstructural characterization of catalysis product of nanocement based materials: A review
NASA Astrophysics Data System (ADS)
Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur
2018-03-01
Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.
NASA Astrophysics Data System (ADS)
Wright-Walker, Cassandra Jane
Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new potential material for total joint replacements as an enhancement to standard UHMWPE. This material shows significant potential as an alternative bearing material to indirectly increase TJR longevity by addressing osteolysis related issues.
X-ray structural studies of the fungal laccase from Cerrena maxima.
Lyashenko, Andrey V; Bento, Isabel; Zaitsev, Viatcheslav N; Zhukhlistova, Nadezhda E; Zhukova, Yuliya N; Gabdoulkhakov, Azat G; Morgunova, Ekaterina Y; Voelter, Wolfgang; Kachalova, Galina S; Stepanova, Elena V; Koroleva, Ol'ga V; Lamzin, Victor S; Tishkov, Vladimir I; Betzel, Christian; Lindley, Peter F; Mikhailov, Al'bert M
2006-11-01
Laccases are members of the blue multi-copper oxidase family. These enzymes oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and following the transfer of four electrons is reduced to two molecules of water. The X-ray structure of a laccase from Cerrena maxima has been elucidated at 1.9 A resolution using synchrotron data and the molecular replacement technique. The final refinement coefficients are Rcryst = 16.8% and Rfree = 23.0%, with root mean square deviations on bond lengths and bond angles of 0.015 A and 1.51 degrees , respectively. The type 1 copper centre has an isoleucine residue at the axial position and the "resting" state of the trinuclear centre comprises a single oxygen (OH) moiety asymmetrically disposed between the two type 3 copper ions and a water molecule attached to the type 2 ion. Several carbohydrate binding sites have been identified and the glycan chains appear to promote the formation of well-ordered crystals. Two tyrosine residues near the protein surface have been found in a nitrated state.
Ren, Hengqian; Hu, Pingfan; Zhao, Huimin
2017-08-01
Pathway refactoring serves as an invaluable synthetic biology tool for natural product discovery, characterization, and engineering. However, the complicated and laborious molecular biology techniques largely hinder its application in natural product research, especially in a high-throughput manner. Here we report a plug-and-play pathway refactoring workflow for high-throughput, flexible pathway construction, and expression in both Escherichia coli and Saccharomyces cerevisiae. Biosynthetic genes were firstly cloned into pre-assembled helper plasmids with promoters and terminators, resulting in a series of expression cassettes. These expression cassettes were further assembled using Golden Gate reaction to generate fully refactored pathways. The inclusion of spacer plasmids in this system would not only increase the flexibility for refactoring pathways with different number of genes, but also facilitate gene deletion and replacement. As proof of concept, a total of 96 pathways for combinatorial carotenoid biosynthesis were built successfully. This workflow should be generally applicable to different classes of natural products produced by various organisms. Biotechnol. Bioeng. 2017;114: 1847-1854. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.
2012-01-01
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2. PMID:22869126
Extending the solvent-free MALDI sample preparation method.
Hanton, Scott D; Parees, David M
2005-01-01
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-04-28
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.
Ganesh, K; El-Mossalamy, E H; Satheshkumar, A; Balraj, C; Elango, K P
2013-12-01
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations. Copyright © 2013 Elsevier B.V. All rights reserved.
An integrated platform for surface forces measurements and fluorescence correlation spectroscopy
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Ashis; Zhao, Jiang; Bae, Sung Chul; Granick, Steve
2003-06-01
We describe an apparatus to measure the diffusion of dilute fluorophores in molecularly thin liquid films within a surface forces apparatus (SFA). The design is a significant modification of the traditional SFA in that it allows one to combine nanorheology with the single-molecule sensitive technique of fluorescence correlation spectroscopy. The primary enabling idea was to place a miniaturized SFA onto the stage of an optical microscope equipped with a long working distance objective and illuminated by a femtosecond laser. A secondary enabling idea was that the silver coating on the backside of mica, normally used in the traditional SFA design for interferometric measurements of the film thickness, was replaced by multilayer dielectric coatings that allowed simultaneous interferometry and fluorescence measurements in different regions of the optical spectrum. To illustrate the utility of this instrument, we contrast the translational diffusion of rhodamine dye molecules (in the solvent, 1,2-propane diol), in the unconfined bulk state and confined between mica sheets to the thickness 2.5 nm. The diffusion coefficient is found to decrease by 2 orders of magnitude under confinement.
Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota
Karavolos, Michail; Holban, Alina
2016-01-01
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules. PMID:27690060
Neri, Eugenio; Tucci, Enrico; Tommasino, Giulio; Guaccio, Giulia; Ricci, Carmelo; Lucatelli, Pierleone; Cini, Marco; Ceresa, Roberto; Benvenuti, Antonio; Muzzi, Luigi
2018-01-01
Residual false channel is common after repair of type A acute aortic dissection (TAAAD). Starting from our recent series of TAAAD patients we carried out a retrospective analysis, regarding the failure of primary exclusion at the time of the initial operation. We classified the location of the principal entry tears perfusing the residual false channel. The proposed technique represents our attempt to correct the mechanism of false channel perfusion during primary repair. We describe a new technique designed to address some limitations of standard hemiarch aortic replacement. Its goal are: (I) to reinforce the intimal layer at the arch level; (II) to eliminate inter-luminal communications at the arch level using suture lines around the arch vessels; (III) to provide an elephant trunk configuration for further interventions. Between August 2016 and January 2018, 11 patients underwent emergency surgery using this technique; 7 were men; the median age was 74 years. All patients were treated using systemic circulatory arrest under moderate hypothermia (26 °C) and selective cerebral perfusion. All patients had supra-coronary repair; 1 patient had aortic valve replacement + CABG. In the first two patients a manual suture around supra-aortic trunks was used; the subsequent seven patients were treated with a mechanical suture bladeless device. CT scan follow up was performed in all survivors with controls before discharge 3 months and 1 year after operation. No patient died in the operating room and no neurologic deficit was observed in this initial experience. One patient died in POD 5th for low cardiac output syndrome. Median ICU stay was 3 days (IQR, 2-6 days). Hospital mean length of stay was 15.2±8 days. Median cardiopulmonary bypass time was 130 min (IQR, 110-141 min); median arrest time for re-layering was 17 min (IQR, 16-20 min); median total arrest was 36 min (IQR, 29-39 min). Distal aortic anastomosis was performed in zone 0 in 4 patients, zone 1, with innominate replacement, in 5 patients, in zone 2, with branches to innominate and left common carotid arteries, in 2 patients. Median follow up (closing date 06/01/2018) was 443 days (IQR, 262-557 days); no late deaths occurred. No dehiscence at the level of stapler or manual sutures was observed. Proximal 1/3 of the thoracic aorta false channel was obliterated in all cases but one; in 3 cases complete exclusion of the false channel was obtained after operation. In one case stent graft completion was required. This technique combines the advantages of arch replacement to the simplicity of anterior hemiarch repair. This study demonstrates the safety of the procedure and the possibility to induce aortic remodeling without complex arch replacement.
Invasive and noninvasive dental analgesia techniques.
Estafan, D J
1998-01-01
Although needle-administered local anesthesia has been an essential tool of modern dentistry, it has also been responsible for many patients' fears of dental visits. Several new techniques have recently evolved that may offer viable alternatives. Two of these operate via electronic mechanisms that interfere with pain signals, two others involve transmucosal modes of administration, and a fifth technique involves an intraosseous pathway for anesthesia administration. Each of these techniques has different indications for dental procedures, but none is intended to replace needle administration in dentistry. This overview highlights the salient features of these alternative dental anesthesia techniques.
Laboratory techniques in plant molecular biology taught with UniformMu insertion alleles of maize
USDA-ARS?s Scientific Manuscript database
An undergraduate course - Laboratory Techniques in Plant Molecular Biology - was organized around our research application of UniformMu insertion alleles to investigate mitochondrial functions in plant reproduction. The course objectives were to develop students’ laboratory, record keeping, bioinfor...
Molecular Detection of Antimicrobial Resistance
Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef
2001-01-01
The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788
Raabe, Richard; Gentile, Lisa
2008-11-01
A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the traditional two-semester biochemistry series. The latter is the model used for biochemistry and molecular biology majors at the University of Richmond, whose second semester of biochemistry is a course entitled Proteins: Structure, Function, and Biophysics. What is described herein is a protein thermodynamics laboratory module, using the protein Bacillus circulans xylanase, which reinforces many lecture concepts, including: (i) the denatured (D) state ensemble of a protein can be different, depending on how it was populated; (ii) intermediate states may be detected by some spectroscopic techniques but not by others; (iii) the use and assumptions of the van't Hoff approach to calculate ΔH(o) , ΔS(o) , and ΔG(o) (T) for thermal protein unfolding transitions; and (iv) the use and assumptions of an approach that allows determination of the Gibb's free energy of a protein unfolding transition based on the linear dependence of ΔG(o) on the concentration of denaturant used. This module also requires students to design their own experimental protocols and spend time in the primary literature, both important parts of an upper division lab. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.
[Molecular pathogenesis and therapeutic approach of GM2 gangliosidosis].
Tsuji, Daisuke
2013-01-01
Tay-Sachs and Sandhoff diseases (GM2 gangliosidoses) are autosomal recessive lysosomal storage diseases caused by gene mutations in HEXA and HEXB, each encoding human lysosomal β-hexosaminidase α-subunits and β-subunits, respectively. In Tay-Sachs disease, excessive accumulation of GM2 ganglioside (GM2), mainly in the central nervous system, is caused by a deficiency of the HexA isozyme (αβ heterodimer), resulting in progressive neurologic disorders. In Sandhoff disease, combined deficiencies of HexA and HexB (ββ homodimer) cause not only the accumulation of GM2 but also of oligosaccharides carrying terminal N-acetylhexosamine residues (GlcNAc-oligosaccharides), resulting in systemic manifestations including hepatosplenomegaly as well as neurologic symptoms. Hence there is little clinically effective treatment for these GM2 gangliosidoses. Recent studies on the molecular pathogenesis in Sandhoff disease patients and disease model mice have shown the involvement of microglial activation and chemokine induction in neuroinflammation and neurodegeneration in this disease. Experimental and therapeutic approaches, including recombinant enzyme replacement, have been performed using Sandhoff disease model mice, suggesting the future application of novel techniques to treat GM2 gangliosidoses (Hex deficiencies), including Sandhoff disease as well as Tay-Sachs disease. In this study, we isolated astrocytes and microglia from the neonatal brain of Sandhoff disease model mice and demonstrated abnormalities of glial cells. Moreover, we demonstrated the therapeutic effect of an intracerebroventricular administration of novel recombinant human HexA carrying a high content of M6P residue in Sandhoff disease model mice.
Aortic valve replacement using continuous suture technique in patients with aortic valve disease.
Choi, Jong Bum; Kim, Jong Hun; Park, Hyun Kyu; Kim, Kyung Hwa; Kim, Min Ho; Kuh, Ja Hong; Jo, Jung Ku
2013-08-01
The continuous suture (CS) technique has several advantages as a method for simple, fast, and secure aortic valve replacement (AVR). We used a simple CS technique without the use of a pledget for AVR and evaluated the surgical outcomes. Between October 2007 and 2012, 123 patients with aortic valve disease underwent AVR alone (n=28) or with other concomitant cardiac procedures (n=95), such as mitral, tricuspid, or aortic surgery. The patients were divided into two groups: the interrupted suture (IS) group (n=47), in which the conventional IS technique was used, and the CS group (n=76), in which the simple CS technique was used. There were two hospital deaths (1.6%), which were not related to the suture technique. There were no significant differences in cardiopulmonary bypass time or aortic cross-clamp time between the two groups for AVR alone or AVR with concomitant cardiac procedures. In the IS group, two patients had prosthetic endocarditis and one patient experienced significant perivalvular leak. These patients underwent reoperations. In the CS group, there were no complications related to the surgery. Postoperatively, the two groups had similar aortic valve gradients. The simple CS method is useful and secure for AVR in patients with aortic valve disease, and it may minimize surgical complications, as neither pledgets nor braided sutures are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prates, Luciana Louzada; Yu, Peiqiang
Avena sativa oat is a cereal widely used as human food and livestock feed. However, the low metabolized energy and the rapid rumen degradations of protein and starch have limited the use of A. sativa oat grains. To overcome this disadvantage, new A. sativa oat varieties have been developed. Additionally, heat-related processing has been performed to decrease the degradation rate and improve the absorption of amino acids in the small intestine. The nutritive value is reflected by both chemical composition and inherent molecular structure conformation. However, the traditional wet chemical analysis is not able to detect the inherent molecular structuresmore » within an intact tissue. The advanced synchrotron-radiation and globar-based molecular microspectroscopy have been developed recently and applied to study internal molecular structures and the processing induced structure changes in A. sativa oats and reveal how molecular structure changes in relation to nutrient availability. This review aimed to obtain the recent information regarding physiochemical properties, molecular structures, metabolic characteristics of protein, and the heat-induced changes in new A. sativa oat varieties. The use of the advanced vibrational molecular spectroscopy was emphasized, synchrotron- and globar-based (micro)spectroscopy, to reveal the inherent structure of A. sativa oats at cellular and molecular levels and to reveal the heat processing effect on the degradation characteristics and the protein molecular structure in A. sativa oats. The relationship between nutrient availability and protein molecular inherent structure was also presented. Information described in this review gives better insight in the physiochemical properties, molecular structure, and the heat-induced changes in A. sativa oat detected with advanced molecular spectroscopic techniques in combinination with conventional nutrition study techniques.« less
Three-dimensional human femoral strain analysis using ESPI
NASA Astrophysics Data System (ADS)
Tyrer, J. R.; Heras-Palou, C.; Slater, T.
With age, disease or injury the joints in the human body can wear out or bones may even fail catastrophically. In many cases it is possible to replace joints and bones with artificial components (prostheses). However, prosthetic joints can have a very limited life (often less than 10 years) and require replacement or 'revision'. In order to optimise prosthetic life, it is necessary to improve the design of components and implantation techniques, which is clearly also beneficial to both patients and hospitals.
Performance of defect-tolerant set-associative cache memories
NASA Technical Reports Server (NTRS)
Frenzel, J. F.
1991-01-01
The increased use of on-chip cache memories has led researchers to investigate their performance in the presence of manufacturing defects. Several techniques for yield improvement are discussed and results are presented which indicate that set-associativity may be used to provide defect tolerance as well as improve the cache performance. Tradeoffs between several cache organizations and replacement strategies are investigated and it is shown that token-based replacement may be a suitable alternative to the widely-used LRU strategy.
Emerging technologies for the changing global market
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi-quantative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Evaluation of sterilization of dental handpieces by heating in synthetic compressor lubricant.
Silverstone, S E; Hill, D E
1999-01-01
The Centers for Disease Control and Prevention and the American Dental Association guidelines recommend sterilization of dental handpieces after each use. Steam autoclaving is the most commonly used sterilization method. However, pressurized steam causes corrosion and partial combustion of the handpiece lubricant, leaving a sticky carbon residue on the turbine which must then be replaced after several usages. Replacement of autoclave-damaged dental handpieces represents a major expense for dentists that may be avoided through the use of less destructive sterilization techniques.
Current surgical results of acute type A aortic dissection in Japan.
Okita, Yutaka
2016-07-01
Current surgical results of acute type A aortic dissection in Japan are presented. According to the annual survey by the Japanese Association of Thoracic Surgery, 4,444 patients with acute type A aortic dissection underwent surgical procedures and the overall hospital mortality was 9.1% in 2013. The prevalence of aortic root replacement with a valve sparing technique, total arch replacement (TAR), and frozen stent graft are presented and strategies for thrombosed dissection or organ malperfusion syndrome secondary to acute aortic dissection are discussed.
DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.
Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam
2017-01-02
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10 4 L mol -1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol -1 . This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.
[Comparative cost analysis of molecular biology methods in the diagnosis of sarcomas].
Baffert, Sandrine; Italiano, Antoine; Pierron, Gaëlle; Traoré, Marie-Angèle; Rapp, Jocelyn; Escande, Fabienne; Ghnassia, Jean-Pierre; Terrier, Philippe; Voegeli, Anne-Claire; Ranchere-Vince, Dominique; Coindre, Jean-Michel; Pedeutour, Florence
2013-10-01
Sarcomas represent a complex and heterogeneous group of rare malignant tumors and their correct diagnosis is often difficult. Recent molecular biological techniques have been of great diagnostic use and there is a need to assess the cost of these procedures in routine clinical practice. Using prospective and observational data from eight molecular biology laboratories in France, we used "microcosting" method to assess the cost of molecular biological techniques in the diagnosis of five types of sarcoma. The mean cost of fluorescence in situ hybridization (FISH) was 318 € (273-393) per sample; mean reverse transcription polymerase chain reaction (RT-PCR) cost ranged from 300 € (229-481) per formalin-fixed, paraffin-embedded specimen to 258 € (213-339) per frozen specimen; mean quantitative polymerase chain reaction (Q-PCR) cost was 184 € (112-229) and mean CGH-array cost was 332 € (329-335). The cost of these recently implemented techniques varied according to the type of sarcoma; the method of tissue collection and local organizational factors including the level of local expertise and investment. The cost of molecular diagnostic techniques needs to be balanced against their respective performance.
Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu
2011-06-10
Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..
2011-01-01
Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp.. PMID:21658284
Diagnostic molecular microbiology: a 2013 snapshot.
Fairfax, Marilynn Ransom; Salimnia, Hossein
2013-12-01
Molecular testing has a large and increasing role in the diagnosis of infectious diseases. It has evolved significantly since the first probe tests were FDA approved in the early 1990s. This article highlights the uses of molecular techniques in diagnostic microbiology, including "older," as well as innovative, probe techniques, qualitative and quantitative RT-PCR, highly multiplexed PCR panels, some of which use sealed microfluidic test cartridges, MALDI TOF, and nuclear magnetic resonance. Tests are grouped together by technique and target. Tests with similar roles for similar analytes are compared with respect to benefits, drawbacks, and possible problems. Copyright © 2013 Elsevier Inc. All rights reserved.
Lianidou, Evi; Ahmad-Nejad, Parviz; Ferreira-Gonzalez, Andrea; Izuhara, Kenji; Cremonesi, Laura; Schroeder, Maria-Eugenia; Richter, Karin; Ferrari, Maurizio; Neumaier, Michael
2014-09-25
Molecular techniques are becoming commonplace in the diagnostic laboratory. Their applications influence all major phases of laboratory medicine including predisposition/genetic risk, primary diagnosis, therapy stratification and prognosis. Readily available laboratory hardware and wetware (i.e. consumables and reagents) foster rapid dissemination to countries that are just establishing molecular testing programs. Appropriate skill levels extending beyond the technical procedure are required for analytical and diagnostic proficiency that is mandatory in molecular genetic testing. An international committee (C-CMBC) of the International Federation for Clinical Chemistry (IFCC) was established to disseminate skills in molecular genetic testing in member countries embarking on the respective techniques. We report the ten-year experience with different teaching and workshop formats for beginners in molecular diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.
... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...
Forward, John Brent; Greuter, Nancy Elizabeth; Crisall, Santa J; Lester, Houston F
2015-01-01
Postoperative management of pain after total joint arthroplasty remains a challenge despite advancements in analgesics. Evidence shows that complementary modalities with mind-body and tactile-based approaches are valid and effective adjuncts to reduce pain and anxiety postoperatively. To investigate the effectiveness of the "M" Technique (M), a registered method of structured touch using a set sequence and number of strokes, and a consistent level of pressure on hands and feet, compared with guided imagery and usual care, for the reduction of pain and anxiety in patients undergoing elective total knee or hip replacement surgery. Randomized controlled trial: M-TIJRP (MiTechnique and guided Imagery in Joint Replacement Patients [Mighty Junior P]). At a community hospital, 225 male and female patients, aged 38 to 90 years, undergoing elective total hip or knee replacement were randomly assigned to 1 of 3 groups (75 patients in each): M, guided imagery, or usual care. They were blinded to their assignment until the intervention. Reduction of pain and anxiety postoperatively. Secondary outcomes measured use of pain medication and patient satisfaction. This study yielded positive findings for the management of pain and anxiety in patients undergoing elective joint replacement using M and guided imagery for 18 to 20 minutes compared with usual care. M showed the largest predicted decreases in both pain and anxiety between groups. There was no significant difference in narcotic pain medication use between groups. Patient satisfaction survey ratings were highest for M, followed by guided imagery. The benefit of M may be because of the specifically structured sequence of touch by competent caring, trained providers.
Forward, John Brent; Greuter, Nancy Elizabeth; Crisall, Santa J; Lester, Houston F
2015-01-01
Context: Postoperative management of pain after total joint arthroplasty remains a challenge despite advancements in analgesics. Evidence shows that complementary modalities with mind-body and tactile-based approaches are valid and effective adjuncts to reduce pain and anxiety postoperatively. Objective: To investigate the effectiveness of the “M” Technique (M), a registered method of structured touch using a set sequence and number of strokes, and a consistent level of pressure on hands and feet, compared with guided imagery and usual care, for the reduction of pain and anxiety in patients undergoing elective total knee or hip replacement surgery. Methods: Randomized controlled trial: M-TIJRP (MiTechnique and guided Imagery in Joint Replacement Patients [Mighty Junior P]). At a community hospital, 225 male and female patients, aged 38 to 90 years, undergoing elective total hip or knee replacement were randomly assigned to 1 of 3 groups (75 patients in each): M, guided imagery, or usual care. They were blinded to their assignment until the intervention. Main Outcome Measures: Reduction of pain and anxiety postoperatively. Secondary outcomes measured use of pain medication and patient satisfaction. Results: This study yielded positive findings for the management of pain and anxiety in patients undergoing elective joint replacement using M and guided imagery for 18 to 20 minutes compared with usual care. M showed the largest predicted decreases in both pain and anxiety between groups. There was no significant difference in narcotic pain medication use between groups. Patient satisfaction survey ratings were highest for M, followed by guided imagery. Conclusion: The benefit of M may be because of the specifically structured sequence of touch by competent caring, trained providers. PMID:26222093