Sample records for molecular resource development

  1. Molecular genetics at the Fort Collins Science Center

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  2. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009–31 January 2010

    USDA-ARS?s Scientific Manuscript database

    This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primiti...

  3. Emerging technologies in point-of-care molecular diagnostics for resource-limited settings.

    PubMed

    Peeling, Rosanna W; McNerney, Ruth

    2014-06-01

    Emerging molecular technologies to diagnose infectious diseases at the point at which care is delivered have the potential to save many lives in developing countries where access to laboratories is poor. Molecular tests are needed to improve the specificity of syndromic management, monitor progress towards disease elimination and screen for asymptomatic infections with the goal of interrupting disease transmission and preventing long-term sequelae. In simplifying laboratory-based molecular assays for use at point-of-care, there are inevitable compromises between cost, ease of use and test performance. Despite significant technological advances, many challenges remain for the development of molecular diagnostics for resource-limited settings. There needs to be more advocacy for these technologies to be applied to infectious diseases, increased efforts to lower the barriers to market entry through streamlined and harmonized regulatory approaches, faster policy development for adoption of new technologies and novel financing mechanisms to enable countries to scale up implementation.

  4. MOLECULAR GENETIC TOOLS FOR ASSESSING THE STATUS AND VULNERABILITY OF AQUATIC RESOURCES

    EPA Science Inventory

    Development of ecological indicators that efficiently capture the present condition and project future vulnerabilities of biological resources is critical to sound environmental management. For this reason, the ORD's Ecological Research Program is developing genetic methodologies...

  5. Optimising molecular diagnostic capacity for effective control of tuberculosis in high-burden settings.

    PubMed

    Sabiiti, W; Mtafya, B; Kuchaka, D; Azam, K; Viegas, S; Mdolo, A; Farmer, E C W; Khonga, M; Evangelopoulos, D; Honeyborne, I; Rachow, A; Heinrich, N; Ntinginya, N E; Bhatt, N; Davies, G R; Jani, I V; McHugh, T D; Kibiki, G; Hoelscher, M; Gillespie, S H

    2016-08-01

    The World Health Organization's 2035 vision is to reduce tuberculosis (TB) associated mortality by 95%. While low-burden, well-equipped industrialised economies can expect to see this goal achieved, it is challenging in the low- and middle-income countries that bear the highest burden of TB. Inadequate diagnosis leads to inappropriate treatment and poor clinical outcomes. The roll-out of the Xpert(®) MTB/RIF assay has demonstrated that molecular diagnostics can produce rapid diagnosis and treatment initiation. Strong molecular services are still limited to regional or national centres. The delay in implementation is due partly to resources, and partly to the suggestion that such techniques are too challenging for widespread implementation. We have successfully implemented a molecular tool for rapid monitoring of patient treatment response to anti-tuberculosis treatment in three high TB burden countries in Africa. We discuss here the challenges facing TB diagnosis and treatment monitoring, and draw from our experience in establishing molecular treatment monitoring platforms to provide practical insights into successful optimisation of molecular diagnostic capacity in resource-constrained, high TB burden settings. We recommend a holistic health system-wide approach for molecular diagnostic capacity development, addressing human resource training, institutional capacity development, streamlined procurement systems, and engagement with the public, policy makers and implementers of TB control programmes.

  6. COPRED: prediction of fold, GO molecular function and functional residues at the domain level.

    PubMed

    López, Daniel; Pazos, Florencio

    2013-07-15

    Only recently the first resources devoted to the functional annotation of proteins at the domain level started to appear. The next step is to develop specific methodologies for predicting function at the domain level based on these resources, and to implement them in web servers to be used by the community. In this work, we present COPRED, a web server for the concomitant prediction of fold, molecular function and functional sites at the domain level, based on a methodology for domain molecular function prediction and a resource of domain functional annotations previously developed and benchmarked. COPRED can be freely accessed at http://csbg.cnb.csic.es/copred. The interface works in all standard web browsers. WebGL (natively supported by most browsers) is required for the in-line preview and manipulation of protein 3D structures. The website includes a detailed help section and usage examples. pazos@cnb.csic.es.

  7. An Integrated Molecular Database on Indian Insects.

    PubMed

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  8. The impact of computer science in molecular medicine: enabling high-throughput research.

    PubMed

    de la Iglesia, Diana; García-Remesal, Miguel; de la Calle, Guillermo; Kulikowski, Casimir; Sanz, Ferran; Maojo, Víctor

    2013-01-01

    The Human Genome Project and the explosion of high-throughput data have transformed the areas of molecular and personalized medicine, which are producing a wide range of studies and experimental results and providing new insights for developing medical applications. Research in many interdisciplinary fields is resulting in data repositories and computational tools that support a wide diversity of tasks: genome sequencing, genome-wide association studies, analysis of genotype-phenotype interactions, drug toxicity and side effects assessment, prediction of protein interactions and diseases, development of computational models, biomarker discovery, and many others. The authors of the present paper have developed several inventories covering tools, initiatives and studies in different computational fields related to molecular medicine: medical informatics, bioinformatics, clinical informatics and nanoinformatics. With these inventories, created by mining the scientific literature, we have carried out several reviews of these fields, providing researchers with a useful framework to locate, discover, search and integrate resources. In this paper we present an analysis of the state-of-the-art as it relates to computational resources for molecular medicine, based on results compiled in our inventories, as well as results extracted from a systematic review of the literature and other scientific media. The present review is based on the impact of their related publications and the available data and software resources for molecular medicine. It aims to provide information that can be useful to support ongoing research and work to improve diagnostics and therapeutics based on molecular-level insights.

  9. Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen

    USDA-ARS?s Scientific Manuscript database

    Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...

  10. Cross-transferability of SSR markers in Osmanthus

    USDA-ARS?s Scientific Manuscript database

    Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at O. fragrans with little work to develop markers for other species and cu...

  11. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  12. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  13. A flexible e-learning resource promoting the critical reading of scientific papers for science undergraduates.

    PubMed

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-11-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this article, we describe the resource, then use student data collected from questionnaire surveys to evaluate the resource within 2 years of its launch. Our results add to those reported previously and indicate that ESRL can enable students to start evaluating research articles when used during their undergraduate program. We conclude maximal learning is likely to occur when the resource can be embedded in the curriculum such that students have a clearly articulated context for the resource's activities, can see their relevance in relation to assessed assignments and can be encouraged to think deeply about the activities in conversation with one another and/or with staff. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):483-490, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  15. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    PubMed Central

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G.

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders. PMID:19333451

  16. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2011 – 30 November 2011

    PubMed Central

    ABREU, ALUANA G.; ALBAINA, A.; ALPERMANN, TILMAN J.; APKENAS, VANESSA E.; BANKHEAD-DRONNET, S.; BERGEK, SARA; BERUMEN, MICHAEL L.; CHO, CHANG-HUNG; CLOBERT, JEAN; COULON, AURÉLIE; DE FERAUDY, D.; ESTONBA, A.; HANKELN, THOMAS; HOCHKIRCH, AXEL; HSU, TSAI-WEN; HUANG, TSURNG-JUHN; IRIGOIEN, X.; IRIONDO, M.; KAY, KATHLEEN M.; KINITZ, TIM; KOTHERA, LINDA; LE HÉNANFF, MAXIME; LIEUTIER, F.; LOURDAIS, OLIVIER; MACRINI, CAMILA M. T.; MANZANO, C.; MARTIN, C.; MORRIS, VERONICA R. F.; NANNINGA, GERRIT; PARDO, M. A.; PLIESKE, JÖRG; POINTEAU, S.; PRESTEGAARD, TORE; QUACK, MARKUS; RICHARD, MURIELLE; SAVAGE, HARRY M.; SCHWARCZ, KAISER D.; SHADE, JESSICA; SIMMS, ELLEN L.; SOLFERINI, VERA N.; STEVENS, VIRGINIE M.; VEITH, MICHAEL; WEN, MEI-JUAN; WICKER, FLORIAN; YOST, JENNIFER M.; ZARRAONAINDIA, I.

    2017-01-01

    This article documents the addition of 139 microsatellite marker loci and 90 pairs of single-nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross-tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele-specific primers for Engraulis encrasicolus. PMID:22296658

  17. TSK 6498 - DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS.

    EPA Science Inventory

    Accurate and precise characterization of exposure of aquatic ecological resources to chemical stressors is required for ecological risk assessment. Within this assessment, the study of the vulnerability of these resources requires comparative exposure assessments across watershe...

  18. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  19. Genetics of behavior in the silver fox.

    PubMed

    Kukekova, Anna V; Temnykh, Svetlana V; Johnson, Jennifer L; Trut, Lyudmila N; Acland, Gregory M

    2012-02-01

    The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.

  20. The impact of culture collections on molecular identification, taxonomy, and solving real problems

    USDA-ARS?s Scientific Manuscript database

    Among the fungi, Fusarium has stood out as a major focus for culture collection resource development over the last century. This has facilitated unprecedented molecular taxonomic advancements, which in turn has led to problem solving in plant pathology, mycotoxicology, medical mycology, and basic re...

  1. Nanoscale molecular communication networks: a game-theoretic perspective

    NASA Astrophysics Data System (ADS)

    Jiang, Chunxiao; Chen, Yan; Ray Liu, K. J.

    2015-12-01

    Currently, communication between nanomachines is an important topic for the development of novel devices. To implement a nanocommunication system, diffusion-based molecular communication is considered as a promising bio-inspired approach. Various technical issues about molecular communications, including channel capacity, noise and interference, and modulation and coding, have been studied in the literature, while the resource allocation problem among multiple nanomachines has not been well investigated, which is a very important issue since all the nanomachines share the same propagation medium. Considering the limited computation capability of nanomachines and the expensive information exchange cost among them, in this paper, we propose a game-theoretic framework for distributed resource allocation in nanoscale molecular communication systems. We first analyze the inter-symbol and inter-user interference, as well as bit error rate performance, in the molecular communication system. Based on the interference analysis, we formulate the resource allocation problem as a non-cooperative molecule emission control game, where the Nash equilibrium is found and proved to be unique. In order to improve the system efficiency while guaranteeing fairness, we further model the resource allocation problem using a cooperative game based on the Nash bargaining solution, which is proved to be proportionally fair. Simulation results show that the Nash bargaining solution can effectively ensure fairness among multiple nanomachines while achieving comparable social welfare performance with the centralized scheme.

  2. Comprehensive Transcriptome Study to Develop Molecular Resources of the Copepod Calanus sinicus for Their Potential Ecological Applications

    PubMed Central

    Yang, Qing; Sun, Fanyue; Yang, Zhi; Li, Hongjun

    2014-01-01

    Calanus sinicus Brodsky (Copepoda, Crustacea) is a dominant zooplanktonic species widely distributed in the margin seas of the Northwest Pacific Ocean. In this study, we utilized an RNA-Seq-based approach to develop molecular resources for C. sinicus. Adult samples were sequenced using the Illumina HiSeq 2000 platform. The sequencing data generated 69,751 contigs from 58.9 million filtered reads. The assembled contigs had an average length of 928.8 bp. Gene annotation allowed the identification of 43,417 unigene hits against the NCBI database. Gene ontology (GO) and KEGG pathway mapping analysis revealed various functional genes related to diverse biological functions and processes. Transcripts potentially involved in stress response and lipid metabolism were identified among these genes. Furthermore, 4,871 microsatellites and 110,137 single nucleotide polymorphisms (SNPs) were identified in the C. sinicus transcriptome sequences. SNP validation by the melting temperature (T m)-shift method suggested that 16 primer pairs amplified target products and showed biallelic polymorphism among 30 individuals. The present work demonstrates the power of Illumina-based RNA-Seq for the rapid development of molecular resources in nonmodel species. The validated SNP set from our study is currently being utilized in an ongoing ecological analysis to support a future study of C. sinicus population genetics. PMID:24982883

  3. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development.

    PubMed

    Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick

    2014-05-01

    Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

  4. Molecular Oncology Testing in Resource-Limited Settings

    PubMed Central

    Gulley, Margaret L.; Morgan, Douglas R.

    2015-01-01

    Cancer prevalence and mortality are high in developing nations, where resources for cancer control are inadequate. Nearly one-quarter of cancers in resource-limited nations are infection related, and molecular assays can capitalize on this relationship by detecting pertinent pathogen genomes and human gene variants to identify those at highest risk for progression to cancer, to classify lesions, to predict effective therapy, and to monitor tumor burden over time. Prime examples are human papillomavirus in cervical neoplasia, Helicobacter pylori and Epstein-Barr virus in gastric adenocarcinoma and lymphoma, and hepatitis B or C virus in hepatocellular cancer. Research is underway to engineer devices that overcome social, economic, and technical barriers limiting effective laboratory support. Additional challenges include an educated workforce, infrastructure for quality metrics and record keeping, and funds to sustain molecular test services. The combination of well-designed interfaces, novel and robust electrochemical technology, and telemedicine tools will promote adoption by frontline providers. Fast turnaround is crucial for surmounting loss to follow-up, although increased use of cell phones, even in rural areas, enhances options for patient education and engagement. Links to a broadband network facilitate consultation and centralized storage of medical data. Molecular technology shows promise to address gaps in health care through rapid, user-friendly, and cost-effective devices reflecting clinical priorities in resource-poor areas. PMID:25242061

  5. Purification of high molecular weight genomic DNA from powdery mildew for long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which ...

  6. Democratizing molecular diagnostics for the developing world.

    PubMed

    Abou Tayoun, Ahmad N; Burchard, Paul R; Malik, Imran; Scherer, Axel; Tsongalis, Gregory J

    2014-01-01

    Infectious diseases that are largely treatable continue to pose a tremendous burden on the developing world despite the availability of highly potent drugs. The high mortality and morbidity rates of these diseases are largely due to a lack of affordable diagnostics that are accessible to resource-limited areas and that can deliver high-quality results. In fact, modified molecular diagnostics for infectious diseases were rated as the top biotechnology to improve health in developing countries. In this review, we describe the characteristics of accessible molecular diagnostic tools and discuss the challenges associated with implementing such tools at low infrastructure sites. We highlight our experience as part of the "Grand Challenge" project supported by the Gates Foundation for addressing global health inequities and describe issues and solutions associated with developing adequate technologies or molecular assays needed for broad access in the developing world. We believe that sharing this knowledge will facilitate the development of new molecular technologies that are extremely valuable for improving global health.

  7. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samet, J.; Gilliland, F.D.

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting formermore » uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.« less

  9. KEGG Bioinformatics Resource for Plant Genomics and Metabolomics.

    PubMed

    Kanehisa, Minoru

    2016-01-01

    In the era of high-throughput biology it is necessary to develop not only elaborate computational methods but also well-curated databases that can be used as reference for data interpretation. KEGG ( http://www.kegg.jp/ ) is such a reference knowledge base with two specific aims. One is to compile knowledge on high-level functions of the cell and the organism in terms of the molecular interaction and reaction networks, which is implemented in KEGG pathway maps, BRITE functional hierarchies, and KEGG modules. The other is to expand knowledge on genes and proteins involved in the molecular networks from experimentally observed organisms to other organisms using the concept of orthologs, which is implemented in the KEGG Orthology (KO) system. Thus, KEGG is a generic resource applicable to all organisms and enables interpretation of high-level functions from genomic and molecular data. Here we first present a brief overview of the entire KEGG resource, and then give an introduction of how to use KEGG in plant genomics and metabolomics research.

  10. Office Overview | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Office of Cancer Clinical Proteomics Research (OCCPR) at the National Cancer Institute (NCI) aims to improve prevention, early detection, diagnosis, and treatment of cancer by enhancing the understanding of the molecular mechanisms of cancer, advancing proteome/proteogenome science and technology development through community resources (data and reagents), and accelerating the translation of molecular findings into the clinic.

  11. Development of Public Immortal Mapping Populations, Molecular Markers and Linkage Maps for Rapid Cycling Brassica rapa and B. oleracea

    USDA-ARS?s Scientific Manuscript database

    In this study we describe public immortal mapping populations of self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea. We propose that these resources are valuable reference tools for the Brassica community. The B. rapa population consists of 150 recombinant...

  12. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    PubMed

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  13. Has molecular imaging delivered to drug development?

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  14. Comprehensive, comprehensible, distributed and intelligent databases: current status.

    PubMed

    Frishman, D; Heumann, K; Lesk, A; Mewes, H W

    1998-01-01

    It is only a matter of time until a user will see not many but one integrated database of information for molecular biology. Is this true? Is it a good thing? Why will it happen? Where are we now? What developments are fostering and what developments are impeding progress towards this end? A list of WWW resources devoted to database issues in molecular biology is available at http://www.mips.biochem.mpg.de frishman@mips.biochem.mpg.de

  15. Structural Molecular Biology 2017 | SSRL

    Science.gov Websites

    sustain and enhance the general user program through excellent support, training and dissemination. Close × Acknowledgement The SSRL SMB Resource supports the development of advanced methodologies and

  16. Black raspberry genetic and genomic resources development

    USDA-ARS?s Scientific Manuscript database

    This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...

  17. Developing black raspberry genetic and genomic resources

    USDA-ARS?s Scientific Manuscript database

    This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...

  18. Molecular and functional definition of the developing human striatum.

    PubMed

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  19. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives

    PubMed Central

    Longhi, Sara; Giongo, Lara; Buti, Matteo; Surbanovski, Nada; Viola, Roberto; Velasco, Riccardo; Ward, Judson A; Sargent, Daniel J

    2014-01-01

    The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species. PMID:26504527

  20. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies.

    PubMed

    Dries, Daniel R; Dean, Diane M; Listenberger, Laura L; Novak, Walter R P; Franzen, Margaret A; Craig, Paul A

    2017-01-02

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  1. National Center for Biotechnology Information Celebrates 25th Anniversary | NIH MedlinePlus the Magazine

    MedlinePlus

    ... is a national and international resource for molecular biology information. It creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and ...

  2. Black raspberry genomic and genetic resource development to enable cultivar improvement

    USDA-ARS?s Scientific Manuscript database

    This project incorporates use of phenotypic, genotypic and genomic data to advance and streamline identification of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis L.). A lack of adapted, disease resistant cultivars has...

  3. A Study on Intraspecific Resource Partitioning in the Stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) Using Behavioral and Molecular Techniques.

    PubMed

    Sánchez, D; Solórzano-Gordillo, E; Vandame, R

    2016-10-01

    As a general rule, within an ecological guild, there is one species that is dominant and is commonly the most abundant. The aim of this work was to investigate if such pattern occurs intraspecifically, among colonies of the stingless bee Scaptotrigona mexicana Guérin. Through behavioral and molecular techniques, we found preliminary evidence that apparently colonies of this species do not monopolize resources, instead they seem to share food; however, some colonies had more foragers in a food patch or in a feeder, so some type of exclusion could be at work, though we could not determine the final output of such interaction, i.e., if underrepresented colonies were eventually excluded, developed slower or were overrepresented in other food patches. Our results give evidence that resource partitioning within this species occurs peacefully; however, further studies are necessary to determine if threatening behavior or aggressions appear when resources are scarce and competition becomes harsher.

  4. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA.

    PubMed

    Chan, Kamfai; Wong, Pui-Yan; Parikh, Chaitanya; Wong, Season

    2018-03-15

    Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Plants that attack plants: molecular elucidation of plant parasitism.

    PubMed

    Yoshida, Satoko; Shirasu, Ken

    2012-12-01

    Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.

    PubMed

    Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene

    2015-10-01

    Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  7. The EBI SRS server-new features.

    PubMed

    Zdobnov, Evgeny M; Lopez, Rodrigo; Apweiler, Rolf; Etzold, Thure

    2002-08-01

    Here we report on recent developments at the EBI SRS server (http://srs.ebi.ac.uk). SRS has become an integration system for both data retrieval and sequence analysis applications. The EBI SRS server is a primary gateway to major databases in the field of molecular biology produced and supported at EBI as well as European public access point to the MEDLINE database provided by US National Library of Medicine (NLM). It is a reference server for latest developments in data and application integration. The new additions include: concept of virtual databases, integration of XML databases like the Integrated Resource of Protein Domains and Functional Sites (InterPro), Gene Ontology (GO), MEDLINE, Metabolic pathways, etc., user friendly data representation in 'Nice views', SRSQuickSearch bookmarklets. SRS6 is a licensed product of LION Bioscience AG freely available for academics. The EBI SRS server (http://srs.ebi.ac.uk) is a free central resource for molecular biology data as well as a reference server for the latest developments in data integration.

  8. Library of molecular associations: curating the complex molecular basis of liver diseases.

    PubMed

    Buchkremer, Stefan; Hendel, Jasmin; Krupp, Markus; Weinmann, Arndt; Schlamp, Kai; Maass, Thorsten; Staib, Frank; Galle, Peter R; Teufel, Andreas

    2010-03-20

    Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.

  9. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    PubMed

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies

    PubMed Central

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R.P.

    2016-01-01

    Abstract A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three‐dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure‐function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69–75, 2017. PMID:27486685

  11. The European Bioinformatics Institute's data resources 2014.

    PubMed

    Brooksbank, Catherine; Bergman, Mary Todd; Apweiler, Rolf; Birney, Ewan; Thornton, Janet

    2014-01-01

    Molecular Biology has been at the heart of the 'big data' revolution from its very beginning, and the need for access to biological data is a common thread running from the 1965 publication of Dayhoff's 'Atlas of Protein Sequence and Structure' through the Human Genome Project in the late 1990s and early 2000s to today's population-scale sequencing initiatives. The European Bioinformatics Institute (EMBL-EBI; http://www.ebi.ac.uk) is one of three organizations worldwide that provides free access to comprehensive, integrated molecular data sets. Here, we summarize the principles underpinning the development of these public resources and provide an overview of EMBL-EBI's database collection to complement the reviews of individual databases provided elsewhere in this issue.

  12. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  13. Adaptive sampling strategies with high-throughput molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  14. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha; Saxena, Rachit K.; Singh, Vikas K.; Sameerkumar, C. V.; Kumar, Vinay; Sinha, Pallavi; Patel, Kishan; Obala, Jimmy; Kaoneka, Seleman R.; Tongoona, P.; Shimelis, Hussein A.; Gangarao, N. V. P. R.; Odeny, Damaris; Rathore, Abhishek; Dharmaraj, P. S.; Yamini, K. N.; Varshney, Rajeev K.

    2015-01-01

    Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding. PMID:25741349

  15. Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)

    PubMed Central

    Dillon, Sally L.; Shapter, Frances M.; Henry, Robert J.; Cordeiro, Giovanni; Izquierdo, Liz; Lee, L. Slade

    2007-01-01

    Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes. PMID:17766842

  16. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    PubMed

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  17. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    PubMed Central

    Danley, Patrick D; Mullen, Sean P; Liu, Fenglong; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L

    2007-01-01

    Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution. PMID:17459168

  18. Applications of DNA Technologies in Agriculture.

    PubMed

    Fang, Jinggui; Zhu, Xudong; Wang, Chen; Shangguan, Lingfei

    2016-08-01

    With the development of molecular biology, some DNA-based technologies have showed great potentiality in promoting the efficiency of crop breeding program, protecting germplasm resources, improving the quality and outputs of agricultural products, and protecting the eco-environment etc., making their roles in modern agriculture more and more important. To better understand the application of DNA technologies in agriculture, and achieve the goals to promote their utilities in modern agriculture, this paper describes, in some different way, the applications of molecular markers, transgenic engineering and gene's information in agriculture. Some corresponding anticipations for their development prospects are also made.

  19. Do-it-yourself biology: challenges and promises for an open science and technology movement.

    PubMed

    Landrain, Thomas; Meyer, Morgan; Perez, Ariel Martin; Sussan, Remi

    2013-09-01

    The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs.

  20. Molecular diagnostics for low resource settings

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.

    2010-03-01

    As traditional high quality diagnostic laboratories are not widely available or affordable in developing country health care settings, microfluidics-based point-of-care diagnostics may be able to address the need to perform complex assays in under-resourced areas. Many instrument-based as well as non-instrumented microfluidic prototype diagnostics are currently being developed. In addition to various engineering challenges, the greatest remaining issue is the search for truly low-cost disposable manufacturing methods. Diagnostics for global health, and specifically microfluidics and molecular-based low resource diagnostics, have become a very active research area over the last five years, thanks in part to new funding that became available from the Bill and Melinda Gates Foundation, the National Institutes of Health, and other sources. This has led to a number of interesting prototype devices that are now in advanced development or clinical validation. These devices include disposables and instruments that perform multiplexed PCR-based lab-on-a-chips for enteric, febrile, and vaginal diseases, as well as immunoassays for diseases such as malaria, HIV, and various sexually transmitted diseases. More recently, instrument-free diagnostic disposables based on isothermal nucleic acid amplification have been developed as well. Regardless of platform, however, the search for truly low-cost manufacturing methods that would result in cost of goods per disposable of around US1/unit at volume remains a big challenge. This talk will give an overview over existing platform development efforts as well as present some original research in this area at PATH.

  1. Discovery-2: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria

    PubMed Central

    2013-01-01

    Background Drug resistance to anti-malarial compounds remains a serious problem, with resistance to newer pharmaceuticals developing at an alarming rate. The development of new anti-malarials remains a priority, and the rational selection of putative targets is a key element of this process. Discovery-2 is an update of the original Discovery in silico resource for the rational selection of putative drug target proteins, enabling researchers to obtain information for a protein which may be useful for the selection of putative drug targets, and to perform advanced filtering of proteins encoded by the malaria genome based on a series of molecular properties. Methods An updated in silico resource has been developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein properties used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions. Newly added features include drugability measures from ChEMBL, automated literature relations and links to clinical trial information. Searching by chemical structure is also available. Results The updated functionality of the Discovery-2 resource is presented, together with a detailed case study of the Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH) protein. A short example of a chemical search with pyrimethamine is also illustrated. Conclusion The updated Discovery-2 resource allows researchers to obtain detailed properties of proteins from the malaria genome, which may be of interest in the target selection process, and to perform advanced filtering and selection of proteins based on a relevant range of molecular characteristics. PMID:23537208

  2. Molecular Genetics of Beauveria bassiana Infection of Insects.

    PubMed

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pathology as the enabler of human research.

    PubMed

    Crawford, James M; Tykocinski, Mark L

    2005-09-01

    Academic Pathology is a key player in human molecular science and in the powerful initiatives of the National Institutes of Health. Pathologists generate data crucial to virtually every molecular study of human tissue, and have the necessary skills and authority to oversee processing of human tissues for research analysis. We advocate that Academic Pathology is optimally positioned to drive the molecular revolution in study of human disease, through human tissue collection, analysis, and databasing. This can be achieved through playing a major role in human tissue procurement and management; establishing high-quality 'Pathology Resource Laboratories'; providing the scientific expertise for pathology data sharing; and recruiting and training physician scientists. Pathology should position itself to be the local institutional driver of technology implementation and development, by operating the resource laboratories, providing the expertise for technical and conceptual design of research projects, maintaining the databases that link molecular and morphological information on human tissues with the requisite clinical databases, providing education and mentorship of technology users, and nurturing new research through the development of preliminary data. We also consider that outstanding pathology journals are available for the publication of research emanating from such studies, to the benefit of the pathology profession as an academic enterprise. It is our earnest hope that Academic Pathology can play a leading role in the remarkable advances to be made as the 21st century unfolds.

  4. The GCP molecular marker toolkit, an instrument for use in breeding food security crops.

    PubMed

    Van Damme, Veerle; Gómez-Paniagua, Humberto; de Vicente, M Carmen

    2011-12-01

    Crop genetic resources carry variation useful for overcoming the challenges of modern agriculture. Molecular markers can facilitate the selection of agronomically important traits. The pervasiveness of genomics research has led to an overwhelming number of publications and databases, which are, nevertheless, scattered and hence often difficult for plant breeders to access, particularly those in developing countries. This situation separates them from developed countries, which have better endowed programs for developing varieties. To close this growing knowledge gap, we conducted an intensive literature review and consulted with more than 150 crop experts on the use of molecular markers in the breeding program of 19 food security crops. The result was a list of effectively used and highly reproducible sequence tagged site (STS), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and sequence characterized amplified region (SCAR) markers. However, only 12 food crops had molecular markers suitable for improvement. That is, marker-assisted selection is not yet used for Musa spp., coconut, lentils, millets, pigeonpea, sweet potato, and yam. For the other 12 crops, 214 molecular markers were found to be effectively used in association with 74 different traits. Results were compiled as the GCP Molecular Marker Toolkit, a free online tool that aims to promote the adoption of molecular approaches in breeding activities.

  5. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 2009.

    PubMed

    An, Junghwa; Bechet, Arnaud; Berggren, Asa; Brown, Sarah K; Bruford, Michael W; Cai, Qingui; Cassel-Lundhagen, Anna; Cezilly, Frank; Chen, Song-Lin; Cheng, Wei; Choi, Sung-Kyoung; Ding, X Y; Fan, Yong; Feldheim, Kevin A; Feng, Z Y; Friesen, Vicki L; Gaillard, Maria; Galaraza, Juan A; Gallo, Leonardo; Ganeshaiah, K N; Geraci, Julia; Gibbons, John G; Grant, William S; Grauvogel, Zac; Gustafsson, S; Guyon, Jeffrey R; Han, L; Heath, Daniel D; Hemmilä, S; Hogan, J Derek; Hou, B W; Jakse, Jernej; Javornik, Branka; Kaňuch, Peter; Kim, Kyung-Kil; Kim, Kyung-Seok; Kim, Sang-Gyu; Kim, Sang-In; Kim, Woo-Jin; Kim, Yi-Kyung; Klich, Maren A; Kreiser, Brian R; Kwan, Ye-Seul; Lam, Athena W; Lasater, Kelly; Lascoux, M; Lee, Hang; Lee, Yun-Sun; Li, D L; Li, Shao-Jing; Li, W Y; Liao, Xiaolin; Liber, Zlatko; Lin, Lin; Liu, Shaoying; Luo, Xin-Hui; Ma, Y H; Ma, Yajun; Marchelli, Paula; Min, Mi-Sook; Moccia, Maria Domenica; Mohana, Kumara P; Moore, Marcelle; Morris-Pocock, James A; Park, Han-Chan; Pfunder, Monika; Ivan, Radosavljević; Ravikanth, G; Roderick, George K; Rokas, Antonis; Sacks, Benjamin N; Saski, Christopher A; Satovic, Zlatko; Schoville, Sean D; Sebastiani, Federico; Sha, Zhen-Xia; Shin, Eun-Ha; Soliani, Carolina; Sreejayan, N; Sun, Zhengxin; Tao, Yong; Taylor, Scott A; Templin, William D; Shaanker, R Uma; Vasudeva, R; Vendramin, Giovanni G; Walter, Ryan P; Wang, Gui-Zhong; Wang, Ke-Jian; Wang, Y Q; Wattier, Rémi A; Wei, Fuwen; Widmer, Alex; Woltmann, Stefan; Won, Yong-Jin; Wu, Jing; Xie, M L; Xu, Genbo; Xu, Xiao-Jun; Ye, Hai-Hui; Zhan, Xiangjiang; Zhang, F; Zhong, J

    2010-03-01

    This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus. © 2010 Blackwell Publishing Ltd.

  6. The European Bioinformatics Institute’s data resources 2014

    PubMed Central

    Brooksbank, Catherine; Bergman, Mary Todd; Apweiler, Rolf; Birney, Ewan; Thornton, Janet

    2014-01-01

    Molecular Biology has been at the heart of the ‘big data’ revolution from its very beginning, and the need for access to biological data is a common thread running from the 1965 publication of Dayhoff’s ‘Atlas of Protein Sequence and Structure’ through the Human Genome Project in the late 1990s and early 2000s to today’s population-scale sequencing initiatives. The European Bioinformatics Institute (EMBL-EBI; http://www.ebi.ac.uk) is one of three organizations worldwide that provides free access to comprehensive, integrated molecular data sets. Here, we summarize the principles underpinning the development of these public resources and provide an overview of EMBL-EBI’s database collection to complement the reviews of individual databases provided elsewhere in this issue. PMID:24271396

  7. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  8. Constructing Adverse Outcome Pathways: a Demonstration of an Ontology-based Semantics Mapping Approach

    EPA Science Inventory

    Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating ...

  9. Genomic resources in fruit plants: an assessment of current status.

    PubMed

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.

  10. Genomic resources for songbird research and their use in characterizing gene expression during brain development

    PubMed Central

    Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry

    2007-01-01

    Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146

  11. Towards uncovering the roles of switchgrass peroxidases in plant processes

    USDA-ARS?s Scientific Manuscript database

    Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses and related di...

  12. Cucumber gene list 2017

    USDA-ARS?s Scientific Manuscript database

    This is an update of the 2010 version of Cucumber Gene List. Since the release of the cucumber draft genome in 2009, significant progress has been made in developing cucumber genetic and genomics resources. A number of genes or QTLs have been tagged with molecular markers, which provides us a better...

  13. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  14. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.

    PubMed

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3 °C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the "archaic" method of hand-transferring PCR tubes between water baths. We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular diagnostics in low-resource settings.

  15. An integrative computational approach for prioritization of genomic variants

    DOE PAGES

    Dubchak, Inna; Balasubramanian, Sandhya; Wang, Sheng; ...

    2014-12-15

    An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidatemore » genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. This study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.« less

  16. Biotechnology Education and the Internet. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  17. Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection

    USDA-ARS?s Scientific Manuscript database

    Since its domestication 200 years ago, breeding of the American Cranberry (Vaccinium macrocarpon) has relied on phenotypic selection because applicable resources for molecular improvement strategies such as marker-assisted selection (MAS) remain limited. To enable MAS in cranberry, the first high de...

  18. DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS

    EPA Science Inventory

    A great deal of uncertainty exists regarding the extent to which humans and wildlife are exposed to chemical stressors in aquatic resources. Scientific literature is replete with studies of xenobiotics in surface waters, including a recent national USGS survey of endocrine disrup...

  19. Grid computing in large pharmaceutical molecular modeling.

    PubMed

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  20. Identifying Therapeutics for Platinum-Resistant Ovarian Cancer by Next Generation Mechanotyping

    DTIC Science & Technology

    2017-09-01

    period, we have successfully advanced and integrated the PMF technology into the Molecular Shared Screening Resource at UCLA, thereby establishing the...will validate the effects of the lead compounds on cisplatin- resistant ovarian cancer cells, including cellular and molecular analyses. 15. SUBJECT...throughput screening facility at UCLA, the Molecular Shared Screening Resource (MSSR). Due to technical hurdles in the integration process, and reduced

  1. Current Status of Human Resource Training Program for Fostering RIBiomics Professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Eun; Jang, Beom-Su; Choi, Dae Seong

    RI-Biomics is a state-of-the-art radiation fusion technology for evaluating in-vivo dynamics such as absorption, distribution, metabolism and excretion (ADME) of new drug candidates and biomaterials using radioisotope (RI), and quantitative evaluation of their efficacy via molecular imaging techniques and animal models. The RI-Biomics center is the sole comprehensive research and experiment complex in Korea that can simultaneously perform the radio-synthesis of drug candidate with radioisotope, analysis, and molecular imaging evaluation with animal model. Molecular imaging techniques, including nuclear imaging (SPECT and PET), near-infrared fluorescent (NIRF) imaging, and magnetic resonance imaging (MRI), are the cutting-edge technologies for evaluating drug candidates. Sincemore » they allow in vivo real-time imaging of the diseased site, monitoring the biodistribution of drug and determining the optimal therapeutic efficacy following treatments, we have integrated RI-ADME and molecular imaging to provide useful information for drug evaluation and to accelerate the development of new drugs and biomaterials. The RI-Biomics center was established with total investment of 18 million $ during four years from 2009 to 2012 in order to develop a comprehensive analyzing system using RI for new drug development as an axis for national growth in the next generation. The RI-Biomics center has labeling synthesis facility for the radiosynthesis of drug candidate with radioisotope such as Tc-99m, I-125, I-131, F-18, H-3 and C-14 using hot cell. It also includes RI-general analysis facilities, such as Radio-HPLC, LC/MS, GC/MS, gamma counter that can analyzing the radio-synthesized materials, and animal image analysis facilities that developed small animal imaging equipment such as SPECT/PET/CT, 7 T MRI, in-vivo optical imaging system and others. In order to achieve the system to verify safety and effectiveness of the new drugs using RI, it is necessary to establish a human resource training program for fostering RI-Biomics professionals in the following key fields; (1) Radio-pharmaceuticals synthesis and labeled compound development, (2) Development of RI-ADME in the living object and image assessment technology. Personnel training program that carries out theoretical education and practical training in the field related to RI-Biomics in parallel is being conducted. Internship training for university students has been administered twice already while educational program for the existing professionals in the RI-Biomics field will be carried out during the summer of 2014. The human resource training program for combination of RIADME and different molecular imaging techniques can offer synergistic advantages to facilitate understanding RIADME and fostering RI-ADME professionals. (authors)« less

  2. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  3. Characterization of genome-wide microsatellite markers in rabbitfishes, an important resource for artisanal fisheries in the Indo-West Pacific.

    PubMed

    Kiper, Ilkser Erdem; Bloomer, Paulette; Borsa, Philippe; Hoareau, Thierry Bernard

    2018-02-01

    Rabbitfishes are reef-associated fishes that support local fisheries throughout the Indo-West Pacific region. Sound management of the resource requires the development of molecular tools for appropriate stock delimitation of the different species in the family. Microsatellite markers were developed for the cordonnier, Siganus sutor, and their potential for cross-amplification was investigated in 12 congeneric species. A library of 792 repeat-containing sequences was built. Nineteen sets of newly developed primers, and 14 universal finfish microsatellites were tested in S. sutor. Amplification success of the 19 Siganus-specific markers ranged from 32 to 79% in the 12 other Siganus species, slightly decreasing when the genetic distance of the target species to S. sutor increased. Seventeen of these markers were polymorphic in S. sutor and were further assayed in S. luridus, S. rivulatus, and S. spinus, of which respectively 9, 10 and 8 were polymorphic. Statistical power analysis and an analysis of molecular variance showed that subtle genetic differentiation can be detected using these markers, highlighting their utility for the study of genetic diversity and population genetic structure in rabbitfishes.

  4. Nanotechnology, resources, and pollution control

    NASA Astrophysics Data System (ADS)

    Gillett, Stephen L.

    1996-09-01

    The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.

  5. Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2011-30 September 2011.

    PubMed

    A'Hara, S W; Amouroux, P; Argo, Emily E; Avand-Faghih, A; Barat, Ashoktaru; Barbieri, Luiz; Bert, Theresa M; Blatrix, R; Blin, Aurélie; Bouktila, D; Broome, A; Burban, C; Capdevielle-Dulac, C; Casse, N; Chandra, Suresh; Cho, Kyung Jin; Cottrell, J E; Crawford, Charles R; Davis, Michelle C; Delatte, H; Desneux, Nicolas; Djieto-Lordon, C; Dubois, M P; El-Mergawy, R A A M; Gallardo-Escárate, C; Garcia, M; Gardiner, Mary M; Guillemaud, Thomas; Haye, P A; Hellemans, B; Hinrichsen, P; Jeon, Ji Hyun; Kerdelhué, C; Kharrat, I; Kim, Ki Hwan; Kim, Yong Yul; Kwan, Ye-Seul; Labbe, Ellen M; LaHood, Eric; Lee, Kyung Mi; Lee, Wan-Ok; Lee, Yat-Hung; Legoff, Isabelle; Li, H; Lin, Chung-Ping; Liu, S S; Liu, Y G; Long, D; Maes, G E; Magnoux, E; Mahanta, Prabin Chandra; Makni, H; Makni, M; Malausa, Thibaut; Matura, Rakesh; McKey, D; McMillen-Jackson, Anne L; Méndez, M A; Mezghani-Khemakhem, M; Michel, Andy P; Paul, Moran; Muriel-Cunha, Janice; Nibouche, S; Normand, F; Palkovacs, Eric P; Pande, Veena; Parmentier, K; Peccoud, J; Piatscheck, F; Puchulutegui, Cecilia; Ramos, R; Ravest, G; Richner, Heinz; Robbens, J; Rochat, D; Rousselet, J; Saladin, Verena; Sauve, M; Schlei, Ora; Schultz, Thomas F; Scobie, A R; Segovia, N I; Seyoum, Seifu; Silvain, J-F; Tabone, Elisabeth; Van Houdt, J K J; Vandamme, S G; Volckaert, F A M; Wenburg, John; Willis, Theodore V; Won, Yong-Jin; Ye, N H; Zhang, W; Zhang, Y X

    2012-01-01

    This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procontarinia mangiferae, Rhynchophorus ferrugineus, Schizothorax richardsonii, Scophthalmus rhombus, Tetraponera aethiops, Thaumetopoea pityocampa, Tuta absoluta and Ugni molinae. These loci were cross-tested on the following species: Barilius bendelisis, Chiromantes haematocheir, Eriocheir sinensis, Eucalyptus camaldulensis, Eucalyptus cladocalix, Eucalyptus globulus, Garra litaninsis vishwanath, Garra para lissorhynchus, Guindilla trinervis, Hemigrapsus sanguineus, Luma chequen. Guayaba, Myrceugenia colchagüensis, Myrceugenia correifolia, Myrceugenia exsucca, Parasesarma plicatum, Parus major, Portunus pelagicus, Psidium guayaba, Schizothorax richardsonii, Scophthalmus maximus, Tetraponera latifrons, Thaumetopoea bonjeani, Thaumetopoea ispartensis, Thaumetopoea libanotica, Thaumetopoea pinivora, Thaumetopoea pityocampa ena clade, Thaumetopoea solitaria, Thaumetopoea wilkinsoni and Tor putitora. This article also documents the addition of nine EPIC primer pairs for Euphaea decorata, Euphaea formosa, Euphaea ornata and Euphaea yayeyamana. © 2011 Blackwell Publishing Ltd.

  6. Food security: increasing yield and improving resource use efficiency.

    PubMed

    Parry, Martin A J; Hawkesford, Malcolm J

    2010-11-01

    Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.

  7. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  8. The shortest path is not the one you know: application of biological network resources in precision oncology research.

    PubMed

    Kuperstein, Inna; Grieco, Luca; Cohen, David P A; Thieffry, Denis; Zinovyev, Andrei; Barillot, Emmanuel

    2015-03-01

    Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Diagnostics for invasive Salmonella infections: current challenges and future directions

    PubMed Central

    Andrews, Jason R.; Ryan, Edward T.

    2015-01-01

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. PMID:25937611

  10. Diagnostics for invasive Salmonella infections: Current challenges and future directions.

    PubMed

    Andrews, Jason R; Ryan, Edward T

    2015-06-19

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. Copyright © 2015. Published by Elsevier Ltd.

  11. Writing throughout the biochemistry curriculum: Synergistic inquiry-based writing projects for biochemistry students.

    PubMed

    Mertz, Pamela; Streu, Craig

    2015-01-01

    This article describes a synergistic two-semester writing sequence for biochemistry courses. In the first semester, students select a putative protein and are tasked with researching their protein largely through bioinformatics resources. In the second semester, students develop original ideas and present them in the form of a research grant proposal. Both projects involve multiple drafts and peer review. The complementarity of the projects increases student exposure to bioinformatics and literature resources, fosters higher-order thinking skills, and develops teamwork and communication skills. Student feedback and responses on perception surveys demonstrated that the students viewed both projects as favorable learning experiences. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae

    USDA-ARS?s Scientific Manuscript database

    The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informat...

  13. The European Bioinformatics Institute's data resources: towards systems biology.

    PubMed

    Brooksbank, Catherine; Cameron, Graham; Thornton, Janet

    2005-01-01

    Genomic and post-genomic biological research has provided fine-grain insights into the molecular processes of life, but also threatens to drown biomedical researchers in data. Moreover, as new high-throughput technologies are developed, the types of data that are gathered en masse are diversifying. The need to collect, store and curate all this information in ways that allow its efficient retrieval and exploitation is greater than ever. The European Bioinformatics Institute's (EBI's) databases and tools have evolved to meet the changing needs of molecular biologists: since we last wrote about our services in the 2003 issue of Nucleic Acids Research, we have launched new databases covering protein-protein interactions (IntAct), pathways (Reactome) and small molecules (ChEBI). Our existing core databases have continued to evolve to meet the changing needs of biomedical researchers, and we have developed new data-access tools that help biologists to move intuitively through the different data types, thereby helping them to put the parts together to understand biology at the systems level. The EBI's data resources are all available on our website at http://www.ebi.ac.uk.

  14. Signaling Network Map of Endothelial TEK Tyrosine Kinase

    PubMed Central

    Sandhya, Varot K.; Singh, Priyata; Parthasarathy, Deepak; Kumar, Awinav; Gattu, Rudrappa; Mathur, Premendu Prakash; Mac Gabhann, F.; Pandey, Akhilesh

    2014-01-01

    TEK tyrosine kinase is primarily expressed on endothelial cells and is most commonly referred to as TIE2. TIE2 is a receptor tyrosine kinase modulated by its ligands, angiopoietins, to regulate the development and remodeling of vascular system. It is also one of the critical pathways associated with tumor angiogenesis and familial venous malformations. Apart from the vascular system, TIE2 signaling is also associated with postnatal hematopoiesis. Despite the involvement of TIE2-angiopoietin system in several diseases, the downstream molecular events of TIE2-angiopoietin signaling are not reported in any pathway repository. Therefore, carrying out a detailed review of published literature, we have documented molecular signaling events mediated by TIE2 in response to angiopoietins and developed a network map of TIE2 signaling. The pathway information is freely available to the scientific community through NetPath, a manually curated resource of signaling pathways. We hope that this pathway resource will provide an in-depth view of TIE2-angiopoietin signaling and will lead to identification of potential therapeutic targets for TIE2-angiopoietin associated disorders. PMID:25371820

  15. The European Bioinformatics Institute's data resources: towards systems biology

    PubMed Central

    Brooksbank, Catherine; Cameron, Graham; Thornton, Janet

    2005-01-01

    Genomic and post-genomic biological research has provided fine-grain insights into the molecular processes of life, but also threatens to drown biomedical researchers in data. Moreover, as new high-throughput technologies are developed, the types of data that are gathered en masse are diversifying. The need to collect, store and curate all this information in ways that allow its efficient retrieval and exploitation is greater than ever. The European Bioinformatics Institute's (EBI's) databases and tools have evolved to meet the changing needs of molecular biologists: since we last wrote about our services in the 2003 issue of Nucleic Acids Research, we have launched new databases covering protein–protein interactions (IntAct), pathways (Reactome) and small molecules (ChEBI). Our existing core databases have continued to evolve to meet the changing needs of biomedical researchers, and we have developed new data-access tools that help biologists to move intuitively through the different data types, thereby helping them to put the parts together to understand biology at the systems level. The EBI's data resources are all available on our website at http://www.ebi.ac.uk. PMID:15608238

  16. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert.

    PubMed

    Singh, Gopal; Singh, Gagandeep; Singh, Pradeep; Parmar, Rajni; Paul, Navgeet; Vashist, Radhika; Swarnkar, Mohit Kumar; Kumar, Ashok; Singh, Sanatsujat; Singh, Anil Kumar; Kumar, Sanjay; Sharma, Ram Kumar

    2017-09-19

    Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.

  17. Ciona intestinalis: chordate development made simple.

    PubMed

    Passamaneck, Yale J; Di Gregorio, Anna

    2005-05-01

    Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome. Copyright 2005 Wiley-Liss, Inc.

  18. Planting molecular functions in an ecological context with Arabidopsis thaliana.

    PubMed

    Krämer, Ute

    2015-03-25

    The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant.

  19. Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions

    PubMed Central

    Kerrien, Samuel; Orchard, Sandra; Montecchi-Palazzi, Luisa; Aranda, Bruno; Quinn, Antony F; Vinod, Nisha; Bader, Gary D; Xenarios, Ioannis; Wojcik, Jérôme; Sherman, David; Tyers, Mike; Salama, John J; Moore, Susan; Ceol, Arnaud; Chatr-aryamontri, Andrew; Oesterheld, Matthias; Stümpflen, Volker; Salwinski, Lukasz; Nerothin, Jason; Cerami, Ethan; Cusick, Michael E; Vidal, Marc; Gilson, Michael; Armstrong, John; Woollard, Peter; Hogue, Christopher; Eisenberg, David; Cesareni, Gianni; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. Results The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. Conclusion The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel. PMID:17925023

  20. The Biobanking Analysis Resource Catalogue (BARCdb): a new research tool for the analysis of biobank samples

    PubMed Central

    Galli, Joakim; Oelrich, Johan; Taussig, Michael J.; Andreasson, Ulrika; Ortega-Paino, Eva; Landegren, Ulf

    2015-01-01

    We report the development of a new database of technology services and products for analysis of biobank samples in biomedical research. BARCdb, the Biobanking Analysis Resource Catalogue (http://www.barcdb.org), is a freely available web resource, listing expertise and molecular resource capabilities of research centres and biotechnology companies. The database is designed for researchers who require information on how to make best use of valuable biospecimens from biobanks and other sample collections, focusing on the choice of analytical techniques and the demands they make on the type of samples, pre-analytical sample preparation and amounts needed. BARCdb has been developed as part of the Swedish biobanking infrastructure (BBMRI.se), but now welcomes submissions from service providers throughout Europe. BARCdb can help match resource providers with potential users, stimulating transnational collaborations and ensuring compatibility of results from different labs. It can promote a more optimal use of European resources in general, both with respect to standard and more experimental technologies, as well as for valuable biobank samples. This article describes how information on service and reagent providers of relevant technologies is made available on BARCdb, and how this resource may contribute to strengthening biomedical research in academia and in the biotechnology and pharmaceutical industries. PMID:25336620

  1. Molecular diagnostics for Chagas disease: up to date and novel methodologies.

    PubMed

    Alonso-Padilla, Julio; Gallego, Montserrat; Schijman, Alejandro G; Gascon, Joaquim

    2017-07-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. It affects 7 million people, mainly in Latin America. Diagnosis is usually made serologically, but at some clinical scenarios serology cannot be used. Then, molecular detection is required for early detection of congenital transmission, treatment response follow up, and diagnosis of immune-suppression reactivation. However, present tests are technically demanding and require well-equipped laboratories which make them unfeasible in low-resources endemic regions. Areas covered: Available molecular tools for detection of T. cruzi DNA, paying particular attention to quantitative PCR protocols, and to the latest developments of user-friendly molecular diagnostic methodologies. Expert commentary: In the absence of appropriate biomarkers, molecular diagnosis is the only option for the assessment of treatment response. Besides, it is very useful for the early detection of acute infections, like congenital cases. Since current Chagas disease molecular tests are restricted to referential labs, research efforts must focus in the implementation of easy-to-use diagnostic tools in order to overcome the access to diagnosis gap.

  2. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  3. General morphological and biological features of neoplasms: integration of molecular findings.

    PubMed

    Diaz-Cano, S J

    2008-07-01

    This review highlights the importance of morphology-molecular correlations for a proper implementation of new markers. It covers both general aspects of tumorigenesis (which are normally omitted in papers analysing molecular pathways) and the general mechanisms for the acquired capabilities of neoplasms. The mechanisms are also supported by appropriate diagrams for each acquired capability that include overlooked features such as mobilization of cellular resources and changes in chromatin, transcription and epigenetics; fully accepted oncogenes and tumour suppressor genes are highlighted, while the pathways are also presented as activating or inactivating with appropriate colour coding. Finally, the concepts and mechanisms presented enable us to understand the basic requirements for the appropriate implementation of molecular tests in clinical practice. In summary, the basic findings are presented to serve as a bridge to clinical applications. The current definition of neoplasm is descriptive and difficult to apply routinely. Biologically, neoplasms develop through acquisition of capabilities that involve tumour cell aspects and modified microenvironment interactions, resulting in unrestricted growth due to a stepwise accumulation of cooperative genetic alterations that affect key molecular pathways. The correlation of these molecular aspects with morphological changes is essential for better understanding of essential concepts as early neoplasms/precancerous lesions, progression/dedifferentiation, and intratumour heterogeneity. The acquired capabilities include self-maintained replication (cell cycle dysregulation), extended cell survival (cell cycle arrest, apoptosis dysregulation, and replicative lifespan), genetic instability (chromosomal and microsatellite), changes of chromatin, transcription and epigenetics, mobilization of cellular resources, and modified microenvironment interactions (tumour cells, stromal cells, extracellular, endothelium). The acquired capabilities defining neoplasms are the hallmarks of cancer, but they also comprise useful tools to improve diagnosis and prognosis, as well as potential therapeutic targets. The application of these concepts in oncological pathology leads to consideration of the molecular test requirements (Molecular Test Score System) for reliable implementation; these requirements should cover biological effects, molecular pathway, biological validation, and technical validation. Sensible application of molecular markers in tumour pathology always needs solid morphological support.

  4. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  5. Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas. | Office of Cancer Genomics

    Cancer.gov

    Reverse-phase protein arrays (RPPA) represent a powerful functional proteomic approach to elucidate cancer-related molecular mechanisms and to develop novel cancer therapies. To facilitate community-based investigation of the large-scale protein expression data generated by this platform, we have developed a user-friendly, open-access bioinformatic resource, The Cancer Proteome Atlas (TCPA, http://tcpaportal.org), which contains two separate web applications.

  6. Implementation of a Shared Resource Financial Management System

    PubMed Central

    Caldwell, T.; Gerlach, R.; Israel, M.; Bobin, S.

    2010-01-01

    CF-6 Norris Cotton Cancer Center (NCCC), an NCI-designated Comprehensive Cancer Center at Dartmouth Medical School, administers 12 Life Sciences Shared Resources. These resources are diverse and offer multiple products and services. Previous methods for tracking resource use, billing, and financial management were time consuming, error prone and lacked appropriate financial management tools. To address these problems, we developed and implemented a web-based application with a built-in authorization system that uses Perl, ModPerl, Apache2, and Oracle as the software infrastructure. The application uses a role-based system to differentiate administrative users with those requesting services and includes many features requested by users and administrators. To begin development, we chose a resource that had an uncomplicated service, a large number of users, and required the use of all of the applications features. The Molecular Biology Core Facility at NCCC fit these requirements and was used as a model for developing and testing the application. After model development, institution wide deployment followed a three-stage process. The first stage was to interview the resource manager and staff to understand day-to-day operations. At the second stage, we generated and tested customized forms defining resource services. During the third stage, we added new resource users and administrators to the system before final deployment. Twelve months after deployment, resource administrators reported that the new system performed well for internal and external billing and tracking resource utilization. Users preferred the application's web-based system for distribution of DNA sequencing and other data. The sample tracking features have enhanced day-to-day resource operations, and an on-line scheduling module for shared instruments has proven a much-needed utility. Principal investigators now are able to restrict user spending to specific accounts and have final approval of the invoices before the billing, which has significantly reduced the number of unpaid invoices.

  7. Construction of a high-density American cranberry (Vaccinium macrocarpon Ait.) composite map using genotyping-by-sequencing for multi-pedigree linkage mapping

    USDA-ARS?s Scientific Manuscript database

    The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, but economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assist...

  8. An economical and effective high-throughput DNA extraction protocol for molecular marker analysis in honey bees

    USDA-ARS?s Scientific Manuscript database

    Extraction of DNA from tissue samples can be expensive both in time and monetary resources and can often require handling and disposal of hazardous chemicals. We have developed a high throughput protocol for extracting DNA from honey bees that is of a high enough quality and quantity to enable hundr...

  9. Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.

    PubMed Central

    Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng

    2015-01-01

    Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372

  10. dbCPG: A web resource for cancer predisposition genes.

    PubMed

    Wei, Ran; Yao, Yao; Yang, Wu; Zheng, Chun-Hou; Zhao, Min; Xia, Junfeng

    2016-06-21

    Cancer predisposition genes (CPGs) are genes in which inherited mutations confer highly or moderately increased risks of developing cancer. Identification of these genes and understanding the biological mechanisms that underlie them is crucial for the prevention, early diagnosis, and optimized management of cancer. Over the past decades, great efforts have been made to identify CPGs through multiple strategies. However, information on these CPGs and their molecular functions is scattered. To address this issue and provide a comprehensive resource for researchers, we developed the Cancer Predisposition Gene Database (dbCPG, Database URL: http://bioinfo.ahu.edu.cn:8080/dbCPG/index.jsp), the first literature-based gene resource for exploring human CPGs. It contains 827 human (724 protein-coding, 23 non-coding, and 80 unknown type genes), 637 rats, and 658 mouse CPGs. Furthermore, data mining was performed to gain insights into the understanding of the CPGs data, including functional annotation, gene prioritization, network analysis of prioritized genes and overlap analysis across multiple cancer types. A user-friendly web interface with multiple browse, search, and upload functions was also developed to facilitate access to the latest information on CPGs. Taken together, the dbCPG database provides a comprehensive data resource for further studies of cancer predisposition genes.

  11. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format.

    PubMed

    Webb, Ryan L; Ma'ayan, Avi

    2011-03-21

    The World Wide Web plays a critical role in enabling molecular, cell, systems and computational biologists to exchange, search, visualize, integrate, and analyze experimental data. Such efforts can be further enhanced through the development of semantic web concepts. The semantic web idea is to enable machines to understand data through the development of protocol free data exchange formats such as Resource Description Framework (RDF) and the Web Ontology Language (OWL). These standards provide formal descriptors of objects, object properties and their relationships within a specific knowledge domain. However, the overhead of converting datasets typically stored in data tables such as Excel, text or PDF into RDF or OWL formats is not trivial for non-specialists and as such produces a barrier to seamless data exchange between researchers, databases and analysis tools. This problem is particularly of importance in the field of network systems biology where biochemical interactions between genes and their protein products are abstracted to networks. For the purpose of converting biochemical interactions into the BioPAX format, which is the leading standard developed by the computational systems biology community, we developed an open-source command line tool that takes as input tabular data describing different types of molecular biochemical interactions. The tool converts such interactions into the BioPAX level 3 OWL format. We used the tool to convert several existing and new mammalian networks of protein interactions, signalling pathways, and transcriptional regulatory networks into BioPAX. Some of these networks were deposited into PathwayCommons, a repository for consolidating and organizing biochemical networks. The software tool Sig2BioPAX is a resource that enables experimental and computational systems biologists to contribute their identified networks and pathways of molecular interactions for integration and reuse with the rest of the research community.

  12. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings

    PubMed Central

    Wong, Grace; Wong, Isaac; Chan, Kamfai; Hsieh, Yicheng; Wong, Season

    2015-01-01

    Background Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3°C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. Methodology/Principal Findings In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the “archaic” method of hand-transferring PCR tubes between water baths. Conclusions/Significance We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular diagnostics in low-resource settings. PMID:26146999

  13. Gonadal and Sex Differentiation Abnormalities of Dogs and Cats

    PubMed Central

    Meyers-Wallen, V.N.

    2012-01-01

    The molecular steps in normal sexual development were largely discovered by studying patients and animal models with disorders of sexual development (DSD). Although several types of DSD have been reported in the cat and dog, which are often strikingly similar to human DSD, these have been infrequently utilized to contribute to our knowledge of mammalian sexual development. Canine and feline cases of DSD with sufficient evidence to be considered as potential models are summarized in this report. The consensus DSD terminology, and reference to previous terminology, is used to foster adoption of a common nomenclature that will facilitate communication and collaboration between veterinarians, physicians, and researchers. To efficiently utilize these unique resources as molecular tools continue to improve, it will be helpful to deposit samples from valuable cases into repositories where they are available to contribute to our understanding of sexual development, and thus improve human and animal health. PMID:22005097

  14. Molecular identification of livestock breeds: a tool for modern conservation biology.

    PubMed

    Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M

    2017-05-01

    Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.

  15. HPIDB 2.0: a curated database for host–pathogen interactions

    PubMed Central

    Ammari, Mais G.; Gresham, Cathy R.; McCarthy, Fiona M.; Nanduri, Bindu

    2016-01-01

    Identification and analysis of host–pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host–pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct download, and are disseminated to other molecular interaction resources. Database URL: http://www.agbase.msstate.edu/hpi/main.html PMID:27374121

  16. Computational Study of the Bulk Properties of a Novel Molecule: alpha-Tocopherol-Ascorbic Acid Surfactant

    NASA Astrophysics Data System (ADS)

    Stirling, Shannon; Kim, Hye-Young

    Alpha-tocopherol-ascorbic acid surfactant (EC) is a novel amphiphilic molecule of antioxidant properties, which has a hydrophobic vitamin E and a hydrophilic vitamin C chemically linked. We have developed atomistic force fields (g54a7) for a protonated (neutral) EC molecule. Our goal is to carry out molecular dynamics (MD) simulations of protonated EC molecules using the newly developed force fields and study the molecular properties. First we ran energy minimization (EM) with one molecule in a vacuum to obtain the low energy molecular configuration with emtol =10. We then used Packmol to insert 125 EC molecules in a 3nm cube. We then performed MD simulations of the bulk system composed of 125 EC molecules, from which we measured the bulk density and the evaporation energy of the molecular system. Gromacs2016 is used for the EM and MD simulation studies. We will present the results of the ongoing research. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103424 (Kim). Computational resources were provided by the Louisiana Optical Network Initiative.

  17. An Integrated Korean Biodiversity and Genetic Information Retrieval System

    PubMed Central

    Lim, Jeongheui; Bhak, Jong; Oh, Hee-Mock; Kim, Chang-Bae; Park, Yong-Ha; Paek, Woon Kee

    2008-01-01

    Background On-line biodiversity information databases are growing quickly and being integrated into general bioinformatics systems due to the advances of fast gene sequencing technologies and the Internet. These can reduce the cost and effort of performing biodiversity surveys and genetic searches, which allows scientists to spend more time researching and less time collecting and maintaining data. This will cause an increased rate of knowledge build-up and improve conservations. The biodiversity databases in Korea have been scattered among several institutes and local natural history museums with incompatible data types. Therefore, a comprehensive database and a nation wide web portal for biodiversity information is necessary in order to integrate diverse information resources, including molecular and genomic databases. Results The Korean Natural History Research Information System (NARIS) was built and serviced as the central biodiversity information system to collect and integrate the biodiversity data of various institutes and natural history museums in Korea. This database aims to be an integrated resource that contains additional biological information, such as genome sequences and molecular level diversity. Currently, twelve institutes and museums in Korea are integrated by the DiGIR (Distributed Generic Information Retrieval) protocol, with Darwin Core2.0 format as its metadata standard for data exchange. Data quality control and statistical analysis functions have been implemented. In particular, integrating molecular and genetic information from the National Center for Biotechnology Information (NCBI) databases with NARIS was recently accomplished. NARIS can also be extended to accommodate other institutes abroad, and the whole system can be exported to establish local biodiversity management servers. Conclusion A Korean data portal, NARIS, has been developed to efficiently manage and utilize biodiversity data, which includes genetic resources. NARIS aims to be integral in maximizing bio-resource utilization for conservation, management, research, education, industrial applications, and integration with other bioinformation data resources. It can be found at . PMID:19091024

  18. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  19. Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling.

    PubMed Central

    Yang, R S; Thomas, R S; Gustafson, D L; Campain, J; Benjamin, S A; Verhaar, H J; Mumtaz, M M

    1998-01-01

    Systematic toxicity testing, using conventional toxicology methodologies, of single chemicals and chemical mixtures is highly impractical because of the immense numbers of chemicals and chemical mixtures involved and the limited scientific resources. Therefore, the development of unconventional, efficient, and predictive toxicology methods is imperative. Using carcinogenicity as an end point, we present approaches for developing predictive tools for toxicologic evaluation of chemicals and chemical mixtures relevant to environmental contamination. Central to the approaches presented is the integration of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) and quantitative structure--activity relationship (QSAR) modeling with focused mechanistically based experimental toxicology. In this development, molecular and cellular biomarkers critical to the carcinogenesis process are evaluated quantitatively between different chemicals and/or chemical mixtures. Examples presented include the integration of PBPK/PD and QSAR modeling with a time-course medium-term liver foci assay, molecular biology and cell proliferation studies. Fourier transform infrared spectroscopic analyses of DNA changes, and cancer modeling to assess and attempt to predict the carcinogenicity of the series of 12 chlorobenzene isomers. Also presented is an ongoing effort to develop and apply a similar approach to chemical mixtures using in vitro cell culture (Syrian hamster embryo cell transformation assay and human keratinocytes) methodologies and in vivo studies. The promise and pitfalls of these developments are elaborated. When successfully applied, these approaches may greatly reduce animal usage, personnel, resources, and time required to evaluate the carcinogenicity of chemicals and chemical mixtures. Images Figure 6 PMID:9860897

  20. Low hanging fruit in infectious disease drug development.

    PubMed

    Kraus, Carl N

    2008-10-01

    Cost estimates for developing new molecular entities (NME) are reaching non-sustainable levels and coupled with increasing regulatory requirements and oversight have led many pharmaceutical sponsors to divest their anti-microbial development portfolios [Projan SJ: Why is big Pharma getting out of anti-bacterial drug discovery?Curr Opin Microbiol 2003, 6:427-430] [Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE, Jr: Trends in antimicrobial drug development: implications for the future.Clin Infect Dis 2004, 38:1279-1286]. Operational issues such as study planning and execution are significant contributors to the overall cost of drug development that can benefit from the leveraging of pre-randomization data in an evidence-based approach to protocol development, site selection and patient recruitment. For non-NME products there is even greater benefit from available data resources since these data may permit smaller and shorter study programs. There are now many available open source intelligence (OSINT) resources that are being integrated into drug development programs, permitting an evidence-based or 'operational epidemiology' approach to study planning and execution.

  1. Molecular malaria diagnostics: A systematic review and meta-analysis.

    PubMed

    Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.

  2. JAMI: a Java library for molecular interactions and data interoperability.

    PubMed

    Sivade Dumousseau, M; Koch, M; Shrivastava, A; Alonso-López, D; De Las Rivas, J; Del-Toro, N; Combe, C W; Meldal, B H M; Heimbach, J; Rappsilber, J; Sullivan, J; Yehudi, Y; Orchard, S

    2018-04-11

    A number of different molecular interactions data download formats now exist, designed to allow access to these valuable data by diverse user groups. These formats include the PSI-XML and MITAB standard interchange formats developed by Molecular Interaction workgroup of the HUPO-PSI in addition to other, use-specific downloads produced by other resources. The onus is currently on the user to ensure that a piece of software is capable of read/writing all necessary versions of each format. This problem may increase, as data providers strive to meet ever more sophisticated user demands and data types. A collaboration between EMBL-EBI and the University of Cambridge has produced JAMI, a single library to unify standard molecular interaction data formats such as PSI-MI XML and PSI-MITAB. The JAMI free, open-source library enables the development of molecular interaction computational tools and pipelines without the need to produce different versions of software to read different versions of the data formats. Software and tools developed on top of the JAMI framework are able to integrate and support both PSI-MI XML and PSI-MITAB. The use of JAMI avoids the requirement to chain conversions between formats in order to reach a desired output format and prevents code and unit test duplication as the code becomes more modular. JAMI's model interfaces are abstracted from the underlying format, hiding the complexity and requirements of each data format from developers using JAMI as a library.

  3. Large-scale virtual screening on public cloud resources with Apache Spark.

    PubMed

    Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola

    2017-01-01

    Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.

  4. The Hardwood Tree Improvement and Regeneration Center: its strategic plans for sustaining the hardwood resource

    Treesearch

    Charles H. Michler; Michael J. Bosela; Paula M. Pijut; Keith E. Woeste

    2003-01-01

    A regional center for hardwood tree improvement, genomics, and regeneration research, development and technology transfer will focus on black walnut, black cherry, northern red oak and, in the future, on other fine hardwoods as the effort is expanded. The Hardwood Tree Improvement and Regeneration Center (HTIRC) will use molecular genetics and genomics along with...

  5. The Use of the Free, Open-Source Program Jmol To Generate an Interactive Web Site To Teach Molecular Symmetry

    NASA Astrophysics Data System (ADS)

    Cass, Marion E.; Rzepa, Henry S.

    2005-11-01

    Illustrating and manipulating molecules in three dimensions are some of the truly wonderful advantages that computer technologies offer to chemistry teachers. In the following article we discuss our use of the program Jmol for the presentation of interactive materials to teach molecular symmetry. Jmol is an open-source code program that is free to all users and thus ideally suited for the development of teaching materials. Three primary pedagogic goals have been at the forefront in the development of our site. Our first goal was to animate symmetry operations and include interactive tools. Our second goal was to provide a library of molecules for student exercises to supplement their study of symmetry, using generic HTML templates populated using automatic tools based on Javascript. Our third goal in the development of our site was to include International Chemical Identifiers (InChIs) for each molecule to introduce students and educators to a new mechanism for identifying molecular resources and enabling their discovery using the Web search engines.

  6. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    PubMed Central

    2011-01-01

    Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730

  7. Developing translational research infrastructure and capabilities associated with cancer clinical trials.

    PubMed

    Hall, Jacqueline A; Brown, Robert

    2013-09-27

    The integration of molecular information in clinical decision making is becoming a reality. These changes are shaping the way clinical research is conducted, and as reality sets in, the challenges in conducting, managing and organising multi-disciplinary research become apparent. Clinical trials provide a platform to conduct translational research (TR) within the context of high quality clinical data accrual. Integrating TR objectives in trials allows the execution of pivotal studies that provide clinical evidence for biomarker-driven treatment strategies, targeting early drug development trials to a homogeneous and well defined patient population, supports the development of companion diagnostics and provides an opportunity for deepening our understanding of cancer biology and mechanisms of drug action. To achieve these goals within a clinical trial, developing translational research infrastructure and capabilities (TRIC) plays a critical catalytic role for translating preclinical data into successful clinical research and development. TRIC represents a technical platform, dedicated resources and access to expertise promoting high quality standards, logistical and operational support and unified streamlined procedures under an appropriate governance framework. TRIC promotes integration of multiple disciplines including biobanking, laboratory analysis, molecular data, informatics, statistical analysis and dissemination of results which are all required for successful TR projects and scientific progress. Such a supporting infrastructure is absolutely essential in order to promote high quality robust research, avoid duplication and coordinate resources. Lack of such infrastructure, we would argue, is one reason for the limited effect of TR in clinical practice beyond clinical trials.

  8. Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.

    PubMed

    Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao

    2017-01-01

    The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.

  9. Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery.

    PubMed

    Roth, Bryan L; Lopez, Estela; Beischel, Scott; Westkaemper, Richard B; Evans, Jon M

    2004-05-01

    Because psychoactive plants exert profound effects on human perception, emotion, and cognition, discovering the molecular mechanisms responsible for psychoactive plant actions will likely yield insights into the molecular underpinnings of human consciousness. Additionally, it is likely that elucidation of the molecular targets responsible for psychoactive drug actions will yield validated targets for CNS drug discovery. This review article focuses on an unbiased, discovery-based approach aimed at uncovering the molecular targets responsible for psychoactive drug actions wherein the main active ingredients of psychoactive plants are screened at the "receptorome" (that portion of the proteome encoding receptors). An overview of the receptorome is given and various in silico, public-domain resources are described. Newly developed tools for the in silico mining of data derived from the National Institute of Mental Health Psychoactive Drug Screening Program's (NIMH-PDSP) K(i) Database (K(i) DB) are described in detail. Additionally, three case studies aimed at discovering the molecular targets responsible for Hypericum perforatum, Salvia divinorum, and Ephedra sinica actions are presented. Finally, recommendations are made for future studies.

  10. Miscellaneous Topics in Computer-Aided Drug Design: Synthetic Accessibility and GPU Computing, and Other Topics.

    PubMed

    Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi

    2016-01-01

    Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design.

  11. Miscellaneous Topics in Computer-Aided Drug Design: Synthetic Accessibility and GPU Computing, and Other Topics

    PubMed Central

    Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi

    2016-01-01

    Abstract: Background Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design. PMID:27075578

  12. Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca[C][W

    PubMed Central

    Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi

    2013-01-01

    Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development. PMID:23898027

  13. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi

    NASA Astrophysics Data System (ADS)

    Edmunds, Richard C.; Gill, J. A.; Baldwin, David H.; Linbo, Tiffany L.; French, Barbara L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John; Hoenig, Ron; Benetti, Daniel; Grosell, Martin; Scholz, Nathaniel L.; Incardona, John P.

    2015-12-01

    Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory.

  14. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi

    PubMed Central

    Edmunds, Richard C.; Gill, J. A.; Baldwin, David H.; Linbo, Tiffany L.; French, Barbara L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John; Hoenig, Ron; Benetti, Daniel; Grosell, Martin; Scholz, Nathaniel L.; Incardona, John P.

    2015-01-01

    Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory. PMID:26658479

  15. A risk-management approach for effective integration of biomarkers in clinical trials: perspectives of an NCI, NCRI, and EORTC working group.

    PubMed

    Hall, Jacqueline Anne; Salgado, Roberto; Lively, Tracy; Sweep, Fred; Schuh, Anna

    2014-04-01

    Clinical cancer research today often includes testing the value of biomarkers to direct treatment and for drug development. However, the practical challenges of integration of molecular information into clinical trial protocols are increasingly appreciated. Inherent difficulties include evidence gaps in available biomarker data, a paucity of robust assay methods, and the design of appropriate studies within the constraints of feasible trial operations, and finite resources. Scalable and proportionate approaches are needed to systematically cope with these challenges. Therefore, we assembled international experts from three clinical trials organisations to identify the common challenges and common solutions. We present a practical risk-assessment framework allowing targeting of scarce resources to crucial issues coupled with a library of useful resources and a simple actionable checklist of recommendations. We hope that these practical methods will be useful for running biomarker-driven trials and ultimately help to develop biomarkers that are ready for integration in routine practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Relax with CouchDB - Into the non-relational DBMS era of Bioinformatics

    PubMed Central

    Manyam, Ganiraju; Payton, Michelle A.; Roth, Jack A.; Abruzzo, Lynne V.; Coombes, Kevin R.

    2012-01-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. PMID:22609849

  17. Diagnosis and Management of Hepatitis C Virus Infection.

    PubMed

    Mukherjee, Ronita; Burns, Andrew; Rodden, Diane; Chang, Frances; Chaum, Manita; Garcia, Nancy; Bollipalli, Nikitha; Niemz, Angelika

    2015-10-01

    The hepatitis C virus (HCV) infects more than 200 million people globally, with increasing incidence, especially in developing countries. HCV infection frequently progresses to chronic liver disease, creating a heavy economic burden on resource-poor countries and lowering patient quality of life. Effective HCV diagnosis, treatment selection, and treatment monitoring are important in stopping disease progression. Serological assays, which detect anti-HCV antibodies in the patient after seroconversion, are used for initial HCV diagnosis. Qualitative and quantitative molecular assays are used to confirm initial diagnosis, determine viral load, and genotype the dominant strain. Viral load and genotype information are used to guide appropriate treatment. Various other biomarker assays are performed to assess liver function and enable disease staging. Most of these diagnostic methods are mature and routinely used in high-resource countries with well-developed laboratory infrastructure. Few technologies, however, are available that address the needs of low-resource areas with high HCV prevalence, such as Africa and Southeast Asia. © 2015 Society for Laboratory Automation and Screening.

  18. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  19. Genetic blueprint of the zoonotic pathogen Toxocara canis

    PubMed Central

    Zhu, Xing-Quan; Korhonen, Pasi K.; Cai, Huimin; Young, Neil D.; Nejsum, Peter; von Samson-Himmelstjerna, Georg; Boag, Peter R.; Tan, Patrick; Li, Qiye; Min, Jiumeng; Yang, Yulan; Wang, Xiuhua; Fang, Xiaodong; Hall, Ross S.; Hofmann, Andreas; Sternberg, Paul W.; Jex, Aaron R.; Gasser, Robin B.

    2015-01-01

    Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. PMID:25649139

  20. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  1. BBMRI-ERIC as a resource for pharmaceutical and life science industries: the development of biobank-based Expert Centres.

    PubMed

    van Ommen, Gert-Jan B; Törnwall, Outi; Bréchot, Christian; Dagher, Georges; Galli, Joakim; Hveem, Kristian; Landegren, Ulf; Luchinat, Claudio; Metspalu, Andres; Nilsson, Cecilia; Solesvik, Ove V; Perola, Markus; Litton, Jan-Eric; Zatloukal, Kurt

    2015-07-01

    Biological resources (cells, tissues, bodily fluids or biomolecules) are considered essential raw material for the advancement of health-related biotechnology, for research and development in life sciences, and for ultimately improving human health. Stored in local biobanks, access to the human biological samples and related medical data for transnational research is often limited, in particular for the international life science industry. The recently established pan-European Biobanking and BioMolecular resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to improve accessibility and interoperability between academic and industrial parties to benefit personalized medicine, disease prevention to promote development of new diagnostics, devices and medicines. BBMRI-ERIC is developing the concept of Expert Centre as public-private partnerships in the precompetitive, not-for-profit field to provide a new structure to perform research projects that would face difficulties under currently established models of academic-industry collaboration. By definition, Expert Centres are key intermediaries between public and private sectors performing the analysis of biological samples under internationally standardized conditions. This paper presents the rationale behind the Expert Centres and illustrates the novel concept with model examples.

  2. BBMRI-ERIC as a resource for pharmaceutical and life science industries: the development of biobank-based Expert Centres

    PubMed Central

    van Ommen, Gert-Jan B; Törnwall, Outi; Bréchot, Christian; Dagher, Georges; Galli, Joakim; Hveem, Kristian; Landegren, Ulf; Luchinat, Claudio; Metspalu, Andres; Nilsson, Cecilia; Solesvik, Ove V; Perola, Markus; Litton, Jan-Eric; Zatloukal, Kurt

    2015-01-01

    Biological resources (cells, tissues, bodily fluids or biomolecules) are considered essential raw material for the advancement of health-related biotechnology, for research and development in life sciences, and for ultimately improving human health. Stored in local biobanks, access to the human biological samples and related medical data for transnational research is often limited, in particular for the international life science industry. The recently established pan-European Biobanking and BioMolecular resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to improve accessibility and interoperability between academic and industrial parties to benefit personalized medicine, disease prevention to promote development of new diagnostics, devices and medicines. BBMRI-ERIC is developing the concept of Expert Centre as public–private partnerships in the precompetitive, not-for-profit field to provide a new structure to perform research projects that would face difficulties under currently established models of academic–industry collaboration. By definition, Expert Centres are key intermediaries between public and private sectors performing the analysis of biological samples under internationally standardized conditions. This paper presents the rationale behind the Expert Centres and illustrates the novel concept with model examples. PMID:25407005

  3. NaviCom: a web application to create interactive molecular network portraits using multi-level omics data.

    PubMed

    Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna

    2017-01-01

    Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.

  4. A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

    PubMed Central

    LaBarre, Paul; Hawkins, Kenneth R.; Gerlach, Jay; Wilmoth, Jared; Beddoe, Andrew; Singleton, Jered; Boyle, David; Weigl, Bernhard

    2011-01-01

    Background Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation). Methodology/Principal Findings In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. Conclusions/Significance We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes. PMID:21573065

  5. dbCPG: A web resource for cancer predisposition genes

    PubMed Central

    Wei, Ran; Yao, Yao; Yang, Wu; Zheng, Chun-Hou; Zhao, Min; Xia, Junfeng

    2016-01-01

    Cancer predisposition genes (CPGs) are genes in which inherited mutations confer highly or moderately increased risks of developing cancer. Identification of these genes and understanding the biological mechanisms that underlie them is crucial for the prevention, early diagnosis, and optimized management of cancer. Over the past decades, great efforts have been made to identify CPGs through multiple strategies. However, information on these CPGs and their molecular functions is scattered. To address this issue and provide a comprehensive resource for researchers, we developed the Cancer Predisposition Gene Database (dbCPG, Database URL: http://bioinfo.ahu.edu.cn:8080/dbCPG/index.jsp), the first literature-based gene resource for exploring human CPGs. It contains 827 human (724 protein-coding, 23 non-coding, and 80 unknown type genes), 637 rats, and 658 mouse CPGs. Furthermore, data mining was performed to gain insights into the understanding of the CPGs data, including functional annotation, gene prioritization, network analysis of prioritized genes and overlap analysis across multiple cancer types. A user-friendly web interface with multiple browse, search, and upload functions was also developed to facilitate access to the latest information on CPGs. Taken together, the dbCPG database provides a comprehensive data resource for further studies of cancer predisposition genes. PMID:27192119

  6. Architectonics: Design of Molecular Architecture for Functional Applications.

    PubMed

    Avinash, M B; Govindaraju, Thimmaiah

    2018-02-20

    The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing biomolecules like amino acids and nucleobases as auxiliaries. Naphthalenediimide (NDI), perylenediimide (PDI), and few other molecular systems serve as functional modules. The effects of stereochemistry and minute structural modifications in the molecular designs on the supramolecular interactions, and construction of self-assembled zero-dimensional (OD), one-dimensional (1D), and two-dimensional (2D) nano- and microarchitectures like particles, spheres, cups, bowls, fibers, belts, helical belts, supercoiled helices, sheets, fractals, and honeycomb-like arrays are discussed in extensive detail. Additionally, we present molecular systems that showcase the elegant designs of coassembly, templated assembly, hierarchical assembly, transient self-assembly, chiral denaturation, retentive helical memory, self-replication, supramolecular regulation, supramolecular speciation, supernon linearity, dynamic pathway complexity, supramolecular heterojunction, living supramolecular polymerization, and molecular machines. Finally, we describe the molecular engineering principles learnt over the years that have led to several applications, namely, organic electronics, self-cleaning, high-mechanical strength, and tissue engineering.

  7. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing.

    PubMed

    Pereira-Leal, José B; Abreu, Isabel A; Alabaça, Cláudia S; Almeida, Maria Helena; Almeida, Paulo; Almeida, Tânia; Amorim, Maria Isabel; Araújo, Susana; Azevedo, Herlânder; Badia, Aleix; Batista, Dora; Bohn, Andreas; Capote, Tiago; Carrasquinho, Isabel; Chaves, Inês; Coelho, Ana Cristina; Costa, Maria Manuela Ribeiro; Costa, Rita; Cravador, Alfredo; Egas, Conceição; Faro, Carlos; Fortes, Ana M; Fortunato, Ana S; Gaspar, Maria João; Gonçalves, Sónia; Graça, José; Horta, Marília; Inácio, Vera; Leitão, José M; Lino-Neto, Teresa; Marum, Liliana; Matos, José; Mendonça, Diogo; Miguel, Andreia; Miguel, Célia M; Morais-Cecílio, Leonor; Neves, Isabel; Nóbrega, Filomena; Oliveira, Maria Margarida; Oliveira, Rute; Pais, Maria Salomé; Paiva, Jorge A; Paulo, Octávio S; Pinheiro, Miguel; Raimundo, João A P; Ramalho, José C; Ribeiro, Ana I; Ribeiro, Teresa; Rocheta, Margarida; Rodrigues, Ana Isabel; Rodrigues, José C; Saibo, Nelson J M; Santo, Tatiana E; Santos, Ana Margarida; Sá-Pereira, Paula; Sebastiana, Mónica; Simões, Fernanda; Sobral, Rómulo S; Tavares, Rui; Teixeira, Rita; Varela, Carolina; Veloso, Maria Manuela; Ricardo, Cândido P P

    2014-05-15

    Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.

  8. The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center: a unique resource for defining the "molecular histology" of the breast.

    PubMed

    Sherman, Mark E; Figueroa, Jonine D; Henry, Jill E; Clare, Susan E; Rufenbarger, Connie; Storniolo, Anna Maria

    2012-04-01

    "Molecular histology" of the breast may be conceptualized as encompassing the normative ranges of histologic structure and marker expression in normal breast tissues in relation to a woman's age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University (Indianapolis, IN) is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin-fixed, paraffin-embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank's website. 2012 AACR

  9. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    PubMed

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  10. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  11. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009-31 July 2009.

    PubMed

    Almany, Glenn R; DE Arruda, Maurício P; Arthofer, Wolfgang; Atallah, Z K; Beissinger, Steven R; Berumen, Michael L; Bogdanowicz, S M; Brown, S D; Bruford, Michael W; Burdine, C; Busch, Jeremiah W; Campbell, Nathan R; Carey, D; Carstens, Bryan C; Chu, K H; Cubeta, Marc A; Cuda, J P; Cui, Zhaoxia; Datnoff, L E; Dávila, J A; Davis, Emily S; Davis, R M; Diekmann, Onno E; Eizirik, Eduardo; Fargallo, J A; Fernandes, Fabiano; Fukuda, Hideo; Gale, L R; Gallagher, Elizabeth; Gao, Yongqiang; Girard, Philippe; Godhe, Anna; Gonçalves, Evonnildo C; Gouveia, Licinia; Grajczyk, Amber M; Grose, M J; Gu, Zhifeng; Halldén, Christer; Härnström, Karolina; Hemmingsen, Amanda H; Holmes, Gerald; Huang, C H; Huang, Chuan-Chin; Hudman, S P; Jones, Geoffrey P; Kanetis, Loukas; Karunasagar, Iddya; Karunasagar, Indrani; Keyghobadi, Nusha; Klosterman, S J; Klug, Page E; Koch, J; Koopman, Margaret M; Köppler, Kirsten; Koshimizu, Eriko; Krumböck, Susanne; Kubisiak, T; Landis, J B; Lasta, Mario L; Lee, Chow-Yang; Li, Qianqian; Li, Shou-Hsien; Lin, Rong-Chien; Liu, M; Liu, Na; Liu, W C; Liu, Yuan; Loiseau, A; Luan, Weisha; Maruthachalam, K K; McCormick, Helen M; Mellick, Rohan; Monnahan, P J; Morielle-Versute, Eliana; Murray, Tomás E; Narum, Shawn R; Neufeld, Katie; De Nova, P J G; Ojiambo, Peter S; Okamoto, Nobuaki; Othman, Ahmad Sofiman; Overholt, W A; Pardini, Renata; Paterson, Ian G; Patty, Olivia A; Paxton, Robert J; Planes, Serge; Porter, Carolyn; Pratchett, Morgan S; Püttker, Thomas; Rasic, Gordana; Rasool, Bilal; Rey, O; Riegler, Markus; Riehl, C; Roberts, John M K; Roberts, P D; Rochel, Elisabeth; Roe, Kevin J; Rossetto, Maurizio; Ruzzante, Daniel E; Sakamoto, Takashi; Saravanan, V; Sarturi, Cladinara Roberts; Schmidt, Anke; Schneider, Maria Paula Cruz; Schuler, Hannes; Serb, Jeanne M; Serrão, Ester T A; Shi, Yaohua; Silva, Artur; Sin, Y W; Sommer, Simone; Stauffer, Christian; Strüssmann, Carlos Augusto; Subbarao, K V; Syms, Craig; Tan, Feng; Tejedor, Eugenio Daniel; Thorrold, Simon R; Trigiano, Robert N; Trucco, María I; Tsuchiya-Jerep, Mirian Tieko Nunes; Vergara, P; Van De Vliet, Mirjam S; Wadl, Phillip A; Wang, Aimin; Wang, Hongxia; Wang, R X; Wang, Xinwang; Wang, Yan; Weeks, Andrew R; Wei, Fuwen; Werner, William J; Wiley, E O; Williams, D A; Wilkins, Richard J; Wisely, Samantha M; With, Kimberly A; Wu, Danhua; Yao, Cheng-Te; Yau, Cynthia; Yeap, Beng-Keok; Zhai, Bao-Ping; Zhan, Xiangjiang; Zhang, Guo-Yan; Zhang, S Y; Zhao, Ru; Zhu, Lifeng

    2009-11-01

    This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species. © 2009 Blackwell Publishing Ltd.

  12. Concomitant prediction of function and fold at the domain level with GO-based profiles.

    PubMed

    Lopez, Daniel; Pazos, Florencio

    2013-01-01

    Predicting the function of newly sequenced proteins is crucial due to the pace at which these raw sequences are being obtained. Almost all resources for predicting protein function assign functional terms to whole chains, and do not distinguish which particular domain is responsible for the allocated function. This is not a limitation of the methodologies themselves but it is due to the fact that in the databases of functional annotations these methods use for transferring functional terms to new proteins, these annotations are done on a whole-chain basis. Nevertheless, domains are the basic evolutionary and often functional units of proteins. In many cases, the domains of a protein chain have distinct molecular functions, independent from each other. For that reason resources with functional annotations at the domain level, as well as methodologies for predicting function for individual domains adapted to these resources are required.We present a methodology for predicting the molecular function of individual domains, based on a previously developed database of functional annotations at the domain level. The approach, which we show outperforms a standard method based on sequence searches in assigning function, concomitantly predicts the structural fold of the domains and can give hints on the functionally important residues associated to the predicted function.

  13. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    PubMed

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  14. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.

    PubMed

    Ma, Hong

    2005-01-01

    In flowering plants, male reproductive development requires the formation of the stamen, including the differentiation of anther tissues. Within the anther, male meiosis produces microspores, which further develop into pollen grains, relying on both sporophytic and gametophytic gene functions. The mature pollen is released when the anther dehisces, allowing pollination to occur. Molecular studies have identified a large number of genes that are expressed during stamen and pollen development. Genetic analyses have demonstrated the function of some of these genes in specifying stamen identity, regulating anther cell division and differentiation, controlling male meiosis, supporting pollen development, and promoting anther dehiscence. These genes encode a variety of proteins, including transcriptional regulators, signal transduction proteins, regulators of protein degradation, and enzymes for the biosynthesis of hormones. Although much has been learned in recent decades, much more awaits to be discovered and understood; the future of the study of plant male reproduction remains bright and exciting with the ever-growing tool kits and rapidly expanding information and resources for gene function studies.

  15. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  16. Multiple Models for Rosaceae Genomics[OA

    PubMed Central

    Shulaev, Vladimir; Korban, Schuyler S.; Sosinski, Bryon; Abbott, Albert G.; Aldwinckle, Herb S.; Folta, Kevin M.; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M.; Lewers, Kim; Brown, Susan K.; Davis, Thomas M.; Gardiner, Susan E.; Potter, Daniel; Veilleux, Richard E.

    2008-01-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361

  17. Status Report on the Development of Research Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.

    2013-06-30

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specificmore » scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.« less

  18. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  19. Best practices for fungal germplasm repositories and perspectives on their implementation.

    PubMed

    Wiest, Aric; Schnittker, Robert; Plamann, Mike; McCluskey, Kevin

    2012-02-01

    In over 50 years, the Fungal Genetics Stock Center has grown to become a world-recognized biological resource center. Along with this growth comes the development and implementation of myriad practices for the management and curation of a diverse collection of filamentous fungi, yeast, and molecular genetic tools for working with the fungi. These practices include techniques for the testing, manipulation, and preservation of individual fungal isolates as well as for processing of thousands of isolates in parallel. In addition to providing accurate record keeping, an electronic managements system allows the observation of trends in strain distribution and in sample characteristics. Because many ex situ fungal germplasm repositories around the world share similar objectives, best-practice guidelines have been developed by a number of organizations such as the Organization for Economic Cooperation and Development or the International Society for Biological and Environmental Repositories. These best-practice guidelines provide a framework for the successful operation of collections and promote the development and interactions of biological resource centers around the world.

  20. Impact of apixaban vs low molecular weight heparin/vitamin k antagonist on hospital resource use in patients with venous thromboembolism.

    PubMed

    Browne, C; Lanitis, T; Hamilton, M; Li, X; Horbyluk, R; Mardekian, J; Kongnakorn, T; Cohen, A

    2017-01-01

    The clinical and economic benefits associated with apixaban treatment have been established in clinical trials and published economic evaluations. The benefits associated with apixaban could extend to improving hospital efficiencies, potentially influencing hospital resource use, and bed days. The objective of this study is to estimate the impact of 6-month treatment with apixaban vs low molecular weight heparin/vitamin k antagonist (LMWH/VKA) on hospital resource use among patients with venous thromboembolism (VTE). A model was developed to assess the impact of apixaban vs LMWH/VKA for treatment of VTE and prevention of recurrences on hospital resource use and costs. Resource use items included total hospitalizations, length of stay (LOS), and emergency department (ED) visits, estimated for all incident VTE patients in the UK over a 5-year time horizon. Rates of hospitalizations, ED visits, and LOS associated with recurrent VTE, major, and clinically relevant non-major bleeding were obtained from the AMPLIFY trial; costs were obtained from UK published sources. Over a 5-year time horizon, the model predicted that, compared to 6 months of LMWH/VKA, 6 months of apixaban led to 3,954 fewer hospitalizations (consisting of 2,341 fewer new admissions and 1,613 fewer re-admissions) and 32,214 fewer bed days, among 332,607 incident VTE patients. ED visits were reduced by 1,582. The reduction in hospital resource use led to a cost saving of ∼£4.5 million in a market of patients treated with apixaban as compared to a market treated with LMWH/VKA. Sensitivity analysis indicated these findings were robust over a wide range of inputs. 6-month treatment with apixaban for treatment of VTE and prevention of recurrences on hospital resource use led to a reduction in hospitalizations and LOS in comparison to LMWH/VKA. These findings can help the efforts in reducing the growing burden of preventable re-admissions to hospitals.

  1. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    PubMed

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  2. NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.

    PubMed

    Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug

    2016-01-01

    The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.

  3. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    PubMed

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors

    PubMed Central

    Schütte, Moritz; Risch, Thomas; Abdavi-Azar, Nilofar; Boehnke, Karsten; Schumacher, Dirk; Keil, Marlen; Yildiriman, Reha; Jandrasits, Christine; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Worth, Catherine L.; Schweiger, Caroline; Liebs, Sandra; Lange, Martin; Warnatz, Hans- Jörg; Butcher, Lee M.; Barrett, James E.; Sultan, Marc; Wierling, Christoph; Golob-Schwarzl, Nicole; Lax, Sigurd; Uranitsch, Stefan; Becker, Michael; Welte, Yvonne; Regan, Joseph Lewis; Silvestrov, Maxine; Kehler, Inge; Fusi, Alberto; Kessler, Thomas; Herwig, Ralf; Landegren, Ulf; Wienke, Dirk; Nilsson, Mats; Velasco, Juan A.; Garin-Chesa, Pilar; Reinhard, Christoph; Beck, Stephan; Schäfer, Reinhold; Regenbrecht, Christian R. A.; Henderson, David; Lange, Bodo; Haybaeck, Johannes; Keilholz, Ulrich; Hoffmann, Jens; Lehrach, Hans; Yaspo, Marie-Laure

    2017-01-01

    Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab. PMID:28186126

  5. Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE)

    PubMed Central

    Conchúir, Shane Ó.; Der, Bryan S.; Drew, Kevin; Kuroda, Daisuke; Xu, Jianqing; Weitzner, Brian D.; Renfrew, P. Douglas; Sripakdeevong, Parin; Borgo, Benjamin; Havranek, James J.; Kuhlman, Brian; Kortemme, Tanja; Bonneau, Richard; Gray, Jeffrey J.; Das, Rhiju

    2013-01-01

    The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code’s difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step ‘serverification’ protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org. PMID:23717507

  6. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    PubMed

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  7. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  8. Molecular methods for the detection of mutations.

    PubMed

    Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A

    2000-01-01

    We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.

  9. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    PubMed Central

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters. Conclusion We report a total of 188 genomic and genic SSR markers in Morus alba L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS. PMID:24289047

  10. A RESTful application programming interface for the PubMLST molecular typing and genome databases

    PubMed Central

    Bray, James E.; Maiden, Martin C. J.

    2017-01-01

    Abstract Molecular typing is used to differentiate microorganisms at the subspecies or strain level for epidemiological investigations, infection control, public health and environmental sampling. DNA sequence-based typing methods require authoritative databases that link sequence variants to nomenclature in order to facilitate communication and comparison of identified types in national or global settings. The PubMLST website (https://pubmlst.org/) fulfils this role for over a hundred microorganisms for which it hosts curated molecular sequence typing data, providing sequence and allelic profile definitions for multi-locus sequence typing (MLST) and single-gene typing approaches. In recent years, these have expanded to cover the whole genome with schemes such as core genome MLST (cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity found in hundreds to thousands of genes. These approaches provide a common nomenclature for high-resolution strain characterization and comparison. Molecular typing information is linked to isolate provenance, phenotype, and increasingly genome assemblies, providing a resource for outbreak investigation and research in to population structure, gene association, global epidemiology and vaccine coverage. A Representational State Transfer (REST) Application Programming Interface (API) has been developed for the PubMLST website to make these large quantities of structured molecular typing and whole genome sequence data available for programmatic access by any third party application. The API is an integral component of the Bacterial Isolate Genome Sequence Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all public data within the site. In addition to data browsing, searching and download, the API supports authentication and submission of new data to curator queues. Database URL: http://rest.pubmlst.org/ PMID:29220452

  11. Teaching the extracellular matrix and introducing online databases within a multidisciplinary course with i-cell-MATRIX: A student-centered approach.

    PubMed

    Sousa, João Carlos; Costa, Manuel João; Palha, Joana Almeida

    2010-03-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure. Internet-available resources can bridge the division between the molecular details and ECM's biological properties and associated processes. This article presents an approach to teach the ECM developed for first year medical undergraduates who, working in teams: (i) Explore a specific molecular component of the matrix, (ii) identify a disease in which the component is implicated, (iii) investigate how the component's structure/function contributes to ECM' supramolecular organization in physiological and in pathological conditions, and (iv) share their findings with colleagues. The approach-designated i-cell-MATRIX-is focused on the contribution of individual components to the overall organization and biological functions of the ECM. i-cell-MATRIX is student centered and uses 5 hours of class time. Summary of results and take home message: A "1-minute paper" has been used to gather student feedback on the impact of i-cell-MATRIX. Qualitative analysis of student feedback gathered in three consecutive years revealed that students appreciate the approach's reliance on self-directed learning, the interactivity embedded and the demand for deeper insights on the ECM. Learning how to use internet biomedical resources is another positive outcome. Ninety percent of students recommend the activity for subsequent years. i-cell-MATRIX is adaptable by other medical schools which may be looking for an approach that achieves higher student engagement with the ECM. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  12. Molecular characterization of immortalized normal and dysplastic oral cell lines.

    PubMed

    Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie

    2015-05-01

    Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  14. The pre-health collection within MedEdPORTAL's iCollaborative: helping faculty prepare students for the competencies in the new MCAT(2015) exam.

    PubMed

    Jakubowski, Henry V; Zapanta, Laura S

    2013-01-01

    To help faculty prepare and revise courses in all the disciplines represented in the MCAT(2015) , the American Association of Medical Colleges, through its MedEdPORTAL's iCollaborative, has established the Pre-health Collection, a repository of reviewed web resources that are openly and freely available to faculty, and indirectly through them to students. The Pre-health Collection initiative makes use of the Internet to centralize teaching resources and to help faculty at institutions with fewer available resources to incorporate high quality teaching material specifically reviewed to assist students in obtaining the required pre-health competencies. As biochemistry competencies are increasingly represented in the new exam, it is important to grow the number of quality teaching resources for biochemistry within the portal and to develop a community of users and contributors. A description of the Pre-Health Collection and mechanisms for contributions are presented. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  15. Protocorms and Protocorm-Like Bodies Are Molecularly Distinct from Zygotic Embryonic Tissues in Phalaenopsis aphrodite1[OPEN

    PubMed Central

    Chen, Jhun-Chen; Wei, Miao-Ju

    2016-01-01

    The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite. Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species. PMID:27338813

  16. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    PubMed

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  17. Cryopreservation and conservation of microalgae: the development of a Pan-European scientific and biotechnological resource (the COBRA project).

    PubMed

    Day, J G; Benson, E E; Harding, K; Knowles, B; Idowu, M; Bremner, D; Santos, L; Santos, F; Friedl, T; Lorenz, M; Lukesova, A; Elster, J; Lukavsky, J; Herdman, M; Rippka, R; Hall, T

    2005-01-01

    Microalgae are one of the most biologically important elements of worldwide ecology and could be the source of diverse new products and medicines. COBRA (The COnservation of a vital european scientific and Biotechnological Resource: microAlgae and cyanobacteria) is the acronym for a European Union, RTD Infrastructures project (Contract No. QLRI-CT-2001-01645). This project is in the process of developing a European Biological Resource Centre based on existing algal culture collections. The COBRA project's central aim is to apply cryopreservation methodologies to microalgae and cyanobacteria, organisms that, to date, have proved difficult to conserve using cryogenic methods. In addition, molecular and biochemical stability tests have been developed to ensure that the equivalent strains of microorganisms supplied by the culture collections give high quality and consistent performance. Fundamental and applied knowledge of stress physiology form an essential component of the project and this is being employed to assist the optimisation of methods for preserving a wide range of algal diversity. COBRA's "Resource Centre" utilises Information Technologies (IT) and Knowledge Management practices to assist project coordination, management and information dissemination and facilitate the generation of new knowledge pertaining to algal conservation. This review of the COBRA project will give a summary of current methodologies for cryopreservation of microalgae and procedures adopted within the COBRA project to enhance preservation techniques for this diverse group of organisms.

  18. Relax with CouchDB--into the non-relational DBMS era of bioinformatics.

    PubMed

    Manyam, Ganiraju; Payton, Michelle A; Roth, Jack A; Abruzzo, Lynne V; Coombes, Kevin R

    2012-07-01

    With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  20. The Use of MERLOT in Biochemistry and Molecular Biology Education

    ERIC Educational Resources Information Center

    Cooper, Scott

    2005-01-01

    The referatory, Multimedia Educational Resources for Learning and Online Teaching (MERLOT), contains links to 1300 electronic teaching resources in biology and chemistry. Approximately 20% have been peer reviewed, and most have user comments or assignments attached. In addition to being a source of educational resources, the MERLOT project seeks…

  1. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    PubMed

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  2. Molecular genetics research in ADHD: ethical considerations concerning patients' benefit and resource allocation.

    PubMed

    Rothenberger, Lillian Geza

    2012-12-01

    Immense resource allocations have led to great data output in genetic research. Concerning ADHD resources spent on genetic research are less than those spent on clinical research. But there are successful efforts made to increase support for molecular genetics research in ADHD. Concerning genetics no evidence based conclusive results have significant impact on prevention, diagnosis or treatment yet. With regard to ethical aspects like the patients' benefit and limited resources the question arises if it is indicated to think about a new balance of resource allocation between molecular genetics and non-genetics research in ADHD. An ethical reflection was performed focusing on recent genetic studies and reviews based on a selective literature search. There are plausible reasons why genetic research results in ADHD are somehow disappointing for clinical practice so far. Researchers try to overcome these gaps systematically, without knowing what the potential future benefits for the patients might be. Non-genetic diagnostic/therapeutic research may lead to clinically relevant findings within a shorter period of time. On the other hand, non-genetic research in ADHD may be nurtured by genetic approaches. But, with the latter there exist significant risks of harm like stigmatization and concerns regarding data protection. Isolated speeding up resources of genetic research in ADHD seems questionable from an ethical point of view. There is a need to find a new balance of resource allocation between genetic and non-genetic research in ADHD, probably by integrating genetics more systematically into clinical research. A transdisciplinary debate is recommended. Copyright © 2012 Wiley Periodicals, Inc.

  3. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  4. Strategies to overcome clinical, regulatory, and financial challenges in the implementation of personalized medicine.

    PubMed

    Tsimberidou, Apostolia M; Ringborg, Ulrik; Schilsky, Richard L

    2013-01-01

    This article highlights major developments over the last decade in personalized medicine in cancer. Emerging data from clinical studies demonstrate that the use of targeted agents in patients with targetable molecular aberrations improves clinical outcomes. Despite a surge of studies, however, significant gaps in knowledge remain, especially in identifying driver molecular aberrations in patients with multiple aberrations, understanding molecular networks that control carcinogenesis and metastasis, and most importantly, discovering effective targeted agents. Implementation of personalized medicine requires continued scientific and technological breakthroughs; standardization of tumor tissue acquisition and molecular testing; changes in oncology practice and regulatory standards for drug and device access and approval; modification of reimbursement policies by health care payers; and innovative ways to collect and analyze electronic patient information that are linked to prospective clinical registries and rapid learning systems. Informatics systems that integrate clinical, laboratory, radiologic, molecular, and economic data will improve clinical care and will provide infrastructure to enable clinical research. The initiative of the EurocanPlatform aims to overcome the challenges of implementing personalized medicine in Europe by sharing patients, biologic materials, and technological resources across borders. The EurocanPlatform establishes a complete translational cancer research program covering the drug development process and strengthening collaborations among academic centers, pharmaceutical companies, regulatory authorities, health technology assessment organizations, and health care systems. The CancerLinQ rapid learning system being developed by ASCO has the potential to revolutionize how all stakeholders in the cancer community assemble and use information obtained from patients treated in real-world settings to guide clinical practice, regulatory decisions, and health care payment policy.

  5. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.

    PubMed

    Kadimisetty, Karteek; Song, Jinzhao; Doto, Aoife M; Hwang, Young; Peng, Jing; Mauk, Michael G; Bushman, Frederic D; Gross, Robert; Jarvis, Joseph N; Liu, Changchun

    2018-06-30

    Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Phenotypic screening for developmental neurotoxicity ...

    EPA Pesticide Factsheets

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemicals for the potential to affect the developing brain are being explored. Typically, HTP screening uses biochemical and molecular assays to detect the interaction of a chemical with a known target or molecular initiating event (e.g., the mechanism of action). For developmental neurotoxicity, however, the mechanism(s) is often unknown. Thus, we have developed assays for detecting chemical effects on the key events of neurodevelopment at the cellular level (e.g., proliferation, differentiation, neurite growth, synaptogenesis, network formation). Cell-based assays provide a test system at a level of biological complexity that encompasses many potential neurotoxic mechanisms. For example, phenotypic assessment of neurite outgrowth at the cellular level can detect chemicals that target kinases, ion channels, or esterases at the molecular level. The results from cell-based assays can be placed in a conceptual framework using an Adverse Outcome Pathway (AOP) which links molecular, cellular, and organ level effects with apical measures of developmental neurotoxicity. Testing a wide range of concentrations allows for the distinction between selective effects on neurodevelopmental and non-specific

  7. NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data

    PubMed Central

    Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug

    2016-01-01

    The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255

  8. Public data and open source tools for multi-assay genomic investigation of disease.

    PubMed

    Kannan, Lavanya; Ramos, Marcel; Re, Angela; El-Hachem, Nehme; Safikhani, Zhaleh; Gendoo, Deena M A; Davis, Sean; Gomez-Cabrero, David; Castelo, Robert; Hansen, Kasper D; Carey, Vincent J; Morgan, Martin; Culhane, Aedín C; Haibe-Kains, Benjamin; Waldron, Levi

    2016-07-01

    Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods. © The Author 2015. Published by Oxford University Press.

  9. The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes)

    PubMed Central

    Kirchmaier, Stephan; Naruse, Kiyoshi; Wittbrodt, Joachim; Loosli, Felix

    2015-01-01

    The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system. PMID:25855651

  10. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development.

    PubMed

    Wang, Chao-Yun; Bai, Xian-Yong; Wang, Chun-Hua

    2014-01-01

    To discover and develop novel natural compounds, active ingredients, single herbs and combination formulas or prescriptions in traditional Chinese medicine (TCM) with therapeutic selectivity that can preferentially kill cancer cells and inhibit the amplification of cancer without significant toxicity is an important area in cancer therapy. A lot of valuable TCMs were applied as alternative or complementary medicines in the United States and Europe. But these TCMs, as one of the main natural resources, were widely used to research and develop new drugs in Asia. In TCMs, some specific herbs, animals, minerals and combination formulas were recorded and exploited due to their active ingredients and specific natural compounds with antitumor activities. The article focused on the antitumor properties of natural compounds and combination formulas or prescriptions in TCMs, described its influence on tumor progression, angiogenesis, metastasis, and revealed its mechanisms of antitumor and inhibitory action. Among the nature compounds, triptolide, berberine, matrine, oxymatrine, kurarinone and deoxypodophyllotoxin (DPT) with specific molecular structures have been separated, purified, and evaluated their antitumor properties in vitro and in vivo. Cancer is a multifactorial and multistep disease, so the treatment effect of combination formulas and prescriptions in TCMs involving multi-targets and multi-signal pathways on tumor may be superior than that of agents targeting a single molecular target alone. Shi Quan Da Bu Tang and Yanshu injection, as well known combination formulas and prescriptions in TCMs, have shown an excellent therapeutic effect on cancer.

  11. The Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center: A Unique Resource for Defining the “Molecular Histology” of the Breast

    PubMed Central

    Sherman, Mark E.; Figueroa, Jonine D.; Henry, Jill E.; Clare, Susan E.; Rufenbarger, Connie; Storniolo, Anna Maria

    2014-01-01

    “Molecular histology” of the breast may be conceptualized as encompassing the normative ranges of histological structure and marker expression in normal breast tissues in relation to a woman’s age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin fixed paraffin embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank’s website. PMID:22345117

  12. Implications of metal accumulation mechanisms to phytoremediation.

    PubMed

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in metal accumulator plants in Brassicaceae. The integration of resources obtained from model and wild species of the Brassicaceae family will be of utmost importance, bringing most of the diverse fields of plant biology together such as functional genomics, population genetics, phylogenetics, and ecology. Further development of phytoremediation requires an integrated multidisciplinary research effort that combines plant biology, genetic engineering, soil chemistry, soil microbiology, as well as agricultural and environmental engineering.

  13. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean

    PubMed Central

    Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.

    2017-01-01

    Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621

  14. Bringing diagnostics to developing countries: an interview with Rosanna Peeling.

    PubMed

    Peeling, Rosanna

    2015-01-01

    Interview with Professor Rosanna Peeling, PhD by Claire Raison (Commissioning Editor) Professor Rosanna Peeling is Chair of Diagnostic Research at the London School of Hygiene and Tropical Medicine (London, UK) and founded the International Diagnostics Centre at the institution. Professor Peeling previously worked for the WHO in Geneva, Switzerland, and continues to work on innovations for molecular diagnostics for point-of-care use in developing countries, addressing challenges posed by lack of funding and resources, regulatory issues and under-developed healthcare systems in these locations. Here, she discusses her career, recent progress in the field and how connectivity will affect global healthcare.

  15. RoBuST: an integrated genomics resource for the root and bulb crop families Apiaceae and Alliaceae

    PubMed Central

    2010-01-01

    Background Root and bulb vegetables (RBV) include carrots, celeriac (root celery), parsnips (Apiaceae), onions, garlic, and leek (Alliaceae)—food crops grown globally and consumed worldwide. Few data analysis platforms are currently available where data collection, annotation and integration initiatives are focused on RBV plant groups. Scientists working on RBV include breeders, geneticists, taxonomists, plant pathologists, and plant physiologists who use genomic data for a wide range of activities including the development of molecular genetic maps, delineation of taxonomic relationships, and investigation of molecular aspects of gene expression in biochemical pathways and disease responses. With genomic data coming from such diverse areas of plant science, availability of a community resource focused on these RBV data types would be of great interest to this scientific community. Description The RoBuST database has been developed to initiate a platform for collecting and organizing genomic information useful for RBV researchers. The current release of RoBuST contains genomics data for 294 Alliaceae and 816 Apiaceae plant species and has the following features: (1) comprehensive sequence annotations of 3663 genes 5959 RNAs, 22,723 ESTs and 11,438 regulatory sequence elements from Apiaceae and Alliaceae plant families; (2) graphical tools for visualization and analysis of sequence data; (3) access to traits, biosynthetic pathways, genetic linkage maps and molecular taxonomy data associated with Alliaceae and Apiaceae plants; and (4) comprehensive plant splice signal repository of 659,369 splice signals collected from 6015 plant species for comparative analysis of plant splicing patterns. Conclusions RoBuST, available at http://robust.genome.com, provides an integrated platform for researchers to effortlessly explore and analyze genomic data associated with root and bulb vegetables. PMID:20691054

  16. The supersonic molecular beam injector as a reliable tool for plasma fueling and physics experiment on HL-2A.

    PubMed

    Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R

    2016-09-01

    On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.

  17. 25 Years of Cell Cycle Research: What's Ahead?

    PubMed

    Gutierrez, Crisanto

    2016-10-01

    We have reached 25 years since the first molecular approaches to plant cell cycle. Fortunately, we have witnessed an enormous advance in this field that has benefited from using complementary approaches including molecular, cellular, genetic and genomic resources. These studies have also branched and demonstrated the functional relevance of cell cycle regulators for virtually every aspect of plant life. The question is - where are we heading? I review here the latest developments in the field and briefly elaborate on how new technological advances should contribute to novel approaches that will benefit the plant cell cycle field. Understanding how the cell division cycle is integrated at the organismal level is perhaps one of the major challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.).

    PubMed

    Raju, Nikku L; Gnanesh, Belaghihalli N; Lekha, Pazhamala; Jayashree, Balaji; Pande, Suresh; Hiremath, Pavana J; Byregowda, Munishamappa; Singh, Nagendra K; Varshney, Rajeev K

    2010-03-11

    Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (or= 5 sequences detected 102 single nucleotide polymorphisms (SNPs) in 37 contigs. As an example, a set of 10 contigs were used for confirming in silico predicted SNPs in a set of four genotypes using wet lab experiments. Occurrence of SNPs were confirmed for all the 6 contigs for which scorable and sequenceable amplicons were generated. PCR amplicons were not obtained in case of 4 contigs. Recognition sites for restriction enzymes were identified for 102 SNPs in 37 contigs that indicates possibility of assaying SNPs in 37 genes using cleaved amplified polymorphic sequences (CAPS) assay. The pigeonpea EST dataset generated here provides a transcriptomic resource for gene discovery and development of functional markers associated with biotic stress resistance. Sequence analyses of this dataset have showed conservation of a considerable number of pigeonpea transcripts across legume and model plant species analysed as well as some putative pigeonpea specific genes. Validation of identified biotic stress responsive genes should provide candidate genes for allele mining as well as candidate markers for molecular breeding.

  19. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.)

    PubMed Central

    2010-01-01

    Background Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). Results A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (≤ 1E-08). Functional categorization of the annotated unigenes sequences showed that 153 (3.3%) genes were assigned to cellular component category, 132 (2.8%) to biological process, and 132 (2.8%) in molecular function. Further, 19 genes were identified differentially expressed between FW- responsive genotypes and 20 between SMD- responsive genotypes. Generated ESTs were compiled together with 908 ESTs available in public domain, at the time of analysis, and a set of 5,085 unigenes were defined that were used for identification of molecular markers in pigeonpea. For instance, 3,583 simple sequence repeat (SSR) motifs were identified in 1,365 unigenes and 383 primer pairs were designed. Assessment of a set of 84 primer pairs on 40 elite pigeonpea lines showed polymorphism with 15 (28.8%) markers with an average of four alleles per marker and an average polymorphic information content (PIC) value of 0.40. Similarly, in silico mining of 133 contigs with ≥ 5 sequences detected 102 single nucleotide polymorphisms (SNPs) in 37 contigs. As an example, a set of 10 contigs were used for confirming in silico predicted SNPs in a set of four genotypes using wet lab experiments. Occurrence of SNPs were confirmed for all the 6 contigs for which scorable and sequenceable amplicons were generated. PCR amplicons were not obtained in case of 4 contigs. Recognition sites for restriction enzymes were identified for 102 SNPs in 37 contigs that indicates possibility of assaying SNPs in 37 genes using cleaved amplified polymorphic sequences (CAPS) assay. Conclusion The pigeonpea EST dataset generated here provides a transcriptomic resource for gene discovery and development of functional markers associated with biotic stress resistance. Sequence analyses of this dataset have showed conservation of a considerable number of pigeonpea transcripts across legume and model plant species analysed as well as some putative pigeonpea specific genes. Validation of identified biotic stress responsive genes should provide candidate genes for allele mining as well as candidate markers for molecular breeding. PMID:20222972

  20. Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective.

    PubMed

    Corot, Claire; Warlin, David

    2013-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are a relatively large class of contrast agents for magnetic resonance imaging. According to their biodistribution, distinct classes of SPIO nanoparticles have been investigated for clinical applications either as macrophage imaging agents or blood pool agents. Contrast agents which are pharmaceutics followed the same development rules as therapeutic drugs. Several drawbacks such as clinical development difficulties, organization of market access and imaging technological developments have limited the widespread use of these products. SPIO nanoparticles that are composed of thousands iron atoms providing large T2* effects are particularly suitable for theranostic. Stem cell migration and immune cell trafficking, as well as targeted SPIO nanoparticles for molecular imaging studies are mainly at the stage of proof of concept. A major economic challenge in the development of molecular imaging associated with a therapeutic treatment/procedure is to define innovative business models compatible with the needs of all players taking into account that theranostic solutions are promising to optimize resource allocation and ensure that expensive treatments are prescribed to responding patients. © 2013 Wiley Periodicals, Inc.

  1. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using Illumina shotgun sequencing.

    PubMed

    Li, Yong; Zhang, Weirui

    2015-10-01

    Microsatellite markers of Jasminum sambac (Oleaceae) were isolated to investigate wild germplasm resources and provide markers for breeding. Illumina sequencing was used to isolate microsatellite markers from the transcriptome of J. sambac. A total of 1322 microsatellites were identified from 49,772 assembled unigenes. One hundred primer pairs were randomly selected to verify primer amplification efficiency. Out of these tested primer pairs, 31 were successfully amplified: 18 primer pairs yielded a single allele, seven exhibited fixed heterozygosity with two alleles, and only six displayed polymorphisms. This study obtained the first set of microsatellite markers for J. sambac, which will be helpful for the assessment of wild germplasm resources and the development of molecular marker-assisted breeding.

  2. Optimising translational oncology in clinical practice: strategies to accelerate progress in drug development.

    PubMed

    Stahel, R; Bogaerts, J; Ciardiello, F; de Ruysscher, D; Dubsky, P; Ducreux, M; Finn, S; Laurent-Puig, P; Peters, S; Piccart, M; Smit, E; Sotiriou, C; Tejpar, S; Van Cutsem, E; Tabernero, J

    2015-02-01

    Despite intense efforts, the socioeconomic burden of cancer remains unacceptably high and treatment advances for many common cancers have been limited, suggesting a need for a new approach to drug development. One issue central to this lack of progress is the heterogeneity and genetic complexity of many tumours. This results in considerable variability in therapeutic response and requires knowledge of the molecular profile of the tumour to guide appropriate treatment selection for individual patients. While recent advances in the molecular characterisation of different cancer types have the potential to transform cancer treatment through precision medicine, such an approach presents a major economic challenge for drug development, since novel targeted agents may only be suitable for a small cohort of patients. Identifying the patients who would benefit from individual therapies and recruiting sufficient numbers of patients with particular cancer subtypes into clinical trials is challenging, and will require collaborative efforts from research groups and industry in order to accelerate progress. A number of molecular screening platforms have already been initiated across Europe, and it is hoped that these networks, along with future collaborations, will benefit not only patients but also society through cost reductions as a result of more efficient use of resources. This review discusses how current developments in translational oncology may be applied in clinical practice in the future, assesses current programmes for the molecular characterisation of cancer and describes possible collaborative approaches designed to maximise the benefits of translational science for patients with cancer. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Small Talk: Children's Everyday `Molecule' Ideas

    NASA Astrophysics Data System (ADS)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  4. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.

  5. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    PubMed

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  6. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters

    PubMed Central

    2017-01-01

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring. PMID:28541661

  7. Molecular Study of the Amazonian Macabea Cattle History.

    PubMed

    Vargas, Julio; Landi, Vincenzo; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente

    2016-01-01

    Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed.

  8. Molecular Study of the Amazonian Macabea Cattle History

    PubMed Central

    Vargas, Julio; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente

    2016-01-01

    Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed. PMID:27776178

  9. Drug interactions evaluation: An integrated part of risk assessment of therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping

    2010-03-01

    Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industrymore » and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.« less

  10. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    NASA Astrophysics Data System (ADS)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; Stuehn, Torsten

    2017-11-01

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.

  11. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Yakovenko, Oleksandr; Jones, Steven J. M.

    2018-01-01

    We report the implementation of molecular modeling approaches developed as a part of the 2016 Grand Challenge 2, the blinded competition of computer aided drug design technologies held by the D3R Drug Design Data Resource (https://drugdesigndata.org/). The challenge was focused on the ligands of the farnesoid X receptor (FXR), a highly flexible nuclear receptor of the cholesterol derivative chenodeoxycholic acid. FXR is considered an important therapeutic target for metabolic, inflammatory, bowel and obesity related diseases (Expert Opin Drug Metab Toxicol 4:523-532, 2015), but in the context of this competition it is also interesting due to the significant ligand-induced conformational changes displayed by the protein. To deal with these conformational changes we employed multiple simulations of molecular dynamics (MD). Our MD-based protocols were top-ranked in estimating the free energy of binding of the ligands and FXR protein. Our approach was ranked second in the prediction of the binding poses where we also combined MD with molecular docking and artificial neural networks. Our approach showed mediocre results for high-throughput scoring of interactions.

  12. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in

    2016-03-14

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H{sub 2}O){sub n} (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculationmore » MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%–65% saving of computational time. The methodology has a potential for application to molecular clusters containing ∼100 atoms.« less

  13. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  14. Impact of Professional Learning on Teachers' Representational Strategies and Students' Cognitive Engagement with Molecular Genetics Concepts

    ERIC Educational Resources Information Center

    Nichols, Kim

    2018-01-01

    A variety of practices and specialised representational systems are required to understand, communicate and construct molecular genetics knowledge. This study describes teachers' use of multimodal representations of molecular genetics concepts and how their strategies and choice of resources were interpreted, understood and used by students to…

  15. Hierarchical approaches for systems modeling in cardiac development.

    PubMed

    Gould, Russell A; Aboulmouna, Lina M; Varner, Jeffrey D; Butcher, Jonathan T

    2013-01-01

    Ordered cardiac morphogenesis and function are essential for all vertebrate life. The heart begins as a simple contractile tube, but quickly grows and morphs into a multichambered pumping organ complete with valves, while maintaining regulation of blood flow and nutrient distribution. Though not identical, cardiac morphogenesis shares many molecular and morphological processes across vertebrate species. Quantitative data across multiple time and length scales have been gathered through decades of reductionist single variable analyses. These range from detailed molecular signaling pathways at the cellular levels to cardiac function at the tissue/organ levels. However, none of these components act in true isolation from others, and each, in turn, exhibits short- and long-range effects in both time and space. With the absence of a gene, entire signaling cascades and genetic profiles may be shifted, resulting in complex feedback mechanisms. Also taking into account local microenvironmental changes throughout development, it is apparent that a systems level approach is an essential resource to accelerate information generation concerning the functional relationships across multiple length scales (molecular data vs physiological function) and structural development. In this review, we discuss relevant in vivo and in vitro experimental approaches, compare different computational frameworks for systems modeling, and the latest information about systems modeling of cardiac development. Finally, we conclude with some important future directions for cardiac systems modeling. Copyright © 2013 Wiley Periodicals, Inc.

  16. Doubled Haploid ‘CUDH2107’ as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility

    PubMed Central

    Khosa, Jiffinvir S.; Lee, Robyn; Bräuning, Sophia; Lord, Janice; Pither-Joyce, Meeghan; McCallum, John; Macknight, Richard C.

    2016-01-01

    Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits. PMID:27861615

  17. Molecular markers: a potential resource for ginger genetic diversity studies.

    PubMed

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  18. The landscape for epigenetic/epigenomic biomedical resources

    PubMed Central

    Shakya, Kabita; O'Connell, Mary J.; Ruskin, Heather J.

    2012-01-01

    Recent advances in molecular biology and computational power have seen the biomedical sector enter a new era, with corresponding development of Bioinformatics as a major discipline. Generation of enormous amounts of data has driven the need for more advanced storage solutions and shared access through a range of public repositories. The number of such biomedical resources is increasing constantly and mining these large and diverse data sets continues to present real challenges. This paper attempts a general overview of currently available resources, together with remarks on their data mining and analysis capabilities. Of interest here is the recent shift in focus from genetic to epigenetic/epigenomic research and the emergence and extension of resource provision to support this both at local and global scale. Biomedical text and numerical data mining are both considered, the first dealing with automated methods for analyzing research content and information extraction, and the second (broadly) with pattern recognition and prediction. Any summary and selection of resources is inherently limited, given the spectrum available, but the aim is to provide a guideline for the assessment and comparison of currently available provision, particularly as this relates to epigenetics/epigenomics. PMID:22874136

  19. LungMAP: The Molecular Atlas of Lung Development Program

    PubMed Central

    Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam

    2017-01-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251

  20. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection.

    PubMed

    Rosser, A; Rollinson, D; Forrest, M; Webster, B L

    2015-09-04

    Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources. Here a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30-45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5% of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms. The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.

  1. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  2. [Essentials of pharmacophylogeny: knowledge pedigree, epistemology and paradigm shift].

    PubMed

    Hao, Da-cheng; Xiao, Pei-gen; Liu, Li-wei; Peng, Yong; He, Chun-nian

    2015-09-01

    Chinese materia medica resource (CMM resource) is the foundation of the development of traditional Chinese medicine. In the study of sustainable utilization of CMM resource, adopting innovative theory and method to find new CMM resource is one of hotspots and always highlighted. Pharmacophylogeny interrogates the phylogenetic relationship of medicinal organisms (especially medicinal plants), as well as the intrinsic correlation of morphological taxonomy, molecular phylogeny, chemical constituents, and therapeutic efficacy (ethnopharmacology and pharmacological activity). This new discipline may have the power to change the way we utilize medicinal plant resources and develop plant-based drugs. Phylogenomics is the crossing of evolutionary biology and genomics, in which genome data are utilized for evolutionary reconstructions. Phylogenomics can be integrated into the flow chart of drug discovery and development, and extends the field of pharmacophylogeny at the omic level, thus the concept of pharmacophylogenomics could be redefined in the context of plant pharmaceutical resources. This contribution gives a brief discourse of knowledge pedigree of pharmacophylogeny, epistemology and paradigm shift, highlighting the theoretical and practical values of pharmacophylogenomics. Many medicinally important tribes and genera, such as Clematis, Pulsatilla, Anemone, Cimicifugeae, Nigella, Delphinieae, Adonideae, Aquilegia, Thalictrum, and Coptis, belong to Ranunculaceae family. Compared to other plant families, Ranunculaceae has the most species that are recorded in China Pharmacopoeia (CP) 2010. However, many Ranunculaceae species, e. g., those that are closely related to CP species, as well as those endemic to China, have not been investigated in depth, and their phylogenetic relationship and potential in medicinal use remain elusive. As such, it is proposed to select Ranunculaceae to exemplify the utility of pharmacophylogenomics and to elaborate the new concept empirically. It is argued that phylogenetic and evolutionary relationship of medicinally important tribes and genera within Ranunculaceae could be elucidated at the genomic, transcriptomic, and metabolomic levels, from which the intrinsic correlation between medicinal plant genotype and metabolic phenotype, and between genetic diversity and chemodivesity of closely related taxa, could be revealed. This proof-of-concept study regards pharmacophylogenomics as the updated version of pharmacophylogeny and would enrich the intension and spread the extension of pharmacophylogeny. The interdisciplinary knowledge and techniques will be integrated in the proposed study to promote development of CMM resource discipline and to boost sustainable development of Chinese medicinal plant resources.

  3. Social molecular pathways and the evolution of bee societies

    PubMed Central

    Bloch, Guy; Grozinger, Christina M.

    2011-01-01

    Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132

  4. Houston Methodist Variant Viewer: An Application to Support Clinical Laboratory Interpretation of Next-generation Sequencing Data for Cancer

    PubMed Central

    Christensen, Paul A.; Ni, Yunyun; Bao, Feifei; Hendrickson, Heather L.; Greenwood, Michael; Thomas, Jessica S.; Long, S. Wesley; Olsen, Randall J.

    2017-01-01

    Introduction: Next-generation-sequencing (NGS) is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV). HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community. PMID:29226007

  5. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    PubMed Central

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  6. DNA methylation data analysis and its application to cancer research

    PubMed Central

    Ma, Xiaotu; Wang, Yi-Wei; Zhang, Michael Q; Gazdar, Adi F

    2013-01-01

    With the rapid development of genome-wide high-throughput technologies, including expression arrays, SNP arrays and next-generation sequencing platforms, enormous amounts of molecular data have been generated and deposited in the public domain. The application of computational approaches is required to yield biological insights from this enormous, ever-growing resource. A particularly interesting subset of these resources is related to epigenetic regulation, with DNA methylation being the most abundant data type. In this paper, we will focus on the analysis of DNA methylation data and its application to cancer studies. We first briefly review the molecular techniques that generate such data, much of which has been obtained with the use of the most recent version of Infinium HumanMethylation450 BeadChip® technology (Illumina, CA, USA). We describe the coverage of the methylome by this technique. Several examples of data mining are provided. However, it should be understood that reliance on a single aspect of epigenetics has its limitations. In the not too distant future, these defects may be rectified, providing scientists with previously unavailable opportunities to explore in detail the role of epigenetics in cancer and other disease states. PMID:23750645

  7. TISSUES 2.0: an integrative web resource on mammalian tissue expression

    PubMed Central

    Palasca, Oana; Santos, Alberto; Stolte, Christian; Gorodkin, Jan; Jensen, Lars Juhl

    2018-01-01

    Abstract Physiological and molecular similarities between organisms make it possible to translate findings from simpler experimental systems—model organisms—into more complex ones, such as human. This translation facilitates the understanding of biological processes under normal or disease conditions. Researchers aiming to identify the similarities and differences between organisms at the molecular level need resources collecting multi-organism tissue expression data. We have developed a database of gene–tissue associations in human, mouse, rat and pig by integrating multiple sources of evidence: transcriptomics covering all four species and proteomics (human only), manually curated and mined from the scientific literature. Through a scoring scheme, these associations are made comparable across all sources of evidence and across organisms. Furthermore, the scoring produces a confidence score assigned to each of the associations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the agreement between datasets, across and within organisms, and identified that the agreement is mainly affected by the quality of the datasets rather than by the technologies used or organisms compared. Database URL: http://tissues.jensenlab.org/ PMID:29617745

  8. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  9. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2017-12-09

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  10. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  11. Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards.

    PubMed

    Tollis, Marc; Hutchins, Elizabeth D; Stapley, Jessica; Rupp, Shawn M; Eckalbar, Walter L; Maayan, Inbar; Lasku, Eris; Infante, Carlos R; Dennis, Stuart R; Robertson, Joel A; May, Catherine M; Crusoe, Michael R; Bermingham, Eldredge; DeNardo, Dale F; Hsieh, Shi-Tong Tonia; Kulathinal, Rob J; McMillan, William Owen; Menke, Douglas B; Pratt, Stephen C; Rawls, Jeffery Alan; Sanjur, Oris; Wilson-Rawls, Jeanne; Wilson Sayres, Melissa A; Fisher, Rebecca E; Kusumi, Kenro

    2018-02-01

    Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species-Anolis frenatus, Anolis auratus, and Anolis apletophallus-for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Accelerating the Development and Validation of New Value-Based Diagnostics by Leveraging Biobanks.

    PubMed

    Schneider, Daniel; Riegman, Peter H J; Cronin, Maureen; Negrouk, Anastassia; Moch, Holger; Balling, Rudi; Penault-Llorca, Frederiques; Zatloukal, Kurt; Horgan, Denis

    The challenges faced in developing value-based diagnostics has resulted in few of these tests reaching the clinic, leaving many treatment modalities without matching diagnostics to select patients for particular therapies. Many patients receive therapies from which they are unlikely to benefit, resulting in worse outcomes and wasted health care resources. The paucity of value-based diagnostics is a result of the scientific challenges in developing predictive markers, specifically: (1) complex biology, (2) a limited research infrastructure supporting diagnostic development, and (3) the lack of incentives for diagnostic developers to invest the necessary resources. Better access to biospecimens can address some of these challenges. Methodologies developed to evaluate biomarkers from biospecimens archived from patients enrolled in randomized clinical trials offer the greatest opportunity to develop and validate high-value molecular diagnostics. An alternative opportunity is to access high-quality biospecimens collected from large public and private longitudinal observational cohorts such as the UK Biobank, the US Million Veteran Program, the UK 100,000 Genomes Project, or the French E3N cohort. Value-based diagnostics can be developed to work in a range of samples including blood, serum, plasma, urine, and tumour tissue, and better access to these high-quality biospecimens with clinical data can facilitate biomarker research. © 2016 S. Karger AG, Basel.

  13. Access and use of the GUDMAP database of genitourinary development.

    PubMed

    Davies, Jamie A; Little, Melissa H; Aronow, Bruce; Armstrong, Jane; Brennan, Jane; Lloyd-MacGilp, Sue; Armit, Chris; Harding, Simon; Piu, Xinjun; Roochun, Yogmatee; Haggarty, Bernard; Houghton, Derek; Davidson, Duncan; Baldock, Richard

    2012-01-01

    The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.

  14. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  15. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes.

    PubMed

    You, Xinxin; Bian, Chao; Zan, Qijie; Xu, Xun; Liu, Xin; Chen, Jieming; Wang, Jintu; Qiu, Ying; Li, Wujiao; Zhang, Xinhui; Sun, Ying; Chen, Shixi; Hong, Wanshu; Li, Yuxiang; Cheng, Shifeng; Fan, Guangyi; Shi, Chengcheng; Liang, Jie; Tom Tang, Y; Yang, Chengye; Ruan, Zhiqiang; Bai, Jie; Peng, Chao; Mu, Qian; Lu, Jun; Fan, Mingjun; Yang, Shuang; Huang, Zhiyong; Jiang, Xuanting; Fang, Xiaodong; Zhang, Guojie; Zhang, Yong; Polgar, Gianluca; Yu, Hui; Li, Jia; Liu, Zhongjian; Zhang, Guoqiang; Ravi, Vydianathan; Coon, Steven L; Wang, Jian; Yang, Huanming; Venkatesh, Byrappa; Wang, Jun; Shi, Qiong

    2014-12-02

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers' tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates.

  16. Information resources at the National Center for Biotechnology Information.

    PubMed Central

    Woodsmall, R M; Benson, D A

    1993-01-01

    The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, was established in 1988 to perform basic research in the field of computational molecular biology as well as build and distribute molecular biology databases. The basic research has led to new algorithms and analysis tools for interpreting genomic data and has been instrumental in the discovery of human disease genes for neurofibromatosis and Kallmann syndrome. The principal database responsibility is the National Institutes of Health (NIH) genetic sequence database, GenBank. NCBI, in collaboration with international partners, builds, distributes, and provides online and CD-ROM access to over 112,000 DNA sequences. Another major program is the integration of multiple sequences databases and related bibliographic information and the development of network-based retrieval systems for Internet access. PMID:8374583

  17. Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness

    PubMed Central

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L.; He, Sheng Yang

    2014-01-01

    Growth–defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth–defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth–defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth–defense balance to maximize crop yield to meet rising global food and biofuel demands. PMID:24777989

  18. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings.

    PubMed

    Britton, Sumudu; Cheng, Qin; McCarthy, James S

    2016-02-16

    As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.

  19. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.

    PubMed

    Gasser, Christoph A; Čvančarová, Monika; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2017-03-01

    Lignin, a complex three-dimensional amorphous polymer, is considered to be a potential natural renewable resource for the production of low-molecular-weight aromatic compounds. In the present study, a novel sequential lignin treatment method consisting of a biocatalytic oxidation step followed by a formic acid-induced lignin depolymerization step was developed and optimized using response surface methodology. The biocatalytic step employed a laccase mediator system using the redox mediator 1-hydroxybenzotriazole. Laccases were immobilized on superparamagnetic nanoparticles using a sorption-assisted surface conjugation method allowing easy separation and reuse of the biocatalysts after treatment. Under optimized conditions, as much as 45 wt% of lignin could be solubilized either in aqueous solution after the first treatment or in ethyl acetate after the second (chemical) treatment. The solubilized products were found to be mainly low-molecular-weight aromatic monomers and oligomers. The process might be used for the production of low-molecular-weight soluble aromatic products that can be purified and/or upgraded applying further downstream processes.

  20. Overview and challenges of molecular technologies in the veterinary microbiology laboratory.

    PubMed

    Cunha, Mónica V; Inácio, João

    2015-01-01

    Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes. Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to "secure" biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.

  1. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    PubMed

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  3. Bioinformatics Goes to School—New Avenues for Teaching Contemporary Biology

    PubMed Central

    Wood, Louisa; Gebhardt, Philipp

    2013-01-01

    Since 2010, the European Molecular Biology Laboratory's (EMBL) Heidelberg laboratory and the European Bioinformatics Institute (EMBL-EBI) have jointly run bioinformatics training courses developed specifically for secondary school science teachers within Europe and EMBL member states. These courses focus on introducing bioinformatics, databases, and data-intensive biology, allowing participants to explore resources and providing classroom-ready materials to support them in sharing this new knowledge with their students. In this article, we chart our progress made in creating and running three bioinformatics training courses, including how the course resources are received by participants and how these, and bioinformatics in general, are subsequently used in the classroom. We assess the strengths and challenges of our approach, and share what we have learned through our interactions with European science teachers. PMID:23785266

  4. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using Illumina shotgun sequencing1

    PubMed Central

    Li, Yong; Zhang, Weirui

    2015-01-01

    Premise of the study: Microsatellite markers of Jasminum sambac (Oleaceae) were isolated to investigate wild germplasm resources and provide markers for breeding. Methods and Results: Illumina sequencing was used to isolate microsatellite markers from the transcriptome of J. sambac. A total of 1322 microsatellites were identified from 49,772 assembled unigenes. One hundred primer pairs were randomly selected to verify primer amplification efficiency. Out of these tested primer pairs, 31 were successfully amplified: 18 primer pairs yielded a single allele, seven exhibited fixed heterozygosity with two alleles, and only six displayed polymorphisms. Conclusions: This study obtained the first set of microsatellite markers for J. sambac, which will be helpful for the assessment of wild germplasm resources and the development of molecular marker–assisted breeding. PMID:26504683

  5. Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions

    PubMed Central

    Mochida, Keiichi; Shinozaki, Kazuo

    2011-01-01

    Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances. PMID:22156726

  6. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.

    PubMed

    Varshney, Rajeev K; Song, Chi; Saxena, Rachit K; Azam, Sarwar; Yu, Sheng; Sharpe, Andrew G; Cannon, Steven; Baek, Jongmin; Rosen, Benjamin D; Tar'an, Bunyamin; Millan, Teresa; Zhang, Xudong; Ramsay, Larissa D; Iwata, Aiko; Wang, Ying; Nelson, William; Farmer, Andrew D; Gaur, Pooran M; Soderlund, Carol; Penmetsa, R Varma; Xu, Chunyan; Bharti, Arvind K; He, Weiming; Winter, Peter; Zhao, Shancen; Hane, James K; Carrasquilla-Garcia, Noelia; Condie, Janet A; Upadhyaya, Hari D; Luo, Ming-Cheng; Thudi, Mahendar; Gowda, C L L; Singh, Narendra P; Lichtenzveig, Judith; Gali, Krishna K; Rubio, Josefa; Nadarajan, N; Dolezel, Jaroslav; Bansal, Kailash C; Xu, Xun; Edwards, David; Zhang, Gengyun; Kahl, Guenter; Gil, Juan; Singh, Karam B; Datta, Swapan K; Jackson, Scott A; Wang, Jun; Cook, Douglas R

    2013-03-01

    Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea--desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.

  7. Workflow Management Systems for Molecular Dynamics on Leadership Computers

    NASA Astrophysics Data System (ADS)

    Wells, Jack; Panitkin, Sergey; Oleynik, Danila; Jha, Shantenu

    Molecular Dynamics (MD) simulations play an important role in a range of disciplines from Material Science to Biophysical systems and account for a large fraction of cycles consumed on computing resources. Increasingly science problems require the successful execution of ''many'' MD simulations as opposed to a single MD simulation. There is a need to provide scalable and flexible approaches to the execution of the workload. We present preliminary results on the Titan computer at the Oak Ridge Leadership Computing Facility that demonstrate a general capability to manage workload execution agnostic of a specific MD simulation kernel or execution pattern, and in a manner that integrates disparate grid-based and supercomputing resources. Our results build upon our extensive experience of distributed workload management in the high-energy physics ATLAS project using PanDA (Production and Distributed Analysis System), coupled with recent conceptual advances in our understanding of workload management on heterogeneous resources. We will discuss how we will generalize these initial capabilities towards a more production level service on DOE leadership resources. This research is sponsored by US DOE/ASCR and used resources of the OLCF computing facility.

  8. CerealsDB 3.0: expansion of resources and data integration.

    PubMed

    Wilkinson, Paul A; Winfield, Mark O; Barker, Gary L A; Tyrrell, Simon; Bian, Xingdong; Allen, Alexandra M; Burridge, Amanda; Coghill, Jane A; Waterfall, Christy; Caccamo, Mario; Davey, Robert P; Edwards, Keith J

    2016-06-24

    The increase in human populations around the world has put pressure on resources, and as a consequence food security has become an important challenge for the 21st century. Wheat (Triticum aestivum) is one of the most important crops in human and livestock diets, and the development of wheat varieties that produce higher yields, combined with increased resistance to pests and resilience to changes in climate, has meant that wheat breeding has become an important focus of scientific research. In an attempt to facilitate these improvements in wheat, plant breeders have employed molecular tools to help them identify genes for important agronomic traits that can be bred into new varieties. Modern molecular techniques have ensured that the rapid and inexpensive characterisation of SNP markers and their validation with modern genotyping methods has produced a valuable resource that can be used in marker assisted selection. CerealsDB was created as a means of quickly disseminating this information to breeders and researchers around the globe. CerealsDB version 3.0 is an online resource that contains a wide range of genomic datasets for wheat that will assist plant breeders and scientists to select the most appropriate markers for use in marker assisted selection. CerealsDB includes a database which currently contains in excess of a million putative varietal SNPs, of which several hundreds of thousands have been experimentally validated. In addition, CerealsDB also contains new data on functional SNPs predicted to have a major effect on protein function and we have constructed a web service to encourage data integration and high-throughput programmatic access. CerealsDB is an open access website that hosts information on SNPs that are considered useful for both plant breeders and research scientists. The recent inclusion of web services designed to federate genomic data resources allows the information on CerealsDB to be more fully integrated with the WheatIS network and other biological databases.

  9. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  10. Transcriptomic Analysis of Flower Blooming in Jasminum sambac through De Novo RNA Sequencing.

    PubMed

    Li, Yong-Hua; Zhang, Wei; Li, Yong

    2015-06-10

    Flower blooming is a critical and complicated plant developmental process in flowering plants. However, insufficient information is available about the complex network that regulates flower blooming in Jasminum sambac. In this study, we used the RNA-Seq platform to analyze the molecular regulation of flower blooming in J. sambac by comparing the transcript profiles at two flower developmental stages: budding and blooming. A total of 4577 differentially-expressed genes (DEGs) were identified between the two floral stages. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DEGs in the "oxidation-reduction process", "extracellular region", "steroid biosynthesis", "glycosphingolipid biosynthesis", "plant hormone signal transduction" and "pentose and glucuronate interconversions" might be associated with flower development. A total of 103 and 92 unigenes exhibited sequence similarities to the known flower development and floral scent genes from other plants. Among these unigenes, five flower development and 19 floral scent unigenes exhibited at least four-fold differences in expression between the two stages. Our results provide abundant genetic resources for studying the flower blooming mechanisms and molecular breeding of J. sambac.

  11. Establishing an academic biobank in a resource-challenged environment.

    PubMed

    Soo, Cassandra Claire; Mukomana, Freedom; Hazelhurst, Scott; Ramsay, Michele

    2017-05-24

    Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability.

  12. Establishing an academic biobank in a resource-challenged environment

    PubMed Central

    Soo, C C; Mukomana, F; Hazelhurst, S; Ramsay, M

    2018-01-01

    Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability. PMID:28604319

  13. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics.

    PubMed

    Choi, Jane Ru; Tang, Ruihua; Wang, ShuQi; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2015-12-15

    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. DNA microarray technology in nutraceutical and food safety.

    PubMed

    Liu-Stratton, Yiwen; Roy, Sashwati; Sen, Chandan K

    2004-04-15

    The quality and quantity of diet is a key determinant of health and disease. Molecular diagnostics may play a key role in food safety related to genetically modified foods, food-borne pathogens and novel nutraceuticals. Functional outcomes in biology are determined, for the most part, by net balance between sets of genes related to the specific outcome in question. The DNA microarray technology offers a new dimension of strength in molecular diagnostics by permitting the simultaneous analysis of large sets of genes. Automation of assay and novel bioinformatics tools make DNA microarrays a robust technology for diagnostics. Since its development a few years ago, this technology has been used for the applications of toxicogenomics, pharmacogenomics, cell biology, and clinical investigations addressing the prevention and intervention of diseases. Optimization of this technology to specifically address food safety is a vast resource that remains to be mined. Efforts to develop diagnostic custom arrays and simplified bioinformatics tools for field use are warranted.

  15. Computer-aided applications of nanoscale smart materials for biomedical applications.

    PubMed

    Rakesh, L; Howell, B A; Chai, M; Mueller, A; Kujawski, M; Fan, D; Ravi, S; Slominski, C

    2008-10-01

    Nanotechnology has the potential to impact the treatment of many diseases that currently plague society: cancer, AIDS, dementia of various kinds and so on. Nanoscale smart materials, such as carbon nanotubes, C(60), dendrimers and cyclodextrins, hold great promise for use in the development of better diagnostics, drug delivery and the alteration of biological function. Although experimentation is being used to explore the potential offered by these materials, it is by its very nature expensive in terms of time, resources and expertise. Insight with respect to the behavior of these materials in the presence of biological entities can be obtained much more rapidly by molecular dynamics simulation. Furthermore, the results of simulation may be used to guide experimentation so that it is much more productive than it might be in the absence of such information. The interactions of several nanoscale structures with biological macromolecules can already be probed effectively using molecular dynamics simulation. The results obtained should form the basis for significant new developments in the treatment of disease.

  16. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill).

    PubMed

    Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan

    2016-01-01

    Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.

  17. The UCSC genome browser: what every molecular biologist should know.

    PubMed

    Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C

    2009-10-01

    Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one's understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser.

  18. Modular Laboratories—Cost-Effective and Sustainable Infrastructure for Resource-Limited Settings

    PubMed Central

    Bridges, Daniel J.; Colborn, James; Chan, Adeline S. T.; Winters, Anna M.; Dengala, Dereje; Fornadel, Christen M.; Kosloff, Barry

    2014-01-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. PMID:25223943

  19. Ligand-directed profiling of organelles with internalizing phage libraries

    PubMed Central

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  20. Evaluation of a grid based molecular dynamics approach for polypeptide simulations.

    PubMed

    Merelli, Ivan; Morra, Giulia; Milanesi, Luciano

    2007-09-01

    Molecular dynamics is very important for biomedical research because it makes possible simulation of the behavior of a biological macromolecule in silico. However, molecular dynamics is computationally rather expensive: the simulation of some nanoseconds of dynamics for a large macromolecule such as a protein takes very long time, due to the high number of operations that are needed for solving the Newton's equations in the case of a system of thousands of atoms. In order to obtain biologically significant data, it is desirable to use high-performance computation resources to perform these simulations. Recently, a distributed computing approach based on replacing a single long simulation with many independent short trajectories has been introduced, which in many cases provides valuable results. This study concerns the development of an infrastructure to run molecular dynamics simulations on a grid platform in a distributed way. The implemented software allows the parallel submission of different simulations that are singularly short but together bring important biological information. Moreover, each simulation is divided into a chain of jobs to avoid data loss in case of system failure and to contain the dimension of each data transfer from the grid. The results confirm that the distributed approach on grid computing is particularly suitable for molecular dynamics simulations thanks to the elevated scalability.

  1. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    PubMed

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  2. Exploring Global Exposure Factors Resources URLs

    EPA Pesticide Factsheets

    The dataset is a compilation of hyperlinks (URLs) for resources (databases, compendia, published articles, etc.) useful for exposure assessment specific to consumer product use.This dataset is associated with the following publication:Zaleski, R., P. Egeghy, and P. Hakkinen. Exploring Global Exposure Factors Resources for Use in Consumer Exposure Assessments. International Journal of Environmental Research and Public Health. Molecular Diversity Preservation International, Basel, SWITZERLAND, 13(7): 744, (2016).

  3. LungMAP: The Molecular Atlas of Lung Development Program.

    PubMed

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  4. Man’s best friend: what can pet dogs teach us about non-Hodgkin lymphoma?

    PubMed Central

    Richards, Kristy L.; Suter, Steven E.

    2014-01-01

    Summary Animal models are essential for understanding lymphoma biology and testing new treatments prior to human studies. Spontaneously arising lymphomas in pet dogs represent an underutilized resource that could be used to complement current mouse lymphoma models, which do not adequately represent all aspects of the human disease. Canine lymphoma resembles human lymphoma in many important ways, including characteristic translocations and molecular abnormalities and similar therapeutic responses to chemotherapy, radiation, and newer targeted therapies (e.g. ibrutinib). Given the large number of pet dogs and high incidence of lymphoma, particularly in susceptible breeds, dogs represent a largely untapped resource for advancing the understanding and treatment of human lymphoma. This review highlights similarities in molecular biology, diagnosis, treatment, and outcomes between human and canine lymphoma. It also describes resources that are currently available to study canine lymphoma, advantages to be gained by exploiting the genetic breed structure in dogs, and current and future challenges and opportunities to take full advantage of this resource for lymphoma studies. PMID:25510277

  5. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers

    PubMed Central

    2010-01-01

    Background Expressed Sequence Tag (EST) has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants. Results In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST) sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047), among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs) in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65%) and low in the peach (46%), and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species. Conclusions We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species. PMID:20626882

  6. De novo Transcriptome Analysis of Miscanthus lutarioriparius Identifies Candidate Genes in Rhizome Development

    PubMed Central

    Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke

    2017-01-01

    HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913

  7. Preservation of Fine-Needle Aspiration Specimens for Future Use in RNA-Based Molecular Testing

    PubMed Central

    Ladd, Amy C.; O'Sullivan-Mejia, Emerald; Lea, Tasha; Perry, Jessica; Dumur, Catherine I.; Dragoescu, Ema; Garrett, Carleton T.; Powers, Celeste N.

    2015-01-01

    Background The application of ancillary molecular testing is becoming more important for the diagnosis and classification of disease. The use of fine-needle aspiration (FNA) biopsy as the means of sampling tumors in conjunction with molecular testing could be a powerful combination. FNA is minimally invasive, cost effective, and usually demonstrates accuracy comparable to diagnoses based on excisional biopsies. Quality control (QC) and test validation requirements for development of molecular tests impose a need for access to pre-existing clinical samples. Tissue banking of excisional biopsy specimens is frequently performed at large research institutions, but few have developed protocols for preservation of cytologic specimens. This study aimed to evaluate cryopreservation of FNA specimens as a method of maintaining cellular morphology and ribonucleic acid (RNA) integrity in banked tissues. Methods FNA specimens were obtained from fresh tumor resections, processed by using a cryopreservation protocol, and stored for up to 27 weeks. Upon retrieval, samples were made into slides for morphological evaluation, and RNA was extracted and assessed for integrity by using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif). Results Cryopreserved specimens showed good cell morphology and, in many cases, yielded intact RNA. Cases showing moderate or severe RNA degradation could generally be associated with prolonged specimen handling or sampling of necrotic areas. Conclusions FNA specimens can be stored in a manner that maintains cellular morphology and RNA integrity necessary for studies of gene expression. In addition to addressing quality control (QC) and test validation needs, cytology banks will be an invaluable resource for future molecular morphologic and diagnostic research studies. PMID:21287691

  8. Aluminum stress signaling in plants

    PubMed Central

    Baluska, Frantisek; Matsumoto, Hideaki

    2009-01-01

    Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology. PMID:19820334

  9. Oral cancer databases: A comprehensive review.

    PubMed

    Sarode, Gargi S; Sarode, Sachin C; Maniyar, Nikunj; Anand, Rahul; Patil, Shankargouda

    2017-11-29

    Cancer database is a systematic collection and analysis of information on various human cancers at genomic and molecular level that can be utilized to understand various steps in carcinogenesis and for therapeutic advancement in cancer field. Oral cancer is one of the leading causes of morbidity and mortality all over the world. The current research efforts in this field are aimed at cancer etiology and therapy. Advanced genomic technologies including microarrays, proteomics, transcrpitomics, and gene sequencing development have culminated in generation of extensive data and subjection of several genes and microRNAs that are distinctively expressed and this information is stored in the form of various databases. Extensive data from various resources have brought the need for collaboration and data sharing to make effective use of this new knowledge. The current review provides comprehensive information of various publicly accessible databases that contain information pertinent to oral squamous cell carcinoma (OSCC) and databases designed exclusively for OSCC. The databases discussed in this paper are Protein-Coding Gene Databases and microRNA Databases. This paper also describes gene overlap in various databases, which will help researchers to reduce redundancy and focus on only those genes, which are common to more than one databases. We hope such introduction will promote awareness and facilitate the usage of these resources in the cancer research community, and researchers can explore the molecular mechanisms involved in the development of cancer, which can help in subsequent crafting of therapeutic strategies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. BioM2MetDisease: a manually curated database for associations between microRNAs, metabolites, small molecules and metabolic diseases

    PubMed Central

    Xu, Yanjun; Yang, Haixiu; Wu, Tan; Dong, Qun; Sun, Zeguo; Shang, Desi; Li, Feng; Xu, Yingqi; Su, Fei; Liu, Siyao

    2017-01-01

    Abstract BioM2MetDisease is a manually curated database that aims to provide a comprehensive and experimentally supported resource of associations between metabolic diseases and various biomolecules. Recently, metabolic diseases such as diabetes have become one of the leading threats to people’s health. Metabolic disease associated with alterations of multiple types of biomolecules such as miRNAs and metabolites. An integrated and high-quality data source that collection of metabolic disease associated biomolecules is essential for exploring the underlying molecular mechanisms and discovering novel therapeutics. Here, we developed the BioM2MetDisease database, which currently documents 2681 entries of relationships between 1147 biomolecules (miRNAs, metabolites and small molecules/drugs) and 78 metabolic diseases across 14 species. Each entry includes biomolecule category, species, biomolecule name, disease name, dysregulation pattern, experimental technique, a brief description of metabolic disease-biomolecule relationships, the reference, additional annotation information etc. BioM2MetDisease provides a user-friendly interface to explore and retrieve all data conveniently. A submission page was also offered for researchers to submit new associations between biomolecules and metabolic diseases. BioM2MetDisease provides a comprehensive resource for studying biology molecules act in metabolic diseases, and it is helpful for understanding the molecular mechanisms and developing novel therapeutics for metabolic diseases. Database URL: http://www.bio-bigdata.com/BioM2MetDisease/ PMID:28605773

  11. BioM2MetDisease: a manually curated database for associations between microRNAs, metabolites, small molecules and metabolic diseases.

    PubMed

    Xu, Yanjun; Yang, Haixiu; Wu, Tan; Dong, Qun; Sun, Zeguo; Shang, Desi; Li, Feng; Xu, Yingqi; Su, Fei; Liu, Siyao; Zhang, Yunpeng; Li, Xia

    2017-01-01

    BioM2MetDisease is a manually curated database that aims to provide a comprehensive and experimentally supported resource of associations between metabolic diseases and various biomolecules. Recently, metabolic diseases such as diabetes have become one of the leading threats to people’s health. Metabolic disease associated with alterations of multiple types of biomolecules such as miRNAs and metabolites. An integrated and high-quality data source that collection of metabolic disease associated biomolecules is essential for exploring the underlying molecular mechanisms and discovering novel therapeutics. Here, we developed the BioM2MetDisease database, which currently documents 2681 entries of relationships between 1147 biomolecules (miRNAs, metabolites and small molecules/drugs) and 78 metabolic diseases across 14 species. Each entry includes biomolecule category, species, biomolecule name, disease name, dysregulation pattern, experimental technique, a brief description of metabolic disease-biomolecule relationships, the reference, additional annotation information etc. BioM2MetDisease provides a user-friendly interface to explore and retrieve all data conveniently. A submission page was also offered for researchers to submit new associations between biomolecules and metabolic diseases. BioM2MetDisease provides a comprehensive resource for studying biology molecules act in metabolic diseases, and it is helpful for understanding the molecular mechanisms and developing novel therapeutics for metabolic diseases. http://www.bio-bigdata.com/BioM2MetDisease/. © The Author(s) 2017. Published by Oxford University Press.

  12. ChemEngine: harvesting 3D chemical structures of supplementary data from PDF files.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2016-01-01

    Digital access to chemical journals resulted in a vast array of molecular information that is now available in the supplementary material files in PDF format. However, extracting this molecular information, generally from a PDF document format is a daunting task. Here we present an approach to harvest 3D molecular data from the supporting information of scientific research articles that are normally available from publisher's resources. In order to demonstrate the feasibility of extracting truly computable molecules from PDF file formats in a fast and efficient manner, we have developed a Java based application, namely ChemEngine. This program recognizes textual patterns from the supplementary data and generates standard molecular structure data (bond matrix, atomic coordinates) that can be subjected to a multitude of computational processes automatically. The methodology has been demonstrated via several case studies on different formats of coordinates data stored in supplementary information files, wherein ChemEngine selectively harvested the atomic coordinates and interpreted them as molecules with high accuracy. The reusability of extracted molecular coordinate data was demonstrated by computing Single Point Energies that were in close agreement with the original computed data provided with the articles. It is envisaged that the methodology will enable large scale conversion of molecular information from supplementary files available in the PDF format into a collection of ready- to- compute molecular data to create an automated workflow for advanced computational processes. Software along with source codes and instructions available at https://sourceforge.net/projects/chemengine/files/?source=navbar.Graphical abstract.

  13. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy

    PubMed Central

    Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen

    2016-01-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. PMID:27356613

  14. Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants

    NASA Astrophysics Data System (ADS)

    Benvegnu, Thierry; Sassi, Jean-François

    The development of surfactants based on natural renewable resources is a concept that is gaining recognition in detergents, cosmetics, and green chemistry. This new class of biodegradable and biocompatible products is a response to the increasing consumer demand for products that are both "greener", milder, and more efficient. In order to achieve these objectives, it is necessary to use renewable low-cost biomass that is available in large quantities and to design molecular structures through green processes that show improved performance, favorable ecotoxicological properties and reduced environmental impact. Within this context, marine algae represent a rich source of complex polysaccharides and oligosaccharides with innovative structures and functional properties that may find applications as starting materials for the development of green surfactants or cosmetic actives. Thus, we have developed original surfactants based on mannuronate moieties derived from alginates (cell-wall polyuronic acids from brown seaweeds) and fatty hydrocarbon chains derived from vegetable resources. Controlled chemical and/or enzymatic depolymerizations of the algal polysaccharides give saturated and/or unsaturated functional oligomannuronates. Clean chemical processes allow the efficient transformation of the oligomers into neutral or anionic amphiphilic molecules. These materials represent a new class of surface-active agents with promising foaming/emulsifying properties.

  15. Growth-defense tradeoffs in plants: a balancing act to optimize fitness.

    PubMed

    Huot, Bethany; Yao, Jian; Montgomery, Beronda L; He, Sheng Yang

    2014-08-01

    Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  16. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  17. Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    DOE PAGES

    Guzman, Horacio V.; Junghans, Christoph; Kremer, Kurt; ...

    2017-11-27

    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach, which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement of subdomain walls. Within this approach and paper, the theoretical modeling and scalingmore » laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. Finally, these two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.« less

  18. Supercomputer applications in molecular modeling.

    PubMed

    Gund, T M

    1988-01-01

    An overview of the functions performed by molecular modeling is given. Molecular modeling techniques benefiting from supercomputing are described, namely, conformation, search, deriving bioactive conformations, pharmacophoric pattern searching, receptor mapping, and electrostatic properties. The use of supercomputers for problems that are computationally intensive, such as protein structure prediction, protein dynamics and reactivity, protein conformations, and energetics of binding is also examined. The current status of supercomputing and supercomputer resources are discussed.

  19. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    PubMed

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. Copyright © 2016 American Society for Microbiology.

  20. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes

    PubMed Central

    You, Xinxin; Bian, Chao; Zan, Qijie; Xu, Xun; Liu, Xin; Chen, Jieming; Wang, Jintu; Qiu, Ying; Li, Wujiao; Zhang, Xinhui; Sun, Ying; Chen, Shixi; Hong, Wanshu; Li, Yuxiang; Cheng, Shifeng; Fan, Guangyi; Shi, Chengcheng; Liang, Jie; Tom Tang, Y.; Yang, Chengye; Ruan, Zhiqiang; Bai, Jie; Peng, Chao; Mu, Qian; Lu, Jun; Fan, Mingjun; Yang, Shuang; Huang, Zhiyong; Jiang, Xuanting; Fang, Xiaodong; Zhang, Guojie; Zhang, Yong; Polgar, Gianluca; Yu, Hui; Li, Jia; Liu, Zhongjian; Zhang, Guoqiang; Ravi, Vydianathan; Coon, Steven L.; Wang, Jian; Yang, Huanming; Venkatesh, Byrappa; Wang, Jun; Shi, Qiong

    2014-01-01

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers’ tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates. PMID:25463417

  1. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  2. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    USDA-ARS?s Scientific Manuscript database

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  3. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.

    PubMed

    Mandelker, Diana; Schmidt, Ryan J; Ankala, Arunkanth; McDonald Gibson, Kristin; Bowser, Mark; Sharma, Himanshu; Duffy, Elizabeth; Hegde, Madhuri; Santani, Avni; Lebo, Matthew; Funke, Birgit

    2016-12-01

    Next-generation sequencing (NGS) is now routinely used to interrogate large sets of genes in a diagnostic setting. Regions of high sequence homology continue to be a major challenge for short-read technologies and can lead to false-positive and false-negative diagnostic errors. At the scale of whole-exome sequencing (WES), laboratories may be limited in their knowledge of genes and regions that pose technical hurdles due to high homology. We have created an exome-wide resource that catalogs highly homologous regions that is tailored toward diagnostic applications. This resource was developed using a mappability-based approach tailored to current Sanger and NGS protocols. Gene-level and exon-level lists delineate regions that are difficult or impossible to analyze via standard NGS. These regions are ranked by degree of affectedness, annotated for medical relevance, and classified by the type of homology (within-gene, different functional gene, known pseudogene, uncharacterized noncoding region). Additionally, we provide a list of exons that cannot be analyzed by short-amplicon Sanger sequencing. This resource can help guide clinical test design, supplemental assay implementation, and results interpretation in the context of high homology.Genet Med 18 12, 1282-1289.

  4. Molecular fingerprinting of cacao (Theobroma cacao L.) genetic resources in the Dominican Republic

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao L.) is a significant agricultural commodity in the Dominican Republic ranking 11th in the world and number one in organic cacao exports. Dominican cacao genetic resources are maintained, propagated and distributed nationally out of the IDIAF’s Mata Larga research stations. T...

  5. Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards

    PubMed Central

    Tollis, Marc; Hutchins, Elizabeth D; Stapley, Jessica; Rupp, Shawn M; Eckalbar, Walter L; Maayan, Inbar; Lasku, Eris; Infante, Carlos R; Dennis, Stuart R; Robertson, Joel A; May, Catherine M; Bermingham, Eldredge; DeNardo, Dale F; Hsieh, Shi-Tong Tonia; Kulathinal, Rob J; McMillan, William Owen; Menke, Douglas B; Pratt, Stephen C; Rawls, Jeffery Alan; Sanjur, Oris; Wilson-Rawls, Jeanne; Wilson Sayres, Melissa A; Fisher, Rebecca E

    2018-01-01

    Abstract Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species—Anolis frenatus, Anolis auratus, and Anolis apletophallus—for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards. PMID:29360978

  6. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    PubMed

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  7. Genomic-based-breeding tools for tropical maize improvement.

    PubMed

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail.

  8. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease.

    PubMed

    2017-12-01

    Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

  9. Placing and preserving priorities: projects, productivity, progress and people

    PubMed Central

    Babiak, John

    1998-01-01

    High throughput screening (HTS) involves using automated equipment to test a large number of samples against a defined molecular target to identify a reasonable number of active molecules in a timely fashion. Major factors which can influence priorities for the limited resources of the HTS group are projects, productivity, progress and people. The challenge to the HTS group is to provide excellent and timely screening services, but still devote efforts to new technologies and personnel development. This article explains why these factors are so important. PMID:18924829

  10. Educational websites--Bioinformatics Tools II.

    PubMed

    Lomberk, Gwen

    2009-01-01

    In this issue, the highlighted websites are a continuation of a series of educational websites; this one in particular from a couple of years ago, Bioinformatics Tools [Pancreatology 2005;5:314-315]. These include sites that are valuable resources for many research needs in genomics and proteomics. Bioinformatics has become a laboratory tool to map sequences to databases, develop models of molecular interactions, evaluate structural compatibilities, describe differences between normal and disease-associated DNA, identify conserved motifs within proteins, and chart extensive signaling networks, all in silico. Copyright 2008 S. Karger AG, Basel and IAP.

  11. Enhancing the crops to feed the poor.

    PubMed

    Huang, Jikun; Pray, Carl; Rozelle, Scott

    2002-08-08

    Solutions to the problem of how the developing world will meet its future food needs are broader than producing more food, although the successes of the 'Green Revolution' demonstrate the importance of technology in generating the growth in food output in the past. Despite these successes, the world still faces continuing vulnerability to food shortages. Given the necessary funding, it seems likely that conventional crop breeding, as well as emerging technologies based on molecular biology, genetic engineering and natural resource management, will continue to improve productivity in the coming decades.

  12. The UCSC Genome Browser: What Every Molecular Biologist Should Know

    PubMed Central

    Mangan, Mary E.; Williams, Jennifer M.; Kuhn, Robert M.; Lathe, Warren C.

    2016-01-01

    Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one’s understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. PMID:19816931

  13. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes.

    PubMed

    Jung, Sungwon

    2018-04-20

    Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing data resources can be utilized to cover various aspects of these conditions. This review presents studies with available genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and T2D.

  14. Towards refactoring the Molecular Function Ontology with a UML profile for function modeling.

    PubMed

    Burek, Patryk; Loebe, Frank; Herre, Heinrich

    2017-10-04

    Gene Ontology (GO) is the largest resource for cataloging gene products. This resource grows steadily and, naturally, this growth raises issues regarding the structure of the ontology. Moreover, modeling and refactoring large ontologies such as GO is generally far from being simple, as a whole as well as when focusing on certain aspects or fragments. It seems that human-friendly graphical modeling languages such as the Unified Modeling Language (UML) could be helpful in connection with these tasks. We investigate the use of UML for making the structural organization of the Molecular Function Ontology (MFO), a sub-ontology of GO, more explicit. More precisely, we present a UML dialect, called the Function Modeling Language (FueL), which is suited for capturing functions in an ontologically founded way. FueL is equipped, among other features, with language elements that arise from studying patterns of subsumption between functions. We show how to use this UML dialect for capturing the structure of molecular functions. Furthermore, we propose and discuss some refactoring options concerning fragments of MFO. FueL enables the systematic, graphical representation of functions and their interrelations, including making information explicit that is currently either implicit in MFO or is mainly captured in textual descriptions. Moreover, the considered subsumption patterns lend themselves to the methodical analysis of refactoring options with respect to MFO. On this basis we argue that the approach can increase the comprehensibility of the structure of MFO for humans and can support communication, for example, during revision and further development.

  15. PDTCM: a systems pharmacology platform of traditional Chinese medicine for psoriasis.

    PubMed

    Wang, Dongmei; Gu, Jiangyong; Zhu, Wei; Luo, Fang; Chen, Lirong; Xu, Xiaojie; Lu, Chuanjian

    2017-12-01

    Psoriasis is a refractory skin disorder, and usually requires a lifetime control. Traditional Chinese medicine (TCM) is effective and safe for this disease. However, the cellular and molecular mechanisms of TCM remedies for psoriasis are still not fully understood. TCM contains numerous natural products. Natural products have historically been invaluable as a resource of therapeutic agents. Yet, there is no integrated information about active compounds of TCM for psoriasis. We use systems pharmacology methods to develop the Psoriasis Database of Traditional Chinese Medicine (PDTCM). The database covered a number of psoriasis-related information (formulas, TCM, compounds, target proteins, diseases and biomarkers). With these data information, an online platform was constructed Results: PDTCM comprises 38 empirical therapeutic formulas, 34373 compounds from 1424 medicinal plants, 44 psoriasis-related proteins and 76 biomarkers from 111 related diseases. On this platform, users can screen active compounds for a psoriasis-related target and explore molecular mechanisms of TCM. Accordingly, users can also download the retrieved structures and data information with a defined value set. In addition, it helps to get a better understanding of Chinese prescriptions in disease treatment. With the systems pharmacology-based data, PDTCM would become a valuable resource for TCM in psoriasis-related research. Key messages PDTCM platform comprises a great deal of data on TCM and psoriasis. On this platform, users can retrieve and get needed information with systems pharmacology methods, such as active compounds screening, target prediction and molecular mechanisms exploration. It is a tool for psoriasis-related research on natural drugs systematically.

  16. The MURDOCK Study: a long-term initiative for disease reclassification through advanced biomarker discovery and integration with electronic health records

    PubMed Central

    Tenenbaum, Jessica D; Christian, Victoria; Cornish, Melissa A; Dolor, Rowena J; Dunham, Ashley A; Ginsburg, Geoffrey S; Kraus, Virginia B; McHutchison, John G; Nahm, Meredith L; Newby, L Kristin; Svetkey, Laura P; Udayakumar, Krishna; Califf, Robert M

    2012-01-01

    Background Facing critically low return per dollar invested on clinical research and clinical care, the American biomedical enterprise is in need of a significant transformation. A confluence of high-throughput “omic” technologies and increasing adoption of the electronic health record has fueled excitement for a new paradigm for biomedical research and practice. The ability to simultaneously measure thousands of molecular variables and assess their relationships with clinical data collected during the course of care could enable reclassification of disease not only by gross phenotypic observation but according to underlying molecular mechanism and influence of social determinants.In turn, this reclassification could enable development of targeted therapeutic interventions as well as disease prevention strategies at the individual and population levels. Methods/Design The MURDOCK Study consists of distinct project “horizons” or stages. Horizon 1 entailed the generation and analysis of molecular data for existing large,clinically well-annotated cohorts in four disease areas. Horizon 1.5 involves creating and maintaining a 50,000-person,community volunteer registry for biomarker signature validation and prospective studies, including integration of environmental and social data. Horizon 2 leverages and prospectively recruits Horizon 1.5 volunteers, and extends the study to additional disease areas of interest. Horizon 3 will expand the study through regional, national,and international partnerships. Discussion The MURDOCK Study embodies a new model of team science investigation and represents a significant resource for translational research. The study team invites inquiries to form new collaborations to exploit the rich resources provided by these biospecimens and associated study data. PMID:22937207

  17. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba

    PubMed Central

    2013-01-01

    Background Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. Results Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads. Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. Conclusions This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data. The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera. PMID:24125525

  18. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies.

    PubMed

    Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja

    2013-02-14

    Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.

  19. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design

    PubMed Central

    Ramsey, John S; Wilson, Alex CC; de Vos, Martin; Sun, Qi; Tamborindeguy, Cecilia; Winfield, Agnese; Malloch, Gaynor; Smith, Dawn M; Fenton, Brian; Gray, Stewart M; Jander, Georg

    2007-01-01

    Background The green peach aphid, Myzus persicae (Sulzer), is a world-wide insect pest capable of infesting more than 40 plant families, including many crop species. However, despite the significant damage inflicted by M. persicae in agricultural systems through direct feeding damage and by its ability to transmit plant viruses, limited genomic information is available for this species. Results Sequencing of 16 M. persicae cDNA libraries generated 26,669 expressed sequence tags (ESTs). Aphids for library construction were raised on Arabidopsis thaliana, Nicotiana benthamiana, Brassica oleracea, B. napus, and Physalis floridana (with and without Potato leafroll virus infection). The M. persicae cDNA libraries include ones made from sexual and asexual whole aphids, guts, heads, and salivary glands. In silico comparison of cDNA libraries identified aphid genes with tissue-specific expression patterns, and gene expression that is induced by feeding on Nicotiana benthamiana. Furthermore, 2423 genes that are novel to science and potentially aphid-specific were identified. Comparison of cDNA data from three aphid lineages identified single nucleotide polymorphisms that can be used as genetic markers and, in some cases, may represent functional differences in the protein products. In particular, non-conservative amino acid substitutions in a highly expressed gut protease may be of adaptive significance for M. persicae feeding on different host plants. The Agilent eArray platform was used to design an M. persicae oligonucleotide microarray representing over 10,000 unique genes. Conclusion New genomic resources have been developed for M. persicae, an agriculturally important insect pest. These include previously unknown sequence data, a collection of expressed genes, molecular markers, and a DNA microarray that can be used to study aphid gene expression. These resources will help elucidate the adaptations that allow M. persicae to develop compatible interactions with its host plants, complementing ongoing work illuminating plant molecular responses to phloem-feeding insects. PMID:18021414

  20. The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource.

    PubMed

    Craig, Thomas; Smelick, Chris; Tacutu, Robi; Wuttke, Daniel; Wood, Shona H; Stanley, Henry; Janssens, Georges; Savitskaya, Ekaterina; Moskalev, Alexey; Arking, Robert; de Magalhães, João Pedro

    2015-01-01

    Multiple studies characterizing the human ageing phenotype have been conducted for decades. However, there is no centralized resource in which data on multiple age-related changes are collated. Currently, researchers must consult several sources, including primary publications, in order to obtain age-related data at various levels. To address this and facilitate integrative, system-level studies of ageing we developed the Digital Ageing Atlas (DAA). The DAA is a one-stop collection of human age-related data covering different biological levels (molecular, cellular, physiological, psychological and pathological) that is freely available online (http://ageing-map.org/). Each of the >3000 age-related changes is associated with a specific tissue and has its own page displaying a variety of information, including at least one reference. Age-related changes can also be linked to each other in hierarchical trees to represent different types of relationships. In addition, we developed an intuitive and user-friendly interface that allows searching, browsing and retrieving information in an integrated and interactive fashion. Overall, the DAA offers a new approach to systemizing ageing resources, providing a manually-curated and readily accessible source of age-related changes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel andmore » fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.« less

  2. Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    PubMed Central

    2010-01-01

    Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065

  3. Genomic analysis of expressed sequence tags in American black bear Ursus americanus.

    PubMed

    Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun

    2010-03-26

    Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.

  4. A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer Research and Precision Medicine

    PubMed Central

    Hinkson, Izumi V.; Davidsen, Tanja M.; Klemm, Juli D.; Chandramouliswaran, Ishwar; Kerlavage, Anthony R.; Kibbe, Warren A.

    2017-01-01

    Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome. To maximize the value of these data, an interdisciplinary approach is paramount. The National Cancer Institute (NCI) has initiated multiple projects to characterize tumor samples using multi-omic approaches. These projects harness the expertise of clinicians, biologists, computer scientists, and software engineers to investigate cancer biology and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic, transcriptomic, epigenomic, proteomic, and imaging data have been generated by these projects. To address the data analysis challenges associated with these large datasets, the NCI has sponsored the development of the Genomic Data Commons (GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests and harmonizes genomic data, and securely redistributes the data. During its pilot phase, the Cloud Resources tested multiple cloud-based approaches for enhancing data access, collaboration, computational scalability, resource democratization, and reproducibility. These NCI-led efforts are continuously being refined to better support open data practices and precision oncology, and to serve as building blocks of the NCI Cancer Research Data Commons. PMID:28983483

  5. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics

    PubMed Central

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A.; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S.

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC’s ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC’s performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  6. A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; van de Walle, Axel

    Molecular dynamics (MD) simulations have become a tool of immense use and popularity for simulating a variety of systems. With the advent of massively parallel computer resources, one now routinely sees applications of MD to systems as large as hundreds of thousands to even several million atoms, which is almost the size of most nanomaterials. However, it is not yet possible to reach laboratory timescales of milliseconds and beyond with MD simulations. Due to the essentially sequential nature of time, parallel computers have been of limited use in solving this so-called timescale problem. Instead, over the years a large range of statistical mechanics based enhanced sampling approaches have been proposed for accelerating molecular dynamics, and accessing timescales that are well beyond the reach of the fastest computers. In this review we provide an overview of these approaches, including the underlying theory, typical applications, and publicly available software resources to implement them.

  7. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.).

    PubMed

    Zhao, Yongli; Williams, Roxanne; Prakash, C S; He, Guohao

    2012-12-15

    Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  8. Matters of Taste: Bridging Molecular Physiology and the Humanities

    ERIC Educational Resources Information Center

    Rangachari, P. K.; Rangachari, Usha

    2015-01-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple…

  9. A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems.

    PubMed

    Martin, Baker A; Frymier, Paul D

    2017-10-01

    Molecular hydrogen is a promising currency in the future energy economy due to the uncertain availability of finite fossil fuel resources and environmental effects from their combustion. It also has important uses in the production of fertilizers and platform chemicals as well as in upgrading conventional fuels. Conventional methods for producing molecular hydrogen from natural gas produce carbon dioxide and use a finite resource as feedstock. However, these issues can be overcome by using light energy from the Sun combined with microorganisms and their molecular machinery capable of photosynthesis. In the presence of light, the proteins involved in photosynthesis coupled with appropriate catalysts in higher plants, algae, and cyanobacteria can produce molecular hydrogen, and optimization via genetic modifications and biomolecular engineering further improves production rates. In this review, we will discuss techniques that have been utilized to improve rates of hydrogen production in biological systems based on the protein machinery of photosynthesis coupled with appropriate catalysts. We will also suggest areas for improvement and future directions for work in the field.

  10. Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.

    PubMed

    Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry

    2014-12-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.

  11. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  13. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  14. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2015-01-01

    Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.

  15. Laboratory Directed Research and Development Annual Report for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalablemore » synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.« less

  16. AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer

    PubMed Central

    Cho, Jae Yong; Cheong, Jae-Ho; Kim, Hoguen; Li, Min; Downey, Thomas J.; Dyer, Matthew D.; Sun, Yongming; Sun, Jingtao; Beasley, Ellen M.; Chung, Hyun Cheol; Noh, Sung Hoon; Weinstein, John N.; Liu, Chang-Gong; Powis, Garth

    2013-01-01

    Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To identify the molecular underpinnings of gastric cancer in the Asian population, we applied an RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million informative short reads to quantitatively characterize the entire transcriptome of gastric cancer (including mRNAs and microRNAs). A multi-layer analysis was then developed to identify multiple types of transcriptional aberrations associated with different stages of gastric cancer, including differentially expressed mRNAs, recurrent somatic mutations and key differentially expressed microRNAs. Through this approach, we identified the central metabolic regulator AMPK-α as a potential functional target in Asian gastric cancer. Further, we experimentally demonstrated the translational relevance of this gene as a potential therapeutic target for early-stage gastric cancer in Asian patients. Together, our findings not only provide a valuable information resource for identifying and elucidating the molecular mechanisms of Asian gastric cancer, but also represent a general integrative framework to develop more effective therapeutic targets. PMID:22434430

  17. Digestive tumor bank protocol: from surgical specimens to genomic studies of digestive cancers.

    PubMed

    Popescu, I; Stroescu, C; Dumitrascu, T; Herlea, V; Paslaru, Liliana; Lazar, V; Boissin, H; Taieb, J; Horeanga, Ionela

    2006-01-01

    Cancer is a complex polygenic and multifactorial disease, resulting from successive dynamic changes in the genome of somatic cells and from the accumulation of molecular alterations in both tumour cells and host cells. For the majority of cancers, including many malignancies of the gastrointestinal tract, our current means of diagnosis and treatment of the tumors are grossly insufficient. In recent years the development of several gene expression profiling methods such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE) and DNA arrays, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complete cascade of molecular events leading to tumor development and progression. Given the central role played by surgeons in the current management of patients with solid cancers, it is of paramount importance for them to know the principles characterizing this laboratory tools to critically assess the results originating from this biotechnology. We describe in this article the scientific partnership between Fundeni Clinical Institute Bucharest, Romania and RNtech Company, Paris, France for the development of a center of biological resources (Biobank) as well as the standardized protocol of working with the biological samples, the ongoing projects and the future perspectives.

  18. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.

    PubMed

    Brenton, Zachary W; Cooper, Elizabeth A; Myers, Mathew T; Boyles, Richard E; Shakoor, Nadia; Zielinski, Kelsey J; Rauh, Bradley L; Bridges, William C; Morris, Geoffrey P; Kresovich, Stephen

    2016-09-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. Copyright © 2016 by the Genetics Society of America.

  19. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  20. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  1. MetaboLights: towards a new COSMOS of metabolomics data management.

    PubMed

    Steinbeck, Christoph; Conesa, Pablo; Haug, Kenneth; Mahendraker, Tejasvi; Williams, Mark; Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Salek, Reza M; Griffin, Julian L

    2012-10-01

    Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6-8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.

  2. DT2008: A Promising New Genetic Resource for Improved Drought Tolerance in Soybean When Solely Dependent on Symbiotic N2 Fixation

    PubMed Central

    Sulieman, Saad; Ha, Chien Van; Nasr Esfahani, Maryam; Watanabe, Yasuko; Nishiyama, Rie; Pham, Chung Thi Bao; Nguyen, Dong Van; Tran, Lam-Son Phan

    2015-01-01

    Water deficit is one of the major constraints for soybean production in Vietnam. The soybean breeding research efforts conducted at the Agriculture Genetics Institute (AGI) of Vietnam resulted in the development of promising soybean genotypes, suitable for the drought-stressed areas in Vietnam and other countries. Such a variety, namely, DT2008, was recommended by AGI and widely used throughout the country. The aim of this work was to assess the growth of shoots, roots, and nodules of DT2008 versus Williams 82 (W82) in response to drought and subsequent rehydration in symbiotic association as a means to provide genetic resources for genomic research. Better shoot, root, and nodule growth and development were observed in the cultivar DT2008 under sufficient, water deficit, and recovery conditions. Our results represent a good foundation for further comparison of DT2008 and W82 at molecular levels using high throughput omic technologies, which will provide huge amounts of data, enabling us to understand the genetic network involved in regulation of soybean responses to water deficit and increasing the chances of developing drought-tolerant cultivars. PMID:25685802

  3. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    PubMed Central

    2013-01-01

    Introduction Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. Methods More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. Results The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. Conclusions With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years. PMID:24286369

  4. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhiyong

    2017-03-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  5. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. PMID:21542930

  6. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    PubMed

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.

  7. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    PubMed

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  8. The Chernobyl Tissue Bank — A Repository for Biomaterial and Data Used in Integrative and Systems Biology Modeling the Human Response to Radiation

    PubMed Central

    Thomas, Geraldine; Unger, Kristian; Krznaric, Marko; Galpine, Angela; Bethel, Jackie; Tomlinson, Christopher; Woodbridge, Mark; Butcher, Sarah

    2012-01-01

    The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. In response to the scientific interest in studying the molecular biology of thyroid cancer post Chernobyl, the Chernobyl Tissue Bank (CTB: www.chernobyltissuebank.com) was established in 1998. Thus far it is has collected biological samples from 3,861 individuals, and provided 27 research projects with 11,254 samples. The CTB was designed from its outset as a resource to promote the integration of research and clinical data to facilitate a systems biology approach to radiation related thyroid cancer. The project has therefore developed as a multidisciplinary collaboration between clinicians, dosimetrists, molecular biologists and bioinformaticians and serves as a paradigm for tissue banking in the omics era. PMID:24704918

  9. From transistor to trapped-ion computers for quantum chemistry.

    PubMed

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  10. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.

    PubMed

    Musiani, F; Giorgetti, A

    2017-01-01

    Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.

  11. From transistor to trapped-ion computers for quantum chemistry

    PubMed Central

    Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054

  12. NABIC marker database: A molecular markers information network of agricultural crops.

    PubMed

    Kim, Chang-Kug; Seol, Young-Joo; Lee, Dong-Jun; Jeong, In-Seon; Yoon, Ung-Han; Lee, Gang-Seob; Hahn, Jang-Ho; Park, Dong-Suk

    2013-01-01

    In 2013, National Agricultural Biotechnology Information Center (NABIC) reconstructs a molecular marker database for useful genetic resources. The web-based marker database consists of three major functional categories: map viewer, RSN marker and gene annotation. It provides 7250 marker locations, 3301 RSN marker property, 3280 molecular marker annotation information in agricultural plants. The individual molecular marker provides information such as marker name, expressed sequence tag number, gene definition and general marker information. This updated marker-based database provides useful information through a user-friendly web interface that assisted in tracing any new structures of the chromosomes and gene positional functions using specific molecular markers. The database is available for free at http://nabic.rda.go.kr/gere/rice/molecularMarkers/

  13. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases

    PubMed Central

    Orchard, Sandra; Ammari, Mais; Aranda, Bruno; Breuza, Lionel; Briganti, Leonardo; Broackes-Carter, Fiona; Campbell, Nancy H.; Chavali, Gayatri; Chen, Carol; del-Toro, Noemi; Duesbury, Margaret; Dumousseau, Marine; Galeota, Eugenia; Hinz, Ursula; Iannuccelli, Marta; Jagannathan, Sruthi; Jimenez, Rafael; Khadake, Jyoti; Lagreid, Astrid; Licata, Luana; Lovering, Ruth C.; Meldal, Birgit; Melidoni, Anna N.; Milagros, Mila; Peluso, Daniele; Perfetto, Livia; Porras, Pablo; Raghunath, Arathi; Ricard-Blum, Sylvie; Roechert, Bernd; Stutz, Andre; Tognolli, Michael; van Roey, Kim; Cesareni, Gianni; Hermjakob, Henning

    2014-01-01

    IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org). PMID:24234451

  14. Do online prognostication tools represent a valid alternative to genomic profiling in the context of adjuvant treatment of early breast cancer? A systematic review of the literature.

    PubMed

    El Hage Chehade, Hiba; Wazir, Umar; Mokbel, Kinan; Kasem, Abdul; Mokbel, Kefah

    2018-01-01

    Decision-making regarding adjuvant chemotherapy has been based on clinical and pathological features. However, such decisions are seldom consistent. Web-based predictive models have been developed using data from cancer registries to help determine the need for adjuvant therapy. More recently, with the recognition of the heterogenous nature of breast cancer, genomic assays have been developed to aid in the therapeutic decision-making. We have carried out a comprehensive literature review regarding online prognostication tools and genomic assays to assess whether online tools could be used as valid alternatives to genomic profiling in decision-making regarding adjuvant therapy in early breast cancer. Breast cancer has been recently recognized as a heterogenous disease based on variations in molecular characteristics. Online tools are valuable in guiding adjuvant treatment, especially in resource constrained countries. However, in the era of personalized therapy, molecular profiling appears to be superior in predicting clinical outcome and guiding therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Emerging Oilseed Crop Sesamum indicum Enters the “Omics” Era

    PubMed Central

    Dossa, Komivi; Diouf, Diaga; Wang, Linhai; Wei, Xin; Zhang, Yanxin; Niang, Mareme; Fonceka, Daniel; Yu, Jingyin; Mmadi, Marie A.; Yehouessi, Louis W.; Liao, Boshou; Zhang, Xiurong; Cisse, Ndiaga

    2017-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an “orphan crop” to a “genomic resource-rich crop.” With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the “Omics” area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop. PMID:28713412

  16. Eimeria genomics: Where are we now and where are we going?

    PubMed

    Blake, Damer P

    2015-08-15

    The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era.

    PubMed

    Dossa, Komivi; Diouf, Diaga; Wang, Linhai; Wei, Xin; Zhang, Yanxin; Niang, Mareme; Fonceka, Daniel; Yu, Jingyin; Mmadi, Marie A; Yehouessi, Louis W; Liao, Boshou; Zhang, Xiurong; Cisse, Ndiaga

    2017-01-01

    Sesame ( Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments and constitutes an alternative cash crop for smallholders in developing countries. Despite its economic and nutritional importance, sesame is considered as an orphan crop because it has received very little attention from science. As a consequence, it lags behind the other major oil crops as far as genetic improvement is concerned. In recent years, the scenario has considerably changed with the decoding of the sesame nuclear genome leading to the development of various genomic resources including molecular markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-based functional databases and diverse daft genome sequences. The availability of these tools in association with the discovery of candidate genes and quantitative trait locis for key agronomic traits including high oil content and quality, waterlogging and drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the way to the development of some new strategies for sesame genetic improvement. As a result, sesame has graduated from an "orphan crop" to a "genomic resource-rich crop." With the limited research teams working on sesame worldwide, more synergic efforts are needed to integrate these resources in sesame breeding for productivity upsurge, ensuring food security and improved livelihood in developing countries. This review retraces the evolution of sesame research by highlighting the recent advances in the "Omics" area and also critically discusses the future prospects for a further genetic improvement and a better expansion of this crop.

  18. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  19. Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need†‡

    PubMed Central

    Jokerst, Jesse V.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; McDevitt, John T.

    2010-01-01

    Recent humanitarian efforts have led to the widespread release of antiretroviral drugs for the treatment of the more than 33 million HIV afflicted people living in resource-scarce settings. Here, the enumeration of CD4+ T lymphocytes is required to establish the level at which the immune system has been compromised. The gold standard method used in developed countries, based on flow cytometry, though widely accepted and accurate, is precluded from widespread use in resource-scarce settings due to its high expense, high technical requirements, difficulty in operation-maintenance and the lack of portability for these sophisticated laboratory-confined systems. As part of continuing efforts to develop practical diagnostic instrumentation, the integration of semiconductor nanocrystals (quantum dots, QDs) into a portable microfluidic-based lymphocyte capture and detection device is completed. This integrated system is capable of isolating and counting selected lymphocyte sub-populations (CD3+CD4+) from whole blood samples. By combining the unique optical properties of the QDs with the sample handling capabilities and cost effectiveness of novel microfluidic systems, a practical, portable lymphocyte measurement modality that correlates nicely with flow cytometry (R2 = 0.97) has been developed. This QD-based system reduces the optical requirements significantly relative to molecular fluorophores and the mini-CD4 counting device is projected to be suitable for use in both point-of-need and resource-scarce settings. PMID:19023471

  20. Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR.

    PubMed

    Campos-Herrera, Raquel; El-Borai, Fahiem E; Duncan, Larry W

    2012-10-01

    Entomopathogenic nematodes (EPNs) are promising biological control agents of soil-dwelling insect pests of many crops. These nematodes are ubiquitous in both natural and agricultural areas. Their efficacy against arthropods is affected directly and indirectly by food webs and edaphic conditions. It has long been suggested that a greater understanding of EPN ecology is needed to achieve consistent biological control by these nematodes and the development of molecular tools is helping to overcome obstacles to the study of cryptic organisms and complex interactions. Here we extend the repertoire of molecular tools to characterize soil food webs by describing primers/probe set to quantify certain free-living, bactivorous nematodes (FLBNs) that interact with EPNs in soil. Three FLBN isolates were recovered from soil baited with insect larvae. Morphological and molecular characterization confirmed their identities as Acrobeloides maximum (RT-1-R15C and RT-2-R25A) and Rhabditis rainai (PT-R14B). Laboratory experiments demonstrated the ability of these FLBNs to interfere with the development of Steinernema diaprepesi, Steinernema riobrave and Heterorhabditis indica parasitizing the weevil Diaprepes abbreviatus (P<0.001), perhaps due to resource competition. A molecular probe was developed for the strongest competitor, A. maximum. We selected the highly conserved SSU rDNA sequence to design the primers/probe, because these sequences are more abundantly available for free-living nematodes than ITS sequences that can likely provide better taxonomic resolution. Our molecular probe can identify organisms that share ⩾98% similarity at this locus. The use of this molecular probe to characterize soil communities from samples of nematode DNA collected within a citrus orchard revealed positive correlations (P<0.01) between Acrobeloides-group nematodes and total numbers of EPNs (S. diaprepesi, H. indica and Heterorhabditis zealandica) as well as a complex of nematophagous fungi comprising Catenaria sp. and Monachrosporium gephyropagum that are natural enemies of EPNs. These relationships can be broadly interpreted as supporting Linford's hypothesis, i.e., decomposition of organic matter (here, insect cadavers) greatly increases bactivorous nematodes and their natural enemies. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Toxins and drug discovery.

    PubMed

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  2. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics.

    PubMed

    Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A; Poisson, Laila M; Lazar, Alexander J; Cherniack, Andrew D; Kovatich, Albert J; Benz, Christopher C; Levine, Douglas A; Lee, Adrian V; Omberg, Larsson; Wolf, Denise M; Shriver, Craig D; Thorsson, Vesteinn; Hu, Hai

    2018-04-05

    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines

    PubMed Central

    2017-01-01

    Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections. PMID:27869477

  4. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines.

    PubMed

    McCluskey, Kevin

    2017-02-01

    Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections.

  5. SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network.

    PubMed

    Loksha, Ilya V; Maiolo, James R; Hong, Cheng W; Ng, Albert; Snow, Christopher D

    2009-04-30

    Algorithms for discrete optimization of proteins play a central role in recent advances in protein structure prediction and design. We wish to improve the resources available for computational biologists to rapidly prototype such algorithms and to easily scale these algorithms to many processors. To that end, we describe the implementation and use of two new open source resources, citing potential benefits over existing software. We discuss CHOMP, a new object-oriented library for macromolecular optimization, and SHARPEN, a framework for scaling CHOMP scripts to many computers. These tools allow users to develop new algorithms for a variety of applications including protein repacking, protein-protein docking, loop rebuilding, or homology model remediation. Particular care was taken to allow modular energy function design; protein conformations may currently be scored using either the OPLSaa molecular mechanical energy function or an all-atom semiempirical energy function employed by Rosetta. (c) 2009 Wiley Periodicals, Inc.

  6. Old knowledge and new technologies allow rapid development of model organisms

    PubMed Central

    Cook, Charles E.; Chenevert, Janet; Larsson, Tomas A.; Arendt, Detlev; Houliston, Evelyn; Lénárt, Péter

    2016-01-01

    Until recently the set of “model” species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes. PMID:26976934

  7. TDR Targets: a chemogenomics resource for neglected diseases.

    PubMed

    Magariños, María P; Carmona, Santiago J; Crowther, Gregory J; Ralph, Stuart A; Roos, David S; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C; Agüero, Fernán

    2012-01-01

    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.

  8. TDR Targets: a chemogenomics resource for neglected diseases

    PubMed Central

    Magariños, María P.; Carmona, Santiago J.; Crowther, Gregory J.; Ralph, Stuart A.; Roos, David S.; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C.; Agüero, Fernán

    2012-01-01

    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context. PMID:22116064

  9. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  10. Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective.

    PubMed

    Doss, C George Priya; Chakraborty, Chiranjib; Chen, Luonan; Zhu, Hailong

    2014-01-01

    Over the past decade, advancements in next generation sequencing technology have placed personalized genomic medicine upon horizon. Understanding the likelihood of disease causing mutations in complex diseases as pathogenic or neutral remains as a major task and even impossible in the structural context because of its time consuming and expensive experiments. Among the various diseases causing mutations, single nucleotide polymorphisms (SNPs) play a vital role in defining individual's susceptibility to disease and drug response. Understanding the genotype-phenotype relationship through SNPs is the first and most important step in drug research and development. Detailed understanding of the effect of SNPs on patient drug response is a key factor in the establishment of personalized medicine. In this paper, we represent a computational pipeline in anaplastic lymphoma kinase (ALK) for SNP-centred study by the application of in silico prediction methods, molecular docking, and molecular dynamics simulation approaches. Combination of computational methods provides a way in understanding the impact of deleterious mutations in altering the protein drug targets and eventually leading to variable patient's drug response. We hope this rapid and cost effective pipeline will also serve as a bridge to connect the clinicians and in silico resources in tailoring treatments to the patients' specific genotype.

  11. A field-deployable mobile molecular diagnostic system for malaria at the point of need.

    PubMed

    Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua

    2016-11-01

    In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.

  12. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA).

    PubMed

    Tollefsen, Knut Erik; Scholz, Stefan; Cronin, Mark T; Edwards, Stephen W; de Knecht, Joop; Crofton, Kevin; Garcia-Reyero, Natalia; Hartung, Thomas; Worth, Andrew; Patlewicz, Grace

    2014-12-01

    Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Teaching bioinformatics and neuroinformatics by using free web-based tools.

    PubMed

    Grisham, William; Schottler, Natalie A; Valli-Marill, Joanne; Beck, Lisa; Beatty, Jackson

    2010-01-01

    This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with anatomy (Mouse Brain Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, National Center for Biotechnology Information's Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). Instructors can use these various websites in concert to teach genetics from the phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics, quantitative trait locus analysis, and molecular biology (including in situ hybridization and microarray analysis), and to introduce bioinformatic resources. Students use these resources to discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate genes-narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest, 4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching materials such as a detailed student/instructor's manual, PowerPoints, sample exams, and links to free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.

  14. Computing with competition in biochemical networks.

    PubMed

    Genot, Anthony J; Fujii, Teruo; Rondelez, Yannick

    2012-11-16

    Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

  15. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data.

    PubMed

    Guirimand, Thibaut; Delmotte, Stéphane; Navratil, Vincent

    2015-01-01

    VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. An informatics model for tissue banks--lessons learned from the Cooperative Prostate Cancer Tissue Resource.

    PubMed

    Patel, Ashokkumar A; Gilbertson, John R; Parwani, Anil V; Dhir, Rajiv; Datta, Milton W; Gupta, Rajnish; Berman, Jules J; Melamed, Jonathan; Kajdacsy-Balla, Andre; Orenstein, Jan; Becich, Michael J

    2006-05-05

    Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE) development, query interfaces, data curation, and quality control. Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks) of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA). The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a computer program for calculating PSA recurrence. Building a biorepository infrastructure that meets today's research needs involves time and input of many individuals from diverse disciplines. The CPCTR can provide large volumes of carefully annotated prostate tissue for research initiatives such as Specialized Programs of Research Excellence (SPOREs) and for biomarker validation studies and its experience can help development of collaborative, large scale, virtual tissue banks in other organ systems.

  17. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents.

    PubMed

    Li, Guangrong; Wang, Hongjin; Lang, Tao; Li, Jianbo; La, Shixiao; Yang, Ennian; Yang, Zujun

    2016-10-01

    New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.

  18. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuerteltaub, K. W.; Bench, G.; Buchholz, B. A.

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integratedmore » HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory instruments.4.) Provide high throughput 14C BioAMS analysis for collaborative and service clients.« less

  19. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turteltaub, K. W.; Bench, G.; Buchholz, B. A.

    2016-04-08

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integratedmore » HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory instruments.4.) Provide high throughput 14C BioAMS analysis for collaborative and service clients.« less

  20. The Arabidopsis Information Resource: Making and Mining the ‘Gold Standard’ Annotated Reference Plant Genome

    PubMed Central

    Berardini, Tanya Z.; Reiser, Leonore; Li, Donghui; Mezheritsky, Yarik; Muller, Robert; Strait, Emily; Huala, Eva

    2015-01-01

    The Arabidopsis Information Resource (TAIR) is a continuously updated, online database of genetic and molecular biology data for the model plant Arabidopsis thaliana that provides a global research community with centralized access to data for over 30,000 Arabidopsis genes. TAIR’s biocurators systematically extract, organize, and interconnect experimental data from the literature along with computational predictions, community submissions, and high throughput datasets to present a high quality and comprehensive picture of Arabidopsis gene function. TAIR provides tools for data visualization and analysis, and enables ordering of seed and DNA stocks, protein chips and other experimental resources. TAIR actively engages with its users who contribute expertise and data that augments the work of the curatorial staff. TAIR’s focus in an extensive and evolving ecosystem of online resources for plant biology is on the critically important role of extracting experimentally-based research findings from the literature and making that information computationally accessible. In response to the loss of government grant funding, the TAIR team founded a nonprofit entity, Phoenix Bioinformatics, with the aim of developing sustainable funding models for biological databases, using TAIR as a test case. Phoenix has successfully transitioned TAIR to subscription-based funding while still keeping its data relatively open and accessible. PMID:26201819

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ann E; Barker, Ashley D; Bland, Arthur S Buddy

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of thesemore » we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of fuel.« less

  2. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    PubMed Central

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  3. Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard.

    PubMed

    McEachran, Andrew D; Sobus, Jon R; Williams, Antony J

    2017-03-01

    Chemical features observed using high-resolution mass spectrometry can be tentatively identified using online chemical reference databases by searching molecular formulae and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria. The most likely candidate "known unknowns," which are those chemicals unknown to an investigator but contained within a reference database or literature source, rise to the top of a chemical list when rank-ordered by the number of associated data sources. The U.S. EPA's CompTox Chemistry Dashboard is a curated and freely available resource for chemistry and computational toxicology research, containing more than 720,000 chemicals of relevance to environmental health science. In this research, the performance of the Dashboard for identifying known unknowns was evaluated against that of the online ChemSpider database, one of the primary resources used by mass spectrometrists, using multiple previously studied datasets reported in the peer-reviewed literature totaling 162 chemicals. These chemicals were examined using both applications via molecular formula and monoisotopic mass searches followed by rank-ordering of candidate compounds by associated references or data sources. A greater percentage of chemicals ranked in the top position when using the Dashboard, indicating an advantage of this application over ChemSpider for identifying known unknowns using data source ranking. Additional approaches are being developed for inclusion into a non-targeted analysis workflow as part of the CompTox Chemistry Dashboard. This work shows the potential for use of the Dashboard in exposure assessment and risk decision-making through significant improvements in non-targeted chemical identification. Graphical abstract Identifying known unknowns in the US EPA's CompTox Chemistry Dashboard from molecular formula and monoisotopic mass inputs.

  4. An instructional design process based on expert knowledge for teaching students how mechanisms are explained.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-06-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. Copyright © 2016 The American Physiological Society.

  5. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.

    PubMed

    Harley, John R; Bammler, Theo K; Farin, Federico M; Beyer, Richard P; Kavanagh, Terrance J; Dunlap, Kriya L; Knott, Katrina K; Ylitalo, Gina M; O'Hara, Todd M

    2016-02-16

    The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic.

  6. An instructional design process based on expert knowledge for teaching students how mechanisms are explained

    PubMed Central

    Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. PMID:27231262

  7. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    PubMed Central

    2011-01-01

    Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms. PMID:21791039

  8. Workflow based framework for life science informatics.

    PubMed

    Tiwari, Abhishek; Sekhar, Arvind K T

    2007-10-01

    Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.

  9. Transcriptome Analysis in Sheepgrass (Leymus chinensis): A Dominant Perennial Grass of the Eurasian Steppe

    PubMed Central

    Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe

    2013-01-01

    Background Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. Results The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. Conclusions This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species. PMID:23861841

  10. Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe.

    PubMed

    Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe

    2013-01-01

    Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  11. Landscape Phage: Evolution from Phage Display to Nanobiotechnology.

    PubMed

    Petrenko, Valery A

    2018-06-07

    The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.

  12. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    PubMed Central

    Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal

    2004-01-01

    Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388

  13. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits

    PubMed Central

    Chaudhary, Juhi; Patil, Gunvant B.; Sonah, Humira; Deshmukh, Rupesh K.; Vuong, Tri D.; Valliyodan, Babu; Nguyen, Henry T.

    2015-01-01

    Food resources of the modern world are strained due to the increasing population. There is an urgent need for innovative methods and approaches to augment food production. Legume seeds are major resources of human food and animal feed with their unique nutrient compositions including oil, protein, carbohydrates, and other beneficial nutrients. Recent advances in next-generation sequencing (NGS) together with “omics” technologies have considerably strengthened soybean research. The availability of well annotated soybean genome sequence along with hundreds of identified quantitative trait loci (QTL) associated with different seed traits can be used for gene discovery and molecular marker development for breeding applications. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. Integration of “omics tools” is an effective strategy to discover key regulators of various seed traits. In this review, recent advances in “omics” approaches and their use in soybean seed trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of soybean. This article also highlights the use of modern breeding approaches, such as genome-wide association studies (GWAS), genomic selection (GS), and marker-assisted recurrent selection (MARS) for developing superior cultivars. A catalog of available important resources for major seed composition traits, such as seed oil, protein, carbohydrates, and yield traits are provided to improve the knowledge base and future utilization of this information in the soybean crop improvement programs. PMID:26635846

  14. Serious Game Leverages Productive Negativity to Facilitate Conceptual Change in Undergraduate Molecular Biology: A Mixed-Methods Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Gauthier, Andrea; Jenkinson, Jodie

    2017-01-01

    We designed a serious game, MolWorlds, to facilitate conceptual change about molecular emergence by using game mechanics (resource management, immersed 3rd person character, sequential level progression, and 3-star scoring system) to encourage cycles of productive negativity. We tested the value-added effect of game design by comparing and…

  15. The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum

    ERIC Educational Resources Information Center

    Barak, Phillip; Nater, Edward A.

    2005-01-01

    The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of…

  16. The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    PubMed Central

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum. PMID:21818249

  17. Drugs and Cosmetics from the Sea

    PubMed Central

    Kijjoa, Anake; Sawangwong, Pichan

    2004-01-01

    The marine environment is a rich source of both biological and chemical diversity. This diversity has been the source of unique chemical compounds with the potential for industrial development as pharmaceuticals, cosmetics, nutritional supplements, molecular probes, fine chemicals and agrochemicals. In recent years, a significant number of novel metabolites with potent pharmacological properties has been discovered from the marine organisms. Although there are only a few marine-derived products currently on the market, several robust new compounds derived from marine natural products are now in the clinical pipeline, with more clinical development. While the marine world offers an extremely rich resource for novel compounds, it also represents a great challenge that requires inputs from various scientific areas to bring the marine chemical diversity up to its therapeutic potential.

  18. Microsatellites for Carpotroche brasiliensis (Flacourtiaceae), a useful species for agroforestry and ecosystem conservation.

    PubMed

    Bittencourt, Flora; Alves, Jackeline S; Gaiotto, Fernanda A

    2015-12-01

    We developed microsatellite markers for Carpotroche brasiliensis (Flacourtiaceae), a dioecious tree that is used as a food resource by midsize animals of the Brazilian fauna. We designed 30 primer pairs using next-generation sequencing and classified 25 pairs as polymorphic. Observed heterozygosity ranged from 0.5 to 1.0, and expected heterozygosity ranged from 0.418 to 0.907. The combined probability of exclusion was greater than 0.999 and the combined probability of identity was less than 0.001, indicating that these microsatellites are appropriate for investigations of genetic structure, individual identification, and paternity testing. The developed molecular tools may contribute to future studies of population genetics, answering ecological and evolutionary questions regarding efficient conservation strategies for C. brasiliensis.

  19. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC).

    PubMed

    Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E

    2015-05-01

    The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  20. Molecular Rotation Signals: Molecule Chemistry and Particle Physics

    NASA Astrophysics Data System (ADS)

    Grabow, Jens-Uwe

    2015-06-01

    Molecules - large or small - are attractive academic resources, with numerous questions on their chemical behaviour as well as problems in fundamental physics now (or still) waiting to be answered: Targeted by high-resolution spectroscopy, a rotating molecular top can turn into a laboratory for molecule chemistry or a laboratory for particle physics. Once successfully entrained (many species - depending on size and chemical composition - have insufficient vapour pressures or are of transient nature, such that specifically designed pulsed-jet sources are required for their transfer into the gas phase or in-situ generation) into the collision-free environment of a supersonic-jet expansion, each molecular top comes with its own set of challenges, theoretically and experimentally: Multiple internal interactions are causing complicated energy level schemes and the resulting spectra will be rather difficult to predict theoretically. Experimentally, these spectra are difficult to assess and assign. With today's broad-banded chirp microwave techniques, finding and identifying such spectral features have lost their major drawback of being very time consuming for many molecules. For other molecules, the unrivalled resolution and sensitivity of the narrow-banded impulse microwave techniques provide a window to tackle - at the highest precision available to date - fundamental questions in physics, even particle physics - potentially beyond the standard model. Molecular charge distribution, properties of the chemical bond, details on internal dynamics and intermolecular interaction, the (stereo-chemical) molecular structure (including the possibility of their spatial separation) as well as potential evidence for tiny yet significant interactions encode their signature in pure molecular rotation subjected to time-domain microwave spectroscopic techniques. Ongoing exciting technical developments promise rapid progress. We present recent examples from Hannover, new directions, and an outlook at the future of molecular rotation spectroscopy.

  1. Molecular Imaging of Pancreatic Cancer with Antibodies

    PubMed Central

    2015-01-01

    Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581

  2. The UCSC Genome Browser: What Every Molecular Biologist Should Know

    PubMed Central

    Mangan, Mary E.; Williams, Jennifer M.; Kuhn, Robert M.; Lathe, Warren C.

    2014-01-01

    Electronic data resources can enable molecular biologists to quickly get information from around the world that a decade ago would have been buried in papers scattered throughout the library. The ability to access, query, and display these data make benchwork much more efficient and drive new discoveries. Increasingly, mastery of software resources and corresponding data repositories is required to fully explore the volume of data generated in biomedical and agricultural research, because only small amounts of data are actually found in traditional publications. The UCSC Genome Browser provides a wealth of data and tools that advance understanding of genomic context for many species, enable detailed analysis of data, and provide the ability to interrogate regions of interest across disparate data sets from a wide variety of sources. Researchers can also supplement the standard display with their own data to query and share this with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. PMID:24984850

  3. PosMed-plus: an intelligent search engine that inferentially integrates cross-species information resources for molecular breeding of plants.

    PubMed

    Makita, Yuko; Kobayashi, Norio; Mochizuki, Yoshiki; Yoshida, Yuko; Asano, Satomi; Heida, Naohiko; Deshpande, Mrinalini; Bhatia, Rinki; Matsushima, Akihiro; Ishii, Manabu; Kawaguchi, Shuji; Iida, Kei; Hanada, Kosuke; Kuromori, Takashi; Seki, Motoaki; Shinozaki, Kazuo; Toyoda, Tetsuro

    2009-07-01

    Molecular breeding of crops is an efficient way to upgrade plant functions useful to mankind. A key step is forward genetics or positional cloning to identify the genes that confer useful functions. In order to accelerate the whole research process, we have developed an integrated database system powered by an intelligent data-retrieval engine termed PosMed-plus (Positional Medline for plant upgrading science), allowing us to prioritize highly promising candidate genes in a given chromosomal interval(s) of Arabidopsis thaliana and rice, Oryza sativa. By inferentially integrating cross-species information resources including genomes, transcriptomes, proteomes, localizomes, phenomes and literature, the system compares a user's query, such as phenotypic or functional keywords, with the literature associated with the relevant genes located within the interval. By utilizing orthologous and paralogous correspondences, PosMed-plus efficiently integrates cross-species information to facilitate the ranking of rice candidate genes based on evidence from other model species such as Arabidopsis. PosMed-plus is a plant science version of the PosMed system widely used by mammalian researchers, and provides both a powerful integrative search function and a rich integrative display of the integrated databases. PosMed-plus is the first cross-species integrated database that inferentially prioritizes candidate genes for forward genetics approaches in plant science, and will be expanded for wider use in plant upgrading in many species.

  4. TimeTree2: species divergence times on the iPhone.

    PubMed

    Kumar, Sudhir; Hedges, S Blair

    2011-07-15

    Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K-12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo).

  5. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    PubMed

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The Chinchilla Research Resource Database: resource for an otolaryngology disease model

    PubMed Central

    Shimoyama, Mary; Smith, Jennifer R.; De Pons, Jeff; Tutaj, Marek; Khampang, Pawjai; Hong, Wenzhou; Erbe, Christy B.; Ehrlich, Garth D.; Bakaletz, Lauren O.; Kerschner, Joseph E.

    2016-01-01

    The long-tailed chinchilla (Chinchilla lanigera) is an established animal model for diseases of the inner and middle ear, among others. In particular, chinchilla is commonly used to study diseases involving viral and bacterial pathogens and polymicrobial infections of the upper respiratory tract and the ear, such as otitis media. The value of the chinchilla as a model for human diseases prompted the sequencing of its genome in 2012 and the more recent development of the Chinchilla Research Resource Database (http://crrd.mcw.edu) to provide investigators with easy access to relevant datasets and software tools to enhance their research. The Chinchilla Research Resource Database contains a complete catalog of genes for chinchilla and, for comparative purposes, human. Chinchilla genes can be viewed in the context of their genomic scaffold positions using the JBrowse genome browser. In contrast to the corresponding records at NCBI, individual gene reports at CRRD include functional annotations for Disease, Gene Ontology (GO) Biological Process, GO Molecular Function, GO Cellular Component and Pathway assigned to chinchilla genes based on annotations from the corresponding human orthologs. Data can be retrieved via keyword and gene-specific searches. Lists of genes with similar functional attributes can be assembled by leveraging the hierarchical structure of the Disease, GO and Pathway vocabularies through the Ontology Search and Browser tool. Such lists can then be further analyzed for commonalities using the Gene Annotator (GA) Tool. All data in the Chinchilla Research Resource Database is freely accessible and downloadable via the CRRD FTP site or using the download functions available in the search and analysis tools. The Chinchilla Research Resource Database is a rich resource for researchers using, or considering the use of, chinchilla as a model for human disease. Database URL: http://crrd.mcw.edu PMID:27173523

  7. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    PubMed

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value <10-5) matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA) analysis identified 435 core eukaryotic genes (CEGs) in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  8. Crafting a career in molecular animation

    PubMed Central

    Iwasa, Janet

    2014-01-01

    When I first set out on a path to becoming a cell biologist, I would have never imagined that it would lead to a career in molecular animation. I had always thought I would follow a more traditional route. What happened? In this essay, I will describe the experiences that led to my decision to forge a career as an academic molecular animator, and how my work has evolved over the years. I will also provide some resources and advice for those who may be considering following a similar route. PMID:25267313

  9. From genomics to functional markers in the era of next-generation sequencing.

    PubMed

    Salgotra, R K; Gupta, B B; Stewart, C N

    2014-03-01

    The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  11. Use of big data in drug development for precision medicine

    PubMed Central

    Kim, Rosa S.; Goossens, Nicolas; Hoshida, Yujin

    2016-01-01

    Summary Drug development has been a costly and lengthy process with an extremely low success rate and lack of consideration of individual diversity in drug response and toxicity. Over the past decade, an alternative “big data” approach has been expanding at an unprecedented pace based on the development of electronic databases of chemical substances, disease gene/protein targets, functional readouts, and clinical information covering inter-individual genetic variations and toxicities. This paradigm shift has enabled systematic, high-throughput, and accelerated identification of novel drugs or repurposed indications of existing drugs for pathogenic molecular aberrations specifically present in each individual patient. The exploding interest from the information technology and direct-to-consumer genetic testing industries has been further facilitating the use of big data to achieve personalized Precision Medicine. Here we overview currently available resources and discuss future prospects. PMID:27430024

  12. The SULSA Assay Development Fund: accelerating translation of new biology from academia to pharma.

    PubMed

    McElroy, Stuart P; Jones, Philip S; Barrault, Denise V

    2017-02-01

    With industry increasingly sourcing preclinical drug discovery projects from academia it is important that new academic discoveries are enabled through translation with HTS-ready assays. However, many scientifically interesting, novel molecular targets lack associated high-quality, robust assays suitable for hit finding and development. To bridge this gap, the Scottish Universities Life Sciences Alliance (SULSA) established a fund to develop assays to meet quality criteria such as those of the European Lead Factory. A diverse project portfolio was quickly assembled, and a review of the learnings and successful outcomes showed this fund as a new highly cost-effective model for leveraging significant follow-on resources, training early-career scientists and establishing a culture of translational drug discovery in the academic community. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics

    PubMed Central

    Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia

    2016-01-01

    Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus. PMID:27128031

  14. De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics.

    PubMed

    Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia

    2016-01-01

    Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus.

  15. Time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  16. "Extremely minimally invasive": recent advances in nanotechnology research and future applications in neurosurgery.

    PubMed

    Mattei, Tobias A; Rehman, Azeem A

    2015-01-01

    The term "nanotechnology" refers to the development of materials and devices that have been designed with specific properties at the nanometer scale (10(-9) m), usually being less than 100 nm in size. Recent advances in nanotechnology have promised to enable visualization and intervention at the subcellular level, and its incorporation to future medical therapeutics is expected to bring new avenues for molecular imaging, targeted drug delivery, and personalized interventions. Although the central nervous system presents unique challenges to the implementation of new therapeutic strategies involving nanotechnology (such as the heterogeneous molecular environment of different CNS regions, the existence of multiple processing centers with different cytoarchitecture, and the presence of the blood-brain barrier), numerous studies have demonstrated that the incorporation of nanotechnology resources into the armamentarium of neurosurgery may lead to breakthrough advances in the near future. In this article, the authors present a critical review on the current 'state-of-the-art' of basic research in nanotechnology with special attention to those issues which present the greatest potential to generate major therapeutic progresses in the neurosurgical field, including nanoelectromechanical systems, nano-scaffolds for neural regeneration, sutureless anastomosis, molecular imaging, targeted drug delivery, and theranostic strategies.

  17. Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.

    PubMed

    Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C

    2017-03-31

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.

  18. Applications of next generation sequencing in molecular ecology of non-model organisms.

    PubMed

    Ekblom, R; Galindo, J

    2011-07-01

    As most biologists are probably aware, technological advances in molecular biology during the last few years have opened up possibilities to rapidly generate large-scale sequencing data from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', it is worthwhile to review how this may impact molecular ecology. The first studies to put the next generation sequencing (NGS) to the test in ecologically well-characterized species without previous genome information were published in 2007 and the beginning of 2008. Since then several studies have followed in their footsteps, and a large number are undoubtedly under way. This review focuses on how NGS has been, and can be, applied to ecological, population genetic and conservation genetic studies of non-model species, in which there is no (or very limited) genomic resources. Our aim is to draw attention to the various possibilities that are opening up using the new technologies, but we also highlight some of the pitfalls and drawbacks with these methods. We will try to provide a snapshot of the current state of the art for this rapidly advancing and expanding field of research and give some likely directions for future developments.

  19. A Novel Technique for Detecting Antibiotic-Resistant Typhoid from Rapid Diagnostic Tests

    PubMed Central

    Nic Fhogartaigh, Caoimhe; Dance, David A. B.; Davong, Viengmon; Tann, Pisey; Phetsouvanh, Rattanaphone; Turner, Paul; Newton, Paul N.

    2015-01-01

    Fluoroquinolone-resistant typhoid is increasing. An antigen-detecting rapid diagnotic test (RDT) can rapidly diagnose typhoid from blood cultures. A simple, inexpensive molecular technique performed with DNA from positive RDTs accurately identified gyrA mutations consistent with phenotypic susceptibility testing results. Field diagnosis combined with centralized molecular resistance testing could improve typhoid management and surveillance in low-resource settings. PMID:25762768

  20. Dynamics of asexual reproduction in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz, Eva-Maria; Lincoln, Bryan; Quinodoz, Sofia

    2011-03-01

    Planaria research is experiencing a resurgence due to the development of molecular tools, the Planarian genome project and database resources. Despite the resulting progress in planarian biology research, an extensive study of their physical properties remains to be undertaken. We developed a method to collect a large amount of data on the dynamics of clonal reproduction in the freshwater planarian S.mediterranea. The capability of planarians to regenerate an entire organism from a minuscule body part is based on a homogeneously distributed stem cell population that comprises 25-30% of all cells. Due to this stem cell contingent, planarians can reproduce spontaneously by dividing into a larger head and a smaller tail piece, which then will rebuild the missing body parts, including a central nervous system, within about a week. Time-lapse imaging allows us to characterize the fission process in detail, revealing the stages of the process as well as capturing the nature of the rupture itself. A traction force measurement setup is being developed to allow us to quantify the forces planarians exert on the substrate during reproduction, a macroscopic analog to the Traction Force Microscopy setups used to determine local cellular forces. We are particularly interested in the molecular processes during division and the interplay between tissue mechanics and cell signaling.

  1. The Binding Database: data management and interface design.

    PubMed

    Chen, Xi; Lin, Yuhmei; Liu, Ming; Gilson, Michael K

    2002-01-01

    The large and growing body of experimental data on biomolecular binding is of enormous value in developing a deeper understanding of molecular biology, in developing new therapeutics, and in various molecular design applications. However, most of these data are found only in the published literature and are therefore difficult to access and use. No existing public database has focused on measured binding affinities and has provided query capabilities that include chemical structure and sequence homology searches. We have created Binding DataBase (BindingDB), a public, web-accessible database of measured binding affinities. BindingDB is based upon a relational data specification for describing binding measurements via Isothermal Titration Calorimetry (ITC) and enzyme inhibition. A corresponding XML Document Type Definition (DTD) is used to create and parse intermediate files during the on-line deposition process and will also be used for data interchange, including collection of data from other sources. The on-line query interface, which is constructed with Java Servlet technology, supports standard SQL queries as well as searches for molecules by chemical structure and sequence homology. The on-line deposition interface uses Java Server Pages and JavaBean objects to generate dynamic HTML and to store intermediate results. The resulting data resource provides a range of functionality with brisk response-times, and lends itself well to continued development and enhancement.

  2. TOXCAST, A TOOL FOR CATEGORIZATION AND ...

    EPA Pesticide Factsheets

    Across several EPA Program Offices (e.g., OPPTS, OW, OAR), there is a clear need to develop strategies and methods to screen large numbers of chemicals for potential toxicity, and to use the resulting information to prioritize the use of testing resources towards those entities and endpoints that present the greatest likelihood of risk to human health and the environment. This need could be addressed using the experience of the pharmaceutical industry in the use of advanced modern molecular biology and computational chemistry tools for the development of new drugs, with appropriate adjustment to the needs and desires of environmental toxicology. A conceptual approach named ToxCast has been developed to address the needs of EPA Program Offices in the area of prioritization and screening. Modern computational chemistry and molecular biology tools bring enabling technologies forward that can provide information about the physical and biological properties of large numbers of chemicals. The essence of the proposal is to conduct a demonstration project based upon a rich toxicological database (e.g., registered pesticides, or the chemicals tested in the NTP bioassay program), select a fairly large number (50-100 or more chemicals) representative of a number of differing structural classes and phenotypic outcomes (e.g., carcinogens, reproductive toxicants, neurotoxicants), and evaluate them across a broad spectrum of information domains that modern technology has pro

  3. A comprehensive physiologically based pharmacokinetic ...

    EPA Pesticide Factsheets

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific parameters and in vivo pharmacokinetic data used to calibrate these published models can act as valuable starting points for model development of new chemicals with similar molecular structures. A knowledgebase for published PBPK-related articles was compiled to support PBPK model construction for new chemicals based on their close analogues within the knowledgebase, and a web-based interface was developed to allow users to query those close analogues. A list of 689 unique chemicals and their corresponding 1751 articles was created after analysis of 2,245 PBPK-related articles. For each model, the PMID, chemical name, major metabolites, species, gender, life stages and tissue compartments were extracted from the published articles. PaDEL-Descriptor, a Chemistry Development Kit based software, was used to calculate molecular fingerprints. Tanimoto index was implemented in the user interface as measurement of structural similarity. The utility of the PBPK knowledgebase and web-based user interface was demonstrated using two case studies with ethylbenzene and gefitinib. Our PBPK knowledgebase is a novel tool for ranking chemicals based on similarities to other chemicals associated with existi

  4. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection.

    PubMed

    Rigden, Daniel J; Fernández, Xosé M

    2018-01-04

    The 2018 Nucleic Acids Research Database Issue contains 181 papers spanning molecular biology. Among them, 82 are new and 84 are updates describing resources that appeared in the Issue previously. The remaining 15 cover databases most recently published elsewhere. Databases in the area of nucleic acids include 3DIV for visualisation of data on genome 3D structure and RNArchitecture, a hierarchical classification of RNA families. Protein databases include the established SMART, ELM and MEROPS while GPCRdb and the newcomer STCRDab cover families of biomedical interest. In the area of metabolism, HMDB and Reactome both report new features while PULDB appears in NAR for the first time. This issue also contains reports on genomics resources including Ensembl, the UCSC Genome Browser and ENCODE. Update papers from the IUPHAR/BPS Guide to Pharmacology and DrugBank are highlights of the drug and drug target section while a number of proteomics databases including proteomicsDB are also covered. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been updated, reviewing 138 entries, adding 88 new resources and eliminating 47 discontinued URLs, bringing the current total to 1737 databases. It is available at http://www.oxfordjournals.org/nar/database/c/. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. A resource for functional profiling of noncoding RNA in the yeast Saccharomyces cerevisiae.

    PubMed

    Parker, Steven; Fraczek, Marcin G; Wu, Jian; Shamsah, Sara; Manousaki, Alkisti; Dungrattanalert, Kobchai; de Almeida, Rogerio Alves; Estrada-Rivadeneyra, Diego; Omara, Walid; Delneri, Daniela; O'Keefe, Raymond T

    2017-08-01

    Eukaryotic genomes are extensively transcribed, generating many different RNAs with no known function. We have constructed 1502 molecular barcoded ncRNA gene deletion strains encompassing 443 ncRNAs in the yeast Saccharomyces cerevisiae as tools for ncRNA functional analysis. This resource includes deletions of small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and other annotated ncRNAs as well as the more recently identified stable unannotated transcripts (SUTs) and cryptic unstable transcripts (CUTs) whose functions are largely unknown. Specifically, deletions have been constructed for ncRNAs found in the intergenic regions, not overlapping genes or their promoters (i.e., at least 200 bp minimum distance from the closest gene start codon). The deletion strains carry molecular barcodes designed to be complementary with the protein gene deletion collection enabling parallel analysis experiments. These strains will be useful for the numerous genomic and molecular techniques that utilize deletion strains, including genome-wide phenotypic screens under different growth conditions, pooled chemogenomic screens with drugs or chemicals, synthetic genetic array analysis to uncover novel genetic interactions, and synthetic dosage lethality screens to analyze gene dosage. Overall, we created a valuable resource for the RNA community and for future ncRNA research. © 2017 Parker et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Computational tools for exploring sequence databases as a resource for antimicrobial peptides.

    PubMed

    Porto, W F; Pires, A S; Franco, O L

    Data mining has been recognized by many researchers as a hot topic in different areas. In the post-genomic era, the growing number of sequences deposited in databases has been the reason why these databases have become a resource for novel biological information. In recent years, the identification of antimicrobial peptides (AMPs) in databases has gained attention. The identification of unannotated AMPs has shed some light on the distribution and evolution of AMPs and, in some cases, indicated suitable candidates for developing novel antimicrobial agents. The data mining process has been performed mainly by local alignments and/or regular expressions. Nevertheless, for the identification of distant homologous sequences, other techniques such as antimicrobial activity prediction and molecular modelling are required. In this context, this review addresses the tools and techniques, and also their limitations, for mining AMPs from databases. These methods could be helpful not only for the development of novel AMPs, but also for other kinds of proteins, at a higher level of structural genomics. Moreover, solving the problem of unannotated proteins could bring immeasurable benefits to society, especially in the case of AMPs, which could be helpful for developing novel antimicrobial agents and combating resistant bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Development of novel genic microsatellite markers from transcriptome sequencing in sugar maple (Acer saccharum Marsh.).

    PubMed

    Harmon, Monica; Lane, Thomas; Staton, Margaret; Coggeshall, Mark V; Best, Teodora; Chen, Chien-Chih; Liang, Haiying; Zembower, Nicole; Drautz-Moses, Daniela I; Hwee, Yap Zhei; Schuster, Stephan C; Schlarbaum, Scott E; Carlson, John E; Gailing, Oliver

    2017-08-08

    Sugar maple (Acer saccharum Marsh.) is a hardwood tree species native to northeastern North America and economically valued for its wood and sap. Yet, few molecular genetic resources have been developed for this species to date. Microsatellite markers have been a useful tool in population genetics, e.g., to monitor genetic variation and to analyze gene flow patterns. The objective of this study is to develop a reference transcriptome and microsatellite markers in sugar maple. A set of 117,861 putative unique transcripts were assembled using 29.2 Gb of RNA sequencing data derived from different tissues and stress treatments. From this set of sequences a total of 1068 microsatellite motifs were identified. Out of 58 genic microsatellite markers tested on a population of 47 sugar maple trees in upper Michigan, 22 amplified well, of which 16 were polymorphic and 6 were monomorphic. Values for expected heterozygosity varied from 0.224 to 0.726 for individual loci. Of the 16 polymorphic markers, 15 exhibited transferability to other Acer L. species. Genic microsatellite markers can be applied to analyze genetic variation in potentially adaptive genes relative to genomic reference markers as a basis for the management of sugar maple genetic resources in the face of climate change.

  8. Assessment and management of soil microbial community structure for disease suppression.

    PubMed

    Mazzola, Mark

    2004-01-01

    Identification of the biological properties contributing to the function of suppressive soils is a necessary first step to the management of such systems for use in the control of soilborne diseases. The development and application of molecular methods for the characterization and monitoring of soil microbial properties will enable a more rapid and detailed assessment of the biological nature of soil suppressiveness. Although suppressive soils have provided a wealth of microbial resources that have subsequently been applied for the biological control of soilborne plant pathogens, the full functional capabilities of the phenomena have not been realized in production agricultural ecosystems. Cultural practices, such as the application of soil amendments, have the capacity to enhance disease suppression, though the biological modes of action may vary from that initially resident to the soil. Plants have a distinct impact on characteristics and activity of resident soil microbial communities, and therefore play an important role in determining the development of the disease-suppressive state. Likewise, plant genotype will modulate these same biological communities, and should be considered when developing strategies to exploit the potential of such a natural disease control system. Implementation of consistently effective practices to manage this resource in an economically and environmentally feasible manner will require more detailed investigation of these biologically complex systems and refinement of currently available methodologies.

  9. Radiochemistry Research and Training, UC Davis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, Julie

    2012-08-01

    The report contains a summary of the accomplishments made during the R2@UCDavis proposal. In brief we proposed to develop new and highly innovative radiotracer methods and to enhance training opportunities to ensure the future availability of human resources for highly specialized fields of radiotracer development chemistry and clinical nuclear medicine research and allied disciplines. The overall scientific objectives of this proposal were to utilize “click” chemistry to facilitate fast and site-specific radiolabeling. Progress was made on all initial goals presented. This funding has to date resulted in publications in high impact journals such as Acta Biomaterialia, Molecular Imaging and Biology,more » Nuclear Medicine and Biology and most recently Environmental Science and technology, and it is anticipated that through the collaborations established during the time course of this funding that future research will be published in clinically relevant journals such as Science Translational Medicine and the Journal of Nuclear Medicine. Trainees involved in this proposal have gone on to further their careers in both academia, industry and the private sector. The collaborative forums established during the time course of this funding will ensure the future availability of human resources for highly specialized fields of radiotracer development chemistry and clinical nuclear medicine research and allied disciplines.« less

  10. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.)

    PubMed Central

    2009-01-01

    Background Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers. Results A total of 20,162 (18,435 high quality) drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons). Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965) had significant similarity (≤1E-05) to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut) and three model plant species (rice, Arabidopsis and poplar) provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3%) significant unigenes, only 2,071 (32.3%) unigenes could be functionally categorised according to Gene Ontology (GO) descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs) were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC) value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs) in 742 contigs (with ≥ 5 ESTs) were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive candidate genes and their expression profile showed predominance in specific stress-challenged libraries. Conclusion Generated set of chickpea ESTs serves as a resource of high quality transcripts for gene discovery and development of functional markers associated with abiotic stress tolerance that will be helpful to facilitate chickpea breeding. Mapping of gene-based markers in chickpea will also add more anchoring points to align genomes of chickpea and other legume species. PMID:19912666

  11. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2017-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance. PMID:28167949

  12. A physiome interoperability roadmap for personalized drug development

    PubMed Central

    2016-01-01

    The goal of developing therapies and dosage regimes for characterized subgroups of the general population can be facilitated by the use of simulation models able to incorporate information about inter-individual variability in drug disposition (pharmacokinetics), toxicity and response effect (pharmacodynamics). Such observed variability can have multiple causes at various scales, ranging from gross anatomical differences to differences in genome sequence. Relevant data for many of these aspects, particularly related to molecular assays (known as ‘-omics’), are available in online resources, but identification and assignment to appropriate model variables and parameters is a significant bottleneck in the model development process. Through its efforts to standardize annotation with consequent increase in data usability, the human physiome project has a vital role in improving productivity in model development and, thus, the development of personalized therapy regimes. Here, we review the current status of personalized medicine in clinical practice, outline some of the challenges that must be overcome in order to expand its applicability, and discuss the relevance of personalized medicine to the more widespread challenges being faced in drug discovery and development. We then review some of (i) the key data resources available for use in model development and (ii) the potential areas where advances made within the physiome modelling community could contribute to physiologically based pharmacokinetic and physiologically based pharmacokinetic/pharmacodynamic modelling in support of personalized drug development. We conclude by proposing a roadmap to further guide the physiome community in its on-going efforts to improve data usability, and integration with modelling efforts in the support of personalized medicine development. PMID:27051513

  13. The FaceBase Consortium: a comprehensive resource for craniofacial researchers

    PubMed Central

    Brinkley, James F.; Fisher, Shannon; Harris, Matthew P.; Holmes, Greg; Hooper, Joan E.; Wang Jabs, Ethylin; Jones, Kenneth L.; Kesselman, Carl; Klein, Ophir D.; Maas, Richard L.; Marazita, Mary L.; Selleri, Licia; Spritz, Richard A.; van Bakel, Harm; Visel, Axel; Williams, Trevor J.; Wysocka, Joanna

    2016-01-01

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  14. CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research.

    PubMed

    Bhawna; Chaduvula, Pavan K; Bonthala, Venkata S; Manjusha, Verma; Siddiq, Ebrahimali A; Polumetla, Ananda K; Prasad, Gajula M N V

    2015-01-01

    Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.

  15. Development of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet

    PubMed Central

    Muthamilarasan, Mehanathan; Venkata Suresh, B.; Pandey, Garima; Kumari, Kajal; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species. PMID:24086082

  16. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    PubMed

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  17. Personalised medicine in 2012: editorial to the special issue of New Biotechnology on "molecular diagnostics & personalised medicine".

    PubMed

    Desiere, Frank; Romano Spica, Vincenzo

    2012-09-15

    This special issue of New Biotechnology is focused on molecular diagnostics and personalised medicine and appears at an epochal moment in the development of the field. The practice of medicine is taking a significant and irrevocable turn towards personalisation, due to the great progress in areas such as genomics, pharmacogenomics and molecular diagnosis. It becomes increasingly apparent that to deliver the promise of personalised treatments, more and more novel medicines discovered today will be presented together with innovative companion diagnostics. The contributions to this volume touch on many disciplines, ranging from cell biology to genetics, immunology, molecular diagnostics, pharmaceutics and economic issues. The contributions of clinicians and basic scientists are synergistically presented to underline better the wide spectrum of studies that can contribute to the new field of personalised medicine. The promising perspectives of individualised treatments are related not only to higher effectiveness, but also to increased efficiency. This is relevant not only for the individual patient, but even more so for the general public, within a wider economical perspective where resources are limited and it becomes more and more mandatory to close the gap between social costs and benefits. This approach follows the steps of a stratified and individualised medicine and finds its final goal in an individualised healthcare. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ebola Check: Delivering molecular diagnostics at the point of need.

    PubMed

    Moschos, Sterghios A

    2015-01-01

    The 2013-5 global outbreak of Ebolavirus disease brought to sharp focus the need for diagnostic capacity to be equitably available on a global scale: from the most under-developed areas of resource-limited countries in West Africa to high volume international travel hubs in Europe and the USA. Quick detection of the causal agent of disease is pivotal to containment, contact tracing and clinical action to protect healthcare workers, communities and patients. Nucleic acid testing (NAT) by real time reverse transcription quantitative polymerase chain reaction (RT-PCR) has emerged as the preferred method for reliable patient status confirmation. Presently, this is served through advanced clinical molecular laboratory testing in a <8hr manual process that requires 3.5ml venous blood samples. To meet the demand in West Africa, this has necessitated large-scale mobile laboratory and volunteer biomedical scientist deployment: a solution that has proven eventually adequate, albeit temporary against future re-emergence of this and other haemorrhagic fever disease agents prevalent in the region. The EbolaCheck consortium was formed in August 2014 to address the need for delivering NAT at the point of care. We have developed a novel platform technology that can QUantitatively, RAPidly IDentify (QuRapID) known RNA or DNA targets in viruses, bacteria, or eukaryotic cells directly in crude biofluids, including whole blood, in under 40min using a 5 microliter sample. The portable, battery-operated system lacks microfluidics, pumps or other sensitive/high cost parts making it suitable for the environmental and economic challenges of resource-limited countries. The simple, safe, 5-step sample-to-answer process requires minimal training and informs frontline healthcare workers of diagnostic status, whilst reporting remotely epidemiologically relevant results. Data on biosafety level 2 surrogate Ebolavirus templates presented in encapsulated or enveloped viruses indicate performance comparable to clinical laboratory testing and utility beyond filoviruses. Emerging performance data on live Ebolavirus, non-human primate disease model and patient samples, as well as future development plans will be discussed.

  19. SNP Design from 454 Sequencing of Podosphaera plantaginis Transcriptome Reveals a Genetically Diverse Pathogen Metapopulation with High Levels of Mixed-Genotype Infection

    PubMed Central

    Tollenaere, Charlotte; Susi, Hanna; Nokso-Koivisto, Jussi; Koskinen, Patrik; Tack, Ayco; Auvinen, Petri; Paulin, Lars; Frilander, Mikko J.; Lehtonen, Rainer; Laine, Anna-Liisa

    2012-01-01

    Background Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001. Principal Findings A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins). A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG) with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem. Significance The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field sampling protocols for a wide range of biological systems. PMID:23300684

  20. High-Throughput Sequencing to Reveal Genes Involved in Reproduction and Development in Bactrocera dorsalis (Diptera: Tephritidae)

    PubMed Central

    Zheng, Weiwei; Peng, Tao; He, Wei; Zhang, Hongyu

    2012-01-01

    Background Tephritid fruit flies in the genus Bactrocera are of major economic significance in agriculture causing considerable loss to the fruit and vegetable industry. Currently, there is no ideal control program. Molecular means is an effective method for pest control at present, but genomic or transcriptomic data for members of this genus remains limited. To facilitate molecular research into reproduction and development mechanisms, and finally effective control on these pests, an extensive transcriptome for the oriental fruit fly Bactrocera dorsalis was produced using the Roche 454-FLX platform. Results We obtained over 350 million bases of cDNA derived from the whole body of B. dorsalis at different developmental stages. In a single run, 747,206 sequencing reads with a mean read length of 382 bp were obtained. These reads were assembled into 28,782 contigs and 169,966 singletons. The mean contig size was 750 bp and many nearly full-length transcripts were assembled. Additionally, we identified a great number of genes that are involved in reproduction and development as well as genes that represent nearly all major conserved metazoan signal transduction pathways, such as insulin signal transduction. Furthermore, transcriptome changes during development were analyzed. A total of 2,977 differentially expressed genes (DEGs) were detected between larvae and pupae libraries, while there were 1,621 DEGs between adults and larvae, and 2,002 between adults and pupae. These DEGs were functionally annotated with KEGG pathway annotation and 9 genes were validated by qRT-PCR. Conclusion Our data represent the extensive sequence resources available for B. dorsalis and provide for the first time access to the genetic architecture of reproduction and development as well as major signal transduction pathways in the Tephritid fruit fly pests, allowing us to elucidate the molecular mechanisms underlying courtship, ovipositing, development and detailed analyses of the signal transduction pathways. PMID:22570719

  1. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia.

    PubMed

    Carlson, Ross P; Beck, Ashley E; Phalak, Poonam; Fields, Matthew W; Gedeon, Tomas; Hanley, Luke; Harcombe, William R; Henson, Michael A; Heys, Jeffrey J

    2018-04-17

    Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    PubMed Central

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  3. A high-resolution anatomical ontology of the developing murine genitourinary tract

    PubMed Central

    Little, Melissa H.; Brennan, Jane; Georgas, Kylie; Davies, Jamie A.; Davidson, Duncan R.; Baldock, Richard A.; Beverdam, Annemiek; Bertram, John F.; Capel, Blanche; Chiu, Han Sheng; Clements, Dave; Cullen-McEwen, Luise; Fleming, Jean; Gilbert, Thierry; Houghton, Derek; Kaufman, Matt H.; Kleymenova, Elena; Koopman, Peter A.; Lewis, Alfor G.; McMahon, Andrew P.; Mendelsohn, Cathy L.; Mitchell, Eleanor K.; Rumballe, Bree A.; Sweeney, Derina E.; Valerius, M. Todd; Yamada, Gen; Yang, Yiya; Yu., Jing

    2007-01-01

    Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level. The ontology is being used to annotate in situ hybridisation data generated as part of the Genitourinary Development Molecular Anatomy Project (GUDMAP), a publicly available data resource on gene and protein expression during genitourinary development. The GUDMAP ontology encompasses Theiler stage (TS) 17 to 27 of development as well as the sexually mature adult. It has been written as a partonomic, text-based, hierarchical ontology that, for the embryological stages, has been developed as a high-resolution expansion of the existing Edinburgh Mouse Atlas Project (EMAP) ontology. It also includes group terms for well-characterised structural and/or functional units comprising several sub-structures, such as the nephron and juxtaglomerular complex. Each term has been assigned a unique identification number. Synonyms have been used to improve the success of query searching and maintain wherever possible existing EMAP terms relating to this organ system. We describe here the principles and structure of the ontology and provide representative diagrammatic, histological, and whole mount and section RNA in situ hybridisation images to clarify the terms used within the ontology. Visual examples of how terms appear in different specimen types are also provided. PMID:17452023

  4. Classroom Resources | Argonne National Laboratory

    Science.gov Websites

    Chemical Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Infrastructure Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science

  5. Genetic Testing Registry

    MedlinePlus

    ... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...

  6. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei

    PubMed Central

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes underlying shrimp development. PMID:26650402

  7. Gramene 2013: comparative plant genomics resources.

    PubMed

    Monaco, Marcela K; Stein, Joshua; Naithani, Sushma; Wei, Sharon; Dharmawardhana, Palitha; Kumari, Sunita; Amarasinghe, Vindhya; Youens-Clark, Ken; Thomason, James; Preece, Justin; Pasternak, Shiran; Olson, Andrew; Jiao, Yinping; Lu, Zhenyuan; Bolser, Dan; Kerhornou, Arnaud; Staines, Dan; Walts, Brandon; Wu, Guanming; D'Eustachio, Peter; Haw, Robin; Croft, David; Kersey, Paul J; Stein, Lincoln; Jaiswal, Pankaj; Ware, Doreen

    2014-01-01

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.

  8. Computational Science in Armenia (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  9. Low tumour cell content in a lung tumour bank: implications for molecular characterisation.

    PubMed

    Goh, Felicia; Duhig, Edwina E; Clarke, Belinda E; McCaul, Elizabeth; Passmore, Linda; Courtney, Deborah; Windsor, Morgan; Naidoo, Rishendren; Franz, Louise; Parsonson, Kylie; Yang, Ian A; Bowman, Rayleen V; Fong, Kwun M

    2017-10-01

    Lung cancer encompasses multiple malignant epithelial tumour types, each with specific targetable, potentially actionable mutations, such that precision management mandates accurate tumour typing. Molecular characterisation studies require high tumour cell content and low necrosis content, yet lung cancers are frequently a heterogeneous mixture of tumour and stromal cells. We hypothesised that there may be systematic differences in tumour cell content according to histological subtype, and that this may have implications for tumour banks as a resource for comprehensive molecular characterisation studies in lung cancer. To investigate this, we estimated tumour cell and necrosis content of 4267 samples resected from 752 primary lung tumour specimens contributed to a lung tissue bank. We found that banked lung cancer samples had low tumour cell content (33%) generally, although it was higher in carcinoids (77.5%) than other lung cancer subtypes. Tumour cells comprise a variable and often small component of banked resected tumour samples, and are accompanied by stromal reaction, inflammation, fibrosis, and normal structures. This has implications for the adequacy of unselected tumour bank samples for diagnostic and molecular investigations, and further research is needed to determine whether tumour cell content has a significant impact on analytical results in studies using tissue from tumour bank resources. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    NASA Astrophysics Data System (ADS)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  11. Nanotechnology in dentistry: Present and future

    PubMed Central

    Bhardwaj, Archana; Bhardwaj, Abhishek; Misuriya, Abhinav; Maroli, Sohani; Manjula, S; Singh, Arvind Kumar

    2014-01-01

    Nanotechnology is the manipulation of matter on the molecular and atomic levels. It has the potential to bring enormous changes into the fields of medicine and dentistry. A day may soon come when nanodentistry will succeed in maintaining near-perfect oral health through the aid of nanorobotics, nanomaterials and biotechnology. However, as with all developments, it may also pose a risk for misuse. Time, economical and technical resources, and human needs will determine the direction this revolutionizing development may take. This article reviews the current status and the potential clinical applications of nanotechnology, nanaomedicine and nanodentistry. How to cite the article: Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: Present and future. J Int Oral Health 2013;6(1):121-6. PMID:24653616

  12. Solution Processed Organic Photovoltaic Cells Using D-A-D-A-D Type Small Molecular Donor Materials with Benzodithiophene and Diketopyrrolopyrrole Units.

    PubMed

    Park, Sangman; Nam, So Yeon; Suh, Dong Hack; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Organic photovoltaic Cells (OPVs) have been considered to be a next-generation energy source to overcome exhaustion of resources. Currently, OPVs are developed based on two types of donor material with polymer and small molecule. Polymeric donor materials have shown better power conversion efficiency (PCE) than small molecular donor materials, since it's easy to control the morphology of photoactive film. However, the difficulty in synthetic reproducibility and purification of polymeric donor were main drawback to overcome. And then, recently small molecule donor materials have been overcome bad morphology of OPVs film by using appropriate alkyl substituents and relatively long conjugation system. In this study, we designed and synthesized D-A-D-A-D type small molecular donor materials containing alternatively linked benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Also, we studied on the effect of photovoltaic performance of prepared small molecular D-A-D-A-D type donor with variation of thiophene links and with/without hexyl substituent. Our small molecular donors showed HOMO energy levels from -5.26 to -5.34 eV and optical bandgaps from 1.70 to 1.87 eV by CV (cyclic voltammetry) and UV/Vis spectroscopy, respectively. Finally, 3.4% of PCE can be obtained using a mixture of BDT(DPP)2-T2 and PCBM as an active layer with a Voc of 0.78 V, a Jsc of 9.72 mA/cm2, and a fill factor of 0.44 under 100 mW/cm2 AM 1.5G simulated light. We will discuss the performance of D-A-D-A-D type small molecular donor based OPVs with variation of both terminal substituents.

  13. De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts

    PubMed Central

    Won, Harim I.; Schulze, Thomas T.; Clement, Emalie J.; Watson, Gabrielle F.; Watson, Sean M.; Warner, Rosalie C.; Ramler, Elizabeth A. M.; Witte, Elias J.; Schoenbeck, Mark A.; Rauter, Claudia M.; Davis, Paul H.

    2018-01-01

    Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development. PMID:29707046

  14. BXR, an embryonic orphan nuclear receptor activated by a novel class of endogenous benzoate metabolites

    PubMed Central

    Blumberg, Bruce; Kang, Heonjoong; Bolado, Jack; Chen, Hongwu; Craig, A. Grey; Moreno, Tanya A.; Umesono, Kazuhiko; Perlmann, Thomas; De Robertis, Eddy M.; Evans, Ronald M.

    1998-01-01

    Nuclear receptors are ligand-modulated transcription factors that respond to steroids, retinoids, and thyroid hormones to control development and body physiology. Orphan nuclear receptors, which lack identified ligands, provide a unique, and largely untapped, resource to discover new principles of physiologic homeostasis. We describe the isolation and characterization of the vertebrate orphan receptor, BXR, which heterodimerizes with RXR and binds high-affinity DNA sites composed of a variant thyroid hormone response element. A bioactivity-guided screen of embryonic extracts revealed that BXR is activatable by low-molecular-weight molecules with spectral patterns distinct from known nuclear receptor ligands. Mass spectrometry and 1H NMR analysis identified alkyl esters of amino and hydroxy benzoic acids as potent, stereoselective activators. In vitro cofactor association studies, along with competable binding of radiolabeled compounds, establish these molecules as bona fide ligands. Benzoates comprise a new molecular class of nuclear receptor ligand and their activity suggests that BXR may control a previously unsuspected vertebrate signaling pathway. PMID:9573044

  15. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  16. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.

    PubMed

    Xu, Jin-Rong; Zhao, Xinhua; Dean, Ralph A

    2007-01-01

    Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.

  17. Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards

    PubMed Central

    2015-01-01

    Contextual data collected concurrently with molecular samples are critical to the use of metagenomics in the fields of marine biodiversity, bioinformatics and biotechnology. We present here Marine Microbial Biodiversity, Bioinformatics and Biotechnology (M2B3) standards for “Reporting” and “Serving” data. The M2B3 Reporting Standard (1) describes minimal mandatory and recommended contextual information for a marine microbial sample obtained in the epipelagic zone, (2) includes meaningful information for researchers in the oceanographic, biodiversity and molecular disciplines, and (3) can easily be adopted by any marine laboratory with minimum sampling resources. The M2B3 Service Standard defines a software interface through which these data can be discovered and explored in data repositories. The M2B3 Standards were developed by the European project Micro B3, funded under 7th Framework Programme “Ocean of Tomorrow”, and were first used with the Ocean Sampling Day initiative. We believe that these standards have value in broader marine science. PMID:26203332

  18. Comparison of two different techniques of cooperative learning approach: Undergraduates' conceptual understanding in the context of hormone biochemistry.

    PubMed

    Mutlu, Ayfer

    2018-03-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished using Team-Game Tournament in Group 1 and Jigsaw in Group 2. Before the instructions, all groups were informed about cooperative learning and techniques, their responsibilities in the learning process and accessing of resources. Instructions were conducted under the guidance of the researcher for nine weeks and the Hormone Concept Test developed by the researcher was used before and after the instructions for data collection. According to the results, while both techniques improved students' understanding, Jigsaw was more effective than Team-Game Tournament. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):114-120, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Genetics, Molecular, and Proteomics Advances in Filamentous Fungi.

    PubMed

    Sharma Ghimire, Prakriti; Jin, Cheng

    2017-10-01

    Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.

  20. Climbing plants: attachment adaptations and bioinspired innovations.

    PubMed

    Burris, Jason N; Lenaghan, Scott C; Stewart, C Neal

    2018-04-01

    Climbing plants have unique adaptations to enable them to compete for sunlight, for which they invest minimal resources for vertical growth. Indeed, their stems bear relatively little weight, as they traverse their host substrates skyward. Climbers possess high tensile strength and flexibility, which allows them to utilize natural and manmade structures for support and growth. The climbing strategies of plants have intrigued scientists for centuries, yet our understanding about biochemical adaptations and their molecular undergirding is still in the early stages of research. Nonetheless, recent discoveries are promising, not only from a basic knowledge perspective, but also for bioinspired product development. Several adaptations, including nanoparticle and adhesive production will be reviewed, as well as practical translation of these adaptations to commercial applications. We will review the botanical literature on the modes of adaptation to climb, as well as specialized organs-and cellular innovations. Finally, recent molecular and biochemical data will be reviewed to assess the future needs and new directions for potential practical products that may be bioinspired by climbing plants.

  1. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567

  2. H2Oh!: Classroom demonstrations and activities for improving student learning of water concepts

    NASA Astrophysics Data System (ADS)

    Chan-Hilton, A.; Neupauer, R. M.; Burian, S. J.; Lauer, J. W.; Mathisen, P. P.; Mays, D. C.; Olson, M. S.; Pomeroy, C. A.; Ruddell, B. L.; Sciortino, A.

    2012-12-01

    Research has shown that the use of demonstrations and hands-on activities in the classroom enhances student learning. Students learn more and enjoy classes more when visual and active learning are incorporated into the lecture. Most college-aged students prefer visual modes of learning, while most instruction is conducted in a lecture, or auditory, format. The use of classroom demonstrations provides opportunities for incorporating visual and active learning into the classroom environment. However, while most instructors acknowledge the benefits of these teaching methods, they typically do not have the time and resources to develop and test such activities and to develop plans to incorporate them into their lectures. Members of the Excellence in Water Resources Education Task Committee of the Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers (ASCE) have produced a publication that contains a collection of activities aimed to foster excellence in water resources and hydrology education and improve student learning of principles. The book contains forty-five demonstrations and activities that can be used in water-related classes with topics in fluid mechanics, hydraulics, surface water hydrology, groundwater hydrology, and water quality. We present examples of these activities, including topics such as conservation of momentum, buoyancy, Bernoulli's principle, drag force, pipe flow, watershed delineation, reservoir networks, head distribution in aquifers, and molecular diffusion in a porous medium. Unlike full laboratory exercises, these brief demonstrations and activities (most of which take less than fifteen minutes) can be easily incorporated into classroom lectures. For each demonstration, guidance for preparing and conducting the activity, along with a brief overview of the principles that are demonstrated, is provided. The target audience of the activities is undergraduate students, although the activities also may be used in K-12 and graduate classes.

  3. Budget impact and cost-effectiveness: can we afford precision medicine in oncology?

    PubMed

    Doble, Brett

    2016-01-01

    Over the past decade there have been remarkable advancements in the understanding of the molecular underpinnings of malignancy. Methods of testing capable of elucidating patients' molecular profiles are now readily available and there is an increased desire to incorporate the information derived from such tests into treatment selection for cancer patients. This has led to more appropriate application of existing treatments as well as the development of a number of innovative and highly effective treatments or what is known collectively as precision medicine. The impact that precision medicine will have on health outcomes is uncertain, as are the costs it will incur. There is, therefore, a need to develop economic evidence and appropriate methods of evaluation to support its implementation to ensure the resources allocated to these approaches are affordable and offer value for money. The market for precision medicine in oncology continues to rapidly expand, placing an increased pressure on reimbursement decision-makers to consider the value and opportunity cost of funding such approaches to care. The benefits of molecular testing can be complex and difficult to evaluate given currently available economic methods, potentially causing a distorted appreciation of their value. Funding decisions of precision medicine will also have far-reaching implications, requiring the consideration of both patient and public perspectives in decision-making. Recommendations to improve the value proposition of precision medicine are, therefore, provided with the hopes of facilitating a better understanding of its impact on outcomes and the overall health budget.

  4. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    PubMed

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens.

  5. Selection, isolation, and identification of fungi for bioherbicide production.

    PubMed

    Souza, Angélica Rossana Castro de; Baldoni, Daiana Bortoluzzi; Lima, Jessica; Porto, Vitória; Marcuz, Camila; Machado, Carolina; Ferraz, Rafael Camargo; Kuhn, Raquel C; Jacques, Rodrigo J S; Guedes, Jerson V C; Mazutti, Marcio A

    Production of a bioherbicide for biological control of weeds requires a series of steps, from selection of a suitable microbial strain to final formulation. Thus, this study aimed to select fungi for production of secondary metabolites with herbicidal activity using biological resources of the Brazilian Pampa biome. Phytopathogenic fungi were isolated from infected tissues of weeds in the Pampa biome. A liquid synthetic culture medium was used for production of metabolites. The phytotoxicity of fungal metabolites was assessed via biological tests using the plant Cucumis sativus L., and the most promising strain was identified by molecular analysis. Thirty-nine fungi were isolated, and 28 presented some phytotoxic symptoms against the target plant. Fungus VP51 belonging to the genus Diaporthe showed the most pronounced herbicidal activity. The Brazilian Pampa biome is a potential resource for the development of new and sustainable chemical compounds for modern agriculture. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins

    PubMed Central

    Kennedy, Jacob J.; Abbatiello, Susan E.; Kim, Kyunggon; Yan, Ping; Whiteaker, Jeffrey R.; Lin, Chenwei; Kim, Jun Seok; Zhang, Yuzheng; Wang, Xianlong; Ivey, Richard G.; Zhao, Lei; Min, Hophil; Lee, Youngju; Yu, Myeong-Hee; Yang, Eun Gyeong; Lee, Cheolju; Wang, Pei; Rodriguez, Henry; Kim, Youngsoo; Carr, Steven A.; Paulovich, Amanda G.

    2014-01-01

    The successful application of MRM in biological specimens raises the exciting possibility that assays can be configured to measure all human proteins, resulting in an assay resource that would promote advances in biomedical research. We report the results of a pilot study designed to test the feasibility of a large-scale, international effort in MRM assay generation. We have configured, validated across three laboratories, and made publicly available as a resource to the community 645 novel MRM assays representing 319 proteins expressed in human breast cancer. Assays were multiplexed in groups of >150 peptides and deployed to quantify endogenous analyte in a panel of breast cancer-related cell lines. Median assay precision was 5.4%, with high inter-laboratory correlation (R2 >0.96). Peptide measurements in breast cancer cell lines were able to discriminate amongst molecular subtypes and identify genome-driven changes in the cancer proteome. These results establish the feasibility of a scaled, international effort. PMID:24317253

  7. Gender, Contraceptives and Individual Metabolic Predisposition Shape a Healthy Plasma Lipidome.

    PubMed

    Sales, Susanne; Graessler, Juergen; Ciucci, Sara; Al-Atrib, Rania; Vihervaara, Terhi; Schuhmann, Kai; Kauhanen, Dimple; Sysi-Aho, Marko; Bornstein, Stefan R; Bickle, Marc; Cannistraci, Carlo V; Ekroos, Kim; Shevchenko, Andrej

    2016-06-14

    Lipidomics of human blood plasma is an emerging biomarker discovery approach that compares lipid profiles under pathological and physiologically normal conditions, but how a healthy lipidome varies within the population is poorly understood. By quantifying 281 molecular species from 27 major lipid classes in the plasma of 71 healthy young Caucasians whose 35 clinical blood test and anthropometric indices matched the medical norm, we provided a comprehensive, expandable and clinically relevant resource of reference molar concentrations of individual lipids. We established that gender is a major lipidomic factor, whose impact is strongly enhanced by hormonal contraceptives and mediated by sex hormone-binding globulin. In lipidomics epidemiological studies should avoid mixed-gender cohorts and females taking hormonal contraceptives should be considered as a separate sub-cohort. Within a gender-restricted cohort lipidomics revealed a compositional signature that indicates the predisposition towards an early development of metabolic syndrome in ca. 25% of healthy male individuals suggesting a healthy plasma lipidome as resource for early biomarker discovery.

  8. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  9. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

  10. Quorum Quenching Agents: Resources for Antivirulence Therapy

    PubMed Central

    Tang, Kaihao; Zhang, Xiao-Hua

    2014-01-01

    The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865

  11. [Resources of Lycium species and related research progress].

    PubMed

    Dong, Jing-Zhou; Yang, Jun-Jun; Wang, Ying

    2008-09-01

    Solanaceae Lycium speices are deciduous shrubs. In ancient Chinese medicine works, Lycium plants are described to work well in nourshing liver and kidney, enhancing eyesight, enriching blood, invigorating sex, reducing rheumatism and so on. More of their functions such as immunity improvement, anti-oxydation, anti-aging, anti-cancer, growth stumulation, hemopoiesis enhancing, incretion regulating, blood sugar reducing, bearing improvement and many other new functions are conformed in modern clinic researches. Lycium is also widely used in brewing, beverage and many other products. The world Lycium-related researches are mostly on Lycium species genesis and evolution, sexual evolution, active ingredient separation and pharmacological effects. The future research direction is indicated in this article, molecular evolution and systematics rather than traditional taxonomy will do better in explanation of present global distribution of Lycium species; comparative genomics research on Lycium will be a whole new way to deep gene resources exploration; relationship of genetic diversity and active ingredient variation on L. barbarum and L. chinense will lay theory basis for new germplasm development, breeding, cultivation and production regionalization.

  12. Establishing a Twin Register: An Invaluable Resource for (Behavior) Genetic, Epidemiological, Biomarker, and 'Omics' Studies.

    PubMed

    Odintsova, Veronika V; Willemsen, Gonneke; Dolan, Conor V; Hottenga, Jouke-Jan; Martin, Nicholas G; Slagboom, P Eline; Ordoñana, Juan R; Boomsma, Dorret I

    2018-06-01

    Twin registers are wonderful research resources for research applications in medical and behavioral genetics, epidemiology, psychology, molecular genetics, and other areas of research. New registers continue to be launched all over the world as researchers from different disciplines recognize the potential to boost and widen their research agenda. In this article, we discuss multiple aspects that need to be taken into account when initiating a register, from its preliminary sketch to its actual development. This encompasses aspects related to the strategic planning and key elements of research designs, promotion and management of a twin register, including recruitment and retaining of twins and family members of twins, phenotyping, database organization, and collaborations between registers. We also present information on questions unique to twin registers and twin-biobanks, such as the assessment of zygosity by SNP arrays, the design of (biomarker) studies involving related participants, and the analyses of clustered data. Altogether, we provide a number of basic guidelines and recommendations for reflection when planning a twin register.

  13. A new background subtraction method for Western blot densitometry band quantification through image analysis software.

    PubMed

    Gallo-Oller, Gabriel; Ordoñez, Raquel; Dotor, Javier

    2018-06-01

    Since its first description, Western blot has been widely used in molecular labs. It constitutes a multistep method that allows the detection and/or quantification of proteins from simple to complex protein mixtures. Western blot quantification method constitutes a critical step in order to obtain accurate and reproducible results. Due to the technical knowledge required for densitometry analysis together with the resources availability, standard office scanners are often used for the imaging acquisition of developed Western blot films. Furthermore, the use of semi-quantitative software as ImageJ (Java-based image-processing and analysis software) is clearly increasing in different scientific fields. In this work, we describe the use of office scanner coupled with the ImageJ software together with a new image background subtraction method for accurate Western blot quantification. The proposed method represents an affordable, accurate and reproducible approximation that could be used in the presence of limited resources availability. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The RCSB protein data bank: integrative view of protein, gene and 3D structural information

    PubMed Central

    Rose, Peter W.; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R.; Christie, Cole H.; Costanzo, Luigi Di; Duarte, Jose M.; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S.; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S.; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D.; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y.; Zardecki, Christine; Berman, Helen M.; Burley, Stephen K.

    2017-01-01

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. PMID:27794042

  15. The NCGC Pharmaceutical Collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics

    PubMed Central

    Huang, Ruili; Southall, Noel; Wang, Yuhong; Yasgar, Adam; Shinn, Paul; Jadhav, Ajit; Nguyen, Dac-Trung; Austin, Christopher P.

    2011-01-01

    Small-molecule compounds approved for use as drugs may be “repurposed” for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening. PMID:21525397

  16. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    PubMed

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  17. Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings

    PubMed Central

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-01-01

    Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings. PMID:24603874

  18. Why should biochemistry students be introduced to molecular dynamics simulations--and how can we introduce them?

    PubMed

    Elmore, Donald E

    2016-01-01

    Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD-based activities in this issue and other sources are provided. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.

    2018-01-01

    The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.

  20. National Center for Biotechnology Information

    MedlinePlus

    ... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...

  1. The UCSC Genome Browser: What Every Molecular Biologist Should Know.

    PubMed

    Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C

    2014-07-01

    Electronic data resources can enable molecular biologists to quickly get information from around the world that a decade ago would have been buried in papers scattered throughout the library. The ability to access, query, and display these data makes benchwork much more efficient and drives new discoveries. Increasingly, mastery of software resources and corresponding data repositories is required to fully explore the volume of data generated in biomedical and agricultural research, because only small amounts of data are actually found in traditional publications. The UCSC Genome Browser provides a wealth of data and tools that advance understanding of genomic context for many species, enable detailed analysis of data, and provide the ability to interrogate regions of interest across disparate data sets from a wide variety of sources. Researchers can also supplement the standard display with their own data to query and share this with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. Copyright © 2014 John Wiley & Sons, Inc.

  2. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction.

    PubMed

    Lu, Jingtao; Goldsmith, Michael-Rock; Grulke, Christopher M; Chang, Daniel T; Brooks, Raina D; Leonard, Jeremy A; Phillips, Martin B; Hypes, Ethan D; Fair, Matthew J; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C; Tan, Yu-Mei

    2016-02-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals.

  3. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    PubMed Central

    Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei

    2016-01-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  4. SEER Cancer Registry Biospecimen Research: Yesterday and Tomorrow

    PubMed Central

    Altekruse, Sean F.; Rosenfeld, Gabriel E.; Carrick, Danielle M.; Pressman, Emilee J.; Schully, Sheri D.; Mechanic, Leah E.; Cronin, Kathleen A.; Hernandez, Brenda Y.; Lynch, Charles F.; Cozen, Wendy; Khoury, Muin J.; Penberthy, Lynne T.

    2014-01-01

    The National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) registries have been a source of biospecimens for cancer research for decades. Recently, registry-based biospecimen studies have become more practical, with the expansion of electronic networks for pathology and medical record reporting. Formalin-fixed paraffin-embedded specimens are now used for next-generation sequencing and other molecular techniques. These developments create new opportunities for SEER biospecimen research. We evaluated 31 research articles published during 2005–2013 based on author confirmation that these studies involved linkage of SEER data to biospecimens. Rather than providing an exhaustive review of all possible articles, our intent was to indicate the breadth of research made possible by such a resource. We also summarize responses to a 2012 questionnaire that was broadly distributed to the NCI intra- and extramural biospecimen research community. This included responses from 30 investigators who had used SEER biospecimens in their research. The survey was not intended to be a systematic sample, but instead to provide anecdotal insight on strengths, limitations, and the future of SEER biospecimen research. Identified strengths of this research resource include biospecimen availability, cost, and annotation of data, including demographic information, stage, and survival. Shortcomings include limited annotation of clinical attributes such as detailed chemotherapy history and recurrence, and timeliness of turnaround following biospecimen requests. A review of selected SEER biospecimen articles, investigator feedback, and technological advances reinforced our view that SEER biospecimen resources should be developed. This would advance cancer biology, etiology, and personalized therapy research. PMID:25472677

  5. LIVIVO - the Vertical Search Engine for Life Sciences.

    PubMed

    Müller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas

    2017-01-01

    The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.

  6. Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil.

    PubMed

    Sharpe, Andrew G; Ramsay, Larissa; Sanderson, Lacey-Anne; Fedoruk, Michael J; Clarke, Wayne E; Li, Rong; Kagale, Sateesh; Vijayan, Perumal; Vandenberg, Albert; Bett, Kirstin E

    2013-03-18

    The genus Lens comprises a range of closely related species within the galegoid clade of the Papilionoideae family. The clade includes other important crops (e.g. chickpea and pea) as well as a sequenced model legume (Medicago truncatula). Lentil is a global food crop increasing in importance in the Indian sub-continent and elsewhere due to its nutritional value and quick cooking time. Despite this importance there has been a dearth of genetic and genomic resources for the crop and this has limited the application of marker-assisted selection strategies in breeding. We describe here the development of a deep and diverse transcriptome resource for lentil using next generation sequencing technology. The generation of data in multiple cultivated (L. culinaris) and wild (L. ervoides) genotypes together with the utilization of a bioinformatics workflow enabled the identification of a large collection of SNPs and the subsequent development of a genotyping platform that was used to establish the first comprehensive genetic map of the L. culinaris genome. Extensive collinearity with M. truncatula was evident on the basis of sequence homology between mapped markers and the model genome and large translocations and inversions relative to M. truncatula were identified. An estimate for the time divergence of L. culinaris from L. ervoides and of both from M. truncatula was also calculated. The availability of the genomic and derived molecular marker resources presented here will help change lentil breeding strategies and lead to increased genetic gain in the future.

  7. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  8. The genome of herpesvirus papio 2 is closely related to the genomes of human herpes simplex viruses.

    PubMed

    Bigger, John E; Martin, David W

    2003-06-01

    Infection of baboons (Papio species) with herpesvirus papio 2 (HVP-2) produces a disease that is clinically similar to herpes simplex virus (HSV-1 and HSV-2) infection of humans. The development of a primate model of simplexvirus infection based on HVP-2 would provide a powerful resource to study virus biology and test vaccine strategies. In order to characterize the molecular biology of HVP-2 and justify further development of this model system we have constructed a physical map of the HVP-2 genome. The results of these studies have identified the presence of 26 reading frames that closely resemble HSV homologues. Furthermore, the HVP-2 genome shares a collinear arrangement with the genome of HSV. These studies further validate the development of the HVP-2 model as a surrogate system to study the biology of HSV infections.

  9. A Polyglot Approach to Bioinformatics Data Integration: A Phylogenetic Analysis of HIV-1

    PubMed Central

    Reisman, Steven; Hatzopoulos, Thomas; Läufer, Konstantin; Thiruvathukal, George K.; Putonti, Catherine

    2016-01-01

    As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. PMID:26819543

  10. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  11. Genomics in a changing arctic: critical questions await the molecular ecologist

    DOE PAGES

    Wullschleger, Stan D.; Breen, Amy L.; Iversen, Colleen M.; ...

    2015-04-20

    Molecular ecology is poised to tackle a host of interesting questions in the coming years. Of particular importance to the molecular ecologist are new technologies and analytical approaches that provide opportunities to address questions previously unapproachable.The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. Thesemore » questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.« less

  12. Current use and acceptability of novel diagnostic tests for active tuberculosis: a worldwide survey

    PubMed Central

    Amicosante, Massimo; D’Ambrosio, Lia; Munoz, Marcela; Mello, Fernanda Carvalho de Queiroz; Tebruegge, Marc; Chegou, Novel Njweipi; Seghrouchni, Fouad; Centis, Rosella; Goletti, Delia; Bothamley, Graham; Migliori, Giovanni Battista

    2017-01-01

    ABSTRACT Objective: To determine the current use and potential acceptance (by tuberculosis experts worldwide) of novel rapid tests for the diagnosis of tuberculosis that are in line with World Health Organization target product profiles. Methods: A multilingual survey was disseminated online between July and November of 2016. Results: A total of 723 individuals from 114 countries responded to the survey. Smear microscopy was the most commonly used rapid tuberculosis test (available to 90.9% of the respondents), followed by molecular assays (available to 70.7%). Only a small proportion of the respondents in middle- and low-income countries had access to interferon-gamma-release assays. Serological and lateral flow immunoassays were used by more than a quarter (25.4%) of the respondents. Among the respondents who had access to molecular tests, 46.7% were using the Xpert assay overall, that proportion being higher in lower middle-income countries (55.6%) and low-income countries (76.6%). The data also suggest that there was some alignment of pricing for molecular assays. Respondents stated they would accept novel rapid tuberculosis tests if available, including molecular assays (acceptable to 86.0%) or biomarker-based serological assays (acceptable to 81.7%). Simple biomarker-based assays were more commonly deemed acceptable in middle- and low-income countries. Conclusions: Second-generation molecular assays have become more widely available in high- and low-resource settings. However, the development of novel rapid tuberculosis tests continues to be considered important by tuberculosis experts. Our data also underscore the need for additional training and education of end users. PMID:29160384

  13. Genomics in a changing arctic: critical questions await the molecular ecologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, Stan D.; Breen, Amy L.; Iversen, Colleen M.

    Molecular ecology is poised to tackle a host of interesting questions in the coming years. Of particular importance to the molecular ecologist are new technologies and analytical approaches that provide opportunities to address questions previously unapproachable.The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. Thesemore » questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.« less

  14. Current use and acceptability of novel diagnostic tests for active tuberculosis: a worldwide survey.

    PubMed

    Amicosante, Massimo; D'Ambrosio, Lia; Munoz, Marcela; Mello, Fernanda Carvalho de Queiroz; Tebruegge, Marc; Chegou, Novel Njweipi; Seghrouchni, Fouad; Centis, Rosella; Goletti, Delia; Bothamley, Graham; Migliori, Giovanni Battista

    2017-01-01

    To determine the current use and potential acceptance (by tuberculosis experts worldwide) of novel rapid tests for the diagnosis of tuberculosis that are in line with World Health Organization target product profiles. A multilingual survey was disseminated online between July and November of 2016. A total of 723 individuals from 114 countries responded to the survey. Smear microscopy was the most commonly used rapid tuberculosis test (available to 90.9% of the respondents), followed by molecular assays (available to 70.7%). Only a small proportion of the respondents in middle- and low-income countries had access to interferon-gamma-release assays. Serological and lateral flow immunoassays were used by more than a quarter (25.4%) of the respondents. Among the respondents who had access to molecular tests, 46.7% were using the Xpert assay overall, that proportion being higher in lower middle-income countries (55.6%) and low-income countries (76.6%). The data also suggest that there was some alignment of pricing for molecular assays. Respondents stated they would accept novel rapid tuberculosis tests if available, including molecular assays (acceptable to 86.0%) or biomarker-based serological assays (acceptable to 81.7%). Simple biomarker-based assays were more commonly deemed acceptable in middle- and low-income countries. Second-generation molecular assays have become more widely available in high- and low-resource settings. However, the development of novel rapid tuberculosis tests continues to be considered important by tuberculosis experts. Our data also underscore the need for additional training and education of end users.

  15. Reflection on the history, coordination, and funding trends for U.S. public meat research: information to enhance resource allocation.

    PubMed

    Miller, L R

    2002-08-01

    A study was conducted to analyze resource allocation for public meat research in the United States and characterize the portfolio of meat research investments. Trends in the amount of public resources provided for meat research (beef, pork, lamb, and poultry) were analyzed for fiscal years 1980, 1985, 1990, 1995, and 1997. An in-depth analysis was conducted for data from fiscal year 1998 to characterize the profile of the research portfolio. Funding levels and scientist-year equivalents were aggregated to represent the measures of resource allocation for three mutually exclusive research categories: 1) meat quality, 2) food safety, and 3) product development and processing. Data for the 1998 profile analysis were derived from a computer search based on the combination of key words and research classification codes to avoid duplication and cluster research projects. Individual research projects were individually reviewed and a percentage was assigned to four mutually exclusive research categories: 1) meat quality, 2) food safety, 3) product development and processing, and 4) marketing. As meat research evolved over the past century, considerable efforts were expended by researchers and administrators to ensure the coordination of research and program relevance. This is demonstrated by the establishment of numerous multistate research committees. Total funding for meat science increased only modestly when adjusted for inflation during the two decades of this study; however, notable changes occurred in the distribution of resources in the portfolio. Funding for meat quality and product development and processing remained virtually unchanged when adjusted for inflation, whereas funding for food safety increased considerably. The total number of scientists conducting meat research remained virtually unchanged during the period, but the proportion allocated to food safety research increased substantially. The federal portion of total funding decreased from 61.3% to 51.6% between 1980 and 1997, whereas the percentage from both state appropriations and private sources increased. Modifications in research emphasis were influenced by industry problems such as meat quality, public perceptions about food safety, the availability of research funding, scientific advances occurring in molecular biology and genetic manipulation, and the changing meat industry. The information in this paper provides administrators and researchers the opportunity to make better informed decisions about resource allocation for meat research.

  16. DASMiner: discovering and integrating data from DAS sources

    PubMed Central

    2009-01-01

    Background DAS is a widely adopted protocol for providing syntactic interoperability among biological databases. The popularity of DAS is due to a simplified and elegant mechanism for data exchange that consists of sources exposing their RESTful interfaces for data access. As a growing number of DAS services are available for molecular biology resources, there is an incentive to explore this protocol in order to advance data discovery and integration among these resources. Results We developed DASMiner, a Matlab toolkit for querying DAS data sources that enables creation of integrated biological models using the information available in DAS-compliant repositories. DASMiner is composed by a browser application and an API that work together to facilitate gathering of data from different DAS sources, which can be used for creating enriched datasets from multiple sources. The browser is used to formulate queries and navigate data contained in DAS sources. Users can execute queries against these sources in an intuitive fashion, without the need of knowing the specific DAS syntax for the particular source. Using the source's metadata provided by the DAS Registry, the browser's layout adapts to expose only the set of commands and coordinate systems supported by the specific source. For this reason, the browser can interrogate any DAS source, independently of the type of data being served. The API component of DASMiner may be used for programmatic access of DAS sources by programs in Matlab. Once the desired data is found during navigation, the query is exported in the format of an API call to be used within any Matlab application. We illustrate the use of DASMiner by creating integrative models of histone modification maps and protein-protein interaction networks. These enriched datasets were built by retrieving and integrating distributed genomic and proteomic DAS sources using the API. Conclusion The support of the DAS protocol allows that hundreds of molecular biology databases to be treated as a federated, online collection of resources. DASMiner enables full exploration of these resources, and can be used to deploy applications and create integrated views of biological systems using the information deposited in DAS repositories. PMID:19919683

  17. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  18. Responsive eLearning exercises to enhance student interaction with metabolic pathways.

    PubMed

    Roesler, William J; Dreaver-Charles, Kristine

    2018-05-01

    Successful learning of biochemistry requires students to engage with the material. In the past this often involved students writing out pathways by hand, and more recently directing students to online resources such as videos, songs, and animated slide presentations. However, even these latter resources do not really provide students an opportunity to engage with the material in an active fashion. As part of an online introductory metabolism course that was developed at our university, we created a series of twelve online interactive activities using Adobe Captivate 9. These activities targeted glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, the citric acid cycle, and fatty acid oxidation. The interactive exercises consisted of two types. One involved dragging objects such as names of enzymes or allosteric modifiers to their correct drop locations such as a particular point in a metabolic pathway, a specific enzyme, and so forth. A second type involved clicking on objects, locations within a pathway, and so forth, in response to a particular question. In both types of exercises, students received feedback on their decisions in order to enhance learning. The student feedback received on these activities was very positive, and indicated that they found them to increase their confidence in the material and that they had learned the key principles of each pathway. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):223-229, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  19. Functional Genomics of Drought Tolerance in Bioenergy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hengfu; Chen, Rick; Yang, Jun

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understandingmore » of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.« less

  20. MrGrid: A Portable Grid Based Molecular Replacement Pipeline

    PubMed Central

    Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.

    2010-01-01

    Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612

  1. TimeTree2: species divergence times on the iPhone

    PubMed Central

    Kumar, Sudhir; Hedges, S. Blair

    2011-01-01

    Summary: Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K–12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. Availability: TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo). Contact: sbh1@psu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21622662

  2. Online and Certifiable Spectroscopy Courses Using Information and Communication Tools. a Model for Classrooms and Beyond

    NASA Astrophysics Data System (ADS)

    Krishnan, Mangala Sunder

    2015-06-01

    Online education tools and flipped (reverse) class models for teaching and learning and pedagogic and andragogic approaches to self-learning have become quite mature in the last few years because of the revolution in video, interactive software and social learning tools. Open Educational resources of dependable quality and variety are also becoming available throughout the world making the current era truly a renaissance period for higher education using Internet. In my presentation, I shall highlight structured course content preparation online in several areas of spectroscopy and also the design and development of virtual lab tools and kits for studying optical spectroscopy. Both elementary and advanced courses on molecular spectroscopy are currently under development jointly with researchers in other institutions in India. I would like to explore participation from teachers throughout the world in the teaching-learning process using flipped class methods for topics such as experimental and theoretical microwave spectroscopy of semi-rigid and non-rigid molecules, molecular complexes and aggregates. In addition, courses in Raman, Infrared spectroscopy experimentation and advanced electronic spectroscopy courses are also envisaged for free, online access. The National Programme on Technology Enhanced Learning (NPTEL) and the National Mission on Education through Information and Communication Technology (NMEICT) are two large Government of India funded initiatives for producing certified and self-learning courses with financial support for moderated discussion forums. The learning tools and interactive presentations so developed can be used in classrooms throughout the world using flipped mode of teaching. They are very much sought after by learners and researchers who are in other areas of learning but want to contribute to research and development through inter-disciplinary learning. NPTEL is currently is experimenting with Massive Open Online Course (MOOC) strategy, but with proctored and certified examination processes for large numbers in some of the above courses. I would like to present a summary of developments in these areas to help focus classroom (online and offline) learning of Molecular spectroscopy.

  3. Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    PubMed Central

    Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.

    2011-01-01

    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885

  4. Additive effect of calcium depletion and low resource quality on Gammarus fossarum (Crustacea, Amphipoda) life history traits.

    PubMed

    Rollin, Marc; Coulaud, Romain; Danger, Michael; Sohm, Bénédicte; Flayac, Justine; Bec, Alexandre; Chaumot, Arnaud; Geffard, Olivier; Felten, Vincent

    2018-04-01

    Gammarus fossarum is an often-abundant crustacean detritivore that contributes importantly to leaf litter breakdown in oligotrophic, mainly heterotrophic, headwater streams. This species requires large amounts of Ca to moult, thus allowing growth and reproduction. Because resource quality is tightly coupled to the organism's growth and physiological status, we hypothesised that low Ca concentration [Ca] and low food resource quality (low phosphorus [P] and/or reduced highly unsaturated fatty acid [HUFA] contents) would interactively impair molecular responses (gene expression) and reproduction of G. fossarum. To investigate the effects of food resources quality, we experimentally manipulated the P content of sycamore leaves and also used diatoms because they contain high amounts of HUFAs. Three resource quality treatments were tested: low quality (LQ, unmanipulated leaves: low P content), high quality 1 (HQ1; P-manipulated leaves: high P content), and high quality 2 (unmanipulated leaves supplemented with a pellet containing diatoms: high P and HUFA content). Naturally, demineralised stream water was supplemented with CaSO 4 to obtain three Ca concentrations (2, 3.5, and 10.5 mg Ca L -1 ). For 21 days, pairs of G. fossarum were individually exposed to one of the nine treatments (3 [Ca] × 3 resource qualities). At the individual level, strong and significant delays in moult stage were observed in gammarids exposed to lower [Ca] and to lower resource quality, with additive effects lengthening the duration of the reproductive cycle. Effects at the molecular level were investigated by measuring expression of 12 genes involved in energy production, translation, or Ca or P homeostasis. Expression of ATP synthase beta (higher in HQ2), calcified cuticle protein (higher in HQ1 and HQ2), and tropomyosin (higher in HQ2 compared to HQ1) was significantly affected by resource quality, and significant additive effects on Ca transporting ATPase expression were induced by [Ca] and resource quality (higher for low [Ca] and higher resource quality). These results highlight the potential drastic deleterious effects of water [Ca] depletion on G. fossarum physiology, populations, and ecosystem functioning, especially in oligotrophic environments.

  5. Updating the International Standards for Tuberculosis Care. Entering the era of molecular diagnostics.

    PubMed

    Hopewell, Philip C; Fair, Elizabeth L; Uplekar, Mukund

    2014-03-01

    The International Standards for Tuberculosis Care, first published in 2006 (Lancet Infect Dis 2006;6:710-725.) with a second edition in 2009 ( www.currytbcenter.ucsf.edu/international/istc_report ), was produced by an international coalition of organizations funded by the United States Agency for International Development. Development of the document was led jointly by the World Health Organization and the American Thoracic Society, with the aim of promoting engagement of all care providers, especially those in the private sector in low- and middle-income countries, in delivering high-quality services for tuberculosis. In keeping with World Health Organization recommendations regarding rapid molecular testing, as well as other pertinent new recommendations, the third edition of the Standards has been developed. After decades of dormancy, the technology available for tuberculosis care and control is now rapidly evolving. In particular, rapid molecular testing, using devices with excellent performance characteristics for detecting Mycobacterium tuberculosis and rifampin resistance, and that are practical and affordable for use in decentralized facilities in low-resource settings, is being widely deployed globally. Used appropriately, both within tuberculosis control programs and in private laboratories, these devices have the potential to revolutionize tuberculosis care and control, providing a confirmed diagnosis and a determination of rifampin resistance within a few hours, enabling appropriate treatment to be initiated promptly. Major changes have been made in the standards for diagnosis. Additional important changes include: emphasis on the recognition of groups at increased risk of tuberculosis; updating the standard on antiretroviral treatment in persons with tuberculosis and human immunodeficiency virus infection; and revising the standard on treating multiple drug-resistant tuberculosis.

  6. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.

    PubMed

    Song, Dongzhe; Zhang, Fugui; Reid, Russell R; Ye, Jixing; Wei, Qiang; Liao, Junyi; Zou, Yulong; Fan, Jiaming; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Li, Li; Yu, Yichun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Wang, Jia; Lee, Michael J; Wolf, Jennifer Moriatis; Huang, Dingming; He, Tong-Chuan

    2017-11-01

    The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.

    PubMed

    Li, Bin; Sun, Mengwei; Wang, Siyi; Guo, Weisi; Zhao, Chenglin

    2016-01-01

    Nanoscale molecular communication is a viable way of exchanging information between nanomachines. In this investigation, a low-complexity and noncoherent signal detection technique is proposed to mitigate the inter-symbol-interference (ISI) and additive noise. In contrast to existing coherent detection methods of high complexity, the proposed noncoherent signal detector is more practical when the channel conditions are hard to acquire accurately or hidden from the receiver. The proposed scheme employs the molecular concentration difference to detect the ISI corrupted signals and we demonstrate that it can suppress the ISI effectively. The difference in molecular concentration is a stable characteristic, irrespective of the diffusion channel conditions. In terms of complexity, by excluding matrix operations or likelihood calculations, the new detection scheme is particularly suitable for nanoscale molecular communication systems with a small energy budget or limited computation resource.

  8. Bioinformatics training: selecting an appropriate learning content management system--an example from the European Bioinformatics Institute.

    PubMed

    Wright, Victoria Ann; Vaughan, Brendan W; Laurent, Thomas; Lopez, Rodrigo; Brooksbank, Cath; Schneider, Maria Victoria

    2010-11-01

    Today's molecular life scientists are well educated in the emerging experimental tools of their trade, but when it comes to training on the myriad of resources and tools for dealing with biological data, a less ideal situation emerges. Often bioinformatics users receive no formal training on how to make the most of the bioinformatics resources and tools available in the public domain. The European Bioinformatics Institute, which is part of the European Molecular Biology Laboratory (EMBL-EBI), holds the world's most comprehensive collection of molecular data, and training the research community to exploit this information is embedded in the EBI's mission. We have evaluated eLearning, in parallel with face-to-face courses, as a means of training users of our data resources and tools. We anticipate that eLearning will become an increasingly important vehicle for delivering training to our growing user base, so we have undertaken an extensive review of Learning Content Management Systems (LCMSs). Here, we describe the process that we used, which considered the requirements of trainees, trainers and systems administrators, as well as taking into account our organizational values and needs. This review describes the literature survey, user discussions and scripted platform testing that we performed to narrow down our choice of platform from 36 to a single platform. We hope that it will serve as guidance for others who are seeking to incorporate eLearning into their bioinformatics training programmes.

  9. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping.

    PubMed

    Gujaria-Verma, Neha; Ramsay, Larissa; Sharpe, Andrew G; Sanderson, Lacey-Anne; Debouck, Daniel G; Tar'an, Bunyamin; Bett, Kirstin E

    2016-03-15

    Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species' ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other.

  10. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album

    PubMed Central

    Zhang, Xinhua; Berkowitz, Oliver; Teixeira da Silva, Jaime A.; Zhang, Muhan; Ma, Guohua; Whelan, James; Duan, Jun

    2015-01-01

    Santalum album (sandalwood) is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq) analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism. PMID:26388878

  11. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase densities, viscosities, or component diffusivities. Strong confinement effects on physical properties in nanoscale media can also be directly obtained from molecular simulations. Future work on molecular modeling for CO 2 and aqueous brines is likely to be focused on more systematic generation of interaction models by utilizing quantum chemical as well as direct experimental measurements. New ion models need to be developed for use with the current generation of polarizable water models, including ion–ion interactions that will allow for accurate description of dense, mixed brines. Methods will need to be devised that go beyond the use of effective potentials for incorporation of quantum effects known to be important for water, and reactive force fields developed that can handle bond creation and breaking in systems with carbonate and silicate minerals. Lastly, another area of potential future work is the integration of molecular simulation methods in multiscale models for the chemical reactions leading to mineral dissolution and flow within the porous media in underground formations.« less

  12. Molecular Modeling of Thermodynamic and Transport Properties for CO2 and Aqueous Brines.

    PubMed

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-04-18

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models for water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2 , and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2 -rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase densities, viscosities, or component diffusivities. Strong confinement effects on physical properties in nanoscale media can also be directly obtained from molecular simulations. Future work on molecular modeling for CO 2 and aqueous brines is likely to be focused on more systematic generation of interaction models by utilizing quantum chemical as well as direct experimental measurements. New ion models need to be developed for use with the current generation of polarizable water models, including ion-ion interactions that will allow for accurate description of dense, mixed brines. Methods will need to be devised that go beyond the use of effective potentials for incorporation of quantum effects known to be important for water, and reactive force fields developed that can handle bond creation and breaking in systems with carbonate and silicate minerals. Another area of potential future work is the integration of molecular simulation methods in multiscale models for the chemical reactions leading to mineral dissolution and flow within the porous media in underground formations.

  13. Molecular Modeling of Thermodynamic and Transport Properties for CO 2 and Aqueous Brines

    DOE PAGES

    Jiang, Hao; Economou, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2017-02-24

    Molecular simulation techniques using classical force-fields occupy the space between ab initio quantum mechanical methods and phenomenological correlations. In particular, Monte Carlo and molecular dynamics algorithms can be used to provide quantitative predictions of thermodynamic and transport properties of fluids relevant for geologic carbon sequestration at conditions for which experimental data are uncertain or not available. These methods can cover time and length scales far exceeding those of quantum chemical methods, while maintaining transferability and predictive power lacking from phenomenological correlations. The accuracy of predictions depends sensitively on the quality of the molecular models used. Many existing fixed-point-charge models formore » water and aqueous mixtures fail to represent accurately these fluid properties, especially when descriptions covering broad ranges of thermodynamic conditions are needed. Recent work on development of accurate models for water, CO 2, and dissolved salts, as well as their mixtures, is summarized in this Account. Polarizable models that can respond to the different dielectric environments in aqueous versus nonaqueous phases are necessary for predictions of properties over extended ranges of temperatures and pressures. Phase compositions and densities, activity coefficients of the dissolved salts, interfacial tensions, viscosities and diffusivities can be obtained in near-quantitative agreement to available experimental data, using relatively modest computational resources. In some cases, for example, for the composition of the CO 2-rich phase in coexistence with an aqueous phase, recent results from molecular simulations have helped discriminate among conflicting experimental data sets. The sensitivity of properties on the quality of the intermolecular interaction model varies significantly. Properties such as the phase compositions or electrolyte activity coefficients are much more sensitive than phase densities, viscosities, or component diffusivities. Strong confinement effects on physical properties in nanoscale media can also be directly obtained from molecular simulations. Future work on molecular modeling for CO 2 and aqueous brines is likely to be focused on more systematic generation of interaction models by utilizing quantum chemical as well as direct experimental measurements. New ion models need to be developed for use with the current generation of polarizable water models, including ion–ion interactions that will allow for accurate description of dense, mixed brines. Methods will need to be devised that go beyond the use of effective potentials for incorporation of quantum effects known to be important for water, and reactive force fields developed that can handle bond creation and breaking in systems with carbonate and silicate minerals. Lastly, another area of potential future work is the integration of molecular simulation methods in multiscale models for the chemical reactions leading to mineral dissolution and flow within the porous media in underground formations.« less

  14. Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco

    PubMed Central

    Tong, Zhijun; Xiao, Bingguang; Jiao, Fangchan; Fang, Dunhuang; Zeng, Jianmin; Wu, Xingfu; Chen, Xuejun; Yang, Jiankang; Li, Yongping

    2016-01-01

    Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date. PMID:27436948

  15. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics

    PubMed Central

    Rey, Felisa; Alves, Eliana; Melo, Tânia; Domingues, Pedro; Queiroga, Henrique; Rosa, Rui; Domingues, M. Rosário M.; Calado, Ricardo

    2015-01-01

    Embryogenesis is an important stage of marine invertebrates with bi-phasic life cycles, as it conditions their larval and adult life. Throughout embryogenesis, phospholipids (PL) play a key role as an energy source, as well as constituents of biological membranes. However, the dynamics of PL during embryogenesis in marine invertebrates is still poorly studied. The present work used a lipidomic approach to determine how polar lipid profiles shift during embryogenesis in two sympatric estuarine crabs, Carcinus maenas and Necora puber. The combination of thin layer chromatography, liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry allowed us to achieve an unprecedented resolution on PL classes and molecular species present on newly extruded embryos (stage 1) and those near hatching (stage 3). Embryogenesis proved to be a dynamic process, with four PL classes being recorded in stage 1 embryos (68 molecular species in total) and seven PL classes at stage 3 embryos (98 molecular species in total). The low interspecific difference recorded in the lipidomic profiles of stage 1 embryos appears to indicate the existence of similar maternal investment. The same pattern was recorded for stage 3 embryos revealing a similar catabolism of embryonic resources during incubation for both crab species. PMID:26419891

  16. Development and Application of a Salmonid EST Database and cDNA Microarray: Data Mining and Interspecific Hybridization Characteristics

    PubMed Central

    Rise, Matthew L.; von Schalburg, Kristian R.; Brown, Gordon D.; Mawer, Melanie A.; Devlin, Robert H.; Kuipers, Nathanael; Busby, Maura; Beetz-Sargent, Marianne; Alberto, Roberto; Gibbs, A. Ross; Hunt, Peter; Shukin, Robert; Zeznik, Jeffrey A.; Nelson, Colleen; Jones, Simon R.M.; Smailus, Duane E.; Jones, Steven J.M.; Schein, Jacqueline E.; Marra, Marco A.; Butterfield, Yaron S.N.; Stott, Jeff M.; Ng, Siemon H.S.; Davidson, William S.; Koop, Ben F.

    2004-01-01

    We report 80,388 ESTs from 23 Atlantic salmon (Salmo salar) cDNA libraries (61,819 ESTs), 6 rainbow trout (Oncorhynchus mykiss) cDNA libraries (14,544 ESTs), 2 chinook salmon (Oncorhynchus tshawytscha) cDNA libraries (1317 ESTs), 2 sockeye salmon (Oncorhynchus nerka) cDNA libraries (1243 ESTs), and 2 lake whitefish (Coregonus clupeaformis) cDNA libraries (1465 ESTs). The majority of these are 3′ sequences, allowing discrimination between paralogs arising from a recent genome duplication in the salmonid lineage. Sequence assembly reveals 28,710 different S. salar, 8981 O. mykiss, 1085 O. tshawytscha, 520 O. nerka, and 1176 C. clupeaformis putative transcripts. We annotate the submitted portion of our EST database by molecular function. Higher- and lower-molecular-weight fractions of libraries are shown to contain distinct gene sets, and higher rates of gene discovery are associated with higher-molecular weight libraries. Pyloric caecum library group annotations indicate this organ may function in redox control and as a barrier against systemic uptake of xenobiotics. A microarray is described, containing 7356 salmonid elements representing 3557 different cDNAs. Analyses of cross-species hybridizations to this cDNA microarray indicate that this resource may be used for studies involving all salmonids. PMID:14962987

  17. Matters of taste: bridging molecular physiology and the humanities.

    PubMed

    Rangachari, P K; Rangachari, Usha

    2015-12-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.

  18. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention.

    PubMed

    Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A

    2015-12-01

    Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs.

    PubMed

    Deluyker, Dorien; Evens, Lize; Bito, Virginie

    2017-09-01

    Advanced glycation end products (AGEs) are a group of proteins and lipids becoming glycated and oxidized after persistent contact with reducing sugars or short-chain aldehydes with amino group and/or high degree of oxidative stress. The accumulation of AGEs in the body is a natural process that occurs with senescence, when the turnover rate of proteins is reduced. However, increased circulating AGEs have been described to arise at early lifetime and are associated with adverse outcome and survival, in particular in settings of cardiovascular diseases. AGEs contribute to the development of cardiac dysfunction by two major mechanisms: cross-linking of proteins or binding to their cell surface receptor. Recently, growing evidence shows that high-molecular weight AGEs (HMW-AGEs) might be as important as the characterized low-molecular weight AGEs (LMW-AGEs). Here, we point out the targets of AGEs in the heart and the mechanisms that lead to heart failure with focus on the difference between LMW-AGEs and the less characterized HMW-AGEs. As such, this review is a compilation of relevant papers in the form of a useful resource tool for researchers who want to further investigate the role of HMW-AGEs on cardiac disorders and need a solid base to start on this specific topic.

  20. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era

    DOE PAGES

    McCluskey, Kevin; Baker, Scott E.

    2017-02-17

    As model organisms filamentous fungi have been important since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycetemore » filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Likewise, shared data has contributed to the success of model systems. Furthermore, the scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.« less

Top