Science.gov

Sample records for molecular sieve catalyst

  1. Catalytic cracking catalysts using silicoaluminophosphate molecular sieves

    SciTech Connect

    Pellet, R.J.; Coughlin, P.K.; Staniulis, M.T.; Long, G.N.; Rabo, J.A.

    1987-05-19

    A cracking catalyst is described comprising: a silicoaluminophosphate molecular sieve of U.S. Pat. No. 4,440,871 characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a pressure of 500 torr and a temperature of 20/sup 0/C and having an effective amount of the cations associated with the silicoaluminophosphate molecular sieve selected from the group consisting of H+, ammonium, Group IIA, groups IIIB to VIIB, cerium, lanthanum, praseodymium, neodymium, and promethium.

  2. Octahedral molecular sieve sorbents and catalysts

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  3. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst.

    PubMed

    Yang, Shaoming; Chen, Xiuqin; Takeuchi, K; Motojima, Seiji

    2006-01-01

    The carbon nanocoils with various kinds of conformations were prepared by the catalytic pyrolysis of acetylene using the Ni metal catalyst supported on molecular Sieves which was prepared using Fe-containing kaolin as the raw material. There are four kinds of carbon nanocoils conformations produced by this catalyst. The influences of reaction temperature and gas conditions on the conformations of the nanocoils were investigated and the reasons of forming nano-size coils were discussed by comparison with pure Ni metal catalyst.

  4. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  5. Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts.

    PubMed

    Yu, Feng-wen; Ji, Deng-xiang; Nie, Yong; Luo, Yao; Huang, Cheng-jie; Ji, Jian-bing

    2012-09-01

    Mesoporous materials possess a hexagonal array of uniform mesopores, high surface areas, and moderate acidity. They are one of the important catalysts in the field of catalytic pyrolysis. In this paper, mesoporous materials of Al-MCM-41, La-Al-MCM-41, and Ce-Al-MCM-41 were synthesized, characterized, and tested as catalysts in the cellulose catalytic pyrolysis process using a fixed bed pyrolysis reactor. The results showed that mesoporous materials exhibited a strong influence on the pyrolytic behavior of cellulose. The presence of these mesoporous molecular sieve catalysts could vary the yield of products, which was that they could decrease the yield of liquid and char and increase the yield of gas product, and could promote high-carbon chain compounds to break into low-carbon chain compounds. Mesoporous molecular sieve catalysts were benefit to the reaction of dehydrogenation and deoxidation and the breakdown of carbon chain. Further, La-Al-MCM-41 and Ce-Al-MCM-41 catalysts can produce more toluene and 2-methoxy-phenol, as compared to the non-catalytic runs.

  6. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts

    NASA Astrophysics Data System (ADS)

    Huang, Wei-wei; Gong, Fei-yan; Zhai, Qi; Li, Quan-xin

    2012-08-01

    Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5>SAPO-34>MCM-41> Y-zeolite. The highest olefins yield from bio-oil using HZSM-5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.

  7. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS

    SciTech Connect

    Andrew W. Wang

    2002-04-01

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME{trademark} (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME{trademark} system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity.

  8. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer.

    PubMed

    Huang, Shih-Wei; Lou, Jie-Chung; Lin, Yung-Chang

    2010-11-15

    This work prepares molecular sieve catalysts with various metal species and various metal weight loadings by impregnation, and then screens them in a catalytic combustion system. The current study further investigates the molecular sieve catalyst in an RCO system after it performed well in combustion efficiency. This work tests its performances in terms of CO(2) yield, pressure drop, the difference between temperatures of the inlet and outlet gases (T(d)), and thermal recovery efficiency (TRE), with various operational conditions. Experimental results demonstrate that the 10 wt% Cu/(MS) catalyst was the most active because it has the greatest combustion efficiency to treat volatile organic compounds (VOCs) than Co/(MS) catalysts and Mn/(MS) catalysts. The 10 wt% Cu/(MS) catalyst used in an RCO system reaches over 95% CO(2) yields under the heating zone temperature (T(set))=400°C, gas velocity (U(g))=0.37 m/s, isopropyl alcohol (IPA) concentration=200-400 ppm conditions. Moreover, the RCO system performed well in economic efficiency with the RCO with in terms of TRE, T(d) and pressure drop. The TRE ranged from 90.4% to 94.6% and T(d) ranged from 14.0 to 34.2°C under various conditions at T(set)=300-450°C. Finally, the results of the stability test demonstrated that the catalyst was very stable at various U(g) values and various T(set) values. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  10. Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts.

    PubMed

    Sriskandakumar, Thamayanthy; Opembe, Naftali; Chen, Chun-Hu; Morey, Aimee; King'ondu, Cecil; Suib, Steven L

    2009-02-26

    The catalytic degradation of organic dye (methylene blue, MB) has been studied using green oxidation methods (tertiary-butyl hydrogen peroxide, TBHP, as the oxidant with several doped mixed-valent and regular manganese oxide catalysts in water) at room and higher temperatures. These catalysts belong to a class of porous manganese oxides known as octahedral molecular sieves (OMS). The most active catalysts were those of Mo(6+)- and V(5+)-doped OMS. Rates of reaction were found to be first-order with respect to the dye. TBHP has been found to enhance the MB decomposition, whereas H(2)O(2) does not. Reactions were studied at pH 3-11. The optimum pH for these reactions was pH 3. Dye-decomposing activity was proportional to the amount of catalyst used, and a significant increase in catalytic activity was observed with increasing temperature. X-ray diffraction (XRD), energy dispersive spectroscopy (EDX), and thermogravimetric analysis (TGA) studies showed that no changes in the catalyst structure occurred after the dye-degradation reaction. The products as analyzed by electrospray ionization mass spectrometry (ESI-MS) showed that MB was successively decomposed through different intermediate species.

  11. [Influence of ZSM-5(38)/Al-MCM-41 composite molecular sieve catalysts on pyrolysis of cellulose].

    PubMed

    Liu, Xiaojuan; Yu, Fengwen; Nie, Yong; Luo, Yao; Ji, Jianbing

    2011-03-01

    Pyrolysis of cellulose with different catalysts has been conducted in a fixed-bed reactor. Micro-mesoporous composite molecular sieves of ZSM-5(38)/A1-MCM-41 with different Si/A1 ratios were prepared under hydrothermal conditions. With powder X-ray diffraction (XRD), the catalyst samples were characterized. GC-MS was used to analyze the bio-oil composition. The effects of catalysts on the pyrolysis product yields were investigated and the results were compared with the results of experiments performed without catalyst under the same pyrolitic conditions. The presence of the catalysts decreased the liquid yield, while increased the moisture content. The major improvement in the quality of bio-oil with the use of catalysts was the increase of DL-2,3-Butanediol. ZSM-5(38)/A1-MCM-41(20) favored the formation of phenol and 2-methoxy-phenol. In addition, these catalysts were all benefit for the generation of small molecular compounds. Also, it was found that ZSM-5(38) was better for the production of C4-C5 compounds. And micro-mesoporous composite molecular sieves mainly promoted the production of C6-C8 compounds.

  12. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  13. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

    SciTech Connect

    Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-11-03

    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

  14. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    SciTech Connect

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  15. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  16. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  17. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  18. Palladium catalysts supported on mesoporous molecular sieves bearing nitrogen donor groups: preparation and use in Heck and Suzuki C-C bond-forming reactions.

    PubMed

    Demel, Jan; Lamac, Martin; Cejka, Jirí; Stepnicka, Petr

    2009-01-01

    A series of supported catalysts is prepared by treatment of SBA-15-type mesoporous molecular sieve bearing [triple chemical bond]SiCH(2)CH(2)CH(2)NHCH(2)CH(2)NEt(2) groups with palladium(II) acetate. These catalysts are studied in Suzuki biaryl couplings and in Heck reactions to establish the influence of metal loading and innocent surface modifications (trimethylsilylation). The Suzuki reaction proceeded efficiently with model and practically relevant substrates; the catalyst performance increasing with an increasing degree of metalation (decreasing N/Pd ratio). Catalyst poisoning tests revealed that the reaction takes place in the liquid phase with the catalyst serving as a reservoir of active metal species and also as a stabilizing support once the reaction is performed. In the Heck reactions, on the other hand, the catalyst performance strongly changed with the reaction temperature and with the N/Pd ratio. The material with the lowest metal loading (0.01 mmol palladium per gram of material, N/Pd ratio ca. 100:1) proved particularly attractive in the Heck coupling, being highly active at elevated temperatures, recyclable, and capable of acting as a bifunctional catalyst (i.e., functioning without any external base.

  19. Iron(III) chloride supported on MCM-41 molecular sieve as a catalyst for the liquid-phase oxidation of phenol

    NASA Astrophysics Data System (ADS)

    Sirotin, S. V.; Moskovskaya, I. F.; Kolyagin, Yu. G.; Yatsenko, A. V.; Romanovsky, B. V.

    2011-03-01

    FeCl3 was supported on MCM-41 mesoporous molecular sieve via adsorption or coordination bonding and by embedding as an anionic constituent of covalently immobilized imidazolium ionic liquid (IL). The synthesized materials were characterized by N2-BET, SEM, TEM, FT-IR, 1H, 13C, and 29Si NMR, and DSC-TG. All of the catalysts were shown to be active for the liquid-phase oxidation of phenol by hydrogen peroxide. Supported FeCl3 species present as tetrachloroferrate counterions of immobilized IL are the most resistant to iron leaching.

  20. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  1. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  2. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  3. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  4. New silicotitanate molecular sieve and condensed phases

    SciTech Connect

    Nenoff, Tina M.; Nyman, May D.

    2000-11-01

    This patent application relates to an invention for a new silicotitanate molecular sieve ion exchange material for the capture and immobilization of divalent cations from aqueous and/or hydrocarbon solutions, including elements such as radioactive strontium or industrial RCRA metal cations. The invention also relates to the ability to either recycle the captured metal for future use or to encapsulate the cation through thermal treatment of the molecular sieve to a condensed phase.

  5. Manganese-rich MnSAPO-34 molecular sieves as an efficient catalyst for the selective catalytic reduction of NO x with NH3: one-pot synthesis, catalytic performance, and characterization.

    PubMed

    Yu, Chenglong; Chen, Feng; Dong, Lifu; Liu, Xiaoqing; Huang, Bichun; Wang, Xinnan; Zhong, Shengbang

    2017-03-01

    Manganese-rich MnSAPO-34 molecular sieves were prepared by one-pot synthesis method for NO x abatement using the ammonia-selective catalytic reduction (NH3-SCR) technology and characterized using ICP, BET, XRD, FE-SEM, H2-TPR, NH3-TPD, XPS, and DR UV-Vis analyses. The experimental results indicate that the Mn content and chemical state, as well as the surface acidity, of the MnSAPO-34 molecular sieves significantly enhance their DeNO x efficiency at low temperatures (ca. 200-300 °C). The manganese-rich MnSAPO-34 was synthesized using a combination of triethylamine and diisopropylamine as the structural directing agents and high Mn loading (n(MnO)/n(P2O5) = 0.4). The resulting catalyst exhibits the highest activity among all of the samples with a NO x conversion value of nearly 95% and a N2 selectivity that is higher than 90% at 220-400 °C. In addition, this catalyst presents higher NO x conversion than the conventional V2O5-WO3/TiO2 catalysts and other SAPO-based catalysts below 300 °C. Furthermore, the analytical results indicate that the manganese species in the catalyst are mainly in the form of a framework Mn(IV), which could play a significant role in the NH3-SCR process as the specific active species. The results suggest that controlling the types and content of the organic amine templates and variations in the surface acidity of the catalysts may significantly enhance the SCR activity at lower temperatures.

  6. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  7. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  8. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  9. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    PubMed

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  10. Copper crystallite in carbon molecular sieves for selective oxygen removal

    SciTech Connect

    Sharma, P.K.; Seshan, P.K.

    1993-06-15

    A copper modified carbon molecular sieve-sorbent having both sorptive and molecular sieving capabilities is described, comprising a carbon molecular sieve and finely divided particles of elemental copper uniformly dispersed in the matrix of the carbon molecular sieve, wherein the particles of elemental copper have an average crystallite size of from about 100 [angstrom] to about 400 [angstrom], wherein the finely divided elemental copper content of the molecular sieve-sorbent is from about 1 to about 40% by weight, and the carbon content thereof is from about 60 to about 99% by weight, and wherein the molecular sieve-sorbent has an effective pore size no greater than about 4.3 [angstrom].

  11. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  12. Reassessing molecular sieving by kinked carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongqiang; Zhang, Hongwu; Wang, Lei; Ding, Jianning; Wang, Jinbao; Zheng, Yonggang; Ye, Hongfei; Liu, Zhen; Cheng, Guanggui; Ling, Zhiyong

    2011-12-01

    Based on molecular dynamics simulations for the transport of pure nitrogen (N2), oxygen (O2) and their mixture in kinked single-walled carbon nanotubes (SWCNTs), molecular sieving by the kinked model of SWCNTs is presented. The influences of gas pressure, temperature and the component ratio of N2 in the mixture on gas separation are investigated. Considering the tradeoff between the permeability and the purity of O2, the results show that a large gas pressure, 300-500 K of gas temperature and a low component ratio of N2 in the N2-O2 mixture can be advantageous to the efficiency of gas separation. The purity of O2 can be kept higher than 80% when the component ratio of N2 is lower than 3/4, which will be advantageous to the design of multi-level gas separation mechanisms. The findings may provide theoretical references for the design and manufacture of molecular sieving devices in engineering applications.

  13. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    PubMed

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.

  14. Local microstructural organization in carbogenic molecular sieves

    SciTech Connect

    Kane, M.S.; Foley, H.C.

    1996-12-31

    The microstructure of nanoporous, carbogenic molecular sieves (CMS) was studied using high resolution electron microscopy and neutron diffraction. The narrow range of pore sizes observed in these complex materials suggests that although these materials are globally amorphous, the local microstructural features are more organized. This work, focused on poly(furfuryl alcohol)-derived CMS, is aimed at characterizing the evolution of this microstructure. Microscopy results show that materials synthesized at low temperature have some degree of organization but that the microstructure is featureless and symmetric at longer length scales. This symmetry is broken at higher synthesis temperatures as thermodynamic driving forces lead to further organization of the carbon atoms into more ordered structures but the length scales remain short. Micrographs of high temperature CMS show a high degree of curvature and features reminiscent of fullerene. The connectivity of the carbon atoms in the CMS has been probed using powder neutron diffraction. This data suggests that the atoms in the CMS form ordered structures on the length scale of 15{angstrom} which are distinctly different from the structure of graphite. These observed changes in the microstructure directly impact the adsorptive and molecular sieving characteristics of the CMS as illustrated by the marked differences between the diffusivities of oxygen and nitrogen. This property is crucial for the very demanding separation of nitrogen from oxygen in air.

  15. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  16. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in contact with food. (c) Molecular sieve resins are used as the gel filtration media in the final purification of partially delactosed whey. The gel...

  17. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in contact with food. (c) Molecular sieve resins are used as the gel filtration media in the...

  18. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in contact with food. (c) Molecular sieve resins are used as the gel filtration media in the...

  19. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  20. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  1. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  2. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  3. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves.

    PubMed

    Xing, Yanlong; Cai, Jinjun; Li, Liangjun; Yang, Menglong; Zhao, Xuebo

    2014-08-14

    The quantum sieving effect of H2/D2 at 77 K on commercially available carbon molecular sieves (1.5GN-H and 3KT-172) was studied. An exceptional reverse kinetic quantum effect is observed on 1.5GN-H where D2 diffuses much faster than H2 with a ratio of up to 5.83 at low pressure, and the difference is still very evident even as the pressure increases up to 1 bar. D2 also diffuses faster than H2 on 3KT-172 with a ratio of up to 1.86. However, the reverse kinetic sieving disappears in a polymer-based carbon (PC). The present kinetic quantum sieving effect of H2 and D2 at 77 K on 1.5GN-H is the highest to date.

  4. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10-20 nm thickness and partially blocked acidic sites.

    PubMed

    Zhang, Fen; Liu, Yan; Sun, Qi; Dai, Zhifeng; Gies, Hermann; Wu, Qinming; Pan, Shuxiang; Bian, Chaoqun; Tian, Zhijian; Meng, Xiangju; Zhang, Yi; Zou, Xiaodong; Yi, Xianfeng; Zheng, Anmin; Wang, Liang; Xiao, Feng-Shou

    2017-05-02

    SAPO-11 nanosheets with partially filled micropores (N-SAPO-11) and a thickness of 10-20 nm were synthesized using polyhexamethylene biguanide hydrochloride (PHMB) as a mesoporogen and di-n-propylamine (DPA) as a microporous template. After Pt loading (0.5 wt%), the Pt/N-SAPO-11 catalyst exhibits higher selectivity for the isomers and lower selectivity for cracking products than conventional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane.

  5. Selective molecular sieving through porous graphene.

    PubMed

    Koenig, Steven P; Wang, Luda; Pellegrino, John; Bunch, J Scott

    2012-11-01

    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.

  6. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contact with food. (c) Molecular sieve resins are used as the gel filtration media in the final purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in...

  7. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-06

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation.

  8. Tritiated Water on Molecular Sieve without Hydrogen Production

    SciTech Connect

    Walters, R.T.

    2001-09-10

    Several molecular sieve beds loaded with tritiated water failed to generate hydrogen gas from tritium self-radiolysis at the expected rate. Preliminary gamma-ray irradiation experiments of 4A molecular sieve with varying amounts of oxygen in the over-gas evoke a quenching mechanism. The data suggest that the gas phase rate constant for the production of hydrogen gas is several orders of magnitude smaller than the third order rate constant for scavenging of radical fragments by oxygen.

  9. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  10. Mineral oil regeneration using selective molecular sieves as sorbents.

    PubMed

    Majano, Gerardo; Mintova, Svetlana

    2010-01-01

    Microporous molecular sieves are investigated as effective, environmentally safe and cost effective materials for purification of lubricants in late stages of oxidation and also as an alternative to traditional anti-oxidant additives. Molecular sieve crystals with LTL- and BEA-type structures with variable morphology and silica content are used to trap oxidation by-products. It has been found that the aluminum content and the type of charge balancing cations in the molecular sieves play an important role on the amount of organic adsorbed due to a higher affinity of strong Brønsted acid sites and surface cations to hydrocarbons and carbonyl moieties. High selectivity of the molecular sieves towards oxidation products was achieved without influencing additive compounds in the oxidized oil, and thus results in high degrees in oil purification up to 90% depending on the oil formulation. The influence of treatment factors such as temperature, treatment time, solid content and type of oil were investigated. The sorption properties of two different molecular sieves capable of removing selectively the oxidation products, and thus effectively leading to purification in the early and late stages of oxidation, but also to slow down the oxidation process of oils are demonstrated. The considered molecular sieve materials are environmentally safe, cost effective, and due to their high thermal stability are adequate for recovery and multi-cycle reuse. 2009 Elsevier Ltd. All rights reserved.

  11. Molecular Sieve Bench Testing and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  12. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air.

    PubMed

    Nguyen Dinh, M T; Giraudon, J-M; Vandenbroucke, A M; Morent, R; De Geyter, N; Lamonier, J-F

    2016-08-15

    The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH=10%) in the presence of CO2 (520ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150°C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x=1-2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process.

  13. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    PubMed

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies.

  14. Polysulfide treated molecular sieves and use thereof to remove mercury from liquefied hydrocarbons

    SciTech Connect

    Not Available

    1991-01-15

    This patent describes a process for preparing a molecular sieve absorbent. It comprises: drying a molecular sieve at a temperature of between about 350{degrees} and about 450{degrees} C in an anhydrous nonreactive atmosphere; contacting the molecular sieve with an aqueous solution of water soluble alkali polysulfide until the molecular sieve is saturated with the aqueous solution; and drying the saturated molecular sieve at a temperature between bout 10{degrees} and about 75{degrees} C and a pressure of less than about 500 millimeters of mercury to deposit the water soluble alkali polysulfide onto the molecular sieve without decomposing the water soluble alkali polysulfide.

  15. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34.

  16. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, Raz

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  17. MEMBRANES FOR ULTRAFILTRATION, OF GRADUATED FINENESS DOWN TO MOLECULAR SIEVES

    PubMed Central

    McBain, J. W.; Kistler, S. S.

    1928-01-01

    The use of cellophane in ultrafiltration is recommended. It is shown that after it has been swollen in water it does not hold back molecules such as sucrose but that it holds back all but the finest colloidal particles. Two methods are given for progressively decreasing the size of the pores until the cellophane becomes a very fine molecular sieve. A sieve structure as the chief factor seems most in accordance with our experience of this and other ultrafilters. Collodion membranes may also be used as molecular sieves but their properties are inconstant. Bedicher is a very fine and rapid filtering ultrafilter and pig's bladder holds back a fair proportion of such molecules as sucrose and potassium chloride. Notes are made on the behavior of cellophane in aqueous and non-aqueous solutions. It is emphasized that ultrafiltration is distinctive and has but little relation to diffusion, dialysis, osmosis, electroosmosis or thermodynamics. PMID:19872450

  18. A low cost route to hexagonal mesostructured carbon molecular sieves.

    PubMed

    Kim, S S; Pinnavaia, T J

    2001-12-07

    A mesoporous carbon molecular sieve with a hexagonal framework structure (denoted C-MSU-H) has been prepared using a MSU-H silica template that can be assembled from a low cost soluble silicate precursor at near-neutral pH conditions.

  19. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in...

  20. Decolorization / deodorization of zein via activated carbons and molecular sieves

    USDA-ARS?s Scientific Manuscript database

    The objective is to evaluate a series of granular media consisting of activated carbons and molecular sieves in a batch process for the purpose of clarifying and removal of color and odor components from yellow zein dispersed in an aqueous alcohol medium. The major contributors of yellow zein is du...

  1. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    PubMed

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp(2) hybridized carbon sheets as well as sp(3) hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m(3) (STP)/(m(2) hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demonstration of radon removal from SF6 using molecular sieves

    NASA Astrophysics Data System (ADS)

    Ezeribe, A. C.; Lynch, W.; Gregorio, R. R. Marcelo; Mckeand, J.; Scarff, A.; Spooner, N. J. C.

    2017-09-01

    The gas SF6 has become of interest as a negative ion drift gas for use in directional dark matter searches. However, as for other targets in such searches, it is important that radon contamination can be removed as this provides a source of unwanted background events. In this work we demonstrate for the first time filtration of radon from SF6 gas by using a molecular sieve. Four types of sieves from Sigma-Aldrich were investigated, namely 3Å, 4Å, 5Å and 13X. A manufactured radon source was used for the tests. This was attached to a closed loop system in which gas was flowed through the filters and a specially adapted Durridge RAD7 radon detector. In these measurements, it was found that only the 5Å type was able to significantly reduce the radon concentration without absorbing the SF6 gas. The sieve was able to reduce the initial radon concentration of 3875 ± 13 Bqm‑3 in SF6 gas by 87% when cooled with dry ice. The ability of the cooled 5Å molecular sieve filter to significantly reduce radon concentration from SF6 provides a promising foundation for the construction of a radon filtration setup for future ultra-sensitive SF6 gas rare-event physics experiments.

  3. Enhanced catalytic performance of copper-exchanged SAPO-34 molecular sieve in methanol-to-olefin reaction.

    PubMed

    Kim, Sun Jung; Park, Ji Won; Lee, Kwang Young; Seo, Gon; Song, Mee Kyung; Jeong, Soon-Yong

    2010-01-01

    Methanol-to-olefin (MTO) reaction over copper-exchanged SAPO-34 catalysts was investigated in order to extend their catalyst life. The exchange of copper ions into the cages of an SAPO-34 molecular sieve was confirmed by ESR, XPS, and 129Xe NMR techniques. Copper ions located in its cages considerably reduced its deactivation rate in the MTO reaction, while those dispersed on the external surface of the SAPO-34 molecular sieve accelerated the deactivation due to the limited mass transfer through the pore entrances. The 13C NMR and UV-VIS spectroscopy investigations of the materials occluded on the copper-exchanged SAPO-34 catalysts during the MTO reaction clearly showed that the copper ions exchanged in the cages suppressed the further condensation of alkyl aromatics to large, fused polycyclic aromatic hydrocarbons (PAHs). Theoretical calculations for the SAPO-34 and copper-exchanged SAPO-34 molecular sieves supported this observation because copper ions located in the cages stabilized the alkyl aromatics. Therefore, the exchange of copper ions into the SAPO-34 molecular sieve stabilized the reactive intermediates, alkyl aromatics, of the MTO reaction and suppressed their further condensation to PAHs, thereby slowing the deactivation.

  4. Photo-oxidative enhancement of polymeric molecular sieve membranes.

    PubMed

    Song, Qilei; Cao, Shuai; Zavala-Rivera, Paul; Lu, Li Ping; Li, Wei; Ji, Yan; Al-Muhtaseb, Shaheen A; Cheetham, Anthony K; Sivaniah, Easan

    2013-01-01

    High-performance membranes are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. The next-generation membranes for these processes are based on molecular sieving materials to simultaneously achieve high throughput and selectivity. Membranes made from polymeric molecular sieves such as polymers of intrinsic microporosity (pore size<2 nm) are especially interesting in being solution processable and highly permeable but currently have modest selectivity. Here we report photo-oxidative surface modification of membranes made of a polymer of intrinsic microporosity. The ultraviolet light field, localized to a near-surface domain, induces reactive ozone that collapses the microporous polymer framework. The rapid, near-surface densification results in asymmetric membranes with a superior selectivity in gas separation while maintaining an apparent permeability that is two orders of magnitude greater than commercially available polymeric membranes. The oxidative chain scission induced by ultraviolet irradiation also indicates the potential application of the polymer in photolithography technology.

  5. Polymeric molecular sieve membranes for gas separation

    DOEpatents

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  6. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  7. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  8. Tritiated Water on Molecular Sieve: Water Dynamics and Pressure Observations

    SciTech Connect

    Walters, R.T.

    1999-04-23

    The production of fusion energy in a Tokamak using deuterium and tritium requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. A Disposable Molecular Sieve Bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the radiolysis of tritiated water on molecular sieve. Hydrogen production contributes to the complexity of the containers used to transport and store tritiated water, and increases the fabrication costs. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 years) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.

  9. Photocatalytic reduction of CO2 over Cu-TiO2 /molecular sieve 5A composite.

    PubMed

    Srinivas, Basavaraju; Shubhamangala, Ballamoole; Lalitha, Kannekanti; Reddy, Police Anil Kumar; Kumari, Valluri Durga; Subrahmanyam, Machiraju; De, Bhudev Ranjan

    2011-01-01

    TiO(2) and different Cu wt% loaded TiO(2) (TC(0.5-5.0)), 10 wt% TC(2.0) supported on molecular sieve 5A (10 wt% TC(2.0)/MS) were prepared by impregnation and solid-state dispersion methods. The photocatalysts prepared were characterized using XRD, SEM, and UV-Vis DRS, TEM, XPS spectroscopy techniques. Photocatalytic reduction of CO(2) in water and alkaline solution are investigated in a batch reactor. The yield of oxalic acid increased notably when TC was supported on molecular sieve. The Cu-TiO(2) supported on molecular sieve catalyst promotes the charge separation that leads to an increase in the selective formation of oxalic acid in addition to methanol, acetic acid and traces of methane. The product formation is due to the high adsorption of CO(2), water and product shape selectivity of the composite photocatalyst. The maximum yield of oxalic acid was found to be 65.6 μg h(-1) g(-1) per cat using 0.2 N NaOH containing solution over 10 wt% TC(2.0)/MS photocatalyst. The difference in the photocatalytic activity is related to its physicochemical properties. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  10. Production of carbon molecular sieves from Illinois coal

    USGS Publications Warehouse

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  11. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon.

    PubMed

    González, Yovana Sander; Costa, Carlos; Márquez, M Carmen; Ramos, Pedro

    2011-03-15

    A comparative study of thermal and catalytic degradation of polyethylene wastes has been carried out with the aim of obtaining chemical compounds with potential use in the chemical industry and the energy production. Polyethylene wastes were obtained from polyethylene bags used in supermarkets. Catalysts utilized in the study were silica gel, 5A molecular sieve and activated carbon. The pyrolysis was performed in a batch reactor at 450, 500 and 700 °C during 2h for each catalyst. The ratio catalyst/PE was 10% w/w and the solid and gaseous products were analyzed by gas chromatography and mass spectrometry. The optimum operation temperature and the influence of the three catalysts are discussed with regards to the products formed. The best temperature for degradation with silica gel and activated carbon as catalysts was 450 °C and with 5A molecular sieve was 700 °C. Degradation products of PE (solid fraction and gas fraction) are depending on temperature and catalyst used. External surface and structure of catalysts were visualized by Scanning Electron Microscopy (SEM) and the contribution on product distribution is commented. All products from different degradations could be used as feed stocks in chemical industry or in energy production based on the value of heat of combustion for solid fraction (45000 J/g), similar to the heat of combustion of commercial fuels. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Molecular Sieving Using Nanofilters: Past, Present and Future

    PubMed Central

    Han, Jongyoon; Fu, Jianping; Schoch, Reto B.

    2008-01-01

    Filtration of molecules by nanometer-sized structures is ubiquitous in our everyday life, but our understanding of such molecular filtration processes is far less than desired. Until recently, one of the main reasons was the lack of experimental methods that can help provide detailed, microscopic pictures of molecule-nanostructure interactions. Several innovations in experimental methods, such as nuclear track-etched membranes develeoped in the 70s, and more recent development of nanofluidic molecular filters, played pivotal roles in advancing our understanding. With the ability to make truly molecular-scale filters and pores with well-defined sizes, shapes, and surface properties, now we are well positioned to engineer better functionality in molecular sieving, separation and other membrane applications. Reviewing past theoretical developments (often scattered across different fields) and connecting them to the most recent advances in the field would be essential to get a full, unified view on this important engineering question. PMID:18094759

  13. Nickel phosphate molecular sieve as electrochemical capacitors material

    NASA Astrophysics Data System (ADS)

    Yang, Jing-He; Tan, Juan; Ma, Ding

    2014-08-01

    The nickel phosphate molecular sieve VSB-5 as an electrode material for supercapacitors is investigated by cyclic voltammetry (CV) and chronopotentiometry in alkaline media. The VSB-5 shows high specific capacitance and excellent cycling stability. The specific capacitance of VSB-5 is 2740 F g-1 at a current density of 3 A g-1 and there is no significant reduction in Coulombic efficiency after 3000 cycles at 30 A g-1. In comparison with mesoporous nickel phosphate NiPO, porous nickel hydroxide and mesoporous nickel oxide, this remarkable electrochemical performance of VSB-5 will make nickel phosphate material a promising new electrode material for high performance supercapacitors.

  14. An aluminophosphate molecular sieve with 36 crystallographically distinct tetrahedral sites.

    PubMed

    Lee, Jun Kyu; Turrina, Alessandro; Zhu, Liangkui; Seo, Seungwan; Zhang, Daliang; Cox, Paul A; Wright, Paul A; Qiu, Shilun; Hong, Suk Bong

    2014-07-14

    The structure of the new medium-pore aluminophosphate molecular sieve PST-6 is determined by the combined use of rotation electron diffraction tomography, synchrotron X-ray powder diffraction, and computer modeling. PST-6 was prepared by calcination of another new aluminophosphate material with an unknown structure synthesized using diethylamine as a structure-directing agent, which is thought to contain bridging hydroxy groups. PST-6 has 36 crystallographically distinct tetrahedral sites in the asymmetric unit and is thus crystallographically the most complex zeolitic structure ever solved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  16. Performance evaluation of auxetic molecular sieves with re-entrant structures.

    PubMed

    Lim, Teik-Cheng; Acharya, Rajendra U

    2010-12-01

    This paper explores the comparative advantage of auxetic membranes over non-auxetic ones by geometrical analysis. It is herein demonstrated that, unlike non-auxetic sieves, the auxetic sieve exhibits an almost linear correlation with the applied strain, thereby demonstrating the higher tunability of auxetic sieves. Further investigation on the performance of auxetic sieves by varying the initial inclination angle shows that the sieving sensitivity is inversely proportional to the initial inclination angle. Finally a calculation based on (1,4)-reflexyne as a molecular auxetic sieve reveals that such as filter can block out impurities of sub-nanoscale size, while enabling the transport of biochemicals. The obtained results suggest the use of auxetic molecular sieves as high performance bandage, filters and other devices that require ultra-clean environment with biochemical permeability.

  17. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    SciTech Connect

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  18. Reemission of Tritium from Tritium-Sorbed Molecular Sieve

    SciTech Connect

    Cao Xiaohua; Cheng Guijun

    2005-07-15

    In handling of tritium-containing waste gas, tritium is oxidized to tritiated water and immobilized in a molecular sieve (MS), which is then disposed of as solid radioactive waste. So reemission of tritium from tritium-sorbed molecular sieve is concerned for tritium waste disposal. 4A, 5A and 10X MS were chosen for the tritium reemission test. The tritium-containing MS samples with specific activity of 3 GBq/g were prepared and the reemission coefficients of tritium from the three types of MS were determined. The effects of storage conditions of the MS on the reemission of tritium were examined. The results show that during two months of storage period, the reemission coefficients of 4A, 5A and 10X MS are (1.9{approx}5.5) x 10{sup -6} d{sup -1}.g{sup -1}. Among them, 5A MS has the largest reemission coefficient and 4A MS the smallest. The tritium released from tritium-sorbed MS is mostly in the form of HTO, only less than 1.2% of the tritium is in the form of HT. The atmosphere for storing tritium-sorbed MS has rather effect on reemission of tritium. The reemission coefficient in argon is lower than that in Ar+2%H{sub 2}.

  19. Carbon dioxide sorption in a nanoporous octahedral molecular sieve

    NASA Astrophysics Data System (ADS)

    Williamson, Izaak; Nelson, Eric B.; Li, Lan

    2015-08-01

    We have performed first-principles density functional theory calculations, incorporated with van der Waals interactions, to study CO2 adsorption and diffusion in nanoporous solid—OMS-2 (Octahedral Molecular Sieve). We found the charge, type, and mobility of a cation, accommodated in a porous OMS-2 material for structural stability, can affect not only the OMS-2 structural features but also CO2 sorption performance. This paper targets K+, Na+, and Ba2+ cations. First-principles energetics and electronic structure calculations indicate that Ba2+ has the strongest interaction with the OMS-2 porous surface due to valence electrons donation to the OMS-2 and molecular orbital hybridization. However, the Ba-doped OMS-2 has the worst CO2 uptake capacity. We also found evidence of sorption hysteresis in the K- and Na-doped OMS-2 materials.

  20. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  1. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  2. A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity.

    PubMed

    Yang, Miao; Tian, Peng; Wang, Chan; Yuan, Yangyang; Yang, Yue; Xu, Shutao; He, Yanli; Liu, Zhongmin

    2014-02-21

    Silicoaluminophosphate SAPO-34 molecular sieve nanocrystals have been prepared by a post-synthesis milling and recrystallization method, which is further proven to be universally applicable to other SAPO molecular sieves. The obtained SAPO-34 with reduced Si enrichment on the external surface shows considerably improved catalytic performance in the MTO reaction.

  3. Minimal framework density molecular sieves for natural gas storage. Final report, January 1992-April 1993

    SciTech Connect

    Szostak, R.

    1993-02-10

    A study of the ability of the aluminophosphate family of molecular sieves to adsorb methane is summarized. The work examines the sieves chosen for their lowest framework density and smallest pore diameter system. These materials represent a possible improvement in systems for on-board storage of natural gas as their physical properties can improve methane capacity inside the cavities and maximize framework-adsorbate interaction. The study details the topology of the aluminophospate molecular sieves and compares them to the aluminosilicate zeolites. Experimental procedures for synthesizing the sieves are described.

  4. Hydroxylation of phenol over MeAPO molecular sieves synthesized by vapor phase transport

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2016-07-01

    In this study, MeAPO-25 (Me = Fe, Cu, Mn) molecular sieves were first synthesized by a vapor phase transport method using tetramethyl guanidine as the template and applied to hydroxylation of phenol. The zeolites were characterized by XRD, SEM, FT-IR, and DR UV-Vis. As a result, MeAPO-21 and MeAPO-15 were synthesized by changing the Me/Al ratio. UV-Visible diffuse reflectance study suggested incorporation of heteroatoms into the framework and FT-IR study also supported these data. Effects of heteroatoms, contents of Me in MeAPO-25, reaction temperature, phenol/H2O2 mole ratios, reaction time and concentration of catalyst on the conversion of phenol, as well as on the selectivity were studied. FeAPO-25 exhibited a high catalytic activity at the mole ratio of FeO and Al2O3 equal to 0.1 in the synthesis gel, giving the phenol conversion of 88.75% and diphenols selectivity of 66.23% at 60°C within 3 h [ n(phenol)/ n(H2O2) = 0.75, m(FeAPO-25)/ m(phenol) = 7.5%]. Experimental results indicated that the FeAPO-25 molecular sieve was a fairly promising candidate for the application in hydroxylation of phenol.

  5. A heterogeneous model for gas transport in carbon molecular sieves.

    PubMed

    Ding, L P; Yuan, Y X; Farooq, S; Bhatia, S K

    2005-01-18

    A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS. The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.

  6. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  7. Transformation of metal-organic frameworks for molecular sieving membranes

    NASA Astrophysics Data System (ADS)

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  8. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    PubMed

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. An efficient polymer molecular sieve for membrane gas separations.

    PubMed

    Carta, Mariolino; Malpass-Evans, Richard; Croad, Matthew; Rogan, Yulia; Jansen, Johannes C; Bernardo, Paola; Bazzarelli, Fabio; McKeown, Neil B

    2013-01-18

    Microporous polymers of extreme rigidity are required for gas-separation membranes that combine high permeability with selectivity. We report a shape-persistent ladder polymer consisting of benzene rings fused together by inflexible bridged bicyclic units. The polymer's contorted shape ensures both microporosity-with an internal surface area greater than 1000 square meters per gram-and solubility so that it is readily cast from solution into robust films. These films demonstrate exceptional performance as molecular sieves with high gas permeabilities and good selectivities for smaller gas molecules, such as hydrogen and oxygen, over larger molecules, such as nitrogen and methane. Hence, this polymer has excellent potential for making membranes suitable for large-scale gas separations of commercial and environmental relevance.

  10. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  11. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization.

    PubMed

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-03-31

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves.

  12. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-03-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves.

  13. Molecular sieves control contamination and and insulate in thermal regenerators - A concept

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.

    1970-01-01

    Zeolitic molecular sieves prolong the lives of cryogenic engines by preventing contamination of the thermal regenerators on the cold ends of closed-cycle engines. Sieves also serve as thermal insulators by preventing conduction of heat along regenerators through contiguous disks of mesh.

  14. Catalysts Encapsulated in Molecular Machines.

    PubMed

    Pan, Tiezheng; Liu, Junqiu

    2016-06-17

    Smart catalysts offer the control of chemical processes and sequences of transformations, and catalysts with unique catalytic behavior can afford chiral products or promote successive polymerization. To meet advanced demands, the key to constructing smart catalysts is to incorporate traditional catalytic functional groups with trigger-induced factors. Molecular machines with dynamic properties and particular topological structures have typical stimulus-responsive features. In recent years, scientists have made efforts to utilize molecular machines (molecular switches, rotaxanes, motors, etc.) as scaffolds to develop smart catalysts. This Minireview focuses on the achievements of developing catalysts encapsulated in molecular machines and their remarkable specialties. This strategy is believed to provide more potential applications in switchable reactions, asymmetric synthesis, and processive catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Use of silica sols in inorganic molecular sieving membranes

    SciTech Connect

    Sehgal, R.; Brinker, C.J.; Huling, J.C.

    1995-07-01

    Polymeric silica sols, were deposited on commercial {gamma}-alumina supports to prepare gas separation membranes. Optimization of the sol fractal dimension and radius of gyration and minimization of condensation rate led to formation of a discrete film with pores of molecular dimensions. Two coatings of this sol (A2{sup **}) led to a membrane with ideal separation factor of 7 for helium versus nitrogen after calcination to 400C (helium permeance 0.002 cm{sup 3}/cm{sup 2}-s-cm Hg). Partial sintering of these membranes resulted in a further reduction in pore size or narrowing of pore size distribution as evidenced by larger separation factors e.g. 9 for helium versus nitrogen (helium permeance 0.0028 cm{sup 3}/cm{sup 2}-s-cm Hg) with only one A2{sup **} coating. Single gas measurements also showed high ideal separation factors for helium versus methane, propylene, sulfur hexafluoride and carbon dioxide. The deposited A2{sup **} membrane was reacted with titanium isopropoxide (Ti(O i-Pr){sub 4}) to improve both its thermal and chemical stability and modify its pore size. This reaction led to an increase in the membrane selectivity to >300 for He versus N{sub 2} below to 120C, and CO{sub 2} versus CH{sub 4}, when measured below 200C. A2{sup **} was also used as a host matrix for preparing imogolite composite membranes that showed molecular sieving behavior.

  16. Nanofluidic transport in branching nanochannels: a molecular sieve based on Y-junction nanotubes.

    PubMed

    Liu, Ling; Chen, Xi

    2009-05-07

    Using molecular dynamics (MD) simulations, we study the fundamental partitioning and screening behaviors of nanofluids confined in Y-junction nanochannels, and demonstrate their feasibility as efficient molecular sieves. A flow of gas or liquid molecules is partitioned at the junction and separated into the two side branches with different volume fractions. The opening gaps of the side branches are manipulated, and the sieve characteristics are explored as the gas phase, mixture composition/ratio, and opening dimensions are varied. The studies provide design principles for a molecular sieve with maximum probability passing one type of molecule into a screening branch, and meanwhile maximizing the rejection rate of other types of molecules.

  17. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Gallego, Nidia C; Burchell, Timothy D

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were

  18. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  19. Synthesis and characterization of UTD-1, a novel zeolite molecular sieve

    SciTech Connect

    Balkus, K.J. Jr.; Gabrielov, A.G.; Zones, S.I.

    1995-12-01

    The application of metal complexes as templates during the crystallization of zeolite molecular sieves is a relatively unexplored field and will be briefly reviewed. This work includes our discovery that bis(pentamethylcyclopentadienyl)cobalt(III) hydroxide, CP*{sub 2}CoOH can function as a structure directing agent. This complex has been used to prepared several new phases including the novel zeolite UTD-1. This high silica molecular sieve has been characterized by XRD, FT-IR, UV-Vis as well as elemental analysis. Preliminary, adsorption experiments (Ar, N{sub 2}) are consistent with a large pore, probably 12 ring or greater, channel type molecular sieve. UTD-1 is stable to calcination 500{degrees}C while the intrazeolite metal complex decomposes ({approximately}350{degrees}C) to presumably form occluded cobalt oxide. Methanol can be converted to hexamethylbenzene among other hydrocarbons, indicating the presence of acid sites. These results are also consistent with a large pore molecular sieve.

  20. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    PubMed

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  1. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; ...

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  2. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  3. [Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene].

    PubMed

    Li, Dong-Yan; Liu, Hai-Di; Chen, Yun-Fa

    2011-12-01

    Manganese oxide octahedral molecular sieves (OMS-2) for VOCs catalytic combustion were synthesized by refluxing method. The crystal structure, particle morphology, pore structure and H2-reduction ability were characterized by XRD, SEM, N2 adsorption-desorption and H2-TPR techniques. The catalytic activities of the OMS-2 calcined at different temperatures in benzene combustion and the stability of the sample calcined at 300 degrees C were evaluated. The results indicated that the effect of calcinations temperature on the surface characters of catalysts was remarkable. With higher calcination temperature, the samples showed lower surface area and pore volume, but larger average pore size. At the same time, high calcination temperature leaded to low activity. The benzene conversion of the sample calcined at 300 degrees C was 50% degrees C at 200 degrees C and 90% at 250 degrees C, respectively. The catalytic activity exhibited only 5% reduction after reaction at 260 degrees C for 70 h, which indicated that the as-made catalysts were very stable after calcination at 300 degrees C.

  4. Molecular simulation and experimental studies of a mesoporous ZSM-5 type molecular sieve.

    PubMed

    Liu, Baoyu; Wu, Yongbiao; Liu, Defei; Wu, Ying; Xi, Hongxia; Qian, Yu

    2013-02-28

    The mesoporous zeolite is a novel porous material possessing mesopores as well as the inherent micropores of zeolites. This material can exhibit the dual merits of two different pore structures and enable zeolites to have maximum structural functions. During the past few decades, various synthetic strategies have been well developed. However, up to now, there has only been a few attempts to model mesoporous zeolites. In this paper, the structural properties of a mesoporous ZSM-5 type molecular sieve, which has mesopore walls that are made up of ZSM-5 zeolite-like frameworks, were studied using an atomistic model. The full-atom model of the mesoporous ZSM-5 type molecular sieve was constructed using a molecular modeling technique. The structure model was characterized by estimating the nitrogen accessible solvent surface area, small-angle and wide-angle X-ray diffraction patterns, toluene and benzene adsorption. It was found that these simulated results match well with the experimental data. Furthermore, the present approach can be extended to construct other micro-mesoporous molecular sieve structure models in the future.

  5. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  6. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  7. Catalytic performance of PdCl2/Cu-HMS: Influence of hydrophobicity and structure of molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Zhou, Yan; Fan, Mingming; Jiang, Pingping

    2014-03-01

    Surface hydrophobically modified PdCl2/Si-Cu-HMS-m materials were successfully synthesized via a simple silylation process using methyltrichlorosilane and phenyltrichlorosilane respectively. They were characterized by a series of techniques including FT-IR, powder XRD, nitrogen adsorption-desorption, and the contact angle measurement of the water droplet. It was demonstrated that the mesoporous structure of Cu-HMS was retained after modification and that hydrophobicity was enhanced. However, silylation agents had a significant influence on catalytic performance. The experimental results indicated that PdCl2/Si-Cu-HMS-CH3 showed a high catalytic activity for the gas phase oxidative carbonylation of ethanol to diethyl carbonate (DEC) and a small steric hindrance but a weak hydrophobicity in comparison with PdCl2/Si-Cu-HMS-Ben catalyst, demonstrating that catalytic performance was relative to both by-product water and structure of molecular sieves catalyst, but the latter was a main factor in the catalytic system. In addition, a probable mechanism has been proposed to explain this result that structure of molecular sieves was the main factor of influencing catalytic performance.

  8. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H{sub 3}PW{sub 12}O{sub 40}/Zr-MCM-41 catalysts

    SciTech Connect

    Chen, L.F. Wang, J.A.; Norena, L.E.; Aguilar, J.; Navarrete, J.; Salas, P.; Montoya, J.A.; Del Angel, P.

    2007-10-15

    For the first time, modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr{sup 4+} ions into the framework are investigated. The Zr-modified Si-MCM-41 mesoporous materials (hereafter referred as WSZn, n=Si/Zr=25, 15, 8, 4) were synthesized through a surfactant-templated preparation approach, using low-cost fumed silica as the Si precursor. After impregnation with 25 wt% of H{sub 3}PW{sub 12}O{sub 40}, the surface Broensted acidity of the Pt/H{sub 3}PW{sub 12}O{sub 40}/WSZn catalysts was greatly enhanced by 2-10 times relative to the bare WSZn support. Two kinds of supported heteropolyacids were formed: (i) bulk-like heteropolyacid crystals with unchanged Keggin structures, and (ii) highly dispersed heteropolyacid with distorted Keggin units. The formation of various kinds of heteropolyacid structures is closely related to the interaction between the heteropolyanions and the hydroxyl groups in the host support. - Graphical abstract: Modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr{sup 4+} ions into the framework are investigated. Broensted acidity of the Pt/H{sub 3}PW{sub 12}O{sub 40}/Zr-MCM-41 catalysts was greatly enhanced by 2-10 times relative to the bare Zr-MCM-41 support.

  9. Solid-phase reversible trap for [11C]carbon dioxide using carbon molecular sieves.

    PubMed

    Mock, B H; Vavrek, M T; Mulholland, G K

    1995-07-01

    A simple, maintenance-free trapping technique which concentrates and purifies no-carrier-added 11CO2 from gas targets is described. The trap requires no liquid nitrogen cooling and has no moving parts besides solenoid valves. It employs carbon molecular sieves to adsorb 11CO2 selectively from gas targets at room temperature. Nitrogen, O2, CO, NO and moisture in the target gas which could interfere with subsequent radiochemical steps are not retained. Trapping efficiency of 1 g of sieve for 11CO2 from a 240 cm3 target gas dump and helium flush cycle is > 99%, and the adsorbed 11CO2 is recovered quantitatively as a small concentrated bolus from the carbon sieve trap by thermal desorption. This durable trap has performed reliably for more than 1 y with a single charge of carbon sieve. It has simplified the production, and improved the yields of several 11C-radiochemicals at this laboratory.

  10. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material.

    PubMed

    Nguyen, T X; Jobic, H; Bhatia, S K

    2010-08-20

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  11. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    NASA Astrophysics Data System (ADS)

    Nguyen, T. X.; Jobic, H.; Bhatia, S. K.

    2010-08-01

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  12. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    SciTech Connect

    Nguyen, T. X.; Bhatia, S. K.; Jobic, H.

    2010-08-20

    We report quasielastic neutron scattering studies of H{sub 2}-D{sub 2} diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  13. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  14. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  15. Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.

    PubMed

    Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A

    2010-06-14

    The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.

  16. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Qiu, Xinping; Cui, Mengzhong; Tang, Xiaozhen; Zhu, Wentao; Chen, Liquan

    ZSM-5 molecular sieves, usually known as shape-selective catalyst in a great deal of catalysis fields, due to its special pore size and two-dimensional interconnect channels. In this work, a novel PEO-based composite polymer electrolyte by using ZSM-5 as the filler has been developed. The interactions between ZSM-5 and PEO matrix are studied by DSC and SEM techniques. The effects of ZSM-5 on the electrochemical properties of the PEO-based electrolyte, such as ionic conductivity, lithium ion transference number, and interfacial stability with lithium electrode are studied by electrochemical impedance spectroscopy and steady-state current method. The experiment results show that ZSM-5 can enhance the ionic conductivity and increase the lithium ion transference number of PEO-based electrolyte more effectively comparing with traditional ceramic fillers such as SiO 2 and Al 2O 3, resulting from its special framework topology structure. The excellent performances such as high ionic conductivity, good compatibility with lithium metal electrode, and broad electrochemical stability window suggesting that PEO-LiClO 4/ZSM-5 composite polymer electrolyte can be used as candidate electrolyte materials for lithium polymer batteries.

  17. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR.

    PubMed

    Mueller, Robert; Kanungo, Rohit; Menjoge, Amrish; Kiyono-Shimobe, Mayumi; Koros, William J; Bradley, Steven A; Galloway, Douglas B; Low, John J; Prabhakar, Sesh; Vasenkov, Sergey

    2012-02-14

    In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS) membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG) NMR technique that combines advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

  18. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    PubMed Central

    Mueller, Robert; Kanungo, Rohit; Menjoge, Amrish; Kiyono-Shimobe, Mayumi; Koros, William J.; Bradley, Steven A.; Galloway, Douglas B.; Low, John J.; Prabhakar, Sesh; Vasenkov, Sergey

    2012-01-01

    In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS) membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG) NMR technique that combines advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used. PMID:28817046

  19. Vapor-liquid equilibrium of ethanol-water system in the presence of molecular sieves

    SciTech Connect

    Abu Al-Rub, F.A.; Banat, F.A.; Jumah, R.

    1999-09-01

    Adsorptive distillation is a new process to separate liquid mixtures in a packed distillation column. It depends on using active packing material instead of inert packing material in a packed distillation column. The active packing material can affect the intermolecular forces among the system components and thus alter its vapor-liquid equilibrium (VLE). The VLE of the ethanol-water system at 1 atm was studied using a circulation still in the absence and in the presence of different amounts of 4 {angstrom} molecular sieves. The results obtained showed that the VLE of the system was altered in the presence of the molecular sieves, the azeotropic point of the system (at 89.7 mol% ethanol in the normal case) was eliminated and considerable separation was achieved for a mixture of azeotropic composition, and the alteration in the VLE of a given binary mixture is a function of the pore size and the amount of the molecular sieves.

  20. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  1. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    PubMed Central

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-01-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol. PMID:26960707

  2. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  3. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    PubMed

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  4. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  5. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    SciTech Connect

    Kotoh, K.; Kimura, K.; Nakamura, Y.; Kudo, K.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appear at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)

  6. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  7. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  8. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  9. CTR Fuel recovery system using regeneration of a molecular sieve drying bed

    DOEpatents

    Folkers, Charles L.

    1981-01-01

    A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.

  10. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  11. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures

    SciTech Connect

    Pauly, T.R.; Liu, Y.; Pinnavaia, T.J.; Billinge, S.J.L.; Rieker, T.P.

    1999-09-29

    Three different water-alcohol cosolvent systems were used to assemble mesoporous molecular sieve silicas with wormhole framework structures (previously denoted HMS silicas) from an electrically neutral amine surfactant (S{degree}) and a silicon alkoxide precursor (I{degree}). The fundamental particle size and associated textural (interparticle) porosity of the disordered structures were correlated with the solubility of the surfactant in the water-alcohol cosolvents used for the S{degree}I{degree} assembly process. Polar cosolvents containing relatively low volume fractions of C{sub n}H{sub 2n+1}OH alcohols (n = 1--3) gave heterogeneous surfactant emulsions that assembled intergrown aggregates of small primary particles with high textural pore volumes (designated HMS-HTx). Conversely, three-dimensional, monolithic particles with little or no textural porosity (designated HMS-LTx) were formed from homogeneous surfactant solutions in lower polarity cosolvents. Aluminum substituted AL-HMS-HTx analogues with high textural porosity and improved framework accessibility also were shown to be much more efficient catalysts than AL-HMS-LTx or monolithic forms of hexagonal AL-MCM-41 for the sterically demanding condensed phase alkylation of 2,4-di-tert-butylphenol with cinnamyl alcohol. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies verified the textural differences between wormhole HMS and electrostatically assembled hexagonal MCM-41 and SBA-3 molecular sieves. Power law fits to the scattering data indicated a surface fractal (D{sub s} = 2.76) for HMS-HTx, consistent with rough surfaces. A second power law at lower-q indicated the formation of a mass fractal (D{sub m} = 1.83) consistent with branching of small fundamental particles. Hexagonal MCM-41 and SBA-3 silicas, on the other hand, exhibited scattering properties consistent with moderately rough surfaces (D{sub s} = 2.35 and 2.22, respectively) and large particle diameters ({much

  12. Utility of 5A molecular sieves to measure carbon isotope ratios in lipid biomarkers.

    PubMed

    Tolosa, Imma; Ogrinc, Nives

    2007-09-21

    A procedure using 5A zeolite sorption to separate cyclic/branched organic compounds from the linear ones was developed and carbon isotopic fractionation effects were investigated in different families of compounds, e.g. within the hydrocarbon and alcohol compounds. The 5A sieve has a pore size such that only linear components can be incorporated into the pores whereas the cyclic/branched compounds are remaining free in the organic solution. The sorbed compounds were released from the molecular sieve with HF and solvent extracted with hexane. The method enables the isolation of linear saturated classes, such as n-alkanes and n-fatty alcohols from branched/cyclic compounds without isotopic fractionation for compound-specific isotope analysis (CSIA) of delta(13)C. However, alkene hydrocarbons, sterols and some aromatics were completely or partly degraded with the molecular sieve.

  13. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  14. Toward Molecular Catalysts by Computer

    SciTech Connect

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  15. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  16. Nanoporous carbon sorbent for molecular-sieve chromatography of lipoprotein complex

    NASA Astrophysics Data System (ADS)

    Kerimkulova, A. R.; Mansurova, B. B.; Gil'manov, M. K.; Mansurov, Z. A.

    2012-06-01

    The physicochemical characteristics of carbon sorbents are investigated. Electron microscopy data for the sorbent and separated lipoprotein complex are presented. It is found that the obtained carbon sorbent possess high porosity. Nanoporous carbon sorbents for the chromatography of molecular-sieve markers are obtained and tested. The applicability of nanoporous carbon sorbents for separation of lipoprotein complexes (LPC) is investigated.

  17. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems.

  18. Low Temperature VOC Combustion Over Manganese, Cobalt and Zinc AlPO{sub 4} Molecular Sieves

    SciTech Connect

    Szostak, R.

    1997-03-31

    The objective of this project is to prepare manganese, cobalt and zinc containing AlPO{sub 4} molecular sieves and evaluate their catalytic activities for the removal of low levels of volatile organic compounds (VOCs) from gas streams. This report highlights our research activities for period October 1,1996 to March 31, 1997.

  19. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  20. Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires.

    PubMed

    Carretero-Genevrier, Adrián; Gazquez, Jaume; Magén, César; Varela, María; Ferain, Etienne; Puig, Teresa; Mestres, Narcís; Obradors, Xavier

    2012-06-25

    We report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.

  1. Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires

    SciTech Connect

    Carretero-Genevrier, Adrián; Gazquez, Jaume; Magen, Cesar; Varela, Maria; Ferain, Etienne; Puig, Teresa; Mestres, Narcis; Obradors, Xavier

    2012-04-25

    Here we report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.

  2. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity.

    PubMed

    Wang, Chan; Yang, Miao; Li, Mingrun; Xu, Shutao; Yang, Yue; Tian, Peng; Liu, Zhongmin

    2016-05-11

    Mesoporous SAPO-34 single crystals with tunable porosity and Si content have been fast synthesized within 4 hours by a reconstruction strategy, which show excellent hydrothermal stability and MTO catalytic activity. This new strategy is further proven to be applicable to prepare other mesoporous SAPO molecular sieve single crystals.

  3. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  4. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    PubMed

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  5. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  6. A new beaded carbon molecular sieve sorbent for 222Rn monitoring.

    PubMed

    Scarpitta, S C

    1996-05-01

    A new commercially available beaded carbon molecular sieve sorbent, Carboxen-564 (20/45 mesh), was tested and compared to Calgon-PCB (40/80) activated carbon for its adsorptive and desorptive characteristics under controlled conditions of temperature (25 degrees C) and relative humidity (RH). The amount of water vapor adsorbed by the beaded carbon molecular sieve material was typically a factor of 4 lower than the activated carbon, with a concomitant fourfold increase in the 222Rn adsorption coefficient, K(Rn). The maximum K(Rn) value for a thin layer of Carboxen-564, following a 2-d exposure at 40% RH, was 7.2 Bq kg(-1) per Bq m(-3). The K(Rn) or a 1-cm bed, following a 2-d exposure was 5.5 Bq m(-3), a 25% reduction. Under dynamic sampling conditions, where 0.4 g of the beaded carbon molecular sieve was contained in a 6 cm x 0.4 cm diameter tube, the maximum K(Rn) value was 6.5 Bq m(-3) after 2.5 h of sampling at 29% RH when the input flow rate was 4.2 x 10(-3) m3 h-1. Kinetic studies were also conducted under passive sampling conditions. The data show that the 222Rn buildup time-constant for a thin layer of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The 222Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material into air and into a commercially available toluene based liquid scintillation cocktail, were 2 h and 3 h, respectively. Carboxen's high 222Rn adsorbing capacity, rapid kinetics, hydrophobicity and physical properties makes it an attractive alternative to other commercially available activated carbon used in passive and dynamic sampling devices.

  7. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents.

    PubMed

    Martínez-Franco, Raquel; Moliner, Manuel; Yun, Yifeng; Sun, Junliang; Wan, Wei; Zou, Xiaodong; Corma, Avelino

    2013-03-05

    The synthesis of crystalline microporous materials containing large pores is in high demand by industry, especially for the use of these materials as catalysts in chemical processes involving bulky molecules. An extra-large-pore silicoaluminophosphate with 16-ring openings, ITQ-51, has been synthesized by the use of bulky aromatic proton sponges as organic structure-directing agents. Proton sponges show exceptional properties for directing extra-large zeolites because of their unusually high basicity combined with their large size and rigidity. This extra-large-pore material is stable after calcination, being one of the very few examples of hydrothermally stable molecular sieves containing extra-large pores. The structure of ITQ-51 was solved from submicrometer-sized crystals using the rotation electron diffraction method. Finally, several hypothetical zeolites related to ITQ-51 have been proposed.

  8. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  9. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes.

    PubMed

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H; Ghalei, Behnam; Al-Muhtaseb, Shaheen A; Terentjev, Eugene M; Cheetham, Anthony K; Sivaniah, Easan

    2014-09-04

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  10. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation.

    PubMed

    Duan, Lian; Sun, Binzhe; Wei, Mingyu; Luo, Shilu; Pan, Fei; Xu, Aihua; Li, Xiaoxia

    2015-03-21

    In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Koh, Dong-Yeun; McCool, Benjamin A.; Deckman, Harry W.; Lively, Ryan P.

    2016-08-01

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  12. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes.

    PubMed

    Koh, Dong-Yeun; McCool, Benjamin A; Deckman, Harry W; Lively, Ryan P

    2016-08-19

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature. Copyright © 2016, American Association for the Advancement of Science.

  13. Toward molecular catalysts by computer.

    PubMed

    Raugei, Simone; DuBois, Daniel L; Rousseau, Roger; Chen, Shentan; Ho, Ming-Hsun; Bullock, R Morris; Dupuis, Michel

    2015-02-17

    CONSPECTUS: Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to design catalysts by computer. In this Account, we first review how thermodynamic properties such as redox potentials (E°), acidity constants (pKa), and hydride donor abilities (ΔGH(-)) form the basis for a framework for the systematic design of molecular catalysts for reactions that are critical for a secure energy future. We illustrate this for hydrogen evolution and oxidation, oxygen reduction, and CO conversion, and we give references to other instances where it has been successfully applied. The framework is amenable to quantum-chemical calculations and conducive to predictions by computer. We review how density functional theory allows the determination and prediction of these thermodynamic properties within an accuracy relevant to experimentalists (∼0.06 eV for redox potentials, ∼1 pKa unit for pKa values, and 1-2 kcal/mol for hydricities). Computation yielded correlations among thermodynamic properties as they reflect the electron population in the d shell of the metal center, thus substantiating empirical correlations used by experimentalists. These correlations point to the key role of redox potentials and other properties (pKa of the parent aminium for the proton-relay-based catalysts designed in our laboratory) that are easily accessible experimentally or computationally in reducing the parameter space for design. These properties suffice to fully determine free energies maps and profiles associated with catalytic cycles, i.e., the relative energies of intermediates. Their prediction puts us in a position to distinguish a priori between desirable and undesirable pathways and mechanisms. Efficient catalysts have flat free energy profiles that avoid high activation barriers due to low- and high

  14. A new beaded carbon molecular sieve sorbent for {sup 222}Rn monitoring

    SciTech Connect

    Scarpitta, S.C.

    1996-05-01

    A new commercially available beaded carbon molecular sieve sorbent, Carboxen-564 (20/45 mesh), was tested and compared to Calgon-PCB (40/80) activated carbon for its adsorptive and desorptive characteristics under controlled conditions of temperature (25{degrees})C and relative humidity (RH). The amount of water vapor adsorbed by the beaded carbon molecular sieve material was typically a factor of 4 lower than the activated carbon, with a concomitant fourfold increase in the {sup 222}Rn adsorption coefficient, K{sub Rn}. The maximum K{sub Rn} value for a thin layer of Carboxen-564, following a 2-d exposure at 40% RH, was 7.2 Bq kg{sup {minus}1} per Bq m{sup {minus}3}. The K{sub Rn} for a 1-cm bed, following a 2-d exposure was 5.5 Bq m{sup {minus}3}, a 25% reduction. under dynamic sampling conditions, where 0.4 g of the beaded carbon molecular sieve was contained in a 6 cm x 0.4 cm diameter tube, the maximum K{sub Rn} value was 6.5 Bq m{sup {minus}3} after 2.5 h of sampling at 29% RH when the input flow rate was 4.2 x 10{sup {minus}3} m{sup 3} h{sup {minus}1}. Kinetic studies were also conducted under passive sampling conditions. The data show that the {sup 222}Rn buildup time-constant for a thin layer of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material into air and into a commercially available toluene based liquid scintillation cocktail, were 2 h and 3 h, respectively. Carboxen`s high {sup 222}Rn adsorbing capacity, rapid kinetics, hydrophobicity and physical properties makes it an attractive alternative to other commercially available activated carbon used in passive and dynamic sampling devices. 18 refs., 7 figs.

  15. Difunctional polyisobutylene prepared by polymerization of monomer on molecular sieve

    NASA Technical Reports Server (NTRS)

    Midler, J. A., Jr.

    1970-01-01

    Process yields difunctional isobutylene polymers ranging in molecular weight from 1150 to 3600. These polymers have the potential for copolymerization and cross-linking with other monomers to form elastomeric materials.

  16. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates

    NASA Astrophysics Data System (ADS)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M.; Zhu, Xiang; Dai, Sheng

    2014-04-01

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energyand environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to ‘classical’ methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  17. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  18. The dependence of the electronic conductivity of carbon molecular sieve electrodes on their charging states.

    PubMed

    Pollak, Elad; Genish, Isaschar; Salitra, Gregory; Soffer, Abraham; Klein, Lior; Aurbach, Doron

    2006-04-13

    The dependence of the electronic conductivity of activated carbon electrodes on their potential in electrolyte solutions was examined. Kapton polymer films underwent carbonization (1000 degrees C), followed by a mild oxidation process (CO(2) at 900 degrees C) for various periods of time, to obtain carbons of different pore structures. A specially designed cell was assembled in order to measure the conductivity of carbon electrodes at different potentials in solutions. When the carbon electrodes possessed molecular sieving properties, a remarkable dependence of their conductivity on their charging state was observed. Aqueous electrolyte solutions containing ions of different sizes were used in order to demonstrate this phenomenon. As the average pore size of the activated carbons was larger, their molecular sieving ability was lower, and the dependence of their conductivity on their charging state regained its classical form. This behavior is discussed herein.

  19. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  20. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  1. Estimation of temperature-dependent thermal conductivity of a packed bed of 13X molecular sieves

    SciTech Connect

    Vyas, R.K.; Kumar, S.

    1995-11-01

    Modeling and simulation of packed bed systems operating non-isothermally require sufficiently accurate knowledge of thermal transport properties.Effective thermal conductivity (k) of packed bed of molecular sieves is rarely reported. In this paper, dependence of k on temperature for a packed bed of 13X molecular sieves has been determined. An electrical heater embedded coaxially in the bed was used to heat it, and the radical temperature profiles thus obtained under transient conditions were utilized for estimation. The estimated relationship is k = 8.17635 {times} 10{sup {minus}5} + 10.915427 {times} 10{sup {minus}7}(T {minus} T{sub 0}). Statistical analysis of the estimated parameters has also been carried out. The deviations between experimental and predicted temperatures are less than 5%.

  2. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    SciTech Connect

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activating a dessicant, and hydrogen uptake testing.

  3. Synthesis of 4-nitrophenyl acetate using molecular sieve-immobilized lipase from Bacillus coagulans.

    PubMed

    Raghuvanshi, Shilpa; Gupta, Reena

    2009-03-01

    Extracellular lipase from Bacillus coagulans BTS-3 was immobilized on (3 A x 1.5 mm) molecular sieve. The molecular sieve showed approximately 68.48% binding efficiency for lipase (specific activity 55 IU mg(-1)). The immobilized enzyme achieved approx 90% conversion of acetic acid and 4-nitrophenol (100 mM each) into 4-nitrophenyl acetate in n-heptane at 65 degrees C in 3 h. When alkane of C-chain length other than n-heptane was used as the organic solvent, the conversion of 4-nitrophenol and acetic acid was found to decrease. About 88.6% conversion of the reactants into ester was achieved when reactants were used at molar ratio of 1:1. The immobilized lipase brought about conversion of approximately 58% for esterification of 4-nitrophenol and acetic acid into 4-nitrophenyl acetate at a temperature of 65 degrees C after reuse for 5 cycles.

  4. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents.

    PubMed

    Schmidt, Joel E; Deem, Michael W; Davis, Mark E

    2014-08-04

    Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure-directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure-silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  6. A ’Smart’ Molecular Sieve Oxygen Concentrator with Continuous Cycle Time Adjustment.

    DTIC Science & Technology

    1996-04-01

    A ’smart’ molecular sieve oxygen concentrator (MSOC) is controlled by a set of computer algorithms . The ’smart’ system automatically adjusts...determine if concentrator performance could be controlled by computer algorithms which continuously adjust concentrator cycle time. A two-bed... Computer algorithms or decision process were developed which allowed the software to control concentrator cycle time. Step changes in product flow from 5

  7. Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3

    NASA Technical Reports Server (NTRS)

    Swartz, A. Ben; Wilson, D. B.

    1999-01-01

    The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.

  8. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  9. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.

    PubMed

    Boutilier, Michael S H; Jang, Doojoon; Idrobo, Juan-Carlos; Kidambi, Piran R; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2017-06-27

    Molecular sieving across atomically thin nanoporous graphene is predicted to enable superior gas separation performance compared to conventional membranes. Although molecular sieving has been demonstrated across a few pores in microscale graphene membranes, leakage through nonselective defects presents a major challenge toward realizing selective membranes with high densities of pores over macroscopic areas. Guided by multiscale gas transport modeling of nanoporous graphene membranes, we designed the porous support beneath the graphene to isolate small defects and minimize leakage through larger defects. Ion bombardment followed by oxygen plasma etching was used to produce subnanometer pores in graphene at a density of ∼10(11) cm(-2). Gas permeance measurements demonstrate selectivity that exceeds the Knudsen effusion ratio and scales with the kinetic diameter of the gas molecules, providing evidence of molecular sieving across centimeter-scale nanoporous graphene. The extracted nanoporous graphene performance is comparable to or exceeds the Robeson limit for polymeric gas separation membranes, confirming the potential of nanoporous graphene membranes for gas separations.

  10. Radiolytic and thermal dechlorination of organic chlorides adsorbed on molecular sieve 13X.

    PubMed

    Yamamoto, Y; Tagawa, S

    2001-05-15

    Reductive dechlorination of chlorobenzene (PhCl), trichloroethylene (TCE), tetrachloroethylene (PCE), 1- and 2-chlorobutanes, chloroform, carbon tetrachloride, and 1,1,1- and 1,1,2-trichloroethanes adsorbed on molecular sieve 13X was investigated. The molecular sieve adsorbing the organic chlorides was irradiated with gamma-rays, heated, or allowed to stand at room temperature in a sealed ampule and was then soaked in water. The dechlorination yields were determined from the Cl- concentrations of the supernatant aqueous solutions. It was found that the chlorinated alkanes adsorbed on the molecular sieve are readily dechlorinated on standing at room temperature. The dechlorination at room temperature was limited for TCE and PCE. PhCl was quite stable even at 200 degrees C. gamma-Radiolysis was examined for PhCl, TCE, and PCE at room temperature. The radiation chemical yields of the dechlorination, G(Cl-), were 1.9, 40, and 30 for PhCl, TCE, and PCE, respectively. After 5 h of heating at 200 degrees C, the dechlorination yields for TCE and PCE were 24.5 and 4.3%, respectively. TCE is much more reactive than PCE in the thermal dechlorination, whereas their radiolytic dechlorination yields are comparable. The pH of the supernatant solutions decreased along with the dechlorination.

  11. Praseodymium incorporated AIPO-5 molecular sieves for aerobic oxidation of ethylbenzene.

    PubMed

    Sundaravel, B; Babu, C M; Palanisamy, B; Palanichamy, M; Shanthi, K; Murugesan, V

    2013-04-01

    PrAlPO-5 with (Al + P)/Pr ratios of 25, 50, 75 and 100 molecular sieves were successfully synthesized by hydrothermal method. These molecular sieves were characterised using XPS, TPD-NH3, ex-situ pyridine adsorbed IR, TPR, TGA, 27Al and 31P MAS-NMR and ESR studies. The incorporation of praseodymium in the framework of AlPO-5 was confirmed by XRD, DRS UV-vis and 27Al and 31P MAS-NMR analysis. ESR spectrum showed the presence of adsorbed oxygen. The nature and strength of acid sites were identified by ex-situ pyridine adsorbed IR and TPD-NH3. The BET surface area was found to be in the range of 238-272 m2 g(-1). The catalytic activity of the molecular sieves was tested for the liquid phase aerobic oxidation of ethylbenzene. Acetophenone was found to be the major product with more than 90% ethylbenzene conversion. ICP-OES analysis revealed the presence of praseodymium intact in the framework of AlPO-5 up to five cycles.

  12. Modification of 13X Molecular Sieve by Chitosan for Adsorptive Removal of Cadmium from Simulated Wastewater

    PubMed Central

    Shi, Yan; Sun, Ken; Huo, Lixin; Li, Xiuxiu; Qi, Xuebin

    2017-01-01

    Chitosan was used to modify a 13X molecular sieve to improve its cadmium removal capability. After being modified with 2% chitosan-acetate for 2 h at 30 °C, significant uptake of Cd2+ could be achieved. The uptake of Cd2+ on the modified 13X molecular sieve followed the Langmuir isotherms with a capacity of 1 mg/g. The kinetics of Cd2+ removal by modified 13X molecular sieve followed a pseudo second-order reaction, suggesting chemisorption or surface complexation. The Cd2+ removal with a sorbent dose of 2 g/L from an initial concentration of 100 μg/L reached more than 95% in 90 min. The equilibrium Cd2+ concentration was <5 μg/L, which meets the requirements of “Standards for Irrigation Water Quality” (GB5084-2005) (10 μg/L) and MCL and MCLG for groundwater and drinking water (5 μg/L) set by United States Environmental Protection Agency. PMID:28925966

  13. Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve

    SciTech Connect

    NYMAN,MAY D.; GU,B.X.; WANG,L.M.; EWING,R.C.; NENOFF,TINA M.

    2000-03-20

    Ongoing hydrothermal Cs-Ti-Si-O-H{sub 2}O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs{sub 3}TiSi{sub 3}O{sub 9.5}{center_dot}3H{sub 2}O. SNL-B is only the second molecular sieve Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 microns) with a blade-like morphology. SNL-B is confirmed to be a 3-dimensional molecular sieve by a variety of characterization techniques (N{sub 2} adsorption, ion exchange, water adsorption/desorption, solid state CP-MAS NMR). SNL-B is able to desorb and adsorb water from its pores while retaining its crystal structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, {sup 29}Si and {sup 133}/Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H{sub 2}O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15}(SNL-A).

  14. A pervaporation study of ammonia solutions using molecular sieve silica membranes.

    PubMed

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C; Liubinas, Audra; Duke, Mikel

    2014-02-17

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation.

  15. Macroscopic nanoporous graphene membranes for molecular-sieving-based gas separation

    NASA Astrophysics Data System (ADS)

    Boutilier, Michael; Karnik, Rohit; Hadjiconstantinou, Nicolas

    2016-11-01

    Nanoporous graphene membranes have the potential to exceed permeance and selectivity limits of existing gas separation membranes. This is made possible by the atomic thickness of the material, which can support sub-nanometer pores that enable molecular sieving while presenting low resistance to permeate flow. The feasibility of gas separation by graphene nanopores has been demonstrated experimentally on micron-scale areas of graphene. However, scaling up to macroscopic membrane areas presents significant challenges, including graphene imperfections and control of the selective nanopore size distribution across large areas. Towards this goal, gas permeance experiments are conducted on single and few layer graphene membranes to understand leakage pathways and a model is developed to predict conditions under which molecular sieving can occur in macroscopic membranes. Approaches to seal or mitigate the effects of micron and nanometer scale defects in graphene are investigated and methods of creating a high density of selectively permeable nanopores are explored. Experimental results demonstrating separation ratios exceeding the Knudsen effusion limit, indicating molecular sieving in agreement with the model predictions, are presented and discussed.

  16. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    SciTech Connect

    Maroni, V A; Willms, K A; Nguyen, Hiephoa; Iton, L E

    1989-12-01

    Recent experiments in our laboratory have demonstrated that aluminophosphate molecular sieves substituted with cobalt and cobalt/silicon combinations and having the AlPO{sub 4}-34 or AlPO{sub 4}-5 structure activate methane starting at {approximately}350{degree}C. Between 400 and 500{degree}C the rate of methane conversion increases steadily with typical conversion efficiencies at 500{degree}C ranging from 15 to 60%. The cobalt and silicon substituted AlPO{sub 4}-34 structure (CoAPSO-34) produces ethylene, ethane, propylene, and propane in varying proportions, depending on reactions conditions. The cobalt-substituted AlPO{sub 4}-5 (CoAPSO-5) produces propylene in very high yield with ethane, ethylene, and propane also seen. Analogous aluminophosphate molecular sieves substituted with magnesium or silicon, but containing no transition metal (e.g., SAPO-34, MAPO-5), do not activate methane under the conditions described above. The activation mechanism is based on reduction of the cobalt(III) form of the molecular sieve to the cobalt(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the cobalt(II) for to the cobalt(III) form can be done either chemically (e.g., using O{sub 2}) or electrochemically. 7 refs., 2 figs., 1 tab.

  17. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  18. From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation.

    PubMed

    Li, Baiyan; Belmabkhout, Youssef; Zhang, Yiming; Bhatt, Prashant M; He, Hongming; Zhang, Daliang; Han, Yu; Eddaoudi, Mohamed; Perman, Jason A; Ma, Shengqian

    2016-11-24

    We unveil a unique kinetic driven separation material for selectively removing linear paraffins from iso-paraffins via a molecular sieving mechanism. Subsequent carbonization and thermal treatment of CD-MOF-2, the cyclodextrin metal-organic framework, afforded a carbon molecular sieve with a uniform and reduced pore size of ca. 5.0 Å, and it exhibited highly selective kinetic separation of n-butane and n-pentane from iso-butane and iso-pentane, respectively.

  19. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  20. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Wang, Peifu; Niu, Futao; Huang, Cunping; Li, Yang; Yao, Weifeng

    2016-08-01

    A small-pore silicon-substituted silicon aluminum phosphate (SAPO-34) molecular sieve, for the first time, is reported to significantly increase both the activity and life span of Ag3PO4 photocatalyst for visible-light degradation of methylene blue (MB) and rhodamine B (RhB). Results show that 60 wt.% Ag3PO4/SAPO-34 exhibits the highest photocatalytic degradation efficiencies for both MB (91.0% degradation within 2.0 min) and RhB (91.0% degradation within 7.0 min). In comparison, pure Ag3PO4 powder photocatalyst requires 8.0 min and 12.0 min for decomposing 91.0% of MB and RhB, respectively. During MB degradation the rate constant for 60 wt.% Ag3PO4/SAPO-34 increases 317.2% in comparison with the rate constant of pure Ag3PO4. This activity is also much higher than literature reported composite or supported Ag3PO4 photocatalysts. In three photocatalytic runs for the degradation of RhB, the rate constant for 60 wt.% Ag3PO4/SAPO-34 reduces from 0.33 to 0.18 min-1 (45.5% efficiency loss). In contrast, the rate constant of pure Ag3PO4 catalyst decreases from 0.2 to 0.07 min-1 (80.0% efficiency loss). All experimental results have shown that small pores and zero light absorption loss of SAPO-34 molecular sieves minimize Ag3PO4 loading, enhance photocatalytic activity and prolong the lifespan of Ag3PO4 photocatalyst.

  1. Molecular Sieving by the Bacillus megaterium Cell Wall and Protoplast

    PubMed Central

    Scherrer, Rene; Gerhardt, Philipp

    1971-01-01

    Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (Rw) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of Rw for intact cells as a function of number-average molecular weight (¯Mn) or Einstein-Stokes hydrodynamic radius (¯rES) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.6 × 103 to 1.1 × 103, ¯rES = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.7 × 105 to 1.2 × 105, ¯rES ≅ 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples (¯Mn = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to Mn = 1,200, rES = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm. PMID:4999413

  2. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  3. Molecular sieving polymer for DNA/RNA separation in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Yamaguchi, Yoshinori; Dou, Xiaoming

    2017-07-01

    In capillary polymer electrophoresis, the property of polymer sieving matrix dominates the migration behavior of DNA/RNA. We investigated the capillary electrophoresis of RNA ranging from 100 nt to 10,000 nt in polyacrylamide (PA) solutions with different molecular weights (Mw) and different concentrations. We observed that the resolution length (RSL) of RNA fragments was improved and the migration time was prolonged, when polymer concentration was increased. The resolution for small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the large ones (>3000 nt) became inseparable. In addition, we estimated the smallest resolvable nucleotide length (Ls) by the plot of RSL against RNA size.

  4. Thermal expansion properties of stannosilicate molecular sieve with MFI type structure

    NASA Astrophysics Data System (ADS)

    Niphadkar, P. S.; Bhange, D. S.; Selvaraj, K.; Joshi, P. N.

    2012-10-01

    An in situ high temperature X-ray diffraction study was carried out for investigating the thermal expansion properties of Si-MFI and SnSi-MFI molecular sieves. The thermal stability up to 973 K and a negative lattice thermal expansion in anisotropic manner was exhibited by both the phases in the temperature range of 373-973 K. The trend observed in contraction along the axes was as: a > c > b. The substitution of Sn4+ in MFI framework resulted in an expansion of unit cell volume and in an increase in the lattice thermal expansion coefficient in the temperature range 423-973 K.

  5. Electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires.

    PubMed

    Gazquez, Jaume; Carretero-Genevrier, Adrián; Gich, Martí; Mestres, Narcís; Varela, María

    2014-06-01

    In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (T c >500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

  6. Investigations to improve carbon dioxide control with amine and molecular sieve type sorbers

    NASA Technical Reports Server (NTRS)

    Bertrand, J. F.; Brose, H. F.; Kester, F. L.; Lunde, P. J.

    1972-01-01

    The optimization trends and operating parameters of an integral molecular sieve bed heat exchanger were investigated. The optimum combination of substrate and coating for the HS-B porous polymer was determined based on the CO2 dynamic capacity in the presence of water vapor. Full size HS-B canister performance was evaluated. An Amine CO2 Concentrator utilizing IR-45 sorber material and available Manned Orbiting Laboratory hardware was designed, fabricated and tested for use as an experiment in the NASA 90-day space simulator test of 1970. It supported four men in the simulator for 71 days out of the 90-day test duration.

  7. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media.

    PubMed

    Fontes, Nuno; Partridge, Johann; Halling, Peter J; Barreiros, Susana

    2002-02-05

    Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.

  8. Structural and thermotropic peculiarities of hydrogen-bonded liquid crystals confined in mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Gnatyuk, I.; Gavrilko, T.; Yaroshchuk, O.; Holovina, N.; Shcherban, N.; Baran, J.; Drozd, M.

    2016-12-01

    The phase behaviour and structural organization of hydrogen-bonded liquid crystals were investigated under confinement to mesoporous molecular sieves. As such liquid crystalline compounds, 4-hexylbenzoic and 4-butylcyclohexanecarboxylic acids with different head group structure and alkyl chain length where selected and filled in the AlMCM-41 sieves. With FTIR spectroscopy it was found that some part of incorporated acid molecules, presumably located in the inner space of the AlMCM-41 pores, is in undissociated form of open dimers or chain associates and thus shows spectroscopic features characteristic to the bulk-like species. The other FTIR spectra components indicate strong interaction of the incorporated monomeric molecules with the pore surface. Two specific mechanisms are shown to be involved in molecular interactions at the interface: (1) deprotonation of monomeric acid molecules on the pore surface with formation of COO- carboxylate ions and (2) bonding of these ions to the pore surface by a coordinated bond R-COO-…Al+ with Lewis acid sites. Differential scanning calorimetry revealed that these near-surface processes lead to complete suppression of mesomorphic properties of the studied acids under confinement to nanopores.

  9. Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves.

    PubMed

    Rutherford, S W

    2006-01-17

    Measurements of water adsorption equilibrium in a carbon molecular sieve are undertaken in order to gain insight into the nature of water adsorption in carbon micropores. The measurements are taken at low concentrations to emphasize the role of oxygen-containing functional groups in the adsorption of water. Comparisons are made with previously published water adsorption data at higher concentrations to provide a data set spanning a wide range of loading. The assembled data set provides an opportunity for comparison of various theories for prediction of water adsorption in carbon micropores. Shortcomings of current theories are outlined, and an analytical theory that is free of these deficiencies is proposed in this investigation. With the consideration of micropore volume and pore size distribution, the experimental data and proposed isotherm model are consistent with previous studies of Takeda carbon molecular sieves. Also investigated is the uptake kinetics of water, which is characterized by a Fickian diffusion mechanism. The Maxwell-Stefan formulation is applied to characterize the dependence of the diffusional mobility upon loading.

  10. Carbon molecular sieves from carbon cloth: Influence of the chemical impregnant on gas separation properties

    NASA Astrophysics Data System (ADS)

    Rodríguez-Blanco, G.; Giraldo, L.; Moreno-Piraján, J. C.

    2010-06-01

    Carbon materials with molecular sieve properties (CMS) were prepared by pyrolysis of cotton fabrics by chemical activation procedures. To evaluate the changes in the chemical and textural properties, the impregnants AlCl 3, ZnCl 2 and H 3PO 4 were used at 1123 K. The materials were characterized using adsorption of nitrogen and carbon dioxide, TPD, and immersion calorimetry in C 6H 6. Adsorption kinetics of O 2, N 2, CO 2, CH 4, C 3H 8 and C 3H 6 were measured in all the prepared materials to determine their behaviour as molecular sieves. The results confirm that the chemical used as impregnant has a significant effect on the resulting CMS separation properties. All materials exhibit microporosity and low oxygen surface group contents; however, the sample impregnated with zinc chloride, with an immersion enthalpy value of 66.4 J g -1 in benzene, exhibits the best performance in the separation of CH 4-CO 2 and C 3H 8-C 3H 6 at 273 K.

  11. A passive sampling method for radiocarbon analysis of atmospheric CO 2 using molecular sieve

    NASA Astrophysics Data System (ADS)

    Garnett, Mark H.; Hartley, Iain P.

    2010-03-01

    Radiocarbon ( 14C) analysis of atmospheric CO 2 can provide information on CO 2 sources and is potentially valuable for validating inventories of fossil fuel-derived CO 2 emissions to the atmosphere. We tested zeolite molecular sieve cartridges, in both field and laboratory experiments, for passively collecting atmospheric CO 2. Cartridges were exposed to the free atmosphere in two configurations which controlled CO 2 trapping rate, allowing collection of sufficient CO 2 in between 1.5 and 10 months at current levels. 14C results for passive samples were within measurement uncertainty of samples collected using a pump-based system, showing that the method collected samples with 14C contents representative of the atmosphere. δ 13C analysis confirmed that the cartridges collected representative CO 2 samples, however, fractionation during passive trapping means that δ 13C values need to be adjusted by an amount which we have quantified. Trapping rate was proportional to atmospheric CO 2 concentration, and was not affected by exposure time unless this exceeded a threshold. Passive sampling using molecular sieve cartridges provides an easy and reliable method to collect atmospheric CO 2 for 14C analysis.

  12. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  13. Redox chemistry of gaseous reactants inside photoexcited FeAlPO{sub 4} molecular sieve

    SciTech Connect

    Ulagappan, N.; Frei, H.

    2000-01-27

    The reactivity of ligand-to-metal charge transfer excited Fe centers of FeAlPO{sub 4}-5 molecular sieve at the gas-micropore interface has been probed by in situ FT-IR spectroscopy. Laser light in the region 350--430 nm was used to excite the metal centers, and reaction was induced between methanol or 2-propanol and O{sub 2}. Acetone and H{sub 2}O are the observed products of the 2-propanol + O{sub 2} system, while the reaction of methanol with O{sub 2} yields formic acid, methyl formate, and H{sub 2}O as final products. These originate from secondary thermal reaction of initially produced formaldehyde and hydrogen peroxide. The primary step of the proposed mechanism involves one-electron reduction of O{sub 2} by transient Fe{sup +II} under concurrent donation of an electron to be hole of framework oxygen by the alcohol molecule. The efficient reaction suggests that the photoreduced Fe center of the molecular sieve has a substantially stronger reducing power than the conduction band electrons of dense-phase Fe{sub 2}O{sub 3} semiconductor particles.

  14. Tritiated water on a molecular sieve: Water dynamics and anomalous pressure observations

    SciTech Connect

    Walters, R.T.

    1999-07-01

    The production of fusion energy in a tokamak using deuterium (D) and tritium (T) requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. For that reason, a disposable molecular sieve bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the self-radiolysis of tritiated water. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 yr) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.

  15. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.

    PubMed

    Liu, Xinpeng; Wang, Rui

    2017-03-15

    In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H2S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H2S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H2S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H2S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes.

    PubMed

    Liu, Qian; Wang, Nanyi; Caro, Jürgen; Huang, Aisheng

    2013-11-27

    Inspired by the bioadhesive ability of the marine mussel, a simple, versatile, and powerful synthesis strategy was developed to prepare highly reproducible and permselective molecular sieve membranes by using polydopamine as a novel covalent linker. Attributing to the formation of strong covalent and noncovalent bonds, ZIF-8 nutrients are attracted and bound to the support surface, thus promoting the ZIF-8 nucleation and the growth of uniform, well intergrown, and phase-pure ZIF-8 molecular sieve membranes. The developed ZIF-8 membranes show high hydrogen selectivity and thermal stability. At 150 °C and 1 bar, the mixture separation factors of H2/CO2, H2/N2, H2/CH4, and H2/C3H8 are 8.9, 16.2, 31.5 and 712.6, with H2 permeances higher than 1.8 × 10(-7) mol·m(-2)·s(-1)·Pa(-1), which is promising for hydrogen separation and purification.

  17. Time-dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve.

    PubMed

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A; Allen, Andrew J; Snyder, Chad R; Chiu, Chun; Siderius, Daniel W; Li, Lan; Cockayne, Eric; Espinal, Anais E; Suib, Steven L

    2012-05-09

    The development of sorbents for next-generation CO(2) mitigation technologies will require better understanding of CO(2)/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO(2) sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO(2) sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a "gate-keeping" role of the cation in the tunnel, only allowing CO(2) molecules to enter fully into the tunnel via a highly unstable transient state when CO(2) loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO(2) is responsible for the observed hysteretic behavior.

  18. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    PubMed Central

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-01-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605

  19. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-09-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum-nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a `breath shell' to enhance hydrogen enrichment and activation on platinum-nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum-nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes.

  20. In Situ Electrochemical Synthesis of Oriented and Defect-Free AEL Molecular-Sieve Films Using Ionic Liquids.

    PubMed

    Yu, Tongwen; Chu, Wenling; Cai, Rui; Liu, Yanchun; Yang, Weishen

    2015-10-26

    Simply preparing oriented and defect-free molecular-sieve films have been a long-standing challenge both in academia and industry. Most of the early works focus on the careful and multiple controls of the seeds layer or synthesis conditions. Herein, we report a one-step in situ electrochemical ionothermal method that combines a controllable electric field with ionic liquids. We demonstrate that an in-plane oriented and defect-free AEL (one molecular-sieve framework type) molecular-sieve film was obtained using an Al electrode as the Al source. The excellent corrosion-resistant performance of the film makes this technology promising in multiple applications, such as anti-corrosion coatings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  2. Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials.

    PubMed

    Niimura, Subaru; Fujimori, Toshihiko; Minami, Daiki; Hattori, Yoshiyuki; Abrams, Lloyd; Corbin, Dave; Hata, Kenji; Kaneko, Katsumi

    2012-11-14

    Quantum molecular sieving separability of D(2) from an H(2)-D(2) mixture was measured at 77 K for activated carbon fiber, carbon molecular sieve, zeolite and single wall carbon nanotube using a flow method. The amount of adsorbed D(2) was evidently larger than H(2) for all samples. The maximum adsorption ratio difference between D(2) and H(2) was 40% for zeolite (MS13X), yielding a selectivity for D(2) with respect to H(2) of 3.05.

  3. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    SciTech Connect

    Willms, R.S.

    1993-12-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium.

  4. A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements

    SciTech Connect

    Palonen, V.

    2015-12-15

    We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{sub 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  5. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Palonen, V.

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  6. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.

    PubMed

    Palonen, V

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  7. Single crystalline La0.7Sr0.3MnO3 molecular sieve nanowires with high temperature ferromagnetism.

    PubMed

    Carretero-Genevrier, Adrián; Gázquez, Jaume; Idrobo, Juan Carlos; Oró, Judith; Arbiol, Jordi; Varela, María; Ferain, Etienne; Rodríguez-Carvajal, Juan; Puig, Teresa; Mestres, Narcís; Obradors, Xavier

    2011-03-23

    Porous mixed-valent manganese oxides are a group of multifunctional materials that can be used as molecular sieves, catalysts, battery materials, and gas sensors. However, material properties and thus activity can vary significantly with different synthesis methods or process conditions, such as temperature and time. Here, we report on a new synthesis route for MnO(2) and LaSr-doped molecular sieve single crystalline nanowires based on a solution chemistry methodology combined with the use of nanoporous polymer templates supported on top of single crystalline substrates. Because of the confined nucleation in high aspect ratio nanopores and of the high temperatures attained, new structures with novel physical properties have been produced. During the calcination process, the nucleation and crystallization of ε-MnO(2) nanoparticles with a new hexagonal structure is promoted. These nanoparticles generated up to 30 μm long and flexible hexagonal nanowires at mild growth temperatures (T(g) = 700 °C) as a consequence of the large crystallographic anisotropy of ε-MnO(2). The nanocrystallites of MnO(2) formed at low temperatures serve as seeds for the growth of La(0.7)Sr(0.3)MnO(3) nanowires at growth temperatures above 800 °C, through the diffusion of La and Sr into the empty 1D-channels of ε-MnO(2). Our particular growth method has allowed the synthesis of single crystalline molecular sieve (LaSr-2 × 4) monoclinic nanowires with composition La(0.7)Sr(0.3)MnO(3) and with ordered arrangement of La(3+) and Sr(2+) cations inside the 1D-channels. These nanowires exhibit ferromagnetic ordering with strongly enhanced Curie temperature (T(c) > 500 K) that probably results from the new crystallographic order and from the mixed valence of manganese.

  8. A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; O'Connor, Brian

    2016-01-01

    Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.

  9. Evolution of ultramicroporous adsorptive structure in poly(furfuryl alcohol)-derived carbogenic molecular sieves

    SciTech Connect

    Mariwala, R.K.; Foley, H.C. )

    1994-03-01

    The genesis of the adsorptive structure of carbogenic molecular sieves (CMS) derived from poly(furfuryl alcohol) (PFA) was investigated as a function of the synthesis temperature (from 400 to 1200 C) and soak time (from 0 to 8 h). The apparent CO[sub 2] adsorption capacity of these materials maximizes at 93 mg/g with a final synthesis temperature of 800 C. The maximum adsorption capacity is obtained from the 24-h CO[sub 2] uptake of 93 mg/g at a relative pressure of 0.015 and at T = 295 K. [sup 13]C CP-MAS NMR spectra of the carbon produced at lower synthesis temperature and short soak times shows a resonance that is reminiscent of the PFA precursor. At higher synthesis temperatures and longer soak times, the NMR spectra display resonances attributable only to aromatic microdomains.

  10. Synthesis of New Kaolin Molecular Sieves from Kaolin and Its Adsorption of NH4+

    NASA Astrophysics Data System (ADS)

    Fang, Jin; Sun, Peide; Zhang, Yi; Wang, Qi; Ma, Wanggang

    2010-11-01

    New kaolin molecular sieves are hydrothermally synthesized from kaolin (for simplicity, hereafter denoted as KMS). The as-prepared KMS can be applied in the treatment of ammonia-containing wastewater by efficient adsorption of NH4+. The time of activation, the temperatures of calcination, the times of centrifugation and other experimental conditions which would affect the activity of the KMS were studied in depth. Experiments results indicate that when the the kaolin was activated at 90° C for 4 h, followed by calcination at 250° C, the maximum activity of NH4+ adsorption can be achieved. When the initial NH4+ concentration is 100 mg/L, 50% NH4+ can be removed via adsorption by 0.5 g/L KMS which is analogous to the commercial Nanochem zeolites obtained from Austria Nanochem Pty Ltd.

  11. Equilibrium and kinetics of water adsorption in carbon molecular sieve: theory and experiment.

    PubMed

    Rutherford, S W; Coons, J E

    2004-09-28

    Measurements of water adsorption equilibrium and kinetics in Takeda carbon molecular sieve (CMS) were undertaken in an effort to characterize fundamental mechanisms of adsorption and transport. Adsorption equilibrium revealed a type III isotherm that was characterized by cooperative multimolecular sorption theory. Water adsorption was found to be reversible and did not display hysteresis upon desorption over the conditions studied. Adsorption kinetics measurements revealed that a Fickian diffusion mechanism governed the uptake of water and that the rate of adsorption decreased with increasing relative pressure. Previous investigations have attributed the observed decreasing trend in the rate of adsorption to blocking of micropores. Here, it is proposed that the decrease is attributed to the thermodynamic correction to Fick's law which is formulated on the basis of the chemical potential as the driving force for transport. The thermodynamically corrected formulation accounted for observations of transport of water and other molecules in CMS.

  12. Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system

    NASA Astrophysics Data System (ADS)

    Thompson, Robert W.; Huber, Marcia J.

    1982-02-01

    A reaction engineering model for the synthesis of molecular sieve zeolite A has been improved by including a nucleation step and solving the complete model numerically instead of using the quasi-steady state approximation. It is shown that experimental kinetic curves can be simulated by this model, and that particle nucleation accounts for the early stages of synthesis. The population balance also has been applied to zeolite A synthesis for the first time. Particle growth rates were determined from this analysis, which shows that the growth rate for zeolite A decreases at larger sizes. Finally, it is shown that the silica-to-alumina ratio in the batch composition may be used to control the product crystal morphology.

  13. Photocatalytic activity of quantum dots incorporated in molecular sieves for generation of hydrogen.

    PubMed

    Pourahmad, Afshin

    2012-08-01

    MCM-41 molecular sieve coupled with lead sulfide quantum dots (PbS-MCM-41) was prepared by ion-exchange method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, infrared spectroscopy (IR) and BET (Brunauer-Emmett-Teller) experiments. Exciton absorption peak at higher energy than the fundamental absorption edge of bulk lead sulfide indicates quantum confinement effects in quantum dots as a consequence of their small size. The hydrogen production rate from water photocatalytic decomposition under visible light irradiation (λ>400nm) over PbS nanoparticles formed in mesoporous material was much higher compared to the bulk PbS. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Recovery of proteins and amino acids from reverse micelles by dehydration with molecular sieves.

    PubMed

    Gupta, R B; Han, C J; Johnston, K P

    1994-09-20

    A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.

  15. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  16. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier.

    PubMed

    Lin, Yu-Chun; Niewiadomski, Pawel; Lin, Benjamin; Nakamura, Hideki; Phua, Siew Cheng; Jiao, John; Levchenko, Andre; Inoue, Takafumi; Rohatgi, Rajat; Inoue, Takanari

    2013-07-01

    Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed 'chemically inducible diffusion trap at cilia' to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 nm to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions.

  17. Direct monolithic integration of vertical single crystalline octahedral molecular sieve nanowires on silicon

    SciTech Connect

    Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume; Magen, Cesar; Miranda, Laura; Puig, Teresa; Obradors, Xavier; Ferain, Etienne; Sanchez, Clement; Rodriguez-Carvajal, Juan; Mestres, Narcis

    2013-12-13

    We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr2+- or Ba2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartz thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.

  18. Production of carbon molecular sieves from Illinois coal. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Feizoulof, C.A.; Vyas, S.N.

    1994-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are being applied to production of larger quantities of CMS in a 2 in. ID batch fluidized-bed reactor (FBR) and a 4 in. ID continuous rotary tube kiln (RTK). In the previous reporting period, an invention disclosure describing a novel CMS preparation technique (oxygen deposition) was prepared and submitted to Research Corporation Technologies for evaluation. During this reporting period, work continued on the development of the oxygen deposition process. Carbon deposition as a means to narrow pore size was also investigated. Pound quantities of CMS were prepared from IBC-102 coal in the TRK. A meeting was arranged between the ISGS and Carbo Tech Industieservice GmbH, one of two companies in the world that produce CMS from coal, to discuss possible shipment of Illinois coal to Germany for CMS production. A secrecy agreement between the ISGS and Carbo Tech is in preparation. Several large scale char production runs using Industry Mine coal were conducted in an 18 in. ID batch and 8 in. ID continuous RTK at Allis Mineral Systems, Milwaukee, WI. The molecular sieve properties of the chars have yet to be determined.

  19. 14CO2 processing using an improved and robust molecular sieve cartridge

    NASA Astrophysics Data System (ADS)

    Wotte, Anja; Wordell-Dietrich, Patrick; Wacker, Lukas; Don, Axel; Rethemeyer, Janet

    2017-06-01

    Radiocarbon (14C) analysis on CO2 can provide valuable information on the carbon cycle as different carbon pools differ in their 14C signature. While fresh, biogenic carbon shows atmospheric 14C concentrations, fossil carbon is 14C free. As shown in previous studies, CO2 can be collected for 14C analysis using molecular sieve cartridges (MSC). These devices have previously been made of plastic and glass, which can easily be damaged during transport. We thus constructed a robust MSC suitable for field application under tough conditions or in remote areas, which is entirely made of stainless steel. The new MSC should also be tight over several months to allow long sampling campaigns and transport times, which was proven by a one year storage test. The reliability of the 14CO2 results obtained with the MSC was evaluated by detailed tests of different procedures to clean the molecular sieve (zeolite type 13X) and for the adsorption and desorption of CO2 from the zeolite using a vacuum rig. We show that the 14CO2 results are not affected by any contamination of modern or fossil origin, cross contamination from previous samples, and by carbon isotopic fractionation. In addition, we evaluated the direct CO2 transfer from the MSC into the automatic graphitization equipment AGE with the subsequent 14C AMS analysis as graphite. This semi-automatic approach can be fully automated in the future, which would allow a high sample throughput. We obtained very promising, low blank values between 0.0018 and 0.0028 F14C (equivalent to 50,800 and 47,200 yrs BP), which are within the analytical background and lower than results obtained in previous studies.

  20. Production of carbon molecular sieves from Illinois coal. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Banerjee, D.D.

    1993-05-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 M{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}/H{sub 2} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase 2 of this project, currently in progress, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor (FBR) and in a continuous rotary tube kiln (RTK). The pore structure of the prepared chars will be tailored for a specific gas separation process by activation in CO{sub 2} and H{sub 2}O and/or carbon deposition with CH{sub 4}.

  1. The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase.

    PubMed

    Paludo, Natalia; Alves, Joana S; Altmann, Cintia; Ayub, Marco A Z; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C

    2015-01-01

    In this work, the combined use of ultrasound energy and molecular sieves was investigated for the synthesis of ethyl butyrate, ester with mango and banana notes, catalyzed by the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL-IM). Initially, the best concentrations of biocatalysts (35%) and butyric acid (0.7M) were tested using ultrasound as an alternative to mechanical agitation. The amount of acid in the reaction could be increased by 2-fold when compared to previous works where mechanical agitation was used. In the next step, substrate molar ratio and reaction temperature were optimized and the best conditions were at their lowest levels: 1:1 (acid:alcohol), and 30°C, reaching 61% of conversion in 6h. Molecular sieves (3Å) were added to optimized reaction medium in order to remove the formed water and improve the maximum yield. The reaction yield increased 1.5 times, reaching 90% of conversion in 6h, when 60mg of molecular sieves per mmol of butyric acid was used. Finally, the reuse of Lipozyme TL-IM for the ultrasound-assisted synthesis of ethyl butyrate was verified for 10 batches, without any appreciable loss of activity, whereas in systems using mechanical agitation, the biocatalyst was completely inactivated after 5 batches. These results suggest that the combined use of ultrasound and molecular sieves greatly improve esterification reactions by stabilizing the enzyme and increasing yields. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    NASA Astrophysics Data System (ADS)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  3. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes.

  4. Organotemplate-free hydrothermal synthesis of an aluminophosphate molecular sieve with AEN zeotype topology and properties of its derivatives.

    PubMed

    Wang, Yanyan; Sun, Yanjun; Mu, Ying; Zhang, Chuanqi; Li, Jiyang; Yu, Jihong

    2014-12-18

    A facile organotemplate-free route has been developed to synthesize an aluminophosphate molecular sieve in an alkali metal-containing system under hydrothermal conditions. The as-prepared JU93 possesses AEN zeotype topology with small 8-ring pores, and its derivatives show ion conductivity and adsorption selectivity of CO2 over CH4.

  5. Potential Use of Molecular Sieves for the Removal of Ni2+ Metal Ion: Kinetics, Isotherms and Thermodynamic Studies

    NASA Astrophysics Data System (ADS)

    Gaddala, Babu Rao; Monditoka, Krishna Prasad; Challa, Venkata Ramachandra Murthy; Kadimpati, Kishore Kumar

    2016-10-01

    The potential of using molecular sieves as adsorbent for the removal of nickel from aqueous solution was investigated. The isotherms and kinetics of nickel adsorption using 3 Å molecular sieves were evaluated. The results indicated that equilibrium was established in about 5 h. The effect of the pH was examined in the range of 2-6. The maximum removal of nickel obtained is at pH value of 5. The effect of dosage also evaluated to get optimum adsorption of nickel. The maximum adsorption capacity at 25 °C is 18.25 mg/g. The effect of temperature has been carried out at 15, 25, 30, and 40 °C. The data obtained from adsorption isotherms of nickel at different temperatures fit to linear form of Freundlich adsorption equation followed by Langmuir equations. Adsorption kinetic data were modelled using the pseudo-first and pseudo-second-order equation models. The results indicated that the pseudo-second-order model was best described adsorption kinetic data. The thermodynamic parameters such as enthalpy (ΔH°), free energy (ΔG°), and entropy (ΔS°) were calculated. They show that adsorption of nickel onto molecular sieves is an exothermic process. These results show that molecular sieves are a good adsorbent for the removal of nickel from aqueous solutions and could be used as a purifier for water and wastewater.

  6. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect

    Liu, Paul

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and

  7. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  8. Carbon molecular sieve membranes: a promising alternative for selected industrial applications.

    PubMed

    Hägg, May-Britt; Lie, Jon A; Lindbråthen, Arne

    2003-03-01

    Carbon molecular sieve (CMS) membranes (hollow fibers) have been studied for application as possible separation units for selected industrial gas streams. Gas streams at petrochemical plants (polypropene and polyethene) and upgrading of biogas to fuel specifications have been in focus. Gases present in biogas (N(2), CO(2), H(2)O(vap), and CH(4)) and gas streams at polyolefin plants (C(2)H(4), C(3)H(6), and C(3)H(8)) have been measured; both as pure gases and in mixtures. Aging of the CMS-membranes as a function of humidity and pore blocking is discussed; likewise, possible regeneration methods when flux decrease is experienced. Transport mechanisms depending on pore size and molecular properties are also discussed. Excellent separation properties were documented for these applications, but also the need for frequent regeneration of the membrane in order to maintain permeability flux. The mixed gas experiments documented clearly the need for careful pore tailoring in order to optimize selectivity when the membranes were used for alkane-alkene separation.

  9. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    NASA Astrophysics Data System (ADS)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  10. Regenerable Carbon Fiber Composite Molecular Sieves for Scrubbing CO2 from Air

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Gallego, Nidia C; Burchell, Timothy D; Judkins, Roddie Reagan

    2006-01-01

    More effective and convenient methods for scrubbing carbon dioxide from gas streams are required for a range of applications, from purification of air to removal of carbon dioxide from fuel and syngas streams for fuel cells. In this paper, recent results on the development of three-dimensional carbon fiber composite molecular sieve (CFCMS) material as a selective, regenerable adsorbent for removing CO2 (and other small molecules) from air and other gas streams will be presented. CFCMS is a contiguous monolithic carbon structure that can be activated to various levels for tunable adsorption properties, and can be regenerated through a combination of pressure swing and resistive heating. Dynamic breakthrough data for CO2 separation from air were analyzed and expressed in terms of a simple kinetic model (Yoon-Nelson). It was demonstrated that predictions made on the basis of the model can be extrapolated over a broad range of influent CO2 concentrations and flow rate conditions. In addition to reducing CO2 concentrations in air, e.g., from tens of percents levels to a few ppm levels, CFCMS material can also be tailored for the rapid removal of air borne molecular contaminants, odor control, and personnel protection (respirators). The CFCMS adsorbent can be efficiently regenerated by a combination of resistive heating and gas purge.

  11. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    SciTech Connect

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.

  12. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  13. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  14. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    NASA Astrophysics Data System (ADS)

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-09-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.

  15. Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide.

    PubMed

    Kuan, Wen-Hui; Hu, Ching-Yao; Liu, Bin-Sheng; Tzou, Yu-Min

    2013-01-01

    The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M(-2) s(-1), and it decreased to 4.27 M(-2) s(-1) at pH 8.53 beyond the pk(a2) of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1 x 1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal.

  16. Development of Polysulfone (PSF)-Carbon Molecular Sieve (CMS) Mixed Matrix Membrane (MMM) For O2/N2 Gas Separation

    NASA Astrophysics Data System (ADS)

    Ismail, A. F.; Rahman, W. R.; Aziz, F.

    2009-06-01

    Mixed matrix membranes (MMMs) comprising polysulfone (PSF) Udel® P-1700 and synthesized carbon molecular sieve (CMS) particles (<25 μm) have been fabricated and characterized. CMS were synthesized by using polyacrylonitrile (PAN) as polymer precursor. The casting process was performed at the processing temperature close to Tg of PSF in order to maintain the flexibility of polymer during film formation. This study investigated the effects of CMS loadings (10, 20, 30 and 35 wt%) on the morphology and the gas separation performance of PSF-CMS MMMs. The fabricated MMMs were characterized using TGA, DSC, FESEM and single gas permeation test using high purity O2 and N2. Based on FESEM micrograph, a good polymer-sieve adhesion was achieved in MMMs using the combination of PSF-CMS even at high sieve loading (up to 35 wt%). The formation of `sieve-in-the-cage' morphology in PSF-CMS MMMs has been minimized to a great extend by implementing casting procedure at the operating temperature close to the Tg of polymer matrix. The O2 and N2 permeability for MMMs were increased with increasing CMS loading; while at 20 wt% CMS loading the O2/N2 selectivity attain the highest value which is 5.97 with the O2 permeability of 7.9617 barrers.

  17. A study of piperidinium structure-directing agents in the synthesis of silica molecular sieves under fluoride-based conditions.

    PubMed

    Zones, Stacey I; Burton, Allen W; Lee, Greg S; Olmstead, Marilyn M

    2007-07-25

    This study is a continuation of our efforts to understand the interplay in the self-assembly chemistry for formation of molecular sieves from guest organocations and inorganic silicon oxide. In this particular study we focus on the competitive interplay of the organocations and the synthesis cofactor fluoride anion. The anions play a key role in structure determination, as a function of net solution concentration. They compete with the role for the space-filling organocation in determining which molecular sieve host structure will be specified. In this study we look at this competition in the synthesis for a series of 33 different organocations derived from the piperidine ring system. Derivatives were prepared which both fixed substituents on the carbon and nitrogen centers on the ring. Results were discussed in terms of product selectivity from synthesis as a function of solution concentration for the reactants. A total of 17 different host topologies were found in this series, and a correlation was seen for (a) open-framework lattices (low framework densities) under the most concentrated reaction conditions and then (b) high framework density products once the conditions were more dilute. Some surprising synthesis differences are seen in comparing the performance of these structure directing agents (SDAs) in fluoride media vs hydroxide media (the more conventional environment for zeolite/molecular sieve syntheses involving silicate chemistry). Finally molecular modeling was used to understand some of the trends in product selectivity for closely related guest (SDA) candidates.

  18. Nanosized AlPO{sub 4}-5 molecular sieves and ultrathin films prepared by microwave synthesis

    SciTech Connect

    Mintova, S.; Mo, S.; Bein, T.

    1998-12-01

    Nanosized AlPO{sub 4}-5 molecular sieves and submicron AlPO{sub 4}-5 films were synthesized by microwave treatment of aluminophosphate precursors. The effects of the chemical composition of the initial solution and the conditions of microwave treatment of aluminophosphate precursors on the synthesis of nanosized AlPO{sub 4}-5 molecular sieves were investigated. The syntheses were performed under hydrothermal conditions in a microwave oven at temperatures ranging from 90 to 160 C, using various concentrations of H{sub 2}O and organic template and varying aging times. The resulting bulk products were analyzed using X-ray diffraction, scanning electron microscopy, thermogravimetry, dynamic light scattering, and nitrogen sorption. Optimal conditions for the preparation of nanosized molecular sieve crystals were found. Thin films of AlPO{sub 4}-5 on acoustic wave devices were also prepared, composed of a molecular coupling layer, AlPO{sub 4}-5 seed crystals, and a homogeneous porous film formed by microwave treatment of an aluminophosphate precursor. The initial mixture composition and microwave conditions affect the thickness and the orientation of the zeolite crystals in the films. Sorption isotherms for n-hexane and cyclohexane in these AlPO{sub 4}5 films are reported.

  19. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.

    PubMed

    Hu, Yaoxin; Wei, Jing; Liang, Yan; Zhang, Huacheng; Zhang, Xiwang; Shen, Wei; Wang, Huanting

    2016-02-05

    A defect-free zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two-dimensional (2D) ZIF-8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF-8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self-limits crystal growth and effectively eliminates defects during the contra-diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2 /N2 selectivity of 7.0. This 2D nano-hybrid seeding strategy can be readily extended to the fabrication of other defect-free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications.

  20. Extension of the Dubinin-Astakhov equation for evaluating the micropore size distribution of a modified carbon molecular sieve.

    PubMed

    Gil, A; Korili, S A; Cherkashinin, G Yu

    2003-06-15

    A new method for the characterization of the pore size distribution of microporous solids is applied on data obtained for activated carbon molecular sieve samples. In this method, based on the Dubinin-Astakhov equation, a simple numerical algorithm is used for the reconstruction of the micropore size distribution from the integral equation that represents the experimental nitrogen adsorption isotherm. The results are compared with the ones obtained on the basis of the well-known Horvath-Kawazoe method. The samples used in this study come from a carbon molecular sieve that has been treated with solutions of concentrated HNO3 at various temperatures and with solutions of H2O2 of various concentrations.

  1. Passive CO{sub 2} removal using a carbon fiber composite molecular sieve

    SciTech Connect

    Burchell, T.D.; Judkins, R.R.

    1995-12-01

    Manufacture and characterization of a carbon fiber composite molecular sieve (CFCMS), and its efficacy as a CO{sub 2} gas adsorbent are reported. The CFCMS consists of an isotropic pitch derived carbon fiber and a phenolic resin derived carbon binder. Activation (selective gasification) of the CFCMS creates microporosity in the carbon fibers, yielding high micropore volumes (>0.5 cm{sup 3}/g) and BET surface areas (>1000 m{sup 2}/g). Moreover, the CFCMS material is a rigid, strong, monolith with an open structure that allows the free-flow of fluids through the material. This combination of properties provides an adsorbent material that has several distinct advantages over granular adsorbents in gas separation systems such as pressure swing adsorption (PSA) units. The results of our initial evaluations of the CO{sub 2} adsorption capacity and kinetics of CFCMS are reported. The room temperature CO{sub 2} adsorption capacity of CFCMS is >120 mg of CO{sub 2} per g of CFCMS. A proposed project is described that targets the development, over a three-year period, of a demonstration separation system based on CFCMS for the removal of CO{sub 2} from a flue gas slip stream at a coal-fired power plant. The proposed program would be conducted jointly with industrial and utility partners.

  2. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    SciTech Connect

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; Davis, Mark E.

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.

  3. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    DOE PAGES

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; ...

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å ×more » 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less

  4. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    SciTech Connect

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; Kim, Daejin

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separation performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 462, CO2/N2 97, and O2/N2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 156, CO2/N2 88, and O2/N2 7.7.

  5. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    DOE PAGES

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; ...

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 462, CO2/N2 97, and O2/N2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 156, CO2/N2 88, and O2/N2 7.7.« less

  6. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C.

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  7. Molecular Sieving by Neurospora Cell Walls During Secretion of Invertase Isozymes

    PubMed Central

    Trevithick, John R.; Metzenberg, Robert L.

    1966-01-01

    Trevithick, John R. (University of Wisconsin Medical School, Madison), and Robert L. Metzenberg. Molecular sieving by Neurospora cell walls during secretion of invertase isozymes. J. Bacteriol. 92: 1010–1015. 1966.—The secretion of invertase by young mycelia of Neurospora was studied. The process of secretion was found to be dependent upon growth. The results indicate that fractionation of light invertase, the monomer, from heavy invertase, the aggregated form, occurs at the cell wall. Neurospora strains wild type, crisp, osmotic, and the double mutant crisp osmotic were tested. An inverse relation exists between the fraction of the total invertase activity of the culture which the mold secretes into the medium and the degree of fractionation, defined as the ratio of the fraction of the invertase secreted into the medium that is light invertase to the fraction of the invertase remaining associated with the cells that is light invertase. The hypothesis is offered that the increased secretion of invertase and decreased degree of fractionation seen in osmotic mutants, and to a lesser extent in the other mutants, can be explained by an increased porosity of the cell wall. PMID:5927207

  8. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    NASA Astrophysics Data System (ADS)

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-07-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m‑2 h‑1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  9. Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

    SciTech Connect

    Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

    2006-11-01

    This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

  10. Effect of coke in the equilibrium and kinetics of sorption on 5A molecular sieve zeolites

    SciTech Connect

    Silva, J.A.C.; Mata, V.G.; Dias, M.M.; Lopes, J.C.B.; Rodrigues, A.E.

    2000-04-01

    Porosimetric, gravimetric, zero length column (ZLC), and fixed-bed studies on coked pellets of 5A molecular sieve zeolites were performed. From porosimetric studies it seems that the coke is located in the microporous structure of 5A zeolite or any layers covering all crystals. The gravimetric studies between 473 and 573 K using n-pentane as a probe molecule show that Henry's constants in coked pellets are much smaller than those in fresh ones. The kinetics of sorption measured by the ZLC technique is also significantly modified. The results show that the system changes from a macropore control resistance with the reciprocal of time constant D{sub p}/R{sub p}{sup 2}(1 + K) on the order of 0.002--0.02 x{sup {minus}1} in fresh pellets to a micropore control resistance system with reciprocal time constant D{sub c}/r{sub c}{sup 2} 1 order of magnitude lower in coked pellets. The effect of temperature on the behavior of a fixed bed is also shown. A simple mathematical model with equilibrium and diffusivity parameters obtained from independent experiments predicts with good accuracy all fixed-bed adsorption and desorption runs.

  11. Nanostructured arrays of semiconducting octahedral molecular sieves by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Espinal, Anais E.; Zhang, Lichun; Chen, Chun-Hu; Morey, Aimee; Nie, Yuefeng; Espinal, Laura; Wells, Barrett O.; Joesten, Raymond; Aindow, Mark; Suib, Steven L.

    2010-01-01

    Cryptomelane-type manganese oxide (OMS-2) has been widely used to explore the semiconducting and catalytic properties of molecular sieves with mixed-valent frameworks. Selective synthesis of patterned thin films of OMS-2 with hierarchical nanostructures and oriented crystals is challenging owing to difficulties in preserving the mixed valence, porosity and crystalline phase. Here, we report that pulsed-laser ablation of OMS-2 in an oxygen-rich medium produces a three-dimensional nanostructured array of parallel and inclined OMS-2 fibres on bare substrates of (001) single-crystal strontium titanate. Both parallel and inclined OMS-2 fibres elongate along the [001]OMS-2 direction. The parallel fibres interact strongly with the substrate and grow epitaxially along <110>STO with lattice misfits of less than 4%, whereas the inclined fibres are oriented with (301) parallel to the substrate surface. The spontaneous orientation of the crystalline OMS-2 domains over the STO surface opens up a new avenue in lattice-engineered synthesis of multilayer materials.

  12. High-surface-area carbon molecular sieves for selective CO(2) adsorption.

    PubMed

    Wahby, Anass; Ramos-Fernández, José M; Martínez-Escandell, Manuel; Sepúlveda-Escribano, Antonio; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco

    2010-08-23

    A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca. 3100 m(2) g(-1)) together with a well-developed narrow microporosity (V(n) up to ca. 1.4 cm(3) g(-1)). The materials exhibit high adsorption capacities for CO(2) at 1 bar and 273 K (up to ca. 380 mg CO(2) g sorbent(-1)). To our knowledge, this is the best result obtained for CO(2) adsorption using carbon-based materials. Furthermore, although the CO(2) adsorption capacity for activated carbons has usually been considered lower than that of zeolites, the reported values exceed the total amount adsorbed on traditional 13X and 5A zeolites (ca. 230 mg and 180 mg CO(2) g sorbent(-1), respectively), under identical experimental conditions. Additionally, the narrow pore openings found in the CMS samples (ca. 0.4 nm) allows for the selective adsorption of CO(2) from molecules of similar dimensions (e.g., CH(4) and N(2)).

  13. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    PubMed Central

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m−2 h−1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%. PMID:27469389

  14. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Ma, Xu; Zeng, Yunmin

    2017-02-01

    Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO2 and CH4 were studied at 298 K, 308 K and 318 K over the pressure range of 0-1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO2 and CH4 are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔHΘ), standard Gibbs free energy (ΔGΘ) and standard entropy change (ΔSΘ) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.

  15. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    PubMed

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  16. Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.

    PubMed

    Zhang, Chen; Koros, William J

    2017-09-01

    Membrane-based separations can reduce the energy consumption and the CO2 footprint of large-scale fluid separations, which are traditionally practiced by energy-intensive thermally driven processes. Here, a new type of membrane structure based on nanoporous carbon is reported, which, according to this study, is best referred to as carbon/carbon mixed-matrix (CCMM) membranes. The CCMM membranes are formed by high-temperature (up to 900 °C) pyrolysis of polyimide precursor hollow-fiber membranes. Unprecedentedly high permselectivities are seen in CCMM membranes for CO2 /CH4 , N2 /CH4 , He/CH4 , and H2 /CH4 separations. Analysis of permeation data suggests that the ultrahigh selectivities result from substantially increased sorption selectivities, which is hypothetically owing to the formation of ultraselective micropores that selectively exclude the bulkier CH4 molecules. With tunable sorption selectivities, the CCMM membranes outperform flexible polymer membranes and traditional rigid molecular-sieve membranes. The capability to increase sorption selectivities is a powerful tool to leverage diffusion selectivities, and has opened the door to many challenging and economically important fluid separations that require ultrafine differentiation of closely sized molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The breakthrough curve combination for xenon sampling dynamics in a carbon molecular sieve column.

    PubMed

    Shu-jiang, Liu; Zhan-ying, Chen; Yin-zhong, Chang; Shi-lian, Wang; Qi, Li; Yuan-qing, Fan; Huai-mao, Jia; Xin-jun, Zhang; Yun-gang, Zhao

    2015-01-21

    In the research of xenon sampling and xenon measurements, the xenon breakthrough curve plays a significant role in the xenon concentrating dynamics. In order to improve the theoretical comprehension of the xenon concentrating procedure from the atmosphere, the method of the breakthrough curve combination for sampling techniques should be developed and investigated under pulse injection conditions. In this paper, we describe a xenon breakthrough curve in a carbon molecular sieve column, the combination curve method for five conditions is shown and debated in detail; the fitting curves and the prediction equations are derived in theory and verified by the designed experiments. As a consequence, the curves of the derived equations are in good agreement with the fitting curves by tested. The retention times of the xenon in the column are 61.2, 42.2 and 23.5 at the flow rate of 1200, 1600 and 2000 mL min(-1), respectively, but the breakthrough times are 51.4, 38.6 and 35.1 min.

  18. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  19. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    PubMed Central

    Jung, Dirk; Streb, Carsten; Hartmann, Martin

    2010-01-01

    Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS) in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3-aminopropyltrimethoxysilane (ATS), 3-glycidoxypropyltrimethoxysilane (GTS) and with 3-aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS) in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO) and glucose oxidase (GOx) and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions. PMID:20386667

  20. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices.

    PubMed

    Jiao, Wenmei; Ban, Yujie; Shi, Zixing; Jiang, Xuesong; Li, Yanshuo; Yang, Weishen

    2016-12-11

    Carbon molecular sieve membranes (CMSMs) were fabricated by pyrolysis of MOF-doped polyimide mixed matrix membranes. ZIF-108 (Zn(2-nitroimidazolate)2) was used as a dopant to tailor the micropores of the as-prepared CMSMs into narrow ultramicropores, providing a remarkable combination of permeability and selectivity of membranes in CO2/CH4, O2/N2 and N2/CH4 separation.

  1. Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H(2) selectivity prepared by secondary growth using Kryptofix 222 as SDA.

    PubMed

    Huang, Aisheng; Caro, Jürgen

    2010-11-07

    A neutral framework cation-free hydrophobic ITQ-29 molecular sieve membrane with hydrogen selectivity was prepared on porous α-Al(2)O(3) supports by using Kryptofix 222 as organic structure directing agent through secondary growth method.

  2. A direct route for the synthesis of nanometer-sized Bi2WO6 particles loaded on a spherical MCM-48 mesoporous molecular sieve.

    PubMed

    Jiang, Lin; Wang, Lingzhi; Zhang, Jinlong

    2010-11-14

    Bi(2)WO(6) nanoparticles loaded on a spherical MCM-48 mesoporous molecular sieve with a high photocatalytic activity in the visible-light range was synthesized for the first time using a facile one-step process.

  3. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials.

    PubMed

    Zhao, Xuebo; Villar-Rodil, Silvia; Fletcher, Ashleigh J; Thomas, K Mark

    2006-05-25

    Adsorption and desorption of H(2) and D(2) from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H(2) and D(2) at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D(2) adsorption and desorption kinetics were significantly faster (up to x1.9) than the corresponding H(2) kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H(2), resulting in slower adsorption/desorption kinetics compared with the heavier D(2). The results are discussed in terms of the adsorption mechanism.

  4. Study on molecular sieve absorption of ground state HF molecules in a non-chain pulsed HF Laser

    NASA Astrophysics Data System (ADS)

    Ma, Lianying; Zhou, Songqing; Chao, Huang; Huang, Ke; Zhu, Feng; Luan, Kunpeng; Chen, Hongwei

    2017-05-01

    This paper describes the principle of non-chain pulsed HF laser, and analyzes the reason why the laser energy dropped severely with the accumulation of shots when the HF laser was in repetitive operation. In order to solve this problem, a molecular sieve absorption device was designed and mounted in the recirculation loop of the HF laser. Measurements of flow velocity indicated that the absorption device would just introduce a small decrease of flow velocity which would not influence the laser operation. Several types of molecular sieve (3A,4A,5A,13X) were used in absorbing experiments and the experiment results inferred that 3A molecular sieve was the most effective sorbent. All the experiments showed that the average drop of the output energy was not more than 5% after 1000 shots at 50Hz/20s. Compared to the energy drop of about 40% without the device, the absorption device could significantly improve the stability of the HF laser output energy and prolong the lifespan of laser medium gases.

  5. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  6. Enhanced anion electroadsorption into carbon molecular sieve electrodes in acidic media.

    PubMed

    Eliad, Linoam; Salitra, Gregory; Pollak, Elad; Soffer, Abraham; Aurbach, Doron

    2005-11-08

    We previously showed that, for neutral electrolytes of small cations and relatively larger anions, it is possible to design certain pore sizes in active carbons that are large enough to electroadsorb cations but too small to allow anion electroadsorption. This situation leads to an electrical double-layer (EDL) capacitance that is significant only at potentials that are negative to the potential of zero charge (PZC); hence, much smaller capacitance is measured at potentials positive to the PZC. It was found that when the electrolyte is a strong acid (e.g., H(2)SO(4), HCl), a considerable capacitance is observed at positive potentials, even when the average pore size is too small to allow the insertion of large anions in neutral electrolyte solutions. This effect disappears when the pore size becomes considerably larger than the size of the ions. In this case, the EDL capacitance at positive potentials for both neutral and acidic solutions is comparable. The following four-step mechanism was found to comply best with the experimental data: (1) By acid catalysis, the protons form carbonium species within the conjugated carbon network. (2) The anions react with the carbonium ions, providing uncharged species in an activated state, which are chemibound as surface groups to the walls of the pores. (3) Because these surface groups are effectively much smaller in size than are the charged ions, they can migrate by chemical bond exchange within the carbon skeleton via constrictions (known to exist in microporous and molecular sieving carbons), which are too narrow to accommodate hydrated charged species. (4) Upon reaching wider spaces, the uncharged species are reionized and solvated by water molecules, which can fill small pores. The justification for the above mechanism is thoroughly discussed and demonstrated by the experimental results.

  7. Sol-gel strategies for amorphous inorganic membranes exhibiting molecular sieving characteristics

    SciTech Connect

    Raman, N.K.; Delattre, L.; Prakash, S.S.; Brinker, C.J. |

    1994-12-31

    We have used several sol-gel strategies to prepare supported inorganic membranes by a process that combines the features of slip-casting and dip-coating. To be viable the deposited membranes must exhibit both high flux and high selectivity. For porous membranes these requirements are met by extremely thin, defect-free porous films exhibiting a narrow size distribution of very small pores. This paper considers the use of polymeric silica and hybrid-organosilyl precursor sols in the context of the underlying physics and chemistry of the membrane deposition process. Since the average membrane pore size is ultimately established by the collapse of the gel network upon drying, it is necessary to promote polymer interpenetration and collapse during membrane deposition in order to achieve the very small pore sizes necessary for molecular sieving. For polymeric sols, this is accomplished using rather weakly branched polymers characterized by fractal dimension D < 1.5 under deposition conditions in which the silica condensation rate is minimized. By analogy to organic polymer sols and gels, we believe that the breadth of the pore size distribution can be influenced by the occurrence of micro-phase separation during membrane deposition. Minimization of the condensation rate not only fosters polymer collapse but should inhibit phase separation, leading to a narrower pore size distribution. The formation of microporosity through collapse of the gel network requires that small pores are achieved at the expense of membrane porosity. Incorporation of organic template ligands within a dense silica matrix followed by their removal allows us to independently control pore size and pore volume through the size and volume fraction of the organic template. Such strategies can be used to create microporous films with large volume fraction porosities.

  8. Infrared study of CO{sub 2} sorption over 'molecular basket' sorbent consisting of polyethylenimine-modified mesoporous molecular sieve

    SciTech Connect

    Wang, X.X.; Schwartz, V.; Clark, J.C.; Ma, X.L.; Overbury, S.H.; Xu, X.C.; Song, C.S.

    2009-04-15

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75{sup o}C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIR showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75{sup o}C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75{sup o}C.

  9. Activation of molecular catalysts using semiconductor quantum dots

    DOEpatents

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  10. Catalyst for selective NO.sub.x reduction using hydrocarbons

    DOEpatents

    Marshall, Christopher L.; Neylon, Michael K.

    2007-05-22

    A two phase catalyst is disclosed with one or more transition metals such as Cu, Co, Fe, Ag and Mo supported on a molecular sieve having a pore size not greater than 8 .ANG. along with a stabilizing oxide of one or more of the oxides of Zr, Mo, V, Nb or the rare earths coating the molecular sieve. A method of preparing the two phase catalyst and using same to remediate NO.sub.x in combustion gases is also described.

  11. Part I. Synthesis and applications of molecular sieves. Part II. The effect of temperature and support in reduction of cobalt oxide: An in situ XRD study

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Luis Javier

    Part I. Alkylation of aniline (PhNH2) with methanol (MeOH) over co-crystallized zeolite RHO-Zeolite X (FAU) and over zeolite Linde Type L (Sr,K-LTL) as catalysts has been studied. Co-crystallized zeolite RHO-Zeolite X (FAU) favors the formation of N,N-dimethylaniline (NNDMA), with high selectivity >90%, having an advantage over pure zeolite X(FAU) of staying active even after 10 h of reaction. Activity of co-crystallized RHO-Zeolite X (FAU) is higher than that for Sr,K-LTL in terms of production of NNDMA. Octahedral molecular sieves (OMS-2) have been reported as catalysts for oxidation reactions. Effects of using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) in the synthesis of OMS-2 have been studied. Structure of OMS-2 was kept when PVA or PVP were used as indicated by XRD and FTIR data. PVA and PVP were useful to improve the film hardness of OMS-2 applied on glass surfaces as measured by the pencil hardness test, and Knoop microhardness test. By using PVA or PVP as non-chelating agents, an increase in surface area from 59 (m2/g) to 114 (m2/g), a decrease in particle size, from 29.8 nm to 12.1 nm, and a hardness value of 4H using the pencil hardness test, and 17.73 HK by Knoops micro hardness tests for OMS-2 prepared with PVA were observed. ZK-5 (KFI) molecular sieve was synthesized in the K2O: SrO: Al2O3: SiO2: 160 H2O: THF system using conventional hydrothermal heating. Products were characterized by XRD, TGA, FESEM, EDX and TPD-MS. Molar ratios of THF/Al2O3 from 0.4 to 1.0 gives best results in terms of crystallinity and purity for the prepared ZK-5. Part II. Reduction of cobalt oxide (Co 3O4) at different temperatures and in combination with different modifiers and supported on gamma-Al2O3 was monitored by in situ X-ray diffraction. Complete reduction of cobalt oxide to the (hcp) phase is observed at 250°C. Different reduction sequence can give different results in terms of crystalline phase obtained for cobalt even if the same maximum reduction

  12. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus.

  13. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  14. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions.

    PubMed

    Li, Jinzhe; Wei, Yingxu; Chen, Jingrun; Tian, Peng; Su, Xiong; Xu, Shutao; Qi, Yue; Wang, Quanyi; Zhou, You; He, Yanli; Liu, Zhongmin

    2012-01-18

    The heptamethylbenzenium cation (heptaMB(+)) has been speculated to be one of the most important active intermediates involved in the "hydrocarbon pool" mechanism of methanol-to-olefin (MTO) conversion. By the use of DNL-6, a newly synthesized SAPO-type molecular sieve with large cavities, heptaMB(+) has for the first time been directly observed during methanol conversion under real working conditions. (13)C-labeling experiments suggested that olefin formation mediated by heptaMB(+) mainly follows the side-chain mechanism. © 2011 American Chemical Society

  15. Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size.

    PubMed

    Frunza, Ligia; Frunza, Stefan; Kosslick, Hendrik; Schönhals, Andreas

    2008-11-01

    The molecular dynamics of 4-n-octyl-4'-cyanobiphenyl (8CB) confined inside the pores of a series of AlMCM-41 samples with the same structure, constant composition (SiAl=14.7) but different pore sizes (diameter between 2.3 and 4.6 nm) was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) in a large temperature interval. Two relaxation processes are observed: one has a bulklike behavior and is assigned to the 8CB in the pore center. The relaxation time of the second relaxation process is essentially slower than that of the former one and this process is related to the dynamics of molecules in a surface layer with a paranematic order. Both relaxation processes are specifically influenced by the interaction of the molecules with the surface and by the confinement. Above the clearing temperature the temperature dependence of the relaxation rate of the bulklike process obeys the Vogel-Fulcher-Tammann (VFT) law. The Vogel temperature increases with decreasing pore size. This is explained by increasing influence of paranematic potential of the surface layer with decreasing pore size. The temperature dependence of the relaxation rate of the surface layer follows also the VFT formula and the Vogel temperature decreases with decreasing pore size. This temperature dependence is controlled by both the interaction of the 8CB molecules with the surface via hydrogen bonding and by spatial confinement effects. To discriminate between both effects the data for the surface layer of 8CB confined to the molecular sieves are compared with results concerning 8CB adsorbed as a quasimonolayer on the surface of silica spheres of aerosil. On this basis a confinement parameter is defined and discussed.

  16. Diffusion energy profiles in silica mesoporous molecular sieves modelled with the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Roskop, Luke; Fedorov, Dmitri G.; Gordon, Mark S.

    2013-07-01

    The fragment molecular orbital (FMO) method is used to model truncated portions of mesoporous silica nanoparticle (MSN) pores. The application of the FMO/RHF (restricted Hartree-Fock) method to MCM-41 type MSNs is discussed and an error analysis is given. The FMO/RHF method is shown to reliably approximate the RHF energy (error ∼0.2 kcal/mol), dipole moment (error ∼0.2 debye) and energy gradient (root mean square [RMS] error ∼0.2 × 10-3 a.u./bohr). Several FMO fragmentation schemes are employed to provide guidance for future applications to MSN models. An MSN pore model is functionalised with (phenyl)propyl substituents and the diffusion barrier for benzene passing through the pore is computed by the FMO/RHF-D method with the Grimme dispersion correction (RHF-D). For the reaction coordinates examined here, the maximum FMO/RHF-D interaction energies range from -0.3 to -5.8 kcal/mol.

  17. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve.

    PubMed

    Nott, Katherine; Brognaux, Alison; Richard, Gaëtan; Laurent, Pascal; Favrelle, Audrey; Jérôme, Christine; Blecker, Christophe; Wathelet, Jean-Paul; Paquot, Michel; Deleu, Magali

    2012-01-01

    Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v₀) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v₀ and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v₀ and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v₀ and 48-hr yield is observed when transesterification is carried out with or without sieve.

  18. Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve

    SciTech Connect

    Overbury, Steven {Steve} H; Wang, Xiaoxing; Clark, Jason; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan; Schwartz, Viviane

    2009-01-01

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIR showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75 C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75 C. Comparative IR examination of the CO{sub 2} sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO{sub 2}-amine interaction patterns.

  19. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    PubMed Central

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-01-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets. PMID:28205528

  20. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    NASA Astrophysics Data System (ADS)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  1. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  2. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.; Rabo, Jule A.

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  3. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Symmetry breaking in nanostructure development of carbogenic molecular sieves: Effects of morphological pattern formation on oxygen and nitrogen transport

    SciTech Connect

    Kane, M.S.; Goellner, J.F.; Foley, H.C.

    1996-08-01

    A comprehensive study has been undertaken to establish the primary factors that control transport of oxygen and nitrogen in polymer-derived carbogenic molecular sieves (CMS). Characterization of the nanostructure of CMS derived from poly(furfuryl alcohol) (PFA) indicates that significant physical and chemical reorganization occurs as a function of synthesis temperature. Spectroscopic measurements show a drastic decrease in oxygen and hydrogen functionality with increasing pyrolysis temperature. Structural reorganization and elimination of these heteroatoms lead to a measurable increase in the unpaired electron density in these materials. High-resolution transmission electron microscopy and powder neutron diffraction are used to probe the corresponding changes in the physical structural features in the CMS. These indicate that as the pyrolysis temperature is increased, the structure of the CMS transforms from one that is disordered and therefore highly symmetric to one that is more ordered on a length scale of 15 {Angstrom} and hence less symmetric. This structural transformation process, one of symmetry breaking and pattern formation, if often observed in other nonlinear dissipative systems, but not in solids. Symmetry breaking provides the driving force for these high-temperature reorganizations, but unlike most dissipative systems, these less-symmetric structures remain frozen in place when energy is no longer applied. The impact of these nanostructural reorganizations on the molecular sieving character of the CMS is studied in terms of the physical separation of oxygen and nitrogen. 40 refs., 14 figs., 3 tabs.

  5. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Yanhui; Zhou, Xuping; Jiang, Tingshun; Li, Changsheng; Yin, Hengbo

    2010-03-01

    Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N 2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 ∘C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 ∘C utilizing Fe/MCM-41 as a catalytic template.

  6. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  7. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  8. Time-Dependent CO[subscript 2] Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve

    SciTech Connect

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.; Allen, Andrew J.; Snyder, Chad R.; Chiu, Chun; Siderius, Daniel W.; Li, Lan; Cockayne, Eric; Espinal, Anais E.; Suib, Steven L.

    2014-09-24

    The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{sub 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.

  9. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  10. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants.

    PubMed

    Rüping, Boris; Ernst, Antonia M; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2010-10-08

    The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome. The unexpected

  11. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants

    PubMed Central

    2010-01-01

    Background The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. Results We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome

  12. An ultrasonic atomization assisted synthesis of self-assembled manganese oxide octahedral molecular sieve nanostructures and their application in catalysis and water treatment.

    PubMed

    Iyer, Aparna; Kuo, Chung-Hao; Dharmarathna, Saminda; Luo, Zhu; Rathnayake, Dinithi; He, Junkai; Suib, Steven L

    2017-04-13

    Manganese oxides of octahedral molecular sieve (OMS-2) type have important applications in oxidation catalysis, adsorption, and as battery materials. The synthesis methods employed determine their morphology and textural properties which markedly affect their catalytic activity. In this work, a room temperature ultrasonic atomization assisted synthesis of OMS-2 type materials is demonstrated. This synthesis differs from previously reported methods in that it is a simple, no-heat application that leads to a striking morphological characteristic of uniformly sized OMS-2 fibers and their self-assembly into dense as well as hollow spheres. Control of various parameters in the ultrasonic atomization assisted synthesis led to OMS-2 with high surface areas (between 136-160 m(2) g(-1)) and mesoporosity. Catalytically these materials have higher activities in the oxidation of hydroxymethylfurfural (HMF), a bio-based chemical, (65% conversion of HMF vs. 14% with conventional OMS-2 catalyst) and a higher adsorption of lead from aqueous solutions (70% vs. 12% in conventional OMS-2 materials).

  13. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2017-09-11

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Activation and Micropore Structure Determination of Carbon-Fiber Composite Molecular Sieves

    SciTech Connect

    Jagtoyen, M.

    1995-01-01

    levels of burnoff above about 40%, the extent of contraction is sufficient to produce stresses that result in fracture. Activated composites have been evaluated for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus has been constructed specifically for this purpose. Samples activated to low burn-off (5-7% wt loss) with low surface areas (from 300-500m{sup 2}/g) give much better separation of CO{sub 2} and CH{sub 4}, than samples produced at higher burnoff, and there appears to be no benefit in producing composites at burnoffs higher than 10%. The greater separation efficiency obtained at low burnoff means that the most effective CFCMS can be produced at relatively low cost. Continuing work will attempt to define the parameters that influence this gas separation, and whether these are applicable to other gas mixtures. Five samples of CFCMS have been recently prepared for shipment to British Oxygen Corporation (BOC) for testing as molecular sieves. The samples were machined to specific dimensions at ORNL (approx. 2.5 cm diameter x 1.25 cm thick) and activated at CAER. The samples were produced to different burn-off, but all have relatively narrow pore size distributions with average pore diameters around 6A.

  15. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    PubMed

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  16. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving.

    PubMed

    Zhang, Zhaoqiang; Yang, Qiwei; Cui, Xili; Yang, Lifeng; Bao, Zongbi; Ren, Qilong; Xing, Huabin

    2017-10-05

    C4 olefin separations present one of the grand challenges in hydrocarbon purifications due to their similar structures, in which case single separation mechanism often met with limited success. Here we report a series of anion-pillared interpenetrated copper coordination networks with fine-tuning cavity and functional site disposition in 0.2 Å scale increments through rational altering the anion pillars and organic linkers (GeFSIX-2-Cu-i (ZU-32), NbFSIX-2-Cu-i (ZU-52), GeFSIX-14-Cu-i (ZU-33)), which enable selective recognition of different C4 olefins. These materials achieve simultaneously an exquisite control on the rotation of organic linkers to create a contracted flexible pore window that excludes specific C4 olefins, while still adsorbs significant 1, 3-butadiene (C4H6) or 1-butene (n-C4H8). Combining the molecular recognition and size-sieving effect, these materials unexpectedly realized the sieving of C4H6/n-C4H8, C4H6/iso-C4H8 and n-C4H8/iso-C4H8 along with high capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving.

    PubMed

    Lin, Xi; Nguyen Quoc, Bao; Ulbricht, Mathias

    2016-10-11

    Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for

  18. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    SciTech Connect

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-05-15

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  19. Adsorptive Water Removal from Dichloromethane and Vapor-Phase Regeneration of a Molecular Sieve 3A Packed Bed

    PubMed Central

    2017-01-01

    The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701

  20. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  1. Adsorptive Water Removal from Dichloromethane and Vapor-Phase Regeneration of a Molecular Sieve 3A Packed Bed.

    PubMed

    Jović, Slaviša; Laxminarayan, Yashasvi; Keurentjes, Jos; Schouten, Jaap; van der Schaaf, John

    2017-05-03

    The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process.

  2. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  3. Production of carbon molecular sieves from Illinois coal; [Quarterly] technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Vyas, S.N.

    1994-03-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coal is a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas. of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2} on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}/H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal preparation conditions determined in Phase I will be applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and continuous rotary tube kiln (RTK).

  4. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-12-31

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  5. Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support.

    PubMed

    Dai, Dazhang; Xia, Liming

    2006-07-01

    The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)- 2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be "memorized." The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantioselectivity (average E value of eight batches >460) in nonaqueous media at "memorial" pH 9.5, 50 degrees C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.

  6. Highly oriented, neutral and cation-free AlPO4 LTA: from a seed crystal monolayer to a molecular sieve membrane.

    PubMed

    Huang, Aisheng; Caro, Jürgen

    2011-04-14

    An oriented, neutral and cation-free AlPO(4) LTA molecular sieve membrane with high hydrogen selectivity was prepared on porous α-Al(2)O(3) supports through secondary growth of a highly oriented AlPO(4) LTA monolayer.

  7. Vapour phase oxidation of toluene over CeAlPO-5 molecular sieves.

    PubMed

    Devika, S; Sundaravel, B; Palanichamy, M; Murugesan, V

    2014-04-01

    Single-site CeAlPO-5 with Al/Ce ratios 25, 50, 75, 100 and 125 were synthesized hydrothermally in fluoride medium. The XRD patterns of CeAlPO-5 exhibited characteristic reflections of AlPO-5. 27Al MAS-NMR of CeAIPO-5(25) showed two unusual peaks at -20.78 and -71.35 ppm due to delocalization of cerium unpaired electron. However, 31P MAS-NMR exhibited the usual characteristic peak similar to that of AlPO-5. Vapour phase oxidation of toluene in air over CeAlPO-5 yielded benzaldehyde with high toluene conversion. The time on stream study established the stability of the catalyst. This catalyst can also be used for the selective oxidation of other alkyl aromatics.

  8. Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation.

    PubMed

    Monguchi, Yasunari; Ichikawa, Tomohiro; Sajiki, Hironao

    2017-01-01

    This paper describes practical and selective hydrogenation methodologies using heterogeneous palladium catalysts. Chemoselectivity develops dependent on the catalyst activity based on the characteristic of the supports, derived from structural components, functional groups, and/or morphologies. We especially focus on our recent development of heterogeneous palladium catalysts supported on chelate resin, ceramic, and spherically shaped activated carbon. In addition, the application of flow technology for chemoselective hydrogenation using the palladium catalysts immobilized on molecular sieves 3A and boron nitride is outlined.

  9. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  10. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  11. LOW TEMPERATURE VOC COMBUSTION OVER MANGANESE, COBALT AND ZINC ALPO4 MOLECULAR SIEVES

    SciTech Connect

    Rosemarie Szostak

    2003-03-06

    The objective of this project was to prepare microporous aluminophosphates containing magnesium, manganese, cobalt and zinc (MeAPOs) and to evaluate their performance as oxidation catalysts for the removal of low levels of volatile organic compounds (VOCs) from gas streams. The tasks to be accomplished were as follows: (1) To develop reliable synthesis methods for metal aluminophosphates containing manganese, cobalt and zinc in their framework; (2) To characterize these materials for crystallinity, phase purity, the location and nature of the incorporated metal in the framework; and (3) To evaluate the materials for their catalytic activities in the oxidation of volatile organic environmental pollutants.

  12. A novel processing of carbon nanotubes grown on molecular sieve coated porous ceramics

    NASA Astrophysics Data System (ADS)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu; Zhao, Wei; Kim, Sukyoung; Kim, Ik Jin

    2015-08-01

    The present study focuses on the growth of carbon nanotubes (CNTs) on Fe-containing zeolites coated porous ceramics by implementing three different and independent techniques, successively. Direct foaming-derived porous ceramics were subjected to hydrothermal reaction for on-site growth of NaA zeolites within it. The porous ceramics-zeolite composite was subjected to ion-exchange reaction to obtain the catalyst for CNT synthesis. Multi-walled CNTs (MWCNTs) were grown by catalytic chemical vapour deposition (CCVD) process using acetylene as carbon source. Microstructural, thermogravimetric and spectroscopic analyses showed distinctive differences in terms of hollow structural feature, yield and crystallinity of the MWCNTs with different reaction temperatures.

  13. Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve

    NASA Astrophysics Data System (ADS)

    Li, Xuefeng; Zhang, Like; Gao, Huanxin; Chen, Qingling

    2016-08-01

    Various Ta-HMS (hexagonal mesoporous silica) samples with different Ta content were hydrothermally prepared and characterized by XRD, N2-adsorption, ICP-AES, FTIR, and UV-Vis spectroscopy. The catalytic performance of the samples was also evaluated in the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. The regularity of mesoporous structure decreases while more extraframe Ta ions are formed with increasing the Ta content. Ta-HMS with Ta/Si ratio of 0.015 shows the highest conversion and selectivity in the studied epoxidation reaction. The catalyst can be used for three times without significant activity loss.

  14. Catalytic cracking of HDPE wastes to liquid fuel in the presence of siliceous mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Majid, Noor Diana Abdul; Yusup, Suzana

    2014-10-01

    A siliceous gel was synthesized at 80°C and aged for 5 days at 120°C before it was dried at 120°C for 16 hours and calcined at 500 and 700°C. The calcined Na-Si-MMS samples were then undergone ion exchange with ammonia solution to form NH4- Si - MMS . All samples were characterized for their physicochemical properties using nitrogen (N2) adsorption-desorption isotherm for surface area and porosity; and temperature programme desorption of ammonia (TPD-NH3) for determination of acidity. The catalytic activity of all samples was tested in pyrolysis of high density polyethylene (HDPE) waste at catalyst to HDPE ratio of 0.2. The organic liquid product (OLP) collected was analysed using gas chromatography (GC). Results show that presence of Na-Si-MMS calcined at 500°C promotes the formation of gasoline-like product while presence of Na-Si-MMS calcined at 700°C promotes the formation of both diesel-like and kerosene-like products. On the other hand, presence of all NH4-Si-MMS catalysts promotes the formation of gasoline-like product. These show that the activation process of Si-MMS has a significant effect on the production of fuel-like product from pyrolysis of HDPE.

  15. On the synthesis of AlPO4-21 molecular sieve by vapor phase transport method and its phase transformation to AlPO4-15 molecular sieve

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2015-04-01

    An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.

  16. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Vyas, S.N.

    1994-06-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2}, on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and a continuous rotary tube kiln (RTFK).

  17. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    SciTech Connect

    Atchudan, R.; Joo, Jin.; Pandurangan, A.

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTs using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.

  18. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-05

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  19. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption.

    PubMed

    Karanfil, Tanju; Dastgheib, Seyed A; Mauldin, Dina

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers (ACFs) and two granular activated carbons (GACs) preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 A. It also had the highest volume in pores 5-8 A, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 A, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the waythatthe carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption.

  20. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimization of the molecular sieving properties of amorphous SiCXNY:H hydrogen selective membranes prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Haacké, M.; Coustel, R.; Rouessac, V.; Drobek, M.; Roualdès, S.; Julbe, A.

    2015-07-01

    In this work, low frequency PECVD a-SiCxNy:H thin films have been synthesized in the temperature range 25-300 °C from hexamethyldisilazane precursor mixed with ammonia at various concentrations. A relevant correlation has been evidenced between the [N]/[C] atomic ratio in the gaseous phase and in the deposited thin films, allowing both prediction and control of the film microstructure. A simple method based on the analysis of the films FTIR spectra was proposed to determine the value of the [N]/[C] ratio and thus predict or adjust the gas transport properties of the membrane materials. Attractive ideal selectivities α*He/N2 exceeding 90 with He permeance ΠHe > 3.10-7 mol.s-1.m-2.Pa-1 were measured at 150 °C for the films prepared at 300 °C with an optimum [N]/[C] atomic ratio in the range 0.1-1.5. These films behave as molecular sieve membranes with a thermally activated transport of helium.

  2. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  3. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.

    PubMed

    Qiu, Wulin; Zhang, Kuang; Li, Fuyue Stephanie; Zhang, Ke; Koros, William J

    2014-04-01

    6FDA-mPDA/DABA (3:2) polyimide was synthesized and characterized for uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes. The membranes were characterized with thermogravimetric analysis, FTIR spectroscopy, wide-angle X-ray diffraction, and gas permeation tests. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes were discussed in relation to pyrolysis protocols. The uncross-linked polymer membranes showed high CO2 /CH4 selectivity, whereas thermally crosslinked membranes exhibited significantly improved CO2 permeability and excellent CO2 plasticization resistance. The CMS membranes showed even higher CO2 permeability and CO2 /CH4 selectivity. An increase in the pyrolysis temperature resulted in CMS membranes with lower gas permeability but higher selectivity. The 550 °C pyrolyzed CMS membranes showed CO2 permeability as high as 14 750 Barrer with CO2 /CH4 selectivity of approximately 52. Even 800 °C pyrolyzed CMS membranes still showed high CO2 permeability of 2610 Barrer with high CO2 /CH4 selectivity of approximately 118. Both polymer membranes and the CMS membranes are very attractive in aggressive natural gas purification applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diffusion of methane and carbon dioxide in carbon molecular sieve membranes by multinuclear pulsed field gradient NMR.

    PubMed

    Mueller, Robert; Kanungo, Rohit; Kiyono-Shimobe, Mayumi; Koros, William J; Vasenkov, Sergey

    2012-07-10

    Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed.

  5. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    SciTech Connect

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

  6. Semi-Technical Cryogenic Molecular Sieve Bed for the Tritium Extraction System of the Test Blanket Module for ITER

    SciTech Connect

    Beloglazov, S.; Bekris, N.; Glugla, M.; Wagner, R.

    2005-07-15

    The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm data to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.

  7. Ionothermal Synthesis of MnAPO-SOD Molecular Sieve without the Aid of Organic Structure-Directing Agents.

    PubMed

    Liu, Hao; Tian, Zhijian; Wang, Lei; Wang, Yasong; Li, Dawei; Ma, Huaijun; Xu, Renshun

    2016-02-15

    An SOD-type metalloaluminophosphate molecular sieve (denoted as SOD-Mn) was ionothermally synthesized by introducing manganese(II) cations into the reaction mixture via MnO-acid or MnO2-reductant reactions. Composition and structure analyses results show that two kinds of manganese(II) cations exist in the SOD-Mn structure. Part of the manganese(II) cations isomorphously substitute the framework aluminum(III) with a substitution degree of ∼30%. The rest of the manganese(II) cations occupy a fraction of the sod cages in their hydrated forms. A comprehensive investigation of the synthesis parameters, crystal sizes, and crystallization kinetics indicates that the in situ released hydrated manganese(II) cations direct the formation of SOD-Mn. Such structure-directing effect may be inhibited by both the fluorination of manganese(II) cations and the water accumulation during crystallization. In the fluoride anion-containing reaction mixture with a low ionic liquid content, the crystallization process is strongly suppressed, and large SOD-Mn single crystals of over 200 μm in size are yielded. SOD-Mn is free from organics and shows improved thermal stability compared with metalloaluminophosphates synthesized by using organic structure-directing agents.

  8. Decolorization/Deodorization of Zein via Activated Carbons and Molecular Sieves

    USDA-ARS?s Scientific Manuscript database

    A series of commercial activated carbons generated from different media and selective microporous zeolites with different pore sizes were used in a batch system to sequester the low molecular weight odor and color contaminants in commercial zein products. Because the adsorbents can also adsorb prot...

  9. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  10. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts.

    PubMed

    Onoda, Akira; Hayashi, Takashi

    2015-04-01

    Hydrogenase catalyses reversible transformation of H2 to H(+) using an active site which includes an iron or nickel atom. Synthetic model complexes and molecular catalysts inspired by nature have unveiled the structural and functional basis of the active site with remarkable accuracy and this has led to the discovery of active synthetic catalysts. To further improve the activity of such molecular catalysts, both the first and outer coordination spheres should be well-organized and harmonized for an efficient shuttling of H(+), electrons, and H2. This article reviews recent advances in the design and catalytic properties of artificial enzymes that mimic the hydrogenase active site and the outer coordination sphere in combination with a peptide or protein scaffold.

  11. Molecular sieve adsorbents and membranes for applications in the production of renewable fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajiv

    Metal organic frameworks (MOF), a new class of porous materials, have emerged as promising candidate for gas storage, separation membrane and chemical sensors. We used secondary growth method to grow microporous metal organic framework (MMOF) films on porous alumina supports. Examination of the film using SEM and XRD showed that the crystals were well inter-grown and preferentially oriented. Gas permeation study showed that membranes were defect free and moderate selectivity was achieved for H2/N2 gas pairs. The next project had to do with ethanol production from lignocellulosic biomass as an alternate energy source. However, toxic inhibitors produced from the hydrolysis of biomass decrease ethanol yield during the fermentation process. We demonstrated the use of zeolites for the pretreatment of hydrolyzate in order to remove inhibitors like 5-Hydroxymethylfurfuraldehyde (HMF) and furfural from aqueous solution. Zeolites exhibit preferential adsorption of the inhibitors and in effect improve the ethanol yield during fermentation. Ideal Adsorbed Solution Theory (IAST) was also used to predict adsorption isotherms for HMF-furfural mixtures using single component adsorption data. We also studied production of HMF, a potential substitute as a building block for plastic and chemical production, from renewable biomass resources. Catalytic dehydration of fructose for HMF production faces problems like low conversion and yield. Dimethyl sulfoxide (DMSO) can be used as the solvent as well as the catalyst resulting in high HMF yield. We studied a reaction-separation system for this dehydration reaction where the product (HMF) could be recovered by selective adsorption on solid adsorbents from the reaction mixture.

  12. Purification of Immunogenically Active Ribonucleic Acid Preparations of Salmonella typhimurium: Molecular-Sieve and Anion-Exchange Chromatography 1

    PubMed Central

    Venneman, Martin R.

    1972-01-01

    Immunogenic Salmonella typhimurium ribonucleic acid (RNA) preparations, prepared by differential centrifugation, phenol extraction at 65 C, and ethanol precipitation from 0.5% sodium dodecyl sulfate solution, maintained their immunogenicity through lyophilization. As measured by survival, differential pathogen counts 5 days postchallenge, or clearance of the infecting organism from the tissues, immunization with 50 μg (dry weight) of the lyophilized preparation proved as effective as immunization with 0.1 LD50 of attenuated S. typhimurium cells. Chromatography of the immunogenic fraction through Biogel P-6 (exclusion limit > 4,600) or through Biogel P-300 (exclusion limit > 300,000) resulted in only one immunogenically active protein of the eluate found in the void volume of the columns. Diethylaminoethyl (DEAE) cellulose anion-exchange chromatography of the RNA preparations showed that the immunogenic activity was eluted from the column at 0.8 to 1.0 m NaCl in a linear 0.1 to 2.0 m NaCl gradient. Nonimmunogenic, protein-containing minor peaks were eluted at 0.1 to 0.5 m NaCl. Serial fractionation of the crude RNA preparations over Biogel P-6 to DEAE cellulose to Biogel P-300 molecular-sieve or anion-exchange columns did not alter the immunogenicity of the RNA preparation. Incorporation of the column fractions into Freund's incomplete adjuvant did not increase their relative effectiveness in eliciting anti-salmonella resistance. Chemical analysis of the immunogenic preparations indicated that they were lacking in detectable protein, lipid, and deoxyribonucleic acid. These results suggest that the immunogenic moiety of the crude nucleic acid fraction is either RNA or an as yet undefined polysaccharide of greater than 300,000 molecular weight. PMID:4564556

  13. Metal-Support Cooperative Catalysts for Environmentally Benign Molecular Transformations.

    PubMed

    Kaneda, Kiyotomi; Mitsudome, Takato

    2017-01-01

    Metal-support cooperative catalysts have been developed for sustainable and environmentally benign molecular transformations. The active metal centers and supports in these catalysts could cooperatively activate substrates, resulting in high catalytic performance for liquid-phase reactions under mild conditions. These catalysts involved hydrotalcite-supported gold and silver nanoparticles with high catalytic activity for organic reactions such as aerobic oxidation, oxidative carbonylation, and chemoselective reduction of epoxides to alkenes and nitrostyrenes to aminostyrenes using alcohols and CO/H2 O as reducing reagents. This high catalytic performance was due to cooperative catalysis between the metal nanoparticles and basic sites of the hydrotalcite support. To increase the metal-support cooperative effect, core-shell nanostructured catalysts consisting of gold or silver nanoparticles in the core and ceria supports in the shell were designed. These core-shell nanocomposite catalysts were effective for the chemoselective hydrogenation of nitrostyrenes to aminostyrenes, unsaturated aldehydes to allyl alcohols, and alkynes to alkenes using H2 as a clean reductant. In addition, these solid catalysts could be recovered easily from the reaction mixture by simple filtration, and were reusable with high catalytic activity. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supported Molecular Catalysts: Synthesis, in-situ Characterization and Performance

    SciTech Connect

    Haw, James F

    2010-12-14

    The technological advantages of solid catalysts (robustness for operation at high temperatures, lack of corrosion, and ease of separation of products) can be combined with the advantages of soluble catalysts (e.g., selectivity) by synthesis of structurally discrete, nearly uniform catalysts on supports. Our goal is to synthesize, characterize, test, and model such catalysts and their reactions, thereby opening a door to unprecedented fundamental understanding of the properties of such materials. We employ molecular chemistry in nano-scale cages of zeolites and on surfaces of tailored porous solids for the precise synthesis of catalysts with discrete, uniform, well-defined sites, primarily mononuclear metal complexes, characterizing them (sometimes in the functioning state) with a broad range of complementary experimental techniques and using computational chemistry to interpret the results, map out reaction paths, provide bases for the design of new catalysts, improve methods of data analysis, and identify key experiments. The effort is directly in support of DOE's energy, environmental, and national security missions as well as the support of DOE's basic science mission to develop the tools and understanding needed for the success of the applied mission areas. The research is demonstrating progress in understanding, modeling, and controlling chemical reactivity at interfaces to develop a fundamental understanding of how to control catalytic reactions for a broad range of applications.

  15. Highly efficient and robust molecular ruthenium catalysts for water oxidation.

    PubMed

    Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S G; Sun, Licheng

    2012-09-25

    Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H(2) driven by solar radiation (H(2)O + hν → 1/2O(2) + H(2)). The oxidation of water (H(2)O → 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) → H(2)), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L(2)] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce(IV)-driven [Ce(IV) = Ce(NH(4))(2)(NO(3))(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.

  16. Highly efficient and robust molecular ruthenium catalysts for water oxidation

    PubMed Central

    Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S.G.; Sun, Licheng

    2012-01-01

    Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H2 driven by solar radiation (H2O + hν → 1/2O2 + H2). The oxidation of water (H2O → 1/2O2 + 2H+ + 2e-) provides protons and electrons for the production of dihydrogen (2H+ + 2e- → H2), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L2] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze CeIV-driven [CeIV = Ce(NH4)2(NO3)6] water oxidation with high oxygen production rates up to 286 s-1 and high turnover numbers up to 55,400. PMID:22753518

  17. Molecular size and structure in pyridine extracts of upper Freeport coal as separated by M41S sieving.

    SciTech Connect

    Ahrens, M.; Hunt, J. E.; Winans, R. E.; Xu, L.

    1999-07-02

    The determination of the structure of coal has long been of interest due to its crucial importance in research on reactivity and processing. However, the chemically and physically heterogeneous nature of coals makes determination of the chemical nature of even the building blocks complicated, since the molecular structure and molecular weight distribution are not dependent on a single molecule or repeat unit as in technical polymers or biopolymers, but on a complex mixture of molecules and potential connections between them which may vary among coals. Coal extracts have long been used to obtain coal material in solution form that can readily be characterized. However, what part of the total coal structure these extracts represent is not completely known. Pyridine has been a particularly good solvent for coal; for example, the extractability of Upper Freeport has been shown to be as high 30%. Although pyridine extracts of coal have been referred to as solutions, there is good evidence that they are not truly solvated, but are dispersions which are polydisperse in particle size. The particle sizes may span the size range from clusters of small molecules (a few {angstrom}) to extended clusters of large particles (a few hundred {angstrom}), not unlike micelles, where the functional groups of molecules which interact favorably with the pyridine solvent lie at the surface of particles. Mesoporous silicates are attractive candidates for separations due to their high surface areas and porous nature. MCM-41 is one member of a new family of highly uniform mesoporous silicate materials introduced by Mobil, whose pore size can be accurately controlled in the range 1.5{angstrom}-10 nm. This recently discovered M41S class of zeolites should be useful to effect size separation, due to their large pore sizes and thus their potential for the separation of larger compounds or clusters. True molecular sieving on the size range of molecular and cluster types found in coal solutions

  18. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng

    2016-11-01

    This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe3O4@OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe3O4@OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe3O4@OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe3O4@OMS-2@CTS changed during sewage biological treatment.

  19. Preparation of molecular sieve from natural pyrophyllite and characterization of its Al/Si ratio, crystal structure, and Porosity

    NASA Astrophysics Data System (ADS)

    Idiawati, Riris; Fuad, Abdulloh; Mufti, Nandang; Hartatiek; Bahtiar, Syamsul; Subakti; Taufiq, Ahmad

    2017-05-01

    Pyrophyllite is one abundant mineral in Indonesia which has not been optimally processed. Hence, this study further processed natural pyrophyllite to be an advanced material usable for industrial sector as a molecular sieve (MS). Natural pyrophyllitewas chosen due to its ability to filter gas or liquid selectively. The MS made from natural pyrophyllite was prepared by using a simple method, in short time and with less cost via leaching process. NaOH was varied to 10 M (MS1), 15 M (MS2), and 20 M (MS3) of molarity. Such solution was subsequently dissolved in distilled water and followed by decantation and filtration processes to obtain the deposit. Eventually, the deposit was drained to form MS powders. The BET characterization showed that the respective surface areas of MS1, MS2, and MS3 are 0.350 m2/g, 2.869 m2/g, and 1.176 m2/g with the pore sizes of 30Å, 542 Å, and 550 Å, respectively. The XRF characterization results showed that the Al/Si ratio of MS10, MS15, and MS20 are 2.4, 2.2, and 2.3, respectively. Meanwhile, the XRD investigation pointed out that the primary phase of MS10 and MS15 samples wassodalite with cubic crystal system, quartz with hexagonal crystal system, and diaspore with orthorhombic crystal system, while the MS20 phase was pure in the form of sodalite phase. Moreover, the results of FITR characterization showed that the synthesized MS has a functional group of Si-O-Si bending, Si-O-Al, Si-O, Si-O normal to the plane stretching, inner surface Al-OH deformation, Si-O-Si siloxine, H-O-H, -OH, C-H stretching, and H-O-H bending water.

  20. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: Synthesis and physicochemical properties

    NASA Astrophysics Data System (ADS)

    Chen, L. F.; Zhou, X. L.; Noreña, L. E.; Wang, J. A.; Navarrete, J.; Salas, P.; Montoya, A.; Del Angel, P.; Llanos, M. E.

    2006-12-01

    Two surfactant-templated synthetic routes are developed for the preparation of new types of mesoporous molecular sieves, Zr-MCM-41 and Zr-MCM-48, using different Si sources but keeping the same zirconium precursor (zirconium- n-propoxide). When fumed silica was used as Si precursor, a Zr-MCM-48 material of cubic structure was formed with a surface area of 654.8 m 2/g and an unimodal pore diameter distribution. It shows low stability: after calcination at 600 °C, the ordered structure was transformed into a relatively disordered worm-like mesostructure with many defects and silanol groups. The use of tetraethyl orthosilicate as Si source led to the formation of a Zr-MCM-41 mesoporous solid, which had good thermal stability and a highly ordered hexagonal arrangement, with a surface area 677.9 m 2/g and an uniform pore diameter distribution. Fourier transform infrared (FT-IR) characterization and 29Si NMR analysis confirm that zirconium ions indeed incorporated into the framework of the solid. The in situ FT-IR spectroscopy of pyridine adsorption reveals that both, Lewis and Brönsted acid sites, were formed on the surface of these mesoporous materials. The strength and number of the Brönsted acid sites of the Zr-MCM-48 solid were greater than those of the Zr-MCM-41, due to a lower degree of condensation reaction during the synthesis that led to more structural defects in the framework and more silanol groups stretching from the solid surface.

  1. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment

    PubMed Central

    Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng

    2016-01-01

    This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe3O4@OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe3O4@OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe3O4@OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe3O4@OMS-2@CTS changed during sewage biological treatment. PMID:27869226

  2. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment.

    PubMed

    Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng

    2016-11-21

    This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe3O4@OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe3O4@OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe3O4@OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe3O4@OMS-2@CTS changed during sewage biological treatment.

  3. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  4. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  5. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1987-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  6. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  7. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  8. Electron spin resonance and electron spin echo modulation studies of ion-exchanged NiH-SAPO-17 and NiH-SAPO-35 molecular sieves: Comparison with ion-exchanged NiH-SAPO-34 molecular sieve

    SciTech Connect

    Djieugoue, M.A.; Prakash, A.M.; Zhu, Z.; Kevan, L.

    1999-08-26

    Erionite-like silicoaluminophosphate molecular sieve SAPO-17 and levyne-like SAPO-35, in which Ni ions were incorporated via solid-state ion-exchange into known extra framework sites, have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM). The Ni ion reducibility, location, and interaction with several adsorbates have been investigated. Among these adsorbates, the interaction with nitric oxide was emphasized and compared to that of Ni ion with NO in the previously studied chabazite-like SAPO-34. Room-temperature adsorption of C{sub 2}D{sub 4} on NiH-SAPO-17 after dehydration at 573 K, oxygen treatment at 823 K, evacuation, and subsequent hydrogen treatment at 573 K produces two Ni-ethylene complexes. Carbon monoxide adsorption gives rise to a Ni(I)-(CO){sub n} complex with unresolved {sup 13}C hyperfine lines. Following the kinetics of nitric oxide adsorption on NiH-SAPO-17 shows that initially, a Ni(I)-(NO){sup +} complex, a NO radical, and a new species which appears to be another NO species are generated. After a reaction time of 24 h, NO{sub 2} is observed. As the adsorption time further increases, NO{sub 2} becomes stronger while Ni(I)-(NO){sup +} decays, and after 5 days only NO{sub 2} remains. NO adsorption on NiH-SAPO-35 shows different features. Initially, two Ni(I)-(NO){sup +} complexes along with a NO radical are seen. As the adsorption time increases, one of the Ni(I)-(NO){sup +} complexes decreases in intensity while the other one increases, and after a few days only one Ni(I)-(NO){sup +} complex remains. Simulation of the {sup 31}P ESEM spectrum, supplemented by {sup 27}Al modulation, suggests that, upon dehydration, Ni ions in NiH-SAPO-17 migrate from the erioinite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-17 migrate from the erionite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-34 and NiH-SAPO-35, Ni ions remain in the large chabazite and levyne cages, respectively. As a

  9. Electron spin resonance and electron spin echo modulation studies of ion-exchanged NiH-SAPO-17 and NiH-SAPO-35 molecular sieves: Comparison with ion-exchanged NiH-SAPO-34 molecular sieve

    SciTech Connect

    Djieugoue, M.A.; Prakash, A.M.; Zhu, Z.; Kevan, L. . Dept. of Chemistry)

    1999-08-26

    Erionite-like silicoaluminophosphate molecular sieve SAPO-17 and levyne-like SAPO-35, in which Ni ions were incorporated via solid-state ion-exchange into known extra framework sites, have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM). The Ni ion reducibility, location, and interaction with several adsorbates have been investigated. Among these adsorbates, the interaction with nitric oxide was emphasized and compared to that of Ni ion with NO in the previously studied chabazite-like SAPO-34. Room-temperature adsorption of C[sub 2]D[sub 4] on NiH-SAPO-17 after dehydration at 573 K, oxygen treatment at 823 K, evacuation, and subsequent hydrogen treatment at 573 K produces two Ni-ethylene complexes. Carbon monoxide adsorption gives rise to a Ni(I)-(CO)[sub n] complex with unresolved [sup 13]C hyperfine lines. Following the kinetics of nitric oxide adsorption on NiH-SAPO-17 shows that initially, a Ni(I)-(NO)[sup +] complex, a NO radical, and a new species which appears to be another NO species are generated. After a reaction time of 24 h, NO[sub 2] is observed. As the adsorption time further increases, NO[sub 2] becomes stronger while Ni(I)-(NO)[sup +] decays, and after 5 days only NO[sub 2] remains. NO adsorption on NiH-SAPO-35 shows different features. Initially, two Ni(I)-(NO)[sup +] complexes along with a NO radical are seen. As the adsorption time increases, one of the Ni(I)-(NO)[sup +] complexes decreases in intensity while the other one increases, and after a few days only one Ni(I)-(NO)[sup +] complex remains. Simulation of the [sup 31]P ESEM spectrum, supplemented by [sup 27]Al modulation, suggests that, upon dehydration, Ni ions in NiH-SAPO-17 migrate from the erioinite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-17 migrate from the erionite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-34 and NiH-SAPO-35, Ni ions remain in the large chabazite and levyne cages, respectively. As a

  10. Molecular cobalt pentapyridine catalysts for generating hydrogen from water.

    PubMed

    Sun, Yujie; Bigi, Julian P; Piro, Nicholas A; Tang, Ming Lee; Long, Jeffrey R; Chang, Christopher J

    2011-06-22

    A set of robust molecular cobalt catalysts for the generation of hydrogen from water is reported. The cobalt complex supported by the parent pentadentate polypyridyl ligand PY5Me(2) features high stability and activity and 100% Faradaic efficiency for the electrocatalytic production of hydrogen from neutral water, with a turnover number reaching 5.5 × 10(4) mol of H(2) per mole of catalyst with no loss in activity over 60 h. Control experiments establish that simple Co(II) salts, the free PY5Me(2) ligand, and an isostructural PY5Me(2) complex containing redox-inactive Zn(II) are all ineffective for this reaction. Further experiments demonstrate that the overpotential for H(2) evolution can be tuned by systematic substitutions on the ancillary PY5Me(2) scaffold, presaging opportunities to further optimize this first-generation platform by molecular design.

  11. Sieving hydrogen based on its high compressibility

    NASA Astrophysics Data System (ADS)

    Chen, Hangyan; Sun, Deyan; Gong, Xingao; Liu, Zhifeng

    2011-03-01

    Based on carbon nanotube intramolecular junction and a C60, a molecular sieve for hydrogen is presented. The small interspace between C60 and junction provides a size changeable channel for the permselectivity of hydrogen while blocking Ne and Ar. The sieving mechanism is due to the high compressibility of hydrogen.

  12. Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve

    SciTech Connect

    Pompilio, L. M.; DePaoli, D. W.; Spencer, B. B.

    2014-08-29

    The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, when they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and

  13. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    describes the evaluation of the HISIV(TM) 1000 molecular sieve for TBC adsorption. The TBC equilibrium capacity was determined from a cyclohexane/TBC liquid mixture and was comparable to alumina adsorbents. Practicum One. A fluorescent diagnostic system was developed to image the inhomogeneous mixture formed as two miscible fluids mix. This diagnostic for the mixing fraction uses a commercially available CCD color camera, a polarity sensitive fluorescent probe (DCM), and the planar laser induced fluorescence (PLIF) imaging technique to track the mixing of two miscible fluids of different polarity (ethanol and decane). The DCM fluorescence spectrum shifts to the red with increasing polarity, and the CCD camera's red, green, and blue color channels serve as spectral filters for the probe's fluorescence.

  14. Gas chromatography for in situ analysis of a cometary nucleus. II. Analysis of permanent gases and light hydrocarbons with a carbon molecular sieve porous layer open tubular column.

    PubMed

    Szopa, C; Sternberg, R; Coscia, D; Raulin, F; Vidal-Madjar, C

    2000-12-22

    Considering the severe constraints of space instrumentation, a great improvement for the in situ gas chromatographic (GC) determination of permanent and noble gases in a cometary nucleus is the use of a new carbon molecular sieve porous layer open tubular (PLOT) column called Carbobond. No exhaustive data dealing with this column being available, studies were carried out to entirely characterize its analytical performances, especially when used under the operating conditions of the cometary sampling and composition (COSAC) experiment of the European Space Agency (ESA) Rosetta space mission to be launched in 2003 for a rendezvous with comet 46 P/Wirtanen in 2011. The high efficiency and speed of analysis of this column at both atmospheric and vacuum outlet column pressure is demonstrated, and the kinetic mass transfer contribution of this carbon molecular sieve adsorbent is calculated. Besides, differential adsorption enthalpies of several gases and light hydrocarbons were determined from the variation of retention volume with temperature. The data indicate close adsorption behaviors on the Carbobond porous layer adsorbent and on the carbon molecular sieve Carboxen support used to prepare the packed columns. Moreover, taking into account the in situ operating conditions of the experiment, a study of two columns with different porous layer thicknesses allowed one to optimize the separation of the target components and to select the column parameters compatible with the instrument constraints. Comparison with columns of similar selectivity shows that these capillary columns are the first ones able to perform the same work as the packed and micro-packed columns dedicated to the separation of this range of compounds in GC space exploration.

  15. Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms.

    PubMed

    Park, Gi Tae; Jo, Donghui; Ahn, Nak Ho; Cho, Jung; Hong, Suk Bong

    2017-07-17

    The structure-directing effects of a series of polymethylimidazolium cations with different numbers of methyl groups as organic structure-directing agents (OSDAs) in the synthesis of aluminophosphate (AlPO4)-based molecular sieves in both fluoride and hydroxide media are investigated. On the one hand, among the OSDAs studied here, the smallest 1,3-dimethylimidazolium and the largest 1,2,3,4,5-pentamethylimidazolium cations were found to direct the synthesis of a new variant of the triclinic chabazite (CHA)-type AlPO4 material, designated AlPO4-34(t)(V), and the one-dimensional small-pore silicoaluminophosphate (SAPO) molecular sieve STA-6 in hydroxide media, respectively. On the other hand, the intermediate-sized 1,2,3,4-tetramethylimidazolium cation gave SSZ-51, a two-dimensional large-pore SAPO material, in fluoride media. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that as-made AlPO4-34(t)(V) contains penta-coordinated framework Al species connected by hydroxyl groups, as well as tetrahedral framework Al, which contrasts with the distortions arising from the two F(-) or OH(-) bridges between octahedral Al atoms in all already known AlPO4-34 materials. The presence of Al-OH-Al linkages in this triclinic AlPO4-34 molecular sieve has been further corroborated by thermal analysis, variable-temperature IR,27Al magic-angle spinning NMR, and dispersion-corrected density functional theory calculations.

  16. Activation and micropore structure determination of carbon-fiber composite molecular sieves. Topical report, 30 March 1994--14 April 1995

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, You Qing

    1995-05-19

    Progress in developing novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are activated using steam or CO{sub 2}, in order to produce uniform activation through the material and to control the pore structure and adsorptive properties. There is an overall shrinkage during activation, which is directly correlated with burnoff; burnoff above 40% results in fracture. Burnoffs higher than 10% does not produce any benefit for separation of CH{sub 4}-CO{sub 2} mixtures. Five samples of CFCMS have been prepared for testing as molecular sieves; all have relatively narrow pore size distributions with average pore diameters around 6A.

  17. Molecular sieving of hyaluronan by synovial interstitial matrix and lymphatic capillary endothelium evaluated by lymph analysis in rabbits.

    PubMed

    Sabaratnam, S; Mason, R M; Levick, J R

    2003-11-01

    Synovial fluid hyaluronan (HA) profoundly buffers fluid loss from joints. This is attributed to the osmotic pressure of HA reflected by the joint lining. The aims were to quantify HA sieving during fluid drainage from joint to lymphatics and to compare the contributions of the synovial lining and lymphatic endothelium to sieving. HA (2100 kDa) and fluorescein-dextran (FD, 20 kDa) were infused under constant pressure into the knee cavity in anaesthetised rabbits. Samples were taken of femoral lymph and, after approximately 3-h transsynovial filtration, subsynovial fluid and mixed intra-articular fluid. [HA] and [FD] were analysed by HPLC and reflection was calculated as one minus transmitted fraction. Subsynovial and lymph [HA] were 16 and 12% of intra-articular [HA], which increased to 2.6 times infusate [HA] (P < 0.001, ANOVA, n = 19). [FD] was not significantly changed in infusate, aspirate, and subsynovial fluid but fell to 62% in femoral lymph due to dilution by skin/muscle lymph. The HA reflected fraction for the cavity-to-lymph barrier, R(lymph), was 0.54 +/- 0.03 (n = 82, mean +/- SEM), compared with 0.51 +/- 0.07 for cavity-to-subsynovium (R(syn), P > 0.05, Bonferroni) and 0.07 +/- 0.18 for subynovium-to-lymph (R(endo), P < 0.0001, Bonferroni). Lymphatic capillary endothelial reflection R(endo) was not significantly different from zero (one-sample t test). It is concluded that HA is partially sieved out of fluid leaving the joint cavity, and the sieve is the synovial lining interstitial matrix, not lymphatic capillary endothelium.

  18. Sabatier Catalyst Poisoning Investigation

    NASA Technical Reports Server (NTRS)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  19. Understanding diffusion in confined systems: methane in a ZK4 molecular sieve. A molecular dynamics simulation study.

    PubMed

    Demontis, P; Fenu, L A; Suffritti, G B

    2005-09-29

    The equilibrium probability distribution of N methane molecules adsorbed in the interior of n alpha cages of the ZK4 zeolite, the all-silica analogue of zeolite A, is modeled by a modified hypergeometric distribution where the effects of mutual exclusion between particles are extracted from long molecular dynamics simulations. The trajectories are then analyzed in terms of time-correlation functions for the fluctuations in the occupation number of the alpha cages. The analysis digs out the correlations induced by the spatial distribution of the adsorbed molecules coupled with a migration mechanism where a molecule can pass from one alpha cage to another, one-by-one. These correlations lead to cooperative motion, which manifests itself as a nonexponential decay of the correlators. Our results suggest ways of developing improved lattice approaches that may be useful for studying diffusion in much larger systems and for a much longer observation time.

  20. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  1. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-11-11

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  2. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    SciTech Connect

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of the deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of {approx}7 GBq

  3. Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions

    PubMed Central

    Haubenreisser, Stefan; Wöste, Thorsten H.; Martínez, Claudio; Ishihara, Kazuaki

    2015-01-01

    Abstract Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis. PMID:26596513

  4. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes

    NASA Astrophysics Data System (ADS)

    Westerhaus, Felix A.; Jagadeesh, Rajenahally V.; Wienhöfer, Gerrit; Pohl, Marga-Martina; Radnik, Jörg; Surkus, Annette-Enrica; Rabeah, Jabor; Junge, Kathrin; Junge, Henrik; Nielsen, Martin; Brückner, Angelika; Beller, Matthias

    2013-06-01

    Molecularly well-defined homogeneous catalysts are known for a wide variety of chemical transformations. The effect of small changes in molecular structure can be studied in detail and used to optimize many processes. However, many industrial processes require heterogeneous catalysts because of their stability, ease of separation and recyclability, but these are more difficult to control on a molecular level. Here, we describe the conversion of homogeneous cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon. The catalysts thus produced are useful for the industrially important reduction of nitroarenes to anilines. The ligand indirectly controls the selectivity and activity of the recyclable catalyst and catalyst optimization can be performed at the level of the solution-phase precursor before conversion into the active heterogeneous catalyst.

  5. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes.

    PubMed

    Westerhaus, Felix A; Jagadeesh, Rajenahally V; Wienhöfer, Gerrit; Pohl, Marga-Martina; Radnik, Jörg; Surkus, Annette-Enrica; Rabeah, Jabor; Junge, Kathrin; Junge, Henrik; Nielsen, Martin; Brückner, Angelika; Beller, Matthias

    2013-06-01

    Molecularly well-defined homogeneous catalysts are known for a wide variety of chemical transformations. The effect of small changes in molecular structure can be studied in detail and used to optimize many processes. However, many industrial processes require heterogeneous catalysts because of their stability, ease of separation and recyclability, but these are more difficult to control on a molecular level. Here, we describe the conversion of homogeneous cobalt complexes into heterogeneous cobalt oxide catalysts via immobilization and pyrolysis on activated carbon. The catalysts thus produced are useful for the industrially important reduction of nitroarenes to anilines. The ligand indirectly controls the selectivity and activity of the recyclable catalyst and catalyst optimization can be performed at the level of the solution-phase precursor before conversion into the active heterogeneous catalyst.

  6. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  7. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture.

    PubMed

    Ban, Yujie; Li, Zhengjie; Li, Yanshuo; Peng, Yuan; Jin, Hua; Jiao, Wenmei; Guo, Ang; Wang, Po; Yang, Qingyuan; Zhong, Chongli; Yang, Weishen

    2015-12-14

    Fine-tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF-8 to be between CO2 and N2 by confining an imidazolium-based ionic liquid [bmim][Tf2 N] into ZIF-8's SOD cages by in-situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid-modified ZIF-8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2 /N2 and CO2 /CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2 /CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading.

  8. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  9. A New Class of Octahedral Molecular Sieve Materials for the Selective Removal and Sequestration of {sup 90}Sr{sup 2+}

    SciTech Connect

    NYMAN,MAY D.; NENOFF,TINA M.; TRIPATHI,AKHILESH; PARISE,JOHN B.; MAXWELL,ROBERT S.; HARRISON,WILLIAM T.A.

    2000-07-14

    The structure of Na{sub 16}Nb{sub 12.8}Ti{sub 3.2}O{sub 44.8}(OH){sub 3.2} {center_dot} 8H{sub 2}O, a member of a new family of Sandia Octahedral Molecular Sieves (SOMS) having a Nb/Na/M{sup IV} (M= Ti, Zr) oxide framework and exchangeable Na and water in open channels, was determined from Synchrotron X-ray data. The SOMS phases are isostructural with variable M{sup IV}:Nb(1:50--1:4) ratios. The SOMS are extremely selective for sorption of divalent cations, particularly Sr{sup 2+}. The ion-exchanged SOMS undergo direct thermal conversion to a perovskite-type phase, indicating this is a promising new method for removal and sequestration of radioactive Sr-90 from mixed nuclear wastes.

  10. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors.

    PubMed

    Mao, Hanping; Liu, Zhongshou

    2017-08-15

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017. Published by Elsevier B.V.

  11. Tetrahedral connection of ε-Keggin-type polyoxometalates to form an all-inorganic octahedral molecular sieve with an intrinsic 3D pore system.

    PubMed

    Zhang, Zhenxin; Sadakane, Masahiro; Murayama, Toru; Izumi, Shoko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Ueda, Wataru

    2014-01-21

    A new type of polyoxometalate-based porous material was successfully synthesized. The new material is the first fully inorganic Keggin-type polyoxometalate-based microporous material with intrinsically ordered open micropores and is the third member of the small family of octahedral molecular sieves (OMSs). Twelve MoO6 or VO6 octahedra surround a central VO4 tetrahedron to form ε-Keggin polyoxometalate building blocks (ε-VMo9.4V2.6O40) that are linked by Bi(III) ions to form crystalline Mo-V-Bi oxide with a diamondoid topology. The presence of a tetrahedral shape of the ε-Keggin polyoxometalate building block results in arrangement of microporosity in a tetrahedral fashion which is new in OMSs. Owing to its microporosity, this Mo-V-Bi oxide shows zeolitic-like properties such as ion-exchange and molecule adsorption.

  12. Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit

    NASA Astrophysics Data System (ADS)

    Lei, Shengjiao; Xu, Yongxia; Fan, Gang; Xiao, Ming; Pan, Siyi

    2011-02-01

    Naringinase was bound to mesoporous silica MCM-41 via adsorption with glutaraldehyde and used to debitter white grapefruit. Km value of the immobilized naringinase was lower than that of free naringinase. The immobilized catalysts showed excellent thermal stability and storage stability and could be recycled 6 times retained about 44.57% activities. The unaltered structural order of the prepared catalyst was characterized with reference to bulky and surface properties by infrared spectroscopy (FT-IR), elemental analysis and nitrogen adsorption-desorption isotherms analysis.

  13. Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification.

    PubMed

    Amor-Coarasa, Alejandro; Kelly, James M; Babich, John W

    2015-08-01

    Radiolabeled fatty acids are valuable metabolic tracers for PET imaging. Carbon-11 is widely used in clinical PET studies due to the prevalence of facile techniques enabling the incorporation of [(11)C]CO2 and [(11)C]CH3 into molecules and a short half-life (20.4 min) that translates into low patient dose. However, the short half-life considerably limits the time for radiosynthesis. Furthermore, the majority of the syntheses of [(11)C]palmitic acid in common use employ high starting [(11)C]CO2 activities and/or expensive equipment. [(11)C]CO2 was trapped with greater than 99.99% efficiency by a three stage cartridge packed with molecular sieve 13X, 100-120 mesh. The labeling of n-pentadecylmagnesium bromide took place in 5 min in the cartridge, and the [(11)C]palmitic acid product was selectively eluted in ethanol following alkaline and acidic washes of the column. The system reliably produced more than 925 MBq (25 mCi) of [(11)C]palmitic acid suitable for human use from 7.4 GBq (200 mCi) of [(11)C]CO2 in 8 min from end-of-bombardment. We have exploited the properties of the inexpensive molecular sieve 13X to develop a miniature, disposable and leak tight "gas capture" system for the rapid labeling and purification of [(11)C]fatty acids in good yield and >99% radiochemical purity. The rapidity of the synthesis and purification allows small [(11)C]CO2 starting activities to be used, and with no requirement for expensive synthesis equipment or facilities, the system can be implemented in any radiopharmaceutical center. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    EPA Science Inventory

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  15. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    EPA Science Inventory

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  16. Effect of H{sub 3}PW{sub 12}O{sub 40} impregnation on Sn-MCM-41 mesoporous molecular sieves and their physico-chemical properties

    SciTech Connect

    Nedumaran, D.; Pandurangan, A.

    2015-01-15

    Graphical abstract: The wide angle XRD shows the well dispersion of HPWA in Sn-MCM-41. It enhances the total acidity of the material. The acidity of the material is correlated with sulfone selectivity. The FT-IR of dibenzothiophene and product shows the formation of sulfone (DBTO{sub 2}). - Highlights: • To enhance the total acidity of Sn-MCM-41 TPA is impregnated. • FT-IR and {sup 31}P MAS NMR confirms the HPWA intact on Sn-MCM-41. • EDAX shows the presence of W and P on Sn-MCM-41. • In ODS formation of sulfone was confirmed by FT-IR and {sup 1}H NMR. • The order of the catalytic activity of the catalysts are 18HSnM > 28HSnM > 8HSnM. - Abstract: Si-Sn-MCM-41 (Si/Sn = 110) mesoporous molecular sieve was synthesized by hydrothermal sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant and SnCl{sub 4}·5H{sub 2}O as a metal source. To generate surface acidity of Si-Sn-MCM-41, 12-tungstophosphoric acid (HPWA) is impregnated on it. The acidity of HPWA loading on Sn-MCM-41 was investigated by temperature programmed desorption of NH{sub 3}. The diffused reflectance spectra of ultraviolet radiation, Raman spectra, FT-IR, {sup 29}Si-MAS NMR and {sup 31}P-MAS NMR techniques revealed the intact of α-Keggin anions on Sn-MCM-41. The wide angle XRD results showed that the HPWA is well dispersed on the support. The total acidity was enhanced with increase in loading of H{sub 3}PW{sub 12}O{sub 40}. The catalytic activity was examined in desulfurization of dibenzothiophene in vapor phase system. Among the catalysts 18% HPWA loaded Sn-MCM-41 showed good catalytic activity in desulfurization at 325 °C. The HPWA/Sn-MCM-41 are a suitable solid acid catalyst for converting organic sulfur into insoluble sulfone.

  17. Multiscale modeling for materials design: Molecular square catalysts

    NASA Astrophysics Data System (ADS)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  18. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  19. Sieve Tubes in Action

    PubMed Central

    Knoblauch, M.; van Bel, A. J. E.

    1998-01-01

    Abstract A method was designed for in vivo observation of sieve element/companion complexes by using confocal laser scanning microscopy. A leaf attached to an intact fava bean plant was mounted upside down on the stage of a confocal microscope. Two shallow paradermal cortical cuts were made in the major vein. The basal cortical window allowed us to observe the phloem intact. The apical window at 3 cm from the site of observation was used to apply phloem-mobile fluorochromes, which identified living sieve elements at the observation site. In intact sieve tubes, the sieve plates did not present a barrier to mass flow, because the translocation of fluorochromes appeared to be unhindered. Two major occlusion mechanisms were distinguished. In response to intense laser light, the parietal proteins detached from the plasma membrane and formed a network of minute strands and clustered material that aggregated and pressed against the sieve plate. In response to mechanical damage, the evenly distributed P plastids exploded, giving rise to the formation of a massive plug against the sieve plate. In case of mechanical damage, the parietal proteins transformed into elastic threads (strands) that extended throughout the sieve element lumen. Our observations cover the phenomena encountered in previous microscopic and electron microscopic studies and provide a temporal disentanglement of the events giving rise to the confusing mass of structures observed thus far.

  20. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications

    SciTech Connect

    Vartuli, J.C.; Schmitt, K.D.; McCullen, S.B.; Hellring, S.D.; Beck, J.S.; Schlenker, J.L.; Olson, D.H.; Sheppard, E.W.; Kresge, C.T.; Roth, W.J.

    1994-12-01

    The influence of surfactant/silica molar ratio (Sur/Si) in the synthesis of mesoporous molecular sieve materials (M41S) was studied in a simple ternary synthesis system containing tetraethylorthosilicate (TEOS), water, and the cetyltrimethylammonium (CTMA) cation at 100{degrees}C. The resulting silicate materials were characterized by X-ray diffraction, {sup 29}Si NMR, and FTIR. As the Sur/Si molar ratio increased from 0.5 to 2, the siliceous products obtained could be classified into four separate groups: MCM-41 (hexagonal), MCM-48 (cubic), thermally unstable M41S, and a molecular species, the cubic octamer [(CTMA)SiO{sub 2.5}]{sub 8}. One of the thermally unstable structures has been identified as a lamellar phase. These results are consistent with known micellar phase transformations that occur at various surfactant concentrations and reinforce the concept that liquid-crystal structures serve as templating agents for the formation of M41S type materials. 48 refs., 13 figs., 5 tabs.

  1. Short-range interactions between surfactants, silica species and EDTA⁴- salt during self-assembly of siliceous mesoporous molecular sieve: a UV Raman study.

    PubMed

    Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang

    2012-11-01

    The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Nanocomposite prepared from ZnS nanoparticles and molecular sieves nanoparticles by ion exchange method: characterization and its photocatalytic activity.

    PubMed

    Pourahmad, Afshin

    2013-02-15

    In this article, we have reported synthesis of ZnS/MCM-41 nanocomposite and its photocatalytic activity. The photocatalytic activity was evaluated using basic blue 9 or methylene blue (MB) as model pollutant under UV light irradiation. The catalyst is characterized by transmission electron microscopy (TEM), UV-vis diffused reflectance spectra (UV-vis DRS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The effect of ZnS, MCM-41 support and different wt% of ZnS over the support on the photocatalytic degradation and influence of parameters such as ZnS loading, catalyst a mount, pH and initial concentration of dye on degradation are evaluated. The degradation reaction follows pseudo-first order kinetics. The effect of dosage of photocatalyst was studied in the range 0.02-5 g/L. It was seen that 0.4 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. The degradation efficiency was decreased in dye concentration above 3.2 ppm for dye. In the best conditions, the degradation efficiency was obtained 0.32 ppm for methylene blue. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts.

    PubMed

    Sung, Siyoung; Kumar, Davinder; Gil-Sepulcre, Marcos; Nippe, Michael

    2017-09-26

    We present the first examples of CO2 electro-reduction catalysts that feature charged imidazolium groups in the secondary coordination sphere. The functionalized Lehn-type catalysts display significant differences in their redox properties and improved catalytic activities as compared to the conventional reference catalyst. Our results suggest that the incorporated imidazolium moieties do not solely function as a charged tag but also alter mechanistic aspects of catalysis.

  4. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    NASA Astrophysics Data System (ADS)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  5. Sandia octahedral molecular sieves (SOMS): structural and property effects of charge-balancing the M(IV)-substituted (M = Ti, Zr) Niobate framework.

    PubMed

    Nyman, May; Tripathi, Akhilesh; Parise, John B; Maxwell, Robert S; Nenoff, Tina M

    2002-02-27

    Sandia octahedral molecular sieves (SOMS) is an isostructural, variable composition class of ion exchangers with the general formula Na(2)Nb(2-x)M(IV)(x)O (6-x)(OH)(x).H(2)O (M(IV) = Ti, Zr; x = 0.04-0.40) where up to 20% of the framework Nb(V) can be substituted with Ti(IV) or Zr(IV). This class of molecular sieves is easily converted to perovskite through low-temperature heat treatment (500-600 degrees C). This report provides a detailed account of how the charge imbalance of this Nb(V)-M(IV) substitution is compensated. X-ray powder diffraction with Rietveld refinement, infrared spectroscopy, thermogravimetric analysis, (23)Na MAS NMR, and (1)H MAS NMR were used to determine how the framework anionic charge is cation-balanced over a range of framework compositions. All spectroscopic evidence indicated a proton addition for each M(IV) substitution. Evidences for variable proton content included (1) increasing OH observed by (1)H MAS NMR with increasing M(IV) substitution, (2) increased infrared band broadening indicating increased H-bonding with increasing M(IV) substitution, (3) increased TGA weight loss (due to increased OH content) with increasing M(IV) substitution, (4) no variance in population on the sodium sites (indicated by Rietveld refinement) with variable composition, and (5) no change in the (23)Na MAS NMR spectra with variable composition. Also observed by infrared spectroscopy and (23)Na MAS NMR was increased disorder on the Nb(V)/M(IV) framework sites with increasing M(IV) substitution, evidenced by broadening of these spectral features. These spectroscopic studies, along with ion exchange experiments, also revealed the effect of the Nb(V)/M(IV) framework substitution on materials properties. Namely, the temperature of conversion to NaNb(1-x)M(IV)(x)O(3) (M = Ti, Zr) perovskite increased with increasing Ti in the framework and decreased with increasing Zr in the framework. This suggested that Ti stabilizes the SOMS framework and Zr destabilizes

  6. Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production

    NASA Astrophysics Data System (ADS)

    Jin, Tong

    Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular

  7. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  8. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  9. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  10. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  11. Stoichiometric and sodium-doped titanium silicate molecular sieve containing atomically defined -OTiOTiO- chains: Quantum ab initio calculations, spectroscopic properties, and reactivity

    NASA Astrophysics Data System (ADS)

    Bordiga, S.; Turnes Palomino, G.; Zecchina, A.; Ranghino, G.; Giamello, E.; Lamberti, C.

    2000-02-01

    Ab initio calculations on a linear -OTiOTiO- chain embedded in an envelope of (SiO4) tetrahedra, mimicking the structure of Na2TiSi5O13 molecular sieve (ETS-10), confirm that the peculiar optical properties of the solid are associated with the presence of -OTiOTiO- linear chains behaving as quantum wires. The optical [in the UV-Vis (ultraviolet-range)] and the magnetic [(ESR) electron spin resonance] properties of these chains can be modified by adsorbing Na vapors. The sodium atoms diffusing into the channels undergo a ionization process with formation of Na+ (localized in the main channels) and Ti3+ (in the -OTiOTiO- chain, which so becomes a nonstoichiometric wire) characterized by Ti/Na ratios in the 2-4 range. Successive adsorption of oxygen at room temperature leads to the partial (Ti/Na˜2) or total (Ti/Na˜4) restoration of the chain stoichiometry and to the predominant formation of sodium oxide. The formation of a minor fraction of superoxide negative ions whose magnetic properties are revealed by ESR spectroscopy is also observed. Total restoration of the optical properties of the original samples is always obtained when the oxygen adsorption is made at 473 K. The sample keeps its structural integrity during the reduction and successive oxidation process.

  12. Temperature-induced transformations in CoAPO-34 molecular sieve: a combined in situ X-ray diffraction and FTIR study.

    PubMed

    Martucci, Annalisa; Alberti, Alberto; Cruciani, Giuseppe; Frache, Alberto; Marchese, Leonardo; Pastore, Heloise O

    2005-07-21

    Thermally induced processes of CoAPO-34, an aluminophosphate molecular sieve with chabasite-type structure, synthesized in the presence of morpholine as a structure-directing agent and HF as a mineralizing agent, have been studied by in situ X-ray synchrotron powder diffraction augmented with Fourier transform (FT) IR analysis. A time-resolved experiment was performed using a translating imaging plate system. At room temperature, the structure refinement by full-profile Rietveld analysis showed P-1 symmetry and the presence of one Al site with sixfold coordination. At around 400 degrees C, both fluorine and morpholine are lost, and the four-connected chabazite (CHA)-type topology is restored. Notwithstanding the metrically rhombohedral values of the cell parameters, the symmetry remains triclinic P-1. Inhomogeneous dealumination of the framework begins at 725 degrees C, accompanied by a strong triclinization of the unit cell and followed by the collapse of the structure above 775 degrees C. The insertion of cobalt ions within the CHA framework was monitored by FTIR spectroscopy, which showed that bridged Co(2+)-O(H)-P hydroxyls are present after morpholine removal.

  13. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    PubMed

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  14. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    PubMed

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-08-24

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing

    2016-01-01

    A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    PubMed

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cobalt pivalate complex as a catalyst for liquid phase oxidation of n-hexane

    NASA Astrophysics Data System (ADS)

    Moskovskaya, I. F.; Maerle, A. A.; Shvydkiy, N. V.; Romanovsky, B. V.; Ivanova, I. I.

    2015-09-01

    Catalytic properties of cobalt(II) pivalate complex as both individual and supported on mesoporous molecular sieves Si-KIT-6, Al-KIT-6, and Ce-KIT-6 were investigated in liquid-phase oxidation of n-hexane with molecular oxygen. This complex was shown to be an active and selective catalyst for the oxidation of n-C6H14 into C1-C4 carboxylic acids. The activity of Co(II) pivalate remains practically unchanged on heterogenizing the complex on molecular sieve supports. At the same time, its selectivity and resistance towards an oxidative degradation are slightly increased.

  18. Molecular-level Design of Heterogeneous Chiral Catalysts

    SciTech Connect

    Gellman, Andrew John; Sholl, David S.; Tysoe, Wilfred T.; Zaera, Francisco

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  19. Photon Sieve Space Telescope

    DTIC Science & Technology

    2010-09-01

    a two-year effort to test and construct a membrane photon sieve for deployment from a 3U CubeSat. With a 0.3m diameter and 1m focal length this...Photon Sieve Space Telescope Geoff Andersen, Mike Dearborn and Geoff McHarg 2354 Fairchild Dr, Ste 2A31 USAF Academy, CO 80840 Contact...geoff.andersen@usafa.edu, 719-333-2829 Introduction One approach for constructing ultra-large (>20m) next-generation, space-based telescopes is to use

  20. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source

    NASA Astrophysics Data System (ADS)

    Sang, Yu; Jiao, Qingze; Li, Hansheng; Wu, Qin; Zhao, Yun; Sun, Kening

    2014-12-01

    A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns ( x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios ( x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption-desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200-300 nm) with a controllable acidity well dispersed in and microporous-mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.

  1. On the simulation and theory of polymer dynamics in sieving media: Friction, molecular pulleys, Brownian ratchets and polymer scission

    NASA Astrophysics Data System (ADS)

    Kenward, Martin

    The study of single polymer dynamics has, in the past few years, undergone a resurgence. This has been spurred on by the emergence of the fields of micro- and nanofluidics and their associated applications, especially by their ability to promise revolutionary techniques to, for example: rapidly sequence DNA, analyze proteins, carry out large-scale laboratory techniques in centimeter sized devices (lab-on-a-chip) and test and verify fundamental concepts related to the statistical physics of single molecules in fluids. In particular, the study of (typically single, isolated) polymers and the development of theoretical methods and computational tools to examine these polymers in microfluidic environments is a key challenge. In this thesis, we examine several different phenomena related to the dynamics of polymers in either microfluidic environments or related applications to DNA sequencing or separation. A recurrent theme throughout this work is the use of Molecular Dynamics (MD) simulations with an explicit solvent. Explicit solvent is an important aspect of our simulations and contrasts much work in the current literature which either artificially includes solvent or neglects it all together. This explicit inclusion of solvent allows us to explore phenomena (related to hydrodynamics) that is not observable with, for example, Brownian (or Langevin) Dynamics or Monte Carlo simulations. Chapter 2 contains a primarily computational examination of the friction coefficients of uncharged polymers. We explore the effects of deforming polymer chains on their friction coefficients along with examining several fundamental concepts of polymer friction (including hydrodynamic permeability). A key result is a verification of the hydrodynamic coupling of polymer chains resulting from a net reduction in the friction of polymer chains in hairpin (or folded) conformations. We also show that polymers undergo frictional transitions as they are stretched by an external force applied to

  2. Metalloporphyrin catalysts for oxygen reduction developed using computer-aided molecular design

    SciTech Connect

    Ryba, G.N.; Hobbs, J.D.; Shelnutt, J.A.

    1996-04-01

    The objective of this project is the development of a new class of metalloporphyrin materials used as catalsyts for use in fuel cell applications. The metalloporphyrins are excellent candidates for use as catalysts at both the anode and cathode. The catalysts reduce oxygen in 1 M potassium hydroxide, as well as in 2 M sulfuric acid. Covalent attachment to carbon supports is being investigated. The computer-aided molecular design is an iterative process, in which experimental results feed back into the design of future catalysts.

  3. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  4. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  5. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effects that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable.

  6. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1992-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  7. Microfluidic sieve valves

    DOEpatents

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  8. Membrane photon sieve telescopes.

    PubMed

    Andersen, Geoff

    2010-11-20

    We present results of research into the design and construction of membrane photon sieves as primaries for next-generation lightweight space telescopes. We have created prototypes in electroformed nickel as well as diazo and CP-1 polymer films. In two such cases, diffraction-limited imaging performance was demonstrated over a narrow bandwidth.

  9. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity. This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a

  10. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  11. A molecular light-driven water oxidation catalyst.

    PubMed

    Kaveevivitchai, Nattawut; Chitta, Raghu; Zong, Ruifa; El Ojaimi, Maya; Thummel, Randolph P

    2012-07-04

    Two mononuclear Ru(II) complexes, [Ru(ttbt)(pynap)(I)]I and [Ru(tpy)(Mepy)(2)(I)]I (tpy = 2,2';6,2"-terpyridine; ttbt = 4,4',4"-tri-tert-butyltpy; pynap = 2-(pyrid-2'-yl)-1,8-naphthyridine; and Mepy = 4-methylpyridine), are effective catalysts for the oxidation of water. This oxidation can be driven by a blue (λ(max) = 472 nm) LED light source using [Ru(bpy)(3)]Cl(2) (bpy = 2,2'-bipyridine) as the photosensitizer. Sodium persulfate acts as a sacrificial electron acceptor to oxidize the photosensitizer that in turn drives the catalysis. The presence of all four components, light, photosensitizer, sodium persulfate, and catalyst, are required for water oxidation. A dyad assembly has been prepared using a pyrazine-based linker to join a photosensitizer and catalyst moiety. Irradiation of this intramolecular system with blue light produces oxygen with a higher turnover number than the analogous intermolecular component system under the same conditions.

  12. Research on Molecular Sieve Technology.

    ERIC Educational Resources Information Center

    Shah, Dhananjai B.; Hayhurst, David T.

    1985-01-01

    The zeolite synthesis and modification research program at Cleveland State University (Ohio) is described, including program philosophy and objectives, and research facilities. Also considers zeolite synthesis, adsorption on zeolites, kinetics of adsorption, and zeolite catalysis research. (JN)

  13. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  14. Research on Molecular Sieve Technology.

    ERIC Educational Resources Information Center

    Shah, Dhananjai B.; Hayhurst, David T.

    1985-01-01

    The zeolite synthesis and modification research program at Cleveland State University (Ohio) is described, including program philosophy and objectives, and research facilities. Also considers zeolite synthesis, adsorption on zeolites, kinetics of adsorption, and zeolite catalysis research. (JN)

  15. Thermal stability of the Mobil Five type metallosilicate molecular sieves-An in situ high temperature X-ray diffraction study

    SciTech Connect

    Bhange, D.S.; Ramaswamy, Veda . E-mail: v.ramaswamy@ncl.res.in

    2007-05-03

    We have carried out in situ high temperature X-ray diffraction (HTXRD) studies of silicalite-1 (S-1) and metallosilicate molecular sieves containing iron, titanium and zirconium having Mobil Five (MFI) structure (iron silicalite-1 (FeS-1), titanium silicalite-1 (TS-1) and zirconium silicalite-1 (ZrS-1), respectively) in order to study the thermal stability of these materials. Isomorphous substitution of Si{sup 4+} by metal atoms is confirmed by the expansion of unit cell volume by X-ray diffraction (XRD) and the presence of Si-O-M stretching band at {approx}960 cm{sup -1} by Fourier transform infrared (FTIR) spectroscopy. Appearance of cristobalite phase is seen at 1023 and 1173 K in S-1 and FeS-1 samples. While the samples S-1 and FeS-1 decompose completely to cristobalite at 1173 and 1323 K, respectively, the other two samples are thermally stable upto 1623 K. This transformation is irreversible. Although all materials show a negative lattice thermal expansion, their lattice thermal expansion coefficients vary. The thermal expansion behavior in all samples is anisotropic with relative strength of contraction along 'a' axes is more than along 'b' and 'c' axes in S-1, TS-1, ZrS-1 and vice versa in FeS-1. Lattice thermal expansion coefficients ({alpha} {sub v}) in the temperature range 298-1023 K were -6.75 x 10{sup -6} K{sup -1} for S-1, -12.91 x 10{sup -6} K{sup -1} for FeS-1, -16.02 x 10{sup -6} K{sup -1} for TS-1 and -17.92 x 10{sup -6} K{sup -1} for ZrS-1. The highest lattice thermal expansion coefficients ({alpha} {sub v}) obtained were -11.53 x 10{sup -6} K{sup -1} for FeS-1 in temperature range 298-1173 K, -20.86 x 10{sup -6} K{sup -1} for TS-1 and -25.54 x 10{sup -6} K{sup -1} for ZrS-1, respectively, in the temperature range 298-1623 K. Tetravalent cation substitution for Si{sup 4+} in the lattice leads to a high thermal stability as compared to substitution by trivalent cations.

  16. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  17. Ultrasound- and Molecular Sieves-Assisted Synthesis, Molecular Docking and Antifungal Evaluation of 5-(4-(Benzyloxy)-substituted phenyl)-3-((phenylamino)methyl)-1,3,4-oxadiazole-2(3H)-thiones.

    PubMed

    Nimbalkar, Urja D; Tupe, Santosh G; Seijas Vazquez, Julio A; Khan, Firoz A Kalam; Sangshetti, Jaiprakash N; Nikalje, Anna Pratima G

    2016-05-10

    A novel series of 5-(4-(benzyloxy)substituted phenyl)-3-((phenyl amino)methyl)-1,3,4-oxadiazole-2(3H)-thione Mannich bases 6a-o were synthesized in good yield from the key compound 5-(4-(benzyloxy)phenyl)-1,3,4-oxadiazole-2(3H)-thione by aminomethylation with paraformaldehyde and substituted amines using molecular sieves and sonication as green chemistry tools. The antifungal activity of the new products was evaluated against seven human pathogenic fungal strains, namely, Candida albicans ATCC 24433, Candida albicans ATCC 10231, Candida glabrata NCYC 388, Cryptococcus neoformans ATCC 34664, Cryptococcus neoformans PRL 518, Aspergillus fumigatus NCIM 902 and Aspergillus niger ATCC 10578. The synthesized compounds 6d, 6f, 6g, 6h and 6j exhibited promising antifungal activity against the tested fungal pathogens. In molecular docking studies, derivatives 6c, 6f and 6i showed good binding at the active site of C. albicans cytochrome P450 enzyme lanosterol 14 α-demethylase. The in vitro antifungal activity results and docking studies indicated that the synthesized compounds have potential antifungal activity and can be further optimized as privileged scaffolds to design and develop potent antifungal drugs.

  18. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Zagal, José H; Koper, Marc T M

    2016-11-14

    Similarities are established between well-known reactivity descriptors of metal electrodes for their activity in the oxygen reduction reaction (ORR) and the reactivity of molecular catalysts, in particular macrocyclic MN4 metal complexes confined to electrode surfaces. We show that there is a correlation between the M(III) /M(II) redox potential of MN4 chelates and the M-O2 binding energies. Specifically, the binding energy of O2 (and other O species) follows the M(III) -OH/M(II) redox transition for MnN4 and FeN4 chelates. The ORR volcano plot for MN4 catalysts is similar to that for metal catalysts: catalysts on the weak binding side (mostly CoN4 chelates) yield mainly H2 O2 as the product, with an ORR onset potential independent of the pH value on the NHE scale (and therefore pH-dependent on the RHE scale); catalysts on the stronger binding side yield H2 O as the product with the expected pH-dependence on the NHE scale. The suggested descriptors also apply to heat-treated pyrolyzed MN4 catalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development and understanding of cobaloxime activity through electrochemical molecular catalyst screening.

    PubMed

    Wakerley, David W; Reisner, Erwin

    2014-03-28

    Electrochemical molecular catalyst screening (EMoCS) has been developed. This technique allows fast analysis and identification of homogeneous catalytic species through tandem catalyst assembly and electrochemistry. EMoCS has been used to study molecular proton reduction catalysts made from earth abundant materials to improve their viability for water splitting systems. The efficacy of EMoCS is proven through investigation of cobaloxime proton reduction activity with respect to the axial ligand in aqueous solution. Over 20 axial ligands were analysed, allowing rapid identification of the most active catalysts. Structure-activity relationships showed that more electron donating pyridine ligands result in enhanced catalytic currents due to the formation of a more basic Co-H species. The EMoCS results were validated by isolating and assaying the most electroactive cobaloximes identified during screening. The most active catalyst, [Co(III)Cl(dimethyl glyoximato)2(4-methoxypyridine)], showed high electro- and photoactivity in both anaerobic and aerobic conditions in pH neutral aqueous solution.

  20. Dynamic Structural Changes in a Molecular Zeolite-Supported Iridium Catalyst for Ethene Hydrogenation

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-11-16

    The structure of a catalyst often changes as a result of changes in the reactive environment during operation. Examples include changes in bulk phases, extended surface structures, and nanoparticle morphologies; now we report real-time characterization of changes in the structure of a working supported catalyst at the molecular level. Time-resolved extended X-ray absorption fine structure (EXAFS) data demonstrate the reversible interconversion of mononuclear iridium complexes and tetrairidium clusters inside zeolite Y cages, with the structure controlled by the C{sub 2}H{sub 4}/H{sub 2} ratio during ethene hydrogenation at 353 K. The data demonstrate break-up of tetrairidium clusters into mononuclear complexes indicated by a decrease in the Ir-Ir coordination number in ethene-rich feed. When the feed composition was switched to first equimolar and then to a H{sub 2}-rich (C{sub 2}H{sub 4}/H{sub 2} = 0.3) feed, the EXAFS spectra show the reformation of tetrairidium clusters as the Ir-Ir coordination number increased again. When the feed composition was cycled from ethene-rich to H{sub 2}-rich, the predominant species in the catalyst cycled accordingly. Evidence confirming the structural change is provided by IR spectra of iridium carbonyls formed by probing of the catalyst with CO. The data are the first showing how to tune the structure of a solid catalyst at the molecular scale by choice of the reactant composition.

  1. Broad pore channels as molecular highways in nanoporous catalysts: Multiscale modeling, optimization and applications

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Porous catalysts are widely used in many applications, ranging from petroleum refining to fuel cells and emission control. Nanoporous catalysts like zeolites often have an extremely large internal surface area (e.g., 1000m 2/g), which is beneficial because catalytic reactions occur on the surface. However, their small pore size leads to slow molecular transport and pore blocking, limiting the efficient use of the catalytic material. This indicates that, apart from the nanopores where reactions actually occur, a "distribution" network of broad pore channels is needed for molecules to quickly move in and out of the catalyst. Despite considerable experimental efforts in the introduction of broad pore channels into nanoporous catalysts in a controllable way, the following generic question remains: which broad pore channel network should be included in a nanoporous catalyst for optimal catalyst performance? To this end, model-based optimizations were used to optimize hierarchically structured porous catalysts, containing both broad pore channels and nanopores. Extensive optimizations showed that, for a single, isothermal reaction, the nanoporous walls (i.e., the nanoporous catalytic material between two neighboring broad pore channels) should be sufficiently thin so that diffusion limitations vanish inside them. It was found that the optimal catalytic performance is dictated by the generalized distributor Thiele modulus, which is defined in a way analogous to the generalized Thiele modulus, but using the molecular diffusivity in the broad pore channels, rather than the effective diffusivity in the nanopores. The use of hierarchically structured porous catalysts was demonstrated for power plant deNOx catalysis and autothermal reforming of methane. For deNOx catalysis, overall catalytic activity in a mesoporous deNOx catalyst with a median pore size of 32.5 nm could be increased by a factor of 1.8-2.8 simply by introducing 8-22mum broad pore channels (occupying 20-40% of

  2. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    NASA Astrophysics Data System (ADS)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  3. Visible-light-driven methane formation from CO2 with a molecular iron catalyst.

    PubMed

    Rao, Heng; Schmidt, Luciana C; Bonin, Julien; Robert, Marc

    2017-08-03

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  4. Ab initio molecular orbital study of the effects of basis set size on the calculated structure and acidity of hydroxyl groups in framework molecular sieves

    SciTech Connect

    Nicholas, J.B.; Hopfinger, A.J. ); Harrison, R.J.; Iton, L.E.; Curtiss, L.A.; Winans, R.E. )

    1992-12-10

    The structures, force constants, and relative acidities of a series of molecules that mimic the geometries of terminal and bridging hydroxyl groups in various substituted zeolites and clays are calculated by ab initio molecular orbital methods. The molecules are structural analogs of disiloxane H[sub 3]T-O-TH[sub 3], and the protonated form H[sub 3]T, Si, Al, B, and P. Also included are H[sub 3]/SiO[sup [minus

  5. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    PubMed

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    This Account describes our research related to the development of molecular catalysts for solution phase olefin polymerization. Specifically, a series of constrained geometry and nonmetallocene (imino-amido-type) complexes were developed for high temperature olefin polymerization reactions. We have discovered many highly active catalysts that are capable of operating at temperatures above 120 °C and producing copolymers with a useful range of molecular weights (from medium to ultrahigh depending on precatalyst identity and polymerization conditions) and α-olefin incorporation capability. Constrained geometry catalysts (CGCs) exhibit very high activities and are capable of producing a variety of copolymers including ethylene-propylene and ethylene-1-octene copolymers at high reactor temperatures. Importantly, CGCs have much higher reactivity toward α-olefins than classical Ziegler-Natta catalysts, thus allowing for the production of copolymers with any desired level of comonomer. In search of catalysts with improved performance, we discovered 3-amino-substituted indenyl-based CGCs that exhibit the highest activity and produce copolymers with the highest molecular weight within this family of catalysts. Phenanthrenyl-based CGCs were found to be outstanding catalysts for the effective production of high styrene content ethylene-styrene copolymers under industrially relevant conditions. In contrast to CGC ligands, imino-amido-type ligands are bidentate and monoionic, leading to the use of trialkyl group IV precatalysts. The thermal instability of imino-amido complexes was addressed by the development of imino-enamido and amidoquinoline complexes, which are not only thermally very robust, but also produce copolymers with higher molecular weights, and exhibit improved α-olefin incorporation. Imido-amido and imino-enamido catalysts undergo facile chain transfer reactions with metal alkyls, as evidenced by a sharp decrease in polymer molecular weight when the

  6. Generalized Fibonacci photon sieves.

    PubMed

    Ke, Jie; Zhang, Junyong

    2015-08-20

    We successfully extend the standard Fibonacci zone plates with two on-axis foci to the generalized Fibonacci photon sieves (GFiPS) with multiple on-axis foci. We also propose the direct and inverse design methods based on the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones, according to the generalized Fibonacci sequences, we not only realize adjustable multifocal distances but also fulfill the adjustable compression ratio of focal spots in different directions.

  7. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  8. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material.

    PubMed

    Chen, Banglin; Zhao, Xuebo; Putkham, Apipong; Hong, Kunlun; Lobkovsky, Emil B; Hurtado, Eric J; Fletcher, Ashleigh J; Thomas, K Mark

    2008-05-21

    component with low activation energy (8.56 +/- 0.41 kJ mol (-1)). The D 2 adsorption kinetic constants for both components were significantly faster than the corresponding H 2 kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H 2 adsorption. The kD 2/ kH 2 ratio for the slow component was 1.62 +/- 0.07, while the fast component was 1.38 +/- 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H 2, resulting in slower adsorption kinetics compared with the heavier D 2. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H 2 adsorption over a wide range of surface coverage and quantum effects influence diffusion of H 2 and D 2 in pores in M'MOF 1.

  9. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-11-22

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  10. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-04-19

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  11. Molecular metal-Oxo catalysts for generating hydrogen from water

    DOEpatents

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  12. Molecular heterogeneous catalysts derived from bipyridine-based organosilica nanotubes for C-H bond activation.

    PubMed

    Zhang, Shengbo; Wang, Hua; Li, Mei; Han, Jinyu; Liu, Xiao; Gong, Jinlong

    2017-06-01

    Heterogeneous metal complex catalysts for direct C-H activation with high activity and durability have always been desired for transforming raw materials into feedstock chemicals. This study described the design and synthesis of one-dimensional organosilica nanotubes containing 2,2'-bipyridine (bpy) ligands in the framework (BPy-NT) and their post-synthetic metalation to provide highly active and robust molecular heterogeneous catalysts. By adjusting the ratios of organosilane precursors, very short BPy-NT with ∼50 nm length could be controllably obtained. The post-synthetic metalation of bipyridine-functionalized nanotubes with [IrCp*Cl(μ-Cl)]2 (Cp* = η(5)-pentamethylcyclopentadienyl) and [Ir(cod)(OMe)]2 (cod = 1,5-cyclooctadiene) afforded solid catalysts, IrCp*-BPy-NT and Ir(cod)-BPy-NT, which were utilized for C-H oxidation of heterocycles and cycloalkanes as well as C-H borylation of arenes. The cut-short nanotube catalysts displayed enhanced activities and durability as compared to the analogous homogeneous catalysts and other conventional heterogeneous catalysts, benefiting from the isolated active sites as well as the fast transport of substrates and products. After the reactions, a detailed characterization of Ir-immobilized BPy-NT via TEM, SEM, nitrogen adsorption, UV/vis, XPS, and (13)C CP MAS NMR indicated the molecular nature of the active species as well as stable structures of nanotube scaffolds. This study demonstrates the potential of BPy-NT with a short length as an integration platform for the construction of efficient heterogeneous catalytic systems for organic transformations.

  13. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  14. Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst

    SciTech Connect

    Soorholtz, Mario; Jones, Louis C.; Samuelis, Dominik; Weidenthaler, Claudia; White, Robin J.; Titirici, Maria-Magdalena; Cullen, David A.; Zimmermann, Tobias; Antonietti, Markus; Maier, Joachim; Palkovits, Regina; Chmelka, Bradley F.; Schüth, Ferdi

    2016-02-16

    Combining advantages of homogeneous and heterogeneous catalysis by incorporating active species on a solid support is often an effective strategy for improving overall catalyst performance, although the influences of the support are generally challenging to establish, especially at a molecular level. In this paper, we report the local compositions, and structures of platinum species incorporated into covalent triazine framework (Pt-CTF) materials, a solid analogue of the molecular Periana catalyst, Pt(bpym)Cl2, both of which are active for the selective oxidation of methane in the presence of concentrated sulfuric acid. By using a combination of solid-state 195Pt nuclear magnetic resonance (NMR) spectroscopy, aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), important similarities and differences are observed between the Pt-CTF and Periana catalysts, which are likely related to their respective macroscopic reaction properties. In particular, wide-line solid-state 195Pt NMR spectra enable direct measurement, identification, and quantification of distinct platinum species in as-synthesized and used Pt-CTF catalysts. The results indicate that locally ordered and disordered Pt sites are present in as-synthesized Pt-CTF, with the former being similar to one of the two crystallographically distinct Pt sites in crystalline Pt(bpym)Cl2. A distribution of relatively disordered Pt moieties is also present in the used catalyst, among which are the principal active sites. Similarly XAS shows good agreement between the measured data of Pt-CTF and a theoretical model based on Pt(bpym)Cl2. Analyses of the absorption spectra of Pt-CTF used for methane oxidation suggests ligand exchange, as predicted for the molecular catalyst. XPS analyses of Pt(bpym)Cl2, Pt-CTF, as well as the unmodified ligands, further

  15. Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst

    DOE PAGES

    Soorholtz, Mario; Jones, Louis C.; Samuelis, Dominik; ...

    2016-02-16

    Combining advantages of homogeneous and heterogeneous catalysis by incorporating active species on a solid support is often an effective strategy for improving overall catalyst performance, although the influences of the support are generally challenging to establish, especially at a molecular level. In this paper, we report the local compositions, and structures of platinum species incorporated into covalent triazine framework (Pt-CTF) materials, a solid analogue of the molecular Periana catalyst, Pt(bpym)Cl2, both of which are active for the selective oxidation of methane in the presence of concentrated sulfuric acid. By using a combination of solid-state 195Pt nuclear magnetic resonance (NMR) spectroscopy,more » aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), important similarities and differences are observed between the Pt-CTF and Periana catalysts, which are likely related to their respective macroscopic reaction properties. In particular, wide-line solid-state 195Pt NMR spectra enable direct measurement, identification, and quantification of distinct platinum species in as-synthesized and used Pt-CTF catalysts. The results indicate that locally ordered and disordered Pt sites are present in as-synthesized Pt-CTF, with the former being similar to one of the two crystallographically distinct Pt sites in crystalline Pt(bpym)Cl2. A distribution of relatively disordered Pt moieties is also present in the used catalyst, among which are the principal active sites. Similarly XAS shows good agreement between the measured data of Pt-CTF and a theoretical model based on Pt(bpym)Cl2. Analyses of the absorption spectra of Pt-CTF used for methane oxidation suggests ligand exchange, as predicted for the molecular catalyst. XPS analyses of Pt(bpym)Cl2, Pt-CTF, as well as the unmodified ligands, further corroborate platinum coordination by pyridinic N atoms

  16. Broadband antihole photon sieve telescope.

    PubMed

    Andersen, Geoff; Tullson, Drew

    2007-06-20

    A broadband-corrected optical telescope has been constructed from a photon sieve with five million holes. Through careful optimization of hole size, this "antihole" sieve has holes centered on the dark underlying Fresnel zones. The diffraction-limited performance of a 1 m focal-length, f/10 element is demonstrated with a view toward constructing large lightweight telescopes for space applications.

  17. Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation.

    PubMed

    Henderson, Brian; Pockley, A Graham

    2010-09-01

    This review critically examines the hypothesis that molecular chaperones and protein-folding catalysts from prokaryotes and eukaryotes can be secreted by cells and function as intercellular signals, principally but not exclusively, for leukocytes. A growing number of molecular chaperones have been reported to function as ligands for selected receptors and/or receptors for specific ligands. Molecular chaperones initially appeared to act primarily as stimulatory signals for leukocytes and thus, were seen as proinflammatory mediators. However, evidence is now emerging that molecular chaperones can have anti-inflammatory actions or, depending on the protein and concentration, anti- and proinflammatory functions. Recasting the original hypothesis, we propose that molecular chaperones and protein-folding catalysts are "moonlighting" proteins that function as homeostatic immune regulators but may also under certain circumstances, contribute to tissue pathology. One of the key issues in the field of molecular chaperone biology relates to the role of microbial contaminants in their signaling activity; this too will be evaluated critically. The most fascinating aspect of molecular chaperones probably relates to evidence for their therapeutic potential in human disease, and ongoing studies are evaluating this potential in a range of clinical settings.

  18. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures.

    PubMed

    Wang, Renhu; Li, Junhua

    2010-06-01

    Volatile organic compounds (VOCs) emitted from many industrial processes and transportation activities are major organic pollutants in the atmosphere and toxic to human health. Octahedral molecular sieve (OMS-2) catalysts with different precursors and sulfate-acidified OMS-2 catalysts were synthesized using refluxing methods. The catalysts were investigated on complete oxidation of ethanol and acetaldehyde, and both demonstrated good reactivity. However, acidification resulted in a decrease in activity. OMS-2 catalyst using MnSO(4) as precursor exhibited the best catalytic performance and, thus, was selected for catalyst deactivation by sulfur dioxide. The results of this study suggested that the Mn-O bond of OMS-2 catalysts was the main determinant of the catalytic activity toward oxygenated VOC oxidation and weaker acid sites benefited higher acetaldehyde selectivity. Catalyst deactivation resulted from a strong but slow chemical interaction between the Mn-O bond and sulfur dioxide, probably forming manganese sulfate.

  19. Photoswitching a molecular catalyst to regulate CO2 hydrogenation.

    PubMed

    Priyadarshani, Nilusha; Ginovska, Bojana; Bays, J Timothy; Linehan, John C; Shaw, Wendy J

    2015-09-07

    Inspired by nature's ability to regulate catalysis using physiological stimuli, azobenzene was incorporated into Rh(bis)diphosphine CO2 hydrogenation catalysts to photoinitiate structural changes to modulate the resulting catalytic activity. The rhodium bound diphosphine ligands (P(Ph2)-CH2-N(R)-CH2-P(Ph2)) contain the terminal amine of a non-natural amino acid, with the R-group being either β-alanine (β-Ala) or γ-aminobutyric acid (GABA). For both β-Ala and GABA containing complexes, the carboxylic acids of the amino acids were coupled to the amines of diaminoazobenzene, creating a complex consisting of a rhodium bound to a photo-responsive tetradentate ligand. The photo-induced cis-trans isomerization of the azobenzene-containing complexes imposes structural changes on these complexes, as evidenced by NMR studies. We found that the CO2 hydrogenation activity for the β-Ala bound rhodium complex is 40% faster at 27 °C with the light on, i.e. azobenzene in the cis-conformation (TOF = 16 s(-1)) than when the complex was in the dark and the azobenzene in the trans-conformation (TOF = 11 s(-1)). In contrast the γ-aminobutyric acid containing rhodium complex has the same rate (TOF ∼17 s(-1)) with the azobenzene in either the cis or the trans-conformation at 27 °C. The corresponding (bis)diphosphine complexes without the attached azobenzene were also prepared, characterized, and catalytically tested for comparison, and have TOF's of 30 s(-1). Computational studies were undertaken to evaluate if the difference in rate between the cis- and trans-azobenzene isomers for the β-Ala bound rhodium complex were due to structural differences. These computational investigations revealed major structural changes between all cis- and trans-azobenzene structures, but only minor structural changes that would be unique to the β-Ala bound rhodium complex. We postulate that the different rates between the cis- and trans-azobenzene β-Ala bound containing rhodium complexes are

  20. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.

    PubMed

    Fan, Ke; Li, Fusheng; Wang, Lei; Daniel, Quentin; Chen, Hong; Gabrielsson, Erik; Sun, Junliang; Sun, Licheng

    2015-10-12

    Photoelectrochemical (PEC) cells for light-driven water splitting are prepared using hematite nanorod arrays on conductive glass as the photoanode. These devices improve the photocurrent of the hematite-based photoanode for water splitting, owing to fewer surface traps and decreased electron recombination resulting from the one-dimensional structure. By employing a molecular ruthenium co-catalyst, which contains a strong 2,6-pyridine-dicarboxylic acid anchoring group at the hematite photoanode, the photocurrent of the PEC cell is enhanced with high stability for over 10 000 s in a 1 m KOH solution. This approach can pave a route for combining one-dimensional nanomaterials and molecular catalysts to split water with high efficiency and stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode.

    PubMed

    Chiou, Tzung-Wen; Lu, Tsai-Te; Wu, Ying-Hao; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2015-12-01

    Despite extensive efforts, the electrocatalytic reduction of water using homogeneous/heterogeneous Fe, Co, Ni, Cu, W, and Mo complexes remains challenging because of issues involving the development of efficient, recyclable, stable, and aqueous-compatible catalysts. In this study, evolution of the de novo designed dinitrosyl iron complex DNIC-PMDTA from a molecular catalyst into a solid-state hydrogen evolution cathode, considering all the parameters to fulfill the electronic and structural requirements of each step of the catalytic cycle, is demonstrated. DNIC-PMDTA reveals electrocatalytic reduction of water at neutral and basic media, whereas its deposit on electrode preserves exceptional longevity, 139 h. This discovery will initiate a systematic study on the assembly of [Fe(NO)2] motif into current collector for mass production of H2, whereas the efficiency remains tailored by its molecular precursor [(L)Fe(NO)2].

  2. Toward efficient asymmetric hydrogenation: Architectural and functional engineering of chiral molecular catalysts

    PubMed Central

    Noyori, Ryoji; Kitamura, Masato; Ohkuma, Takeshi

    2004-01-01

    Asymmetric hydrogenation uses inexpensive, clean hydrogen gas and a very small amount of a chiral molecular catalyst, providing the most powerful way to produce a wide array of enantio-enriched compounds in a large quantity without forming any waste. The recent revolutionary advances in this field have entirely changed the synthetic approach to producing performance chemicals that require a high degree of structural precision. The means of developing efficient asymmetric hydrogenations is discussed from a mechanistic point of view. PMID:15034179

  3. Toward efficient asymmetric hydrogenation: architectural and functional engineering of chiral molecular catalysts.

    PubMed

    Noyori, Ryoji; Kitamura, Masato; Ohkuma, Takeshi

    2004-04-13

    Asymmetric hydrogenation uses inexpensive, clean hydrogen gas and a very small amount of a chiral molecular catalyst, providing the most powerful way to produce a wide array of enantio-enriched compounds in a large quantity without forming any waste. The recent revolutionary advances in this field have entirely changed the synthetic approach to producing performance chemicals that require a high degree of structural precision. The means of developing efficient asymmetric hydrogenations is discussed from a mechanistic point of view.

  4. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co4 O4 Cubane Catalyst.

    PubMed

    Wang, Yong; Li, Fei; Zhou, Xu; Yu, Fengshou; Du, Jian; Bai, Lichen; Sun, Licheng

    2017-06-06

    Molecular Co4 O4 cubane water oxidation catalysts were combined with BiVO4 electrodes for photoelectrochemical (PEC) water splitting. The results show that tuning the substituent groups on cobalt cubane allows the PEC properties of the final molecular catalyst/BiVO4 hybrid photoanodes to be tailored. Upon loading a new cubane complex featuring alkoxy carboxylato bridging ligands (1 h) on BiVO4 , an AM 1.5G photocurrent density of 5 mA cm(-2) at 1.23 V vs. RHE for water oxidation was obtained, the highest photocurrent for undoped BiVO4 photoanodes. A high solar-energy conversion efficiency of 1.84 % was obtained for the integrated photoanode, a sixfold enhancement over that of unmodified BiVO4 . These results and the high surface charge separation efficiency support the role of surface-modified molecular catalysts in improving PEC performance and demonstrate the potential of molecule/semiconductor hybrids for efficient artificial photosynthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-step ethanolysis of lignin into small-molecular aromatic hydrocarbons over nano-SiC catalyst.

    PubMed

    Chen, Yigang; Wang, Fang; Jia, Yingjie; Yang, Nan; Zhang, Xianming

    2017-02-01

    Catalytic depolymerization of lignin for preparation of aromatic hydrocarbons without external hydrogen was first carried out over nano-SiC catalyst in supercritical ethanol. Mixture of the catalyst and lignin was innovatively suspended in a closed reactor and small-molecular aromatic hydrocarbons were successfully achieved at 500°C. Results revealed that not only did conversion of lignin increase sharply under the nano-SiC catalyst, but also phenols were not detected. The increase of residence time under the Fe-SiC catalyst did not change distribution of the liquid products besides the yield improvement, suggesting that the catalyst was suitable and selective towards formation of small-molecular benzenes, especially C6-C8 benzenes. Preliminary studies found that lignin depolymerization and deoxygenation were successfully fulfilled during the reactions, which provided a very effective route to conversion of lignin into high added-value molecules as transportation fuel additives.

  6. Modified silica-based heterogeneous catalysts for etherification of glycerol

    SciTech Connect

    Gholami, Zahra; Abdullah, Ahmad Zuhairi Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  7. Modified silica-based heterogeneous catalysts for etherification of glycerol

    NASA Astrophysics Data System (ADS)

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca1.6La0.6/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  8. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  9. Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis.

    PubMed

    Wu, Chuan-De; Zhao, Min

    2017-03-03

    Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts.

  10. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1991-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metalbearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  11. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework

    SciTech Connect

    Pullen, Sonja; Fei, Honghan; Orthaber, Andreas; Cohen, Seth M.; Ott, Sascha

    2013-12-04

    A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal–organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)3]2+ as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)6 catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1 and 12– from undesirable charge recombination with oxidized ascorbate.

  12. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework.

    PubMed

    Pullen, Sonja; Fei, Honghan; Orthaber, Andreas; Cohen, Seth M; Ott, Sascha

    2013-11-13

    A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)3](2+) as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)6 catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1(-) and 1(2-) from undesirable charge recombination with oxidized ascorbate.

  13. InAs/InP nanowires grown by catalyst assisted molecular beam epitaxy on silicon substrates

    NASA Astrophysics Data System (ADS)

    Khmissi, H.; Naji, K.; Hadj Alouane, M. H.; Chauvin, N.; Bru-Chevallier, C.; Ilahi, B.; Patriarche, G.; Gendry, M.

    2012-04-01

    InP nanowires (NWs) with an InAs insertion were grown on (001)- and (111)-oriented silicon substrates by catalyst assisted molecular beam epitaxy. To prevent the crystallization of the catalyst droplet we propose a procedure based on the realization of the switching of the elements V flux during a growth interruption. With this procedure and with the growth conditions we have used, the crystal structure of the NWs is purely wurtzite without any stacking faults. With these growth conditions, both radial and axial growths occur simultaneously and we show that the growth time of the InAs insertion could be adjusted to obtain radial quantum well emitting in the 1.3-1.6 μm telecom band at room temperature.

  14. Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes

    DTIC Science & Technology

    1989-10-23

    Butanol Reactions Analy. G3. Baker 92 Section IV: SELECTIVE SYNTHESIS OF AROMATIC HYDROCARBONS OVER ZEOLITE CATALYSTS Research Personnel: Hong Paul...Alcohols from HZSM-5: (a) n- Butanol (c) Ethanol (b) n-Propanol (d) Methanol 127 The diffuse reflectance FTIR spectra of the zeolites prepared in this...of the five-liter bulbs. Matheson research grade oxygen (9𔄃.99 percent) was passed through a 13X molecular sieve trap (N) at a dry ice- acetone

  15. Hollow Nano- and Microstructures as Catalysts.

    PubMed

    Prieto, Gonzalo; Tüysüz, Harun; Duyckaerts, Nicolas; Knossalla, Johannes; Wang, Guang-Hui; Schüth, Ferdi

    2016-11-23

    Catalysis is at the core of almost every established and emerging chemical process and also plays a central role in the quest for novel technologies for the sustainable production and conversion of energy. Particularly since the early 2000s, a great surge of interest exists in the design and application of micro- and nanometer-sized materials with hollow interiors as solid catalysts. This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis. First, the main synthesis strategies toward hollow materials are succinctly summarized, with emphasis on the (regioselective) incorporation of various types of catalytic functionalities within their different subunits. The principles underlying the scientific and technological interest in hollow materials as solid catalysts, or catalyst carriers, are then comprehensively reviewed. Aspects covered include the stabilization of catalysts by encapsulation, the introduction of molecular sieving or stimuli-responsive "auxiliary" functionalities, as well as the single-particle, spatial compartmentalization of various catalytic functions to create multifunctional (bio)catalysts. Examples are also given on the applications which hollow structures find in the emerging fields of electro- and photocatalysis, particularly in the context of the sustainable production of chemical energy carriers. Finally, a critical perspective is provided on the plausible evolution lines for this thriving scientific field, as well as the main practical challenges relevant to the reproducible and scalable synthesis and utilization of hollow micro- and nanostructures as solid catalysts.

  16. Carbogenic molecular sieves for reaction and separation by design: A novel approach to shape selective super base, super acid and catalytic membranes. Final report

    SciTech Connect

    Foley, Henry C.

    2002-03-18

    This report details the findings of three years of research plus one year of a no-cost extension. Primary results are the work with supported nanoporous carbon membranes for separation and reaction as well as with cesium-nanoporous carbon catalysts. The work resulted in 17 plus 2 papers (2 are in progress) and partial or full support for five Ph.D. students. Two patents were filed based on this research.

  17. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    SciTech Connect

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation

  18. Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands

    SciTech Connect

    Lu, Jing; Serna, Pedro; Aydin, Cerem; Browning, Nigel D.; Gates, Bruce C.

    2012-02-07

    The performance of a supported catalyst is influenced by the size and structure of the metal species, the ligands bonded to the metal, and the support. Resolution of these effects has been lacking because of the lack of investigations of catalysts with uniform and systematically varied catalytic sites. We now demonstrate that the performance for ethene hydrogenation of isostructural iridium species on supports with contrasting properties as ligands (electron-donating MgO and electron-withdrawing HY zeolite) can be elucidated on the basis of molecular concepts. Spectra of the working catalysts show that the catalytic reaction rate is determined by the dissociation of H{sub 2} when the iridium, either as mono- or tetra-nuclear species, is supported on MgO and is not when the support is the zeolite. The neighboring iridium sites in clusters are crucial for activation of both H{sub 2} and C{sub 2}H{sub 4} when the support is MgO but not when it is the zeolite, because the electron-withdrawing properties of the zeolite support enable even single site-isolated Ir atoms to bond to both C{sub 2}H{sub 4} and H{sub 2} and facilitate the catalysis.

  19. Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst.

    PubMed

    Bavykina, A V; Goesten, M G; Kapteijn, F; Makkee, M; Gascon, J

    2015-03-01

    A heterogeneous molecular catalyst based on Ir(III) Cp* (Cp*=pentamethylcyclopentadienyl) attached to a covalent triazine framework (CTF) is reported. It catalyses the production of hydrogen from formic acid with initial turnover frequencies (TOFs) up to 27,000 h(-1) and turnover numbers (TONs) of more than one million in continuous operation. The CTF support, with a Brunauer-Emmett-Teller (BET) surface area of 1800 m(2)  g(-1), was constructed from an optimal 2:1 ratio of biphenyl and pyridine carbonitrile building blocks. Biphenyl building blocks induce mesoporosity and, therefore, facilitate diffusion of reactants and products whereas free pyridinic sites activate formic acid towards β-hydride elimination at the metal, rendering unprecedented rates in hydrogen production. The catalyst is air stable, produces CO-free hydrogen, and is fully recyclable. Hydrogen production rates of more than 60 mol L(-1)  h(-1) were obtained at high catalyst loadings of 16 wt % Ir, making it attractive towards process intensification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular Photocatalytic Systems for Solar Energy Conversion: Catalysts for the Evolution of Hydrogen and Oxygen from Water

    NASA Astrophysics Data System (ADS)

    Zamaraev, Kirill I.; Parmon, Valentin N.

    1983-09-01

    This review is devoted to recent advances in the development and study of homogeneous and heterogeneous catalysts for the reduction of water to molecular hydrogen and its oxidation to molecular oxygen. The production of micro-heterogeneous systems for photocatalytic charge separation is also discussed. 114 references.

  1. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April--June 1991

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  2. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1991

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1992-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  3. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1990

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effects that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable.

  4. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    -coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.

  5. Direct electrochemistry and electrocatalytic properties of hemoglobin immobilized on a carbon ionic liquid electrode modified with mesoporous molecular sieve MCM-41.

    PubMed

    Li, Yonghong; Zeng, Xiandong; Liu, Xiaoying; Liu, Xinsheng; Wei, Wanzhi; Luo, Shenglian

    2010-08-01

    The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in the MCM-41 modified carbon ionic liquid electrode (CILE) were investigated by using cyclic voltammetry in 0.10 M pH 7.0 phosphate buffer solution (PBS). Due to its uniform pore structure, high surface areas and good biocompatibility, the mesoporous silica sieve MCM-41 provided a suitable matrix for immobilization of biomolecule. The MCM-41 modified CILE showed significant promotion to the direct electron transfer of Hb, which exhibited a pair of well defined and quasi-reversible peaks for heme Fe(III)/Fe(II) with a formal potential of -0.284 V (vs. Ag/AgCl). Additionally, the Hb immobilized on the MCM-41 modified carbon ionic liquid electrode showed excellent electrocatalytic activity toward H(2)O(2). The electrocatalytic current values were linear with increasing concentration of H(2)O(2) in a wide range of 5-310 microM and the corresponding detection limit was calculated to be 5 x 10(-8)M (S/N=3). The surface coverage of Hb immobilized on the MCM-41 modified carbon ionic liquid electrode was about 2.54 x 10(-9) molcm(-2). The Michaelis-Menten constant K(m)(app) of 214 microM indicated that the Hb immobilized on the modified electrode showed high affinity to H(2)O(2). The proposed electrode had high stability and good reproducibility due to the protection effect of MCM-41 and ionic liquid, and it would have wide potential applications in direct electrochemistry, biosensors and biocatalysis.

  6. Molecular dissociation in the presence of catalysts: interpreting bond breaking as a quantum dynamical phase transition

    NASA Astrophysics Data System (ADS)

    Ruderman, A.; Dente, A. D.; Santos, E.; Pastawski, H. M.

    2015-08-01

    In this work we show that molecular chemical bond formation and dissociation in the presence of the d-band of a metal catalyst can be described as a quantum dynamical phase transition (QDPT). This agrees with DFT calculations that predict sudden jumps in some observables as the molecule breaks. According to our model this phenomenon emerges because the catalyst provides for a non-Hermitian Hamiltonian. We show that when the molecule approaches the surface, as occurs in the Heyrovsky reaction of H2, the bonding H2 orbital has a smooth crossover into a bonding molecular orbital built with the closest H orbital and the surface metal d-states. The same occurs for the antibonding state. Meanwhile, two resonances appear within the continuous spectrum of the d-band, which are associated with bonding and antibonding orbitals between the furthest H atom and the d-states at the second metallic layer. These move toward the band center, where they collapse into a pure metallic resonance and an almost isolated H orbital. This phenomenon constitutes a striking example of the non-trivial physics enabled when one deals with non-Hermitian Hamiltonian beyond the usual wide band approximation.

  7. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production.

    PubMed

    Willkomm, Janina; Orchard, Katherine L; Reynal, Anna; Pastor, Ernest; Durrant, James R; Reisner, Erwin

    2016-01-07

    The development of synthetic systems for the conversion of solar energy into chemical fuels is a research goal that continues to attract growing interest owing to its potential to provide renewable and storable energy in the form of a 'solar fuel'. Dye-sensitised photocatalysis (DSP) with molecular catalysts is a relatively new approach to convert sunlight into a fuel such as H2 and is based on the self-assembly of a molecular dye and electrocatalyst on a semiconductor nanoparticle. DSP systems combine advantages of both homogenous and heterogeneous photocatalysis, with the molecular components providing an excellent platform for tuning activity and understanding performance at defined catalytic sites, whereas the semiconductor bridge ensures favourable multi-electron transfer kinetics between the dye and the fuel-forming electrocatalyst. In this tutorial review, strategies and challenges for the assembly of functional molecular DSP systems and experimental techniques for their evaluation are explained. Current understanding of the factors governing electron transfer across inorganic-molecular interfaces is described and future directions and challenges for this field are outlined.

  8. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    DOE PAGES

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through anmore » amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni2P catalyst exhibited H2 activation and

  9. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    SciTech Connect

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; Nash, Connor P.; Wang, Jun; Pan, Ming; Hensley, Jesse E.; Schaidle, Joshua A.

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni2P, Rh2P, and Pd3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni2P NPs was shown to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H2 incorporation in the presence of all of the catalysts except NP-Pd3P, which exhibited minimal productive activity, and IW-Ni, which evolved H2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of

  10. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    PubMed

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an

  11. Too Big for the Sieve

    NASA Image and Video Library

    2012-10-11

    In this image, the scoop on NASA Curiosity rover shows the larger soil particles that were too big to filter through a sample-processing sieve that is porous only to particles less than 0.006 inches 150 microns across.

  12. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  13. Ozone reaction with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge.

    PubMed

    McClenny, W A; Colón, M; Oliver, K D

    2001-09-21

    Ozone reacts with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some sampling experiments both generation and destruction of n-aldehydes by ozone are observed. In field experiments the results of sample analysis for n-aldehydes and benzaldehyde are frequently not proportional to sample volume whereas results for toluene and isoprene, and sometimes for total carbon, are. A simple theory is developed to simulate the net result of three processes: the adsorption of compounds from an air stream onto a solid adsorbent, the generation of compounds by reaction of ozone with materials upstream of or on the adsorbent, and the destruction by ozone of pre-existing compounds and compounds adsorbed from the sample stream. The use of distributed volume pairs is recommended as a way to identify loss of sample integrity during air monitoring experiments.

  14. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples.

  15. Borosilicate-containing catalyst and reforming processes employing same

    SciTech Connect

    Unmuth, E.E.; Gutberlet, L.C.

    1986-04-22

    A process is described for the reforming of a hydrocarbon stream, which comprises contacting the hydrocarbon stream in a first reforming zone in the presence of hydrogen and under reforming conditions with a first catalyst to provide a partially-reformed effluent and contacting the partially-reformed effluent in a second reforming zone under reforming conditions and in the presence of hydrogen with a second catalyst to provide a reformed effluent having a high octane number. The first catalyst consists of at least one noble metal of Group VIII of the Periodic Table of Elements and a combined halogen on a porous, refractory inorganic oxide support. The second catalyst consists of a physical particle-form mixture of a Component A and a Component B. The Component A consists of at least one noble metal of Group VIII deposed on a solid catalyst support material providing acidic catalytic sites. The Component B consists of essentially of a crystalline borosilicate molecular sieve, the catalyst having been prepared by thoroughly and intimately blending finely-divided particles of the Components A and B to provide a thoroughly-blended composite, and the Component B being present in an amount within the range of about 0.1 wt% to about 25 wt%, based upon the weight of the second catalyst.

  16. In operando studies on the electrochemical oxidation of water mediated by molecular catalysts.

    PubMed

    Hetterscheid, Dennis G H

    2017-09-12

    Homogeneous reactions in general are relatively easy to study with respect to heterogeneous systems since all catalytic sites are uniform and can be addressed simultaneously. The latter feature is fully out of the window in an electrochemical context, where only the few catalytic species that are sufficiently close to the electrode undergo redox reactions. Especially in the water oxidation reaction where harsh reaction conditions are employed, a clear picture of what is the active species, what products are formed, how one can steer this, and how it all depends on the exact reaction conditions is important to be able to fully unravel the key reaction paths. The combination of electrochemical experiments with on-line detection of the catalytic species and reaction products is a powerful approach to successfully address these questions. Recently, a significant progress has been made in on-line studies on molecular water oxidation catalysts during electrochemical experiments. These are reviewed here.

  17. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water

    PubMed Central

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tatin, Arnaud

    2015-01-01

    Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid—a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO–H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator. PMID:26038542

  18. Clean Donor Oxidation Enhances the H2 Evolution Activity of a Carbon Quantum Dot-Molecular Catalyst Photosystem.

    PubMed

    Martindale, Benjamin C M; Joliat, Evelyne; Bachmann, Cyril; Alberto, Roger; Reisner, Erwin

    2016-08-01

    Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2  (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Non-sensitized selective photochemical reduction of CO2 to CO under visible light with an iron molecular catalyst.

    PubMed

    Rao, Heng; Bonin, Julien; Robert, Marc

    2017-03-02

    A substituted tetraphenyl iron porphyrin, bearing positively charged trimethylammonio groups at the para position of each phenyl ring, demonstrates its ability as a homogeneous molecular catalyst to selectively reduce CO2 to CO under visible light irradiation in organic media without the assistance of a sensitizer and no competitive hydrogen evolution for several days.

  20. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  1. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  2. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111).

    PubMed

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg

    2016-04-21

    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.

  3. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  4. Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol.

    PubMed

    Palkovits, Regina; von Malotki, Christian; Baumgarten, Martin; Müllen, Klaus; Baltes, Christian; Antonietti, Markus; Kuhn, Pierre; Weber, Jens; Thomas, Arne; Schüth, Ferdi

    2010-02-22

    The direct low-temperature oxidation of methane to methanol is demonstrated on a highly active homogeneous molecular catalyst system and on heterogeneous molecular catalysts based on polymeric materials possessing ligand motifs within the material structure. The N-(2-methylpropyl)-4,5-diazacarbazolyl-dichloro-platinum(II) complex reaches significantly higher activity compared to the well-known Periana system and allows first conclusions on electronic and structural requirements for high catalytic activity in this reaction. Interestingly, comparable activities could be achieved utilizing a platinum modified poly(benzimidazole) material, which demonstrates for the first time a solid catalyst with superior activity compared to the Periana system. Although the material shows platinum leaching, improved activity and altered electronic properties, compared to the conventional Periana system, support the proposed conclusions on structure-activity relationships. In comparison, platinum modified triazine-based catalysts show lower catalytic activity, but rather stable platinum coordination even after several catalytic cycles. Based on these systems, further development of improved solid catalysts for the direct low-temperature oxidation of methane to methanol is feasible.

  5. Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene).

    PubMed

    Qiu, Yunyan; Mohin, Jacob; Tsai, Chia-Hua; Tristram-Nagle, Stephanie; Gil, Roberto R; Kowalewski, Tomasz; Noonan, Kevin J T

    2015-05-01

    A commercially available palladium N-heterocyclic carbene (Pd-NHC) precatalyst is used to initiate chain-growth polymerization of 2-bromo-3-hexyl-5-trimethylstannylthiophene. The molecular weight of the resultant poly(3-hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and (1)H NMR spectroscopy reveals that the palladium catalyst is capable of "ring-walking". A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X-ray scattering verify the regioregular nature of the resultant polythiophene.

  6. Fluid dynamics on sieve trays

    SciTech Connect

    Hag, M.A.

    1982-08-01

    A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

  7. Multiprocessing the Sieve of Eratosthenes

    SciTech Connect

    Bokhari, S.H.

    1987-04-01

    More than two thousand years ago, Eratosthenes of Cyrene described a procedure for finding all prime numbers in a given range. This straightforward algorithm, known as the Sieve of Eratosthenes, is to this day the only procedure for finding prime numbers. In recent years it has been of interest to computer scientists and engineers because it serves as a convenient benchmark against which to measure some aspects of a computer's performance. Specifically, the Sieve tests the power of a machine (or of a compiler) to access a very large array in memory rapidly and repeatedly. This power is clearly influenced by memory access time, the speed at which indexing is done, and the overhead of looping. The parallel version of the Sieve is very useful as a test of some of the capabilities of a parallel machine. The parallel algorithm is straightforward, and so is the process for checking the final results. However, the efficient implementation of the algorithm on a real parallel machine, especially in the dynamic load-balancing case, requires thoughtful design.

  8. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  9. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)

    NASA Astrophysics Data System (ADS)

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg

    2016-04-01

    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting

  10. Performance of a novel sieving matrix of poly(vinyl alcohol)/acrylamide copolymer in electrophoretic separations of high molecular weight proteins from red cell membrane.

    PubMed

    Matte, Alessandro; Sola, Laura; Chiari, Marcella; Tomelleri, Carlo; Consonni, Roberto; Turrini, Franco; Franceschi, Lucia De

    2014-04-01

    The analysis of high molecular weight (HMW) proteins from complex mixtures is still a challenge in proteomics. This work introduces a novel hydrogel obtained by the copolymerization of an allyl-PVA derivative with acrylamide and bisacrylamide and applies this matrix to the electrophoretic separation of HMW proteins. By inducing gelation of polyacrylamide in the presence of variable amounts of allyl-PVA, it is possible to control and vary the average gel porosity. This gel is easy to produce and handle and offers the advantage of being highly mechanically resistant and macroporous. The new matrix was tested in mono-dimensional separations of complex protein mixtures extracted from red cell membranes with different detergents. The improved performance of this macroporous matrix allowed to identify new proteins by MS and immunoblot analysis using specific antibodies. In particular, the resolution of proteins ranging in size between 97 and 279 kDa was greatly improved here compared to standard polyacrylamide gels, suggesting that this matrix can be a useful tool in routine analysis of HMW proteins in cell biology.

  11. Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets.

    PubMed

    Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Moonshiram, Dooshaye; Picón, Antonio; Monge, Pere; Batista, Victor S; Llobet, Antoni

    2017-09-20

    A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)Cu(II)](2-), 2(2-), (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)Cu(II)](2-) water oxidation catalyst, 1(2-) (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 2(2-) with respect to 1(2-) and an impressive increase in the kcat from 6 to 128 s(-1). Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 2(2-) turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a kcat of 540 s(-1) and producing more than 5300 TONs.

  12. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July 1992--September 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1992-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle. nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1993--March 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This quarter, the solubilization of ammonium tetrathiomolybdate and the synthesis of molybdenum sulfide in several microemulsion systems is discussed.

  14. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October 1992--December 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.In this quarter, the synthesis of molybdenum sulfide in a microemulsion system with an alcohol-to-surfactant mass ratio of 3.5 is reported.

  15. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1992--March 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-05-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  16. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  17. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1993--June 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including g dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This report discusses molybdenum sulfide particle synthesis, characterization, and microemulsion characterization.

  18. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1992--June 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.This quarter, the effect of ammonium tetrathiomolybdate concentration on the synthesis of molybdenum sulfide in the 0.15 M NP-5/cyclohexane/water microemulsion system is discussed.

  19. Tunable sieving of ions using graphene oxide membranes.

    PubMed

    Abraham, Jijo; Vasu, Kalangi S; Williams, Christopher D; Gopinadhan, Kalon; Su, Yang; Cherian, Christie T; Dix, James; Prestat, Eric; Haigh, Sarah J; Grigorieva, Irina V; Carbone, Paola; Geim, Andre K; Nair, Rahul R

    2017-04-03

    Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ∼9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts. The cutoff is determined by the interlayer spacing (d) of ∼13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ∼9.8 Å to 6.4 Å are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ∼10-100 kJ mol(-1) depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

  20. Tunable sieving of ions using graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Abraham, Jijo; Vasu, Kalangi S.; Williams, Christopher D.; Gopinadhan, Kalon; Su, Yang; Cherian, Christie T.; Dix, James; Prestat, Eric; Haigh, Sarah J.; Grigorieva, Irina V.; Carbone, Paola; Geim, Andre K.; Nair, Rahul R.

    2017-07-01

    Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ˜9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts. The cutoff is determined by the interlayer spacing (d) of ˜13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ˜9.8 Å to 6.4 Å are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ˜10-100 kJ mol-1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.