Science.gov

Sample records for molecular spectroscopic studies

  1. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  2. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  3. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  4. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  5. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Yang, Ran; Liang, Huili; Qu, Ling-Bo

    2015-01-01

    In the work described on this paper, the inhibitory effect of 10 flavonoids on pepsin and the interactions between them were investigated by a combination of spectroscopic and molecular docking methods. The results indicated that all flavonoids could bind with pepsin to form flavonoid-pepsin complexes. The binding parameters obtained from the data at different temperatures revealed that flavonoids could spontaneously interact with pepsin mainly through electrostatic forces and hydrophobic interactions with one binding site. According to synchronous and three-dimensional fluorescence spectra and molecular docking results, all flavonoids bound directly into the enzyme cavity site and the binding influenced the microenvironment and conformation of the pepsin activity site which resulted in the reduced enzyme activity. The present study provides direct evidence at a molecular level to understand the mechanism of digestion caused by flavonoids.

  6. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  7. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    NASA Astrophysics Data System (ADS)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  8. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed.

  9. Study of spectroscopic and thermal characteristics of nonlinear optical molecular crystals based on 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Pavlovetc, I. M.; Fokina, M. I.

    2016-08-01

    The paper presents the results of study of spectroscopic and thermal characteristics of molecular co-crystals: 2-aminopyridine-4-nitrophenol-4-mtrophenolate (2AP4N) and 2,6- diaminopyridine-4-nitrophenol-4nitrophenolate (26DAP4N). Crystals were successfully grown by slow evaporation technique. Optical transparency in the region of 190-1100 was found to be suitable for applications with cut off wavelengths 420 and 430 nm respectively. Thermogravimetric and differential thermal analysis show good quality and thermal stability for studied crystals. Kurtz and Perry powder technique proves that the crystals are acentric and have significant nonlinear optical response.

  10. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  11. Molecular hydraulic properties of montmorillonite: a polarized fourier transform infrared spectroscopic study.

    PubMed

    Amarasinghe, Priyanthi M; Katti, Kalpana S; Katti, Dinesh R

    2008-12-01

    Understanding the rates at which fluid flows into clay interlayers at the molecular level is fundamental to designing an effective clay barrier system. In this work, molecular interactions at the Na-montmorillonite (MMT)-water interface, emphasizing the flow properties of the clay interlayer, have been studied at the molecular and nanoscale level using polarized Fourier transform infrared (FT-IR) spectroscopic and X-ray diffraction (XRD) techniques. Clay-water slurries were smeared on inert gold-coated metal substrates for FT-IR experiments and slurries were smeared on quartz plates for XRD experiments. By analyzing the O-H stretching and H-O-H bending vibrations in clay slurries, it was concluded that the molecular behavior of interlayer water is significantly different from the molecular behavior of bulk water. With increasing clay-water interaction time, it was also seen that the Si-O stretching bands of clay are being significantly altered by the water molecules in the interlayer. Using these spectroscopic techniques we have estimated the time required for water to flow into the clay interlayer. Further, by analyzing the particle size of the clay using atomic force microscopy (AFM) imaging, we were able to estimate the flow velocity of the water in the clay interlayer. This velocity is found to be 3.23 x 10(-9) cm/s. This flow velocity was found to be of the same order of magnitude as the hydraulic conductivity of smectite-type clay reported elsewhere. Also described in this work is the correct positioning of the Si-O out-of-plane vibration band of MMT at the two-layer saturation level in the interlayer. This band was only observed in p-polarized spectra at 1211 cm(-1). Thus, we attribute this band to the Si-O out-of-plane vibration band.

  12. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  13. Spectroscopic and molecular modeling studies on the interactions of N-Methylformamide with superoxide dismutase.

    PubMed

    Kalyani, Durai; Jyothi, Kanagaraj; Sivaprakasam, Chinnarasu; Nachiappan, Vasanthi

    2014-04-24

    N-Methylformamide, a polar solvent has a wide industrial applications and it is well-known for hepatotoxicity. The interaction between NMF with superoxide dismutase, an antioxidant defense enzyme has been studied for the first time using spectroscopic methods including Fourier transform infrared (FT-IR) spectroscopy, Circular dichroism (CD) spectroscopy and UV-visible spectroscopy under simulative physiological conditions and also by molecular modelling. Fourier Transform Infra Red analysis showed that the change in peak positions and shapes revealed that the secondary structure of SOD had been changed by the interaction with NMF. The data of CD spectra also confirmed that NMF decreased the degree of secondary structure of SOD, which directly resulted in destabilization of enzyme. We studied the inhibitory effect of NMF on enzyme kinetics by pyrogallol autoxidation revealed that protein-ligand complex caused structural unfolding which resulted in enzymatic inhibition. Thus the spectral behaviour of superoxide dismutase provides data concerning its conformational changes in the presence of NMF. Furthermore, molecular docking was applied to explore the binding mode between the protein-ligand complex. This suggested that Asn54 and Val302 residues of dimeric protein were predicted to interact with NMF. The present study provides direct evidence at a molecular level to show that exposure to NMF cause perturbation in its structure and function.

  14. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Tian, Yuan; Zhou, Xin; Liu, Zhongying; Zhang, Hanqi

    2005-02-01

    A molecular spectroscopic investigation of the interaction between tetracyclines antibiotics and human serum albumin or bovine serum albumin was reported. The influences of some metal ions on the interaction were also studied. When tetracyclines drugs were added into the solution containing serum albumins, the fluorescence intensity of serum albumins decreased with the increasing of the drugs concentrations, which is due to the formation of new non-fluorescence complexes of drug-serum albumin. The tetracyclines acted as quenchers and quenched the fluorescence of the serum albumins. The binding constants and the number of the binding sites of the reaction of tetracyclines and serum albumins were obtained. The main sorts of acting force between the drugs and serum albumins were found and the action distances and the energy transfer efficiencies between donor-acceptor were calculated based on the Föster energy transference.

  15. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    PubMed

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.

  16. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  17. Vibrational spectroscopic analysis, molecular dynamics simulations and molecular docking study of 5-nitro-2-phenoxymethyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Foto, Egemen; Mary, Y. Sheena; Karatas, Esin; Panicker, C. Yohannan; Yalcin, Gözde; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Yildiz, Ilkay

    2017-02-01

    FT-IR and FT-Raman spectra of 5-nitro-2-phenoxymethylbenzimidazole were recorded and analyzed theoretically and experimentally. The splitting of Nsbnd H stretching mode in the IR spectrum with a red shift from the calculated value indicates the weakening of the NH bond. The theoretical calculations give the phenyl ring breathing modes at 999 cm-1 for mono substituted benzene ring and at 1040 cm-1 for tri-substituted benzene ring. The theoretical NMR chemical shifts are in agreement with the experimental chemical shifts. The most reactive sites for electrophilic and nucleophilic attack are predicted from the MEP analysis. HOMO of π nature is delocalized over the entire molecule whereas the LUMO is located over the complete molecule except mono-substituted phenyl ring and oxygen atom. Reactive sites of the title molecule have been located with the help of ALIE surfaces and Fukui functions. In order to determine locations prone to autoxidation and locations interesting for starting of degradation, bond dissociation energies have been calculated for all single acyclic bonds. For the determination of atoms with pronounced interactions with water we have calculated radial distribution functions obtained after molecular dynamics simulations. The calculated first hyperpolarizability of the title compound is 58.03 times that of standard nonlinear optical material urea. The substrate binding site interactions of the title compound with Topo II enzyme is reported by using molecular docking study. Biological activity studies show that the title compound can be leaded for developing new anticancer agents.

  18. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.

    PubMed

    Liu, Yingying; Zhang, Guowen; Liao, Yijing; Wang, Yaping

    2015-01-01

    Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes.

  19. Spectroscopic and dielectric properties of liquid water: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Bursulaya, Badry D.; Kim, Hyung J.

    1998-09-01

    The spectroscopic and dielectric properties of liquid water under an ambient condition are studied via a molecular dynamics (MD) computer simulation method. By employing the recent TAB/10D potential model [B. D. Bursulaya, J. Jeon, D. A. Zichi, and H. J. Kim, J. Chem. Phys. 108, 3286 (1997)], the evolving solvent electronic structure is incorporated into the simulation. Thus both the induced dipole and polarizability variations of individual water molecules with the fluctuating nuclear configuration are accounted for. The MD results on far-IR absorption, depolarized Raman scattering (DRS) and optical Kerr effect (OKE) spectroscopy are in reasonable agreement with experiments. It is found that the nonlinear electronic response of water to its fluctuating environment plays an important role in the DRS and OKE; it significantly enhances the contribution of the water librational motions to the spectra, compared with that of hindered translations. This indicates that not only molecular dynamics but also accompanying electronic structure modulations are essential to quantitative understanding of various electronic spectroscopy. The effects of H/D isotope substitution are briefly discussed.

  20. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  1. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  2. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  3. Dynamics-function correlation in Cu, Zn superoxide dismutase: a spectroscopic and molecular dynamics simulation study.

    PubMed Central

    Falconi, M; Stroppolo, M E; Cioni, P; Strambini, G; Sergi, A; Ferrario, M; Desideri, A

    2001-01-01

    A single mutation (Val29-->Gly) at the subunit interface of a Cu, Zn superoxide dismutase dimer leads to a twofold increase in the second order catalytic rate, when compared to the native enzyme, without causing any modification of the structure or the electric field distribution. To check the role of dynamic processes in this catalytic enhancement, the flexibility of the dimeric protein at the subunit interface region has been probed by the phosphorescence and fluorescence properties of the unique tryptophan residue. Multiple spectroscopic data indicate that Trp83 experiences a very similar, and relatively hydrophobic, environment in both wild-type and mutant protein, whereas its mobility is distinctly more restrained in the latter. Molecular dynamics simulation confirms this result, and provides, at the molecular level, details of the dynamic change felt by tryptophan. Moreover, the simulation shows that the loops surrounding the active site are more flexible in the mutant than in the native enzyme, making the copper more accessible to the incoming substrate, and being thus responsible for the catalytic rate enhancement. Evidence for increased, dynamic copper accessibility also comes from faster copper removal in the mutant by a metal chelator. These results indicate that differences in dynamic, rather than structural, features of the two enzymes are responsible for the observed functional change. PMID:11371434

  4. Inhibitory effects of daidzein and genistein on trypsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Wang, Ya-Ping; Yang, Ran; You, Jing; Qu, Ling-Bo

    2016-08-01

    In this work, the inhibitory effect of two isoflavonoids including daidzein and genistein on trypsin and their binding mechanism were determined by spectroscopic and molecular docking approaches. The results indicated that both daidzein and genistein reversibly inhibited trypsin in a competitive manner with IC50 values of 68.01×10(-6)molL(-1) and 64.70×10(-6)molL(-1) and Ki values of 62.12×10(-6)molL(-1) and 59.83×10(-6)molL(-1), respectively. They could spontaneously bind with trypsin mainly through hydrophobic force and electrostatic interactions with a single binding site. Analysis of circular dichrosim spectra and molecular docking revealed that both isoflavonoids bound directly into the catalytic cavity and the microenvironment and secondary structure of trypsin were changed in this process, which caused the inhibition of trypsin activity. All these experimental results and theoretical data in this work would be help in understanding the mechanism of inhibitory effects of daidzein and genistein against trypsin and the potential of isoflavonoid to relieve symptoms of pancreatitis.

  5. Molecular structure, vibrational spectroscopic, first hyperpolarizability, NBO and HOMO, LUMO studies of P-Iodobenzene sulfonyl chloride.

    PubMed

    Arivazhagan, M; Prabhakaran, S; Gayathri, R

    2011-11-01

    In this work, the experimental and theoretical vibrational spectra of P-Iodobenzene sulfonyl chloride (P-IBSC) were studied. P-IBSC and its derivatives present in many biologically active compounds. Because of their spectroscopic properties and chemical significance in particular, sulfonyl chloride and its derivatives have been studied extensively by spectroscopic (FTIR and FT-Raman spectra) and theoretical methods. The infrared spectra of these compounds were recorded in condensed states, while the Raman spectra were measured without polarization using both parallel and perpendicular polarizations of scattered light. The molecular geometry, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), first order hyperpolarizability and thermodynamic properties of P-IBSC have been computed with the help of density functional theory (B3LYP) and ab initio (HF) methods with the LanL2DZ basis set. The HOMO and LUMO energy gap explains the charge transfer interactions taking place within the molecule. NBO study explains charge delocalization of the molecule. The contributions of the different modes to each wave number were determined using potential energy distributions (PEDs). The experimental and calculated results were consistent with each other.

  6. Theoretical DFT study on spectroscopic signature and molecular dynamics of neurotransmitter and effect of hydrogen removal

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Singh, N. P.; Yadav, R. A.

    2013-04-01

    Vibrational spectroscopic study has been made for the serotonin molecule and its deprotonated form. The Infrared and Raman spectra in optimum geometry of these two molecules are calculated using density functional theorem and the normal modes are assigned using potential energy distributions (PEDs) which are calculated using normal coordinate analysis method. The vibrational frequencies of these two molecules are reported and a comparison has been made. The effect of removal of the hydrogen atom from the serotonin molecule upon its geometry and vibrational frequencies are studied. Electronic structures of these two molecules are also studied using natural bond orbital (NBO) analysis. Theoretical Raman spectrum of serotonin at different exciting laser frequencies and at different temperatures are obtained and the results are discussed. Present study reveals that some wrong assignments had been made for serotonin molecule in earlier study.

  7. Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine.

    PubMed

    Premkumar, S; Rekha, T N; Mohamed Asath, R; Mathavan, T; Milton Franklin Benial, A

    2016-01-20

    Conformational and molecular docking analysis of 2-acetylamino-5-bromo-6-methylpyridine molecule was carried out and the vibrational spectral analysis was also carried out using experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies of the molecule were assigned and compared. The pyridine ring CH stretching and CH3 stretching vibrational modes were shifted towards higher wavenumber (blue shift). The C=O stretching vibrational frequency was shifted towards lower wavenumber (red shift). Ultraviolet-visible spectrum of the molecule simulated theoretically was further validated experimentally. Molecular reactivity and stability were investigated using the frontier molecular orbital analysis and the related quantum chemical molecular properties. Natural bond orbital analysis and the structure activity relations were also studied to confirm the bioactivity of the molecule. Anticancer activity was examined based on molecular docking analysis and it has been identified that the AABMP molecule can act as a good inhibitor against lung cancer.

  8. Spectroscopic studies, potential energy surface and molecular orbital calculations of pramipexole

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Srinivasan, S.; Isac paulraj, E.

    2013-11-01

    A systematic vibrational spectroscopic assignment and analysis of pramipexole [(S)-N6-propyl-4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine] has been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G(d, p) and cc-pVTZ basis sets. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption λmax were determined by time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PEDs) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. In addition, the potential energy surface, HOMO and LUMO energies, the molecular electrostatic potential and the first-order hyperpolarizability have been computed. The magnitude of the first-order hyperpolarizability is 5 times larger than that of urea and the title compound may be a potential applicant for the development of NLO materials.

  9. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    PubMed

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×10(3) at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate.

  10. Binding studies of lophirone B with bovine serum albumin (BSA): Combination of spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Chaves, Otávio Augusto; da Silva, Veridiana A.; Sant'Anna, Carlos Maurício R.; Ferreira, Aurélio B. B.; Ribeiro, Tereza Auxiliadora N.; de Carvalho, Mário G.; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos

    2017-01-01

    The interaction between the transport protein bovine serum albumin (BSA) and the natural product lophirone B, was investigated by spectroscopic techniques combined with a computational method (molecular docking). From the KSV and kq values it was concluded that lophirone B quenches the fluorescence of BSA by dynamic and static mechanisms. The Ka values, of the order of 104 M-1, and the number of binding sites (n ≈ 1), indicate that the binding is moderate and there is just one main binding site in BSA for lophirone B. The negative ΔG° values are in accordance with the spontaneity of the process and the positive ΔH° and ΔS° values indicate that the binding is entropically driven; the main binding forces for the association BSA:lophirone B are probably lipophilic interactions. Circular dichroism (CD) studies show there is not a significant perturbation on the secondary structure of the albumin upon the binding process. In order to better understand the spectroscopic results, a computational method was applied: molecular docking suggests Trp-213 site, as the main binding site for the ligand. Lophirone B seems to be exposed to the aqueous media as well as accommodated inside the protein cavity, resulting in a moderate affinity for the albumin. The Arg-198, His-287, Lys-294 and Lys-439 residues are interacting via hydrogen bonding with lophirone B, whereas the interaction with Trp-213 residue occurs through a lipophilic interaction.

  11. Hybrid materials chemistry: Spectroscopic studies of molecular materials, nanoscale materials and their combinations

    NASA Astrophysics Data System (ADS)

    Marlatt, Craig W.

    Materials chemistry is a widely-used label within the overall field of chemistry, with a diverse range of possible applications. In this report, two classes of materials are discussed. Host-guest molecular systems that operate under supramolecular principles are examined via Raman spectroscopy and electrochemistry, and a sensing application for such systems is offered in the proof-of-principle detection of nitroaromatic explosives via host-guest binding. Next, metallic nanostructures that have tunable optical properties are synthesized and characterized to demonstrate that tunable nature, and the way such structures might be used for surface-enhanced Raman studies of the previously described host-guest systems is discussed by examining the current literature. Lastly, strategies to couple molecular systems and nanostructure systems are discussed and developed, and speculation on possible applications utilizing these coupled systems is made based on recent literature and the established themes of the research in this report.

  12. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  13. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes.

    PubMed

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-15

    Two osazone based ligands, butane-2,3-dione bis(2'-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2'-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  14. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  15. Spectroscopic and molecular docking studies on the interaction of the drug olanzapine with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Bagheri, Somayeh

    2015-02-01

    The present study investigated the binding interaction between olanzapine and calf thymus DNA (ct-DNA) using emission, absorption, circular dichroism, viscosity measurements and molecular modeling. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and van der Waals play main roles in the binding of the drug to ct-DNA. Spectrophotometric studies of the interaction of olanzapine with DNA have shown that it could bind to ct-DNA (Kb = 2 × 103 M-1). The binding constant is comparable to standard groove binding drugs. Competitive fluorimetric studies with Hoechst 33258 have shown that olanzapine exhibits the ability to displace the DNA-bound Hoechst 33258 indicating that binds strongly in minor groove of DNA helix. Furthermore, the drug induces detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity. All of the experimental results prove that the groove binding must be predominant. The results obtained from experimental data were in good agreement with molecular modeling studies.

  16. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  17. Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study.

    PubMed

    Qais, Faizan Abul; Abdullah, K M; Alam, Md Maroof; Naseem, Imrana; Ahmad, Iqbal

    2017-04-01

    Studying the mode of interaction between small molecules and DNA has received much attention in recent years, as many drugs have been reported to directly interact with DNA thereby regulating the expression of many genes. Capsaicin is a capsaiciniods family phytocompound having many therapeutic applications including diabetic neuropathy, rheumatoid arthritis, prevention of DNA strand breaks and chromosomal aberrations. In this study, we have investigated the interaction of capsaicin with calf thymus DNA using a number of biophysical techniques to get an insight and better understanding of the interaction mechanism. Analysis of UV-vis absorbance spectra and fluorescence spectra indicates the formation of complex between capsaicin and Ct-DNA. Thermodynamic parameters ΔG, ΔH, and ΔS measurements were taken at different temperatures indicated that hydrogen bonding and van der Waal's forces played major role in the binding process. Additional experiments such as iodide quenching, CD spectroscopy suggested that capsaicin possibly binds to the minor groove of the Ct-DNA. These observations were further confirmed by DNA melting studies, viscosity measurements. Molecular docking provided detailed computational interaction of capsaicin with Ct-DNA which proved that capsaicin binds to Ct-DNA at minor groove. Computational molecular docking also revealed the exact sites and groups to which capsaicin interacted.

  18. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies.

    PubMed

    Wang, Yaping; Zhang, Guowen; Wang, Langhong

    2014-01-01

    Prometryn possesses much potential hazard to environment because of its chemical stability and biological toxicity. Here, the binding properties of prometryn with human serum albumin (HSA) and the protein structural changes were determined under simulative physiological conditions (pH 7.4) by multispectroscopic methods including fluorescence, UV-vis absorption, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, coupled with molecular modeling technique. The result of fluorescence titration suggested that the fluorescence quenching of HSA by prometryn was considered as a static quenching procedure. The negative enthalpy change (ΔH(○)) and positive entropy change (ΔS(○)) values indicated that the binding process was governed mainly by hydrophobic interactions and hydrogen bonds. The site marker displacement experiments suggested the location of prometryn binding to HSA was Sudlow's site I in subdomain IIA. Furthermore, molecular docking studies revealed prometryn can bind in the large hydrophobic activity of subdomain IIA. Analysis of UV-vis absorption, synchronous fluorescence, CD and FT-IR spectra demonstrated that the addition of prometryn resulted in rearrangement and conformational alteration of HSA with reduction in α-helix and increases in β-sheet, β-turn and random coil structures. This work provided reasonable model helping us further understand the transportation, distribution and toxicity effect of prometryn when it spreads into human blood serum.

  19. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  20. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba

    2014-03-01

    This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.

  1. Functional stability and structural transitions of Kallikrein: spectroscopic and molecular dynamics studies.

    PubMed

    Dalal, Sayli; Mhashal, Anil; Kadoo, Narendra; Gaikwad, Sushama M

    2017-02-01

    Kallikrein, a physiologically vital serine protease, was investigated for its functional and conformational transitions during chemical (organic solvents, Gdn-HCl), thermal, and pH induced denaturation using biochemical and biophysical techniques and molecular dynamics (MD) simulations approach. The enzyme was exceptionally stable in isopropanol and ethanol showing 110% and 75% activity, respectively, after 96 h, showed moderate tolerance in acetonitrile (45% activity after 72 h) and much lower stability in methanol (40% activity after 24 h) (all the solvents [90% v/v]). Far UV CD and fluorescence spectra indicated apparent reduction in compactness of KLKp structure in isopropanol system. MD simulation studies of the enzyme in isopropanol revealed (1) minimal deviation of the structure from native state (2) marginal increase in radius of gyration and solvent accessible surface area (SASA) of the protein and the active site, and (3) loss of density barrier at the active site possibly leading to increased accessibility of substrate to catalytic triad as compared to methanol and acetonitrile. Although kallikrein was structurally stable up to 90 °C as indicated by secondary structure monitoring, it was functionally stable only up to 45 °C, implicating thermolabile active site geometry. In GdnHCl [1.0 M], 75% of the activity of KLKp was retained after incubation for 4 h, indicating its denaturant tolerance. A molten globule-like structure of KLKp formed at pH 1.0 was more thermostable and exhibited interesting structural transitions in organic solvents. The above results provide deeper understanding of functional and structural stability of the serine proteases at molecular level.

  2. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.

    PubMed

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi

    2013-10-05

    The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other.

  3. Methyl-triclosan binding to human serum albumin: multi-spectroscopic study and visualized molecular simulation.

    PubMed

    Lv, Wenjuan; Chen, Yonglei; Li, Dayong; Chen, Xingguo; Leszczynski, Jerzy

    2013-10-01

    Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS-HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV-vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298K) is 6.32 × 10(3)L mol(-1); ΔH(0), ΔS(0) and ΔG(0) were 22.48 kJ mol(-1), 148.16 J mol(-1)K(-1) and -21.68 kJ mol(-1), respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS-HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.

  4. Molecular modeling and multi-spectroscopic approaches to study the interaction between antibacterial drug and human immunoglobulin G.

    PubMed

    Wang, Qin; Min, Suotian; Liu, Zhifeng; Zhang, Shengrui

    2016-05-01

    Mechanistic and conformational studies on the interaction of sulfamethoxazole (SMX) with human immunoglobulin G (HIgG) were performed by molecular modeling and multi-spectroscopic methods. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HIgG. The binding parameters and thermodynamic parameters at different temperatures had been calculated according to the Stern-Volmer, Scatchard, Sips and Van 't Hoff equations, respectively. Experimental results showed that the fluorescence intensity of HIgG was quenched by the gradual addition of SMX. The binding constants of SMX with HIgG decreased with the increase of temperature, which meant that the quenching mechanism was a static quenching. Meanwhile, the results also confirmed that there was one independent class of binding site on HIgG for SMX during their interaction. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH(0) and entropy ΔS(0), had been calculated to be -14.69 kJ·mol(-1) and 22.99 J·mol(-1) ·K(-1), respectively, which suggested that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the SMX-HIgG complex. Furthermore, experimental results obtained from three-dimensional fluorescence spectroscopy, UV-vis absorption spectroscopy and circular dichroism (CD) spectroscopy confirmed that the conformational structure of HIgG was altered in the presence of SMX.

  5. The molecular structure of chloritoid: a mid-infrared and near-infrared spectroscopic study.

    PubMed

    Li, Kuo; Liu, Qinfu; Cheng, Hongfei; Deng, Yutao; Frost, Ray L

    2015-06-15

    The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (ν+δ)OH bands with the fundamental stretching (ν) and bending (δ) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis.

  6. Raman spectroscopic study of surfactant-mediated molecular beam epitaxially grown germanium/silicon

    NASA Astrophysics Data System (ADS)

    Brill, Gregory Nelson

    The epitaxial growth of Ge on Si substrates was carried out using surfactant-mediated epitaxy and standard growth procedures to study the effects of Si surface passivation prior to Ge nucleation. The growth experiments were conducted in a molecular beam epitaxy (MBE) chamber equipped with reflection high-energy electron diffraction (RHEED) to monitor the nucleation process. Arsenic was chosen as the surfactant material and Ge nucleation was conducted on both Si(001) and Si(211) orientated substrates. Post-growth experiments were conducted primarily utilizing Raman Spectroscopy, however scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were also employed to gather information about the grown material. From these experiments, it was determined that passivating the Si surface prior to Ge deposition with a monolayer of As yields higher quality 2-dimensional material. Additionally, As acts as a suppressant to Ge - Si intermixing resulting in a highly ordered epilayer/substrate interface. If Ge is deposited directly on a clean Si substrate without As passivation, the resultant growth follows the theoretically predicted Stranski-Krastanov growth mode. A growth model is suggested that successfully describes the differences between surfactant-mediated and non-surfactant-mediated nucleation through a site-exchange mechanism between Ge and As atoms. Additionally, surfactant-mediated nucleation results as a function of substrate orientation are highlighted and a model for surface reconstruction of the As passivated Si(211) surface is proposed.

  7. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation.

    PubMed

    Agarwal, Shweta; Chadha, Deepti; Mehrotra, Ranjana

    2015-01-01

    Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine-DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine-DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-time-drug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53 × 10(3) M(-1) and 8.12 × 10(3) M(-1), respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects.

  8. "Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N‧-(4-methylbenzylidene) benzohydrazide by DFT"

    NASA Astrophysics Data System (ADS)

    Maheswari, R.; Manjula, J.

    2016-07-01

    (E)-4-methoxy-N‧-(4-methylbenzylidene)benzohydrazide (4MN'MBH) a novel, organic, hydrazone Schiff base compound was synthesized and its structure was characterized by Fourier Transform Infrared (4000-400 cm-1), Fourier Transform Raman (3500-50 cm-1), Ultraviolet-Visible (200-800 nm) and 1H and 13C NMR spectroscopic analysis. Optimized molecular structure, vibrational frequencies and corresponding vibrational assignments regarding 4MN'MBH has become screened tentatively as well as hypothetically utilizing Gaussian09Wprogram package. Potential energy distributions of the normal modes of vibrations connected with vibrations are generally accomplished by applying VEDA program. Natural Bonding Orbital (NBO) assessment was completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular-hybridization and delocalization of electron density within the molecule. Electronic transitions were studied employing UV-Visible spectrum and the observed values were compared with theoretical values. 1H and13C NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects of title compound. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4MN'MBH were calculated. The computed first order hyperpolarizability commensurate with the documented worth of very similar structure and could be an interesting thing for more experiments on non linear optics. Molecular docking study has been performed by in silico method to analysis their antituberculosis aspects against Enoyl acyl carrier protein reductase (Mycobacterium tuberculosis InhA) protein.

  9. Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.

    2017-04-01

    The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.

  10. The molecular structure of the phosphate mineral chalcosiderite - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Ribeiro, Carlos Augusto de Brito

    2013-07-01

    The mineral chalcosiderite with formula CuFe6(PO4)4(OH)8ṡ4H2O has been studied by Raman spectroscopy and by infrared spectroscopy. A comparison of the chalcosiderite spectra is made with the spectra of turquoise. The spectra of the mineral samples are very similar in the 1200-900 cm-1 region but strong differences are observed in the 900-100 cm-1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wavenumbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm-1. Three hydroxyl stretching vibrations are observed. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.745 and 2.812 Å which are considerably shorter than the values for the hydroxyl units 2.896, 2.917 and 2.978 Å. Two phosphate stretching vibrations at 1042 and 1062 cm-1 in line with the two independent phosphate units in the structure of chalcosiderite. Three bands are observed at 1102, 1159 and 1194 cm-1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex. Four Raman bands observed at 536, 580, 598 and 636 cm-1 are assigned to the ν4 bending modes. Raman bands at 415, 420, 475 and 484 cm-1are assigned to the phosphate ν2 bending modes. Vibrational spectroscopy enables aspects of the molecular structure of chalcosiderite to be assessed.

  11. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2010-06-01

    Serotonin is a physiologically important biogenic amine, deficiency of which leads to mental disorders such as Alzheimer's disease, schizophrenia, infantile autism, and depression. Both β-cyclodextrin (β-CD) and its chemically substituted synthetic varieties (often possessing enhanced aqueous solubility and improved drug complexing abilities) are finding wide applications as drug delivery vehicles. Here we have studied the encapsulation of serotonin in β-CD and succinyl-2-hydroxypropyl β-cyclodextrin (SHP-β-CD) by exploiting the intrinsic serotonin fluorescence. Enhanced fluorescence emission intensity (which increases by ˜18% and 34% in β-CD and SHPβ-CD respectively) and anisotropy ( r) ( r = 0.075 and 0.1 in β-CD and SHPβ-CD respectively) are observed in presence of the cyclodextrins. From the fluorescence data host-guest interaction with 1:1 stoichiometry is evident, the association constants ( K) being 126.06 M -1 and 461.62 M -1 for β-CD and SHPβ-CD respectively. Additionally, molecular docking and semiempirical calculations have been carried out which provide, for the first time, detailed insights regarding the encapsulation process. In particular, it is evident that the indole ring is inserted within the β-CD cavity with the aliphatic amine side chain protruding towards the primary rim of the β-CD cavity. Docking calculations reveal that hydrogen bonding interactions are involved in the formation of the inclusion complex. Semiempirical calculations indicate that formation of the 1:1 inclusion complex is energetically favorable which is consistent with the fluorescence data.

  12. Studies of the interaction between FNC and human hemoglobin: a spectroscopic analysis and molecular docking.

    PubMed

    Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao

    2015-02-05

    FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb.

  13. A spectroscopic and molecular modeling study of sinomenine binding to transferrin.

    PubMed

    Du, Hongyan; Xiang, Junfeng; Zhang, Yazhou; Tang, Yalin

    2007-03-15

    Sinomenine, an herbal ingredient isolated from Sinomenium acutum, is used for the amelioration of arthritis. It has been found that this molecule could bind to human serum transferrin (Tf), the iron (III) transport protein in the blood, by using fluorescence, circular dichroism (CD) spectroscopy, and molecular modeling methods. The results provide possible usage of transferrin to transport sinomenine.

  14. Spectroscopic and structural study of novel interaction product of pyrrolidine-2-thione with molecular iodine. Presumable mechanisms of oxidation

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.

    2013-09-01

    Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).

  15. Study on the interaction of Co (III) DiAmsar with serum albumins: Spectroscopic and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Farahani, Bahman Vasheghani; Bardajee, Ghasem Rezanejade; Rajabi, Farzaneh Hosseinpour; Hooshyar, Zari

    2015-01-01

    This study was designed to examine the interaction of cobalt-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (Co(III) DiAmsar) as a hexadentate ligand with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions in Tris-HCl buffer solution at pH 7.4. To this aim, at first, Co (III) DiAmsar was synthesized and characterized by nuclear magnetic resonance (NMR), and mass spectroscopy and then its interaction with HSA and BSA was investigated by means of various spectroscopic methods (Fourier transform infrared (FT-IR), UV-visible (UV-vis), fluorescence, and cyclic voltammetry (CV)) and molecular docking technique. The results of fluorescence titration revealed that the Co (III) DiAmsar strongly quench the intrinsic fluorescence of HSA and BSA through a static quenching procedure. Binding constants (Ka) and the number of binding sites (n ∼ 1) were calculated using Stern-Volmer equations. The ΔG parameters at different temperatures were calculated. Subsequently, the values of ΔH and ΔS were also calculated, which revealed that the van der Waals and hydrogen bonding interaction splay a major role in Co (III) DiAmsar-HSA and Co (III) DiAmsar-BSA associations. The distance r between donor (HSA and BSA) and acceptor (Co (III) DiAmsar) was obtained according to fluorescence resonance energy transfer. The data obtained by the molecular modeling study revealed the surrounding residues of HSA and BSA around Co (III) DiAmsar.

  16. Study on the interaction of Co (III) DiAmsar with serum albumins: spectroscopic and molecular docking methods.

    PubMed

    Farahani, Bahman Vasheghani; Bardajee, Ghasem Rezanejade; Rajabi, Farzaneh Hosseinpour; Hooshyar, Zari

    2015-01-25

    This study was designed to examine the interaction of cobalt-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1,8-diamine (Co(III) DiAmsar) as a hexadentate ligand with human serum albumin (HSA) and bovine serum albumin (BSA) under physiological conditions in Tris-HCl buffer solution at pH 7.4. To this aim, at first, Co (III) DiAmsar was synthesized and characterized by nuclear magnetic resonance (NMR), and mass spectroscopy and then its interaction with HSA and BSA was investigated by means of various spectroscopic methods (Fourier transform infrared (FT-IR), UV-visible (UV-vis), fluorescence, and cyclic voltammetry (CV)) and molecular docking technique. The results of fluorescence titration revealed that the Co (III) DiAmsar strongly quench the intrinsic fluorescence of HSA and BSA through a static quenching procedure. Binding constants (Ka) and the number of binding sites (n∼1) were calculated using Stern-Volmer equations. The ΔG parameters at different temperatures were calculated. Subsequently, the values of ΔH and ΔS were also calculated, which revealed that the van der Waals and hydrogen bonding interaction splay a major role in Co (III) DiAmsar-HSA and Co (III) DiAmsar-BSA associations. The distance r between donor (HSA and BSA) and acceptor (Co (III) DiAmsar) was obtained according to fluorescence resonance energy transfer. The data obtained by the molecular modeling study revealed the surrounding residues of HSA and BSA around Co (III) DiAmsar.

  17. Vibrational spectroscopic studies and molecular docking of 10,10-Dimethylanthrone

    NASA Astrophysics Data System (ADS)

    Sheena Mary, Y.; Yamuna, T. S.; Yohannan Panicker, C.; Yathirajan, H. S.; Siddegowda, M. S.; Al-Saadi, Abdulaziz A.; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-01-01

    FT-IR and FT-Raman spectra of 10,10-Dimethylanthrone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. In its most stable form, the title compound maintains C2v symmetry as determined by XRD results, where both methyl groups are staggered with respect to the corresponding C23sbnd C24 and C23sbnd C28 bonds. The geometrical parameters (B3LYP/6-311++G(d,p)(5D,7F)) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As seen from the MEP map, negative potential regions are localized over the carbonyl group and are possible sites for electrophilic attack. The title compound, 10,10-Dimethylanthrone forms a stable complex with human topoisomerase-II as is evident from the ligand-receptor interactions and show appreciable antineoplastic activity.

  18. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state

    SciTech Connect

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Nakajima, Masakazu; Endo, Yasuki

    2015-12-28

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r{sub 0}(C–C) = 1.3971 Å and r{sub 0}(C–H) = r{sub 0}(C–D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C–H and C–D are identical unlike small aliphatic hydrocarbons, in which r{sub 0}(C–D) is about 5 mÅ shorter than r{sub 0}(C–H). It is considered that anharmonicity is very small in the C–H stretching vibration of aromatic hydrocarbons.

  19. Quantitative analysis of molecular orientation in chlorophyll a Langmuir monolayer: a polarized visible reflection spectroscopic study.

    PubMed Central

    Okamura, E; Hasegawa, T; Umemura, J

    1995-01-01

    Polarized visible reflection spectra of a chlorophyll a (Chl.a) Langmuir monolayer have been measured in situ at various surface pressures. By applying Hansen's optics to the three-phase plane-bounded system (air/Chl.a monolayer/water), the negative reflection absorbances observed were reproduced satisfactorily by the theoretical calculation. Molecular orientation of Chl.a in the monolayer was evaluated quantitatively as a function of surface pressure, from the reflection absorbance of p- and s-polarized spectra of the red (Qy) band. It has been proven that Chl.a molecules in the monolayer form aggregates (islands) even in the low surface pressure region and that during the monolayer compression the molecules are gradually reorganized from inhomogeneous islands to ordered structures, with the chromophores oriented on the average vertically to the water surface. Images FIGURE 1 PMID:8519968

  20. Synthesis, molecular structure, spectroscopic and theoretical studies on E-2-ethoxy-4-[(4-ethoxyphenylimino)methyl]phenol

    NASA Astrophysics Data System (ADS)

    Zeyrek, Celal Tuğrul; Alpaslan, Gökhan; Alyar, Hamit; Yıldız, Mustafa; Dilek, Nefise; Ünver, Hüseyin

    2015-05-01

    Synthesis, crystallographic characterization, spectroscopic (FT-IR) and density functional modelling studies of a new Schiff base E-2-ethoxy-4-[(4-ethoxyphenylimino)methyl]phenol C17H19NO3 have been reported. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state has been compared using Hartree-Fock (HF) and density functional theory (DFT), B3LYP and B1B95 functional with the 6-311++G(d,p) basis set. In addition to the optimized geometrical structures, atomic charges, molecular electrostatic potential (MEP), natural bond orbital (NBO), nonlinear optical (NLO) effects and thermodynamic properties of the compound have been investigated by using DFT calculations. The electronic properties of the title compound in solvent media were also examined using the DFT calculations. The potential energy surface (PES) scans about important torsion angles are performed by using B3LYP/6-311++G (d,p) level of theoretical approximation for the compound. The experimental (FT-IR) and calculated vibrational frequencies (using DFT calculations) of the title compound have been compared. The predicted NLO properties of the compound which calculated by the B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets are greater than ones urea. The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

  1. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  2. Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modeling studies.

    PubMed

    Jash, Chandrima; Payghan, Pavan V; Ghoshal, Nanda; Suresh Kumar, Gopinatha

    2014-11-20

    Sanguinarine (SGR) exists in charged iminium (SGRI) and neutral alkanolamine (SGRA) forms. The binding of these two forms to the protein lysozyme (Lyz) was investigated by fluorescence, UV-vis absorbance and circular dichroism spectroscopy, and in silico molecular docking approaches. Binding thermodynamics were studied by microcalorimetry. Both forms of sanguinarine quenched the intrinsic fluorescence of Lyz, but the quenching efficiencies varied on the basis of binding that was derived after correction for an inner-filter effect. The equilibrium binding constants at 25 ± 1.0 °C for the iminium and alkanolamine forms were 1.17 × 10(5) and 3.32 × 10(5) M(-1), respectively, with approximately one binding site for both forms of the protein. Conformational changes of the protein in the presence of SGR were confirmed by absorbance, circular dichroism, three-dimensional fluorescence, and synchronous fluorescence spectroscopy. Microcalorimetry data revealed that SGRI binding is endothermic and predominantly involves electrostatic and hydrophobic interactions, whereas SGRA binding is exothermic and dominated by hydrogen-bonding interactions. The molecular distances (r) of 3.27 and 3.04 nm between the donor (Lyz) and the SGRI and SGRA acceptors, respectively, were calculated according to Förster's theory. These data suggested that both forms were bound near the Trp-62/63 residues of Lyz. Stronger binding of SGRA than SGRI was apparent from the results of both structural and thermodynamic experiments. Molecular docking studies revealed that the putative binding site for the SGR analogues resides at the catalytic site. The docking results are in accordance with the spectroscopic and thermodynamic data, further validating the stronger binding of SGRA over SGRI to Lyz. The binding site is situated near a deep crevice on the protein surface and is close to several crucial amino acid residues, including Asp-52, Glu-35, Trp-62, and Trp-63. This study advances our knowledge of

  3. Adding Spectroscopic Dimension To The Study Of The Young Embedded Clusters: Serpens Molecular Cloud.

    NASA Astrophysics Data System (ADS)

    Gorlova, Nadya; Lada, E.; Steinhauer, A.

    2009-01-01

    We present the results of an investigation of the embedded cluster near the main core of the Serpens molecular cloud. Near-IR imaging and low resolution JH spectra were obtained for objects in this region using the multi-object near-IR imager and spectrograph FLAMINGOS at the Kitt Peak 4m telescope. We constructed Hertzsprpung-Russell diagram and determined ages and masses for 15 previously identified members and one new candidate. We show that 1-4 objects are young brown dwarfs with disks. We used our individually determined estimates of the photospheric parameters and extinction to separate the stellar flux from the spectral energy distribution (SED) and to verify the SED types determined by ISO and the Spitzer. We demonstrate that after correcting for extinction a number of the flat-type objects appear to have SEDs consistent with that of the classical T Tau stars, while some objects even indicate the presence of the inner disk holes. We show that the distance to the cluster is not well established yet. We obtain a medium age for the Serpens cluster of 1 Myr for distance of 380 pc and of 3 Myr for 260 pc, and an age spread of 5-10 Myr. The core of the cluster appears on average younger than the rest of the cluster. We draw attention to at least three diskless objects younger than 1 Myr, whose nature requires further investigation. Finally, we find an association of the young objects with the two dusty filaments in the cloud, indicating that star formation is not entirely confined to the cluster center.

  4. Infrared spectroscopic studies to understand the effect of drugs at molecular level

    NASA Astrophysics Data System (ADS)

    Singh, Bhawana; Gautam, Rekha; Chandrasekar, Bhagawat; Rakshit, Srabanti; Kumar B. N., Vinay; Boopathy, Sivaraman; Nandi, Dipankar; Somasundaram, Kumaravel; Umapathy, Siva

    2012-06-01

    In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.

  5. Molecular spectroscopic studies on the interaction of glycosaminoglycans with brilliant cresol blue and its analytical application

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzhen; Li, Na; Zhao, Fenglin; Li, Ke'an; Tong, Shenyang

    2002-01-01

    The interaction of brilliant cresol blue (BCB) with glycosaminoglycans (GAGs), such as heparin (Hep) and chondroitin 4-sulfate (CS), in aqueous solution has been studied by spectrophotometry and light scattering spectroscopy. Absorbance of BCB at 632 and 594 nm decreased on addition of Hep or CS with the appearance of a new blue-shifted absorption band at 550 nm, which indicated that new metachromatic complex formed. The linear decrease in absorbance of BCB at 632 nm was observed. In addition, Hep was more effective than CS (1.7 times) in decreasing absorbance of BCB. The stoichiometry of Hep or CS with BCB was determined by spectrophotometric titration and the MacIntosh extraction method. The result showed that the stoichiometry of BCB/Hep was 1.8 times that of BCB/CS. These results suggested that the interaction between GAGs and BCB was the result of electrostatic forces, and the differences between Hep and CS were attributed to the different negative charge numbers on repetitive disaccharides unit. Studies on the effects of alcohol and urea indicated that GAGs only interacted with the aggregates of BCB. Moreover, a strong light scattering signal was observed after mixing BCB with GAGs. Furthermore, the light scattering intensity at light scattering bands was proportional to the concentration of Hep or CS added when the concentration of BCB was constant.

  6. Molecular structure and vibrational spectroscopic studies of prothionamide by density functional theory

    NASA Astrophysics Data System (ADS)

    Yilmaz, A.; Bolukbasi, O.

    2016-01-01

    Prothionamide (PTH) is the secondary drug used against Mycobacterium tuberculosis bacteria and leprosy. The aim of this work was to investigate the potential energy surface map, anharmonic and harmonic vibrational spectra, NBO analysis and ELF (Electron Localization Function) of the title compound using DFT approach with the B3LYP (Becke, three-parameter, Lee-Yang-Parr) exchange-correlation functional with the 6-31G++(d, p) and the Z3POLX basis sets were employed. In the experimental part of this study, FT-Mid IR, FT-Far IR and FT-Raman spectra of the molecule were recorded in the regions 4000-450 cm-1, 700-30 cm-1 and 4000-100 cm-1 respectively in the solid phase. The comparison between calculated and experimental vibrational spectra (infrared and Raman spectra) and assignments of fundamental vibrational modes were characterized by total energy distribution (TED). Theoretical spectra were seen to be in good agreement with those of the experimental ones.

  7. The molecular structure of the phosphate mineral turquoise—a Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Reddy, B. Jagannadha; Martens, Wayde N.; Weier, Matt

    2006-05-01

    Three turquoise minerals of different origins with formula CuAl 6(PO 4) 4(OH) 8·4H 2O have been studied by Raman spectroscopy at 298 and 77 K and by infrared spectroscopy. A comparison of the turquoise spectra is made with the spectra of chalcosiderite. The spectra of the three mineral samples are very similar in the 1200-900 cm -1 region but strong differences are observed in the 900-100 cm -1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wavenumbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm -1 at 298 K which becomes four bands at 77 K. Three hydroxyl stretching vibrations are observed in the 298 K spectrum and four in the 77 K spectrum. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.735 and 2.665 Å which are considerably shorter than the values for the hydroxyl units 2.909, 2.853 and 2.840 Å. Two phosphate stretching vibrations at 1066 and 1042 cm -1 in line with the two independent phosphate units in the structure of turquoise. Three bands are observed at 1184, 1161 and 1106 cm -1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex with increased complexity observed in the 77 K spectra.

  8. Molecular structure and spectroscopic investigations combined with hypoglycemic/anticancer and docking studies of a new barbituric acid derivative

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Soliman, Saied M.; Elshaier, Yaseen A. M. M.; Ali, M.; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.

    2017-04-01

    The one-pot synthesis reaction of barbituric acid derivative, 1,3-cyclohexandione, and 4-fluorobenzaldehyde in water mediated by NHEt2 as base afforded 4 with excellent yield. The synthesized compound was characterized by spectrophotometric tools as well as X-ray single crystal diffraction technique. The stability of the nine possible isomers of the synthesized compound was studied using the B3LYP method and 6-31G(d,p) basis set. The electronic and spectroscopic properties of the most stable isomer were predicted. The UV-Vis absorption spectrum displayed two bands at 203 and 257 nm in the solvent chloroform. The latter was calculated at 235.6 nm (f = 0.1995) in the gas phase due to H-2→L (42%) and H-1→L+2 (14%) excitations. In solution, using chloroform as a solvent, a slight bathochromic shift to 237.6 nm with an increase in the absorption intensity (f = 0.2898) was predicted. The molecular orbital energy level diagram of this transition band was characterized mainly by π-π* transitions. The 13C and 1H NMR chemical shifts correlated well with the experimental data. The correlations had higher correlation coefficients (R2) when solvent effects were considered. The atomic charges were calculated using natural population analysis and the charged regions were presented using a molecular electrostatic potential (MEP) map. The synthesized compound was examined as a hypoglycemic agent via inhibition of α-glucosidase and β-glucuronidase enzymes. Its inhibitory activity against α-glucosidase was 10 times greater than the inhibitory activity of the standard drug acarbose (IC50 77.9 ± 0.3 μM and 840 ± 1.73 μM, respectively). Moreover, the target compound was evaluated for anticancer activity against MCF-7, H460, 3T3, and Hela cell lines. It demonstrated inhibitory activity against the MCF-7 and H460 cell lines with IC50 5.80 ± 0.12 and 19.6 ± 0.5 μM, respectively, in comparison to doxorubicin. The docking study was performed using the OpenEye program.

  9. The HITRAN2012 molecular spectroscopic database

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gordon, I. E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P. F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L. R.; Campargue, A.; Chance, K.; Cohen, E. A.; Coudert, L. H.; Devi, V. M.; Drouin, B. J.; Fayt, A.; Flaud, J.-M.; Gamache, R. R.; Harrison, J. J.; Hartmann, J.-M.; Hill, C.; Hodges, J. T.; Jacquemart, D.; Jolly, A.; Lamouroux, J.; Le Roy, R. J.; Li, G.; Long, D. A.; Lyulin, O. M.; Mackie, C. J.; Massie, S. T.; Mikhailenko, S.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Orphal, J.; Perevalov, V.; Perrin, A.; Polovtseva, E. R.; Richard, C.; Smith, M. A. H.; Starikova, E.; Sung, K.; Tashkun, S.; Tennyson, J.; Toon, G. C.; Tyuterev, Vl. G.; Wagner, G.

    2013-11-01

    This paper describes the status of the 2012 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, collision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s.

  10. The HITRAN 2008 Molecular Spectroscopic Database

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.; Chance, Kelly V.; Coudert, L. H.; Sung, K.; Toth, R. A.

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

  11. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    PubMed

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  12. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin

    2016-12-01

    Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.

  13. Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities

    NASA Astrophysics Data System (ADS)

    El-Faham, Ayman; Soliman, Saied M.; Ghabbour, Hazem A.; Elnakady, Yasser A.; Mohaya, Talal A.; Siddiqui, Mohammed R. H.; Albericio, Fernando

    2016-12-01

    Novel series of s-triazine-Schiff base derivatives were synthesized employing ultrasonic irradiation and characterized by NMR (1H and 13C), FT-IR, and elemental analysis. The use of ultrasonic irradiation has allowed the preparation of the target products with better yields in shorter reaction time and excellent purities compared to the conventional heating. X-ray single crystal diffraction experiments verified the molecular structure of four from the new prepared s-triaizne-Schiff base derivatives. The molecular structures of the studied compounds are computerized using DFT/B3LYP method. The effects of substituent at the triazine and phenyl ring on the electronic and spectroscopic properties of the studied compounds were also investigated. The natural atomic charges showed that pipridino-s-triazine derivatives are richer in electrons than those having morpholino derivatives. The anti-proliferative effects for the prepared compounds were tested against three different cancer cell lines.

  14. Inclusion of Ethyl Acetoacetate Bearing 7-Hydroxycoumarin Dye by β-Cyclodextrin and its Cooperative Assembly with Mercury(II) Ions: Spectroscopic and Molecular Modeling Studies.

    PubMed

    Aliaga, Margarita E; Fierro, Angélica; Uribe, Iván; García-Río, Luis; Cañete, Álvaro

    2016-10-18

    The inclusion of the fluorescent organic dye, ethyl 3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate (1) by the host β-cyclodextrin (β-CD), and its response toward mercuric ions (Hg(2+) ), was studied by UV/Vis, fluorescence, and (1) H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. (1) H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β-CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β-CD, with a binding constant (Kb1 =1.8×10(4)  m(-1) ) and for the dye 1 (keto form)-Hg(2+) (Kb2 =2.3×10(3)  m(-1) ). Interestingly, in the presence of 1-β-CD complex and mercuric ions, a ternary supramolecular system (Hg-1-β-CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×10(3)  m(-1) , with the keto form of the dye being the only one present in this assembly. The three-component system provides a starting point for the development of novel and directed supramolecular assemblies.

  15. Significance of weak interactions in imidazolium picrate ionic liquids: spectroscopic and theoretical studies for molecular level understanding.

    PubMed

    Panja, Sumit Kumar; Dwivedi, Nidhi; Noothalapati, Hemanth; Shigeto, Shinsuke; Sikder, A K; Saha, Abhijit; Sunkari, Sailaja S; Saha, Satyen

    2015-07-21

    The effects of interionic hydrogen bonding and π-π stacking interactions on the physical properties of a new series of picrate anion based ionic liquids (ILs) have been investigated experimentally and theoretically. The existence of aromatic (C2-HO) and aliphatic (C7-HO-N22 and C6-HO-N20) hydrogen bonding and π-π stacking interactions in these ILs has been observed using various spectroscopic techniques. The aromatic and aliphatic C-HO hydrogen bonding interactions are found to have a crucial role in binding the imidazolium cation and picrate anion together. However, the π-π stacking interactions between two successive layers are found to play a decisive role in tight packing in ILs leading to differences in physical properties. The drastic difference in the melting points of the methyl and propyl derivatives (mmimPic and pmimPic respectively) have been found to be primarily due to the difference in the strength and varieties of π-π stacking interactions. While in mmimPic, several different types of π-π stacking interactions between the aromatic rings (such as picrate-picrate, picrate-imidazole and imidazolium-imidazolium cation rings) are observed, only one type of π-π stacking interaction (picrate-picrate rings) is found to exist in the pmimPic IL. NMR spectroscopic studies reveal that the interaction of these ILs with solvent molecules is different and depends on the dielectric constant of the solvent. While an ion solvation model explains the solvation in high dielectric solvents, an ion-pair solvation model is found to be more appropriate for low dielectric constant solvents. The enhanced stability of these investigated picrate ILs compared with that of inorganic picrate salts under high doses of γ radiation clearly indicates the importance of weak interionic interactions in ILs, and also opens up the possibility of the application of picrate ILs as prospective diluents in nuclear separation for advanced fuel cycling process.

  16. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies.

    PubMed

    Pahari, Biswa Pathik; Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K

    2015-02-12

    We performed spectroscopic and molecular modeling studies to explore the interaction of the bioactive plant flavonol robinetin (3,7,3',4',5'-OH flavone), with the carrier protein human serum albumin (HSA). Multiparametric fluorescence sensing, exploiting the intrinsic "two color" fluorescence of robinetin (comprising excited state intramolecular proton transfer (ESIPT) and charge transfer (CT) emissions) reveals that binding to HSA significantly affects the emission and excitation profiles, with strongly blue-shifted (∼29 nm) normal fluorescence and remarkable increase in the ESIPT fluorescence anisotropy (r) and lifetime (τ). Flavonol-induced HSA (tryptophan) fluorescence quenching data yield the dynamic quenching constant (KD) as 5.42 × 10(3) M(-1) and the association constant (Ks) as 5.59 × 10(4) M(-1). Time-resolved fluorescence anisotropy decay studies show dramatic (∼170 times) increase in the rotational correlation time (τ(rot)), reflecting greatly enhanced restrictions in motion of robinetin in the protein matrix. Furthermore, prominent induced circular dichroism (ICD) bands appear, indicating that the chiral environment of HSA strongly perturbs the electronic transitions of the intrinsically achiral robinetin molecule. Molecular docking calculations suggest that robinetin binds in subdomain IIA of HSA, where specific interactions with basic residues promote ground state proton abstraction and stabilize an anionic species, which is consistent with spectroscopic observations.

  17. Studies on the synthesis, spectroscopic analysis, molecular docking and DFT calculations on 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazol 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.

    2017-02-01

    In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.

  18. Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study.

    PubMed

    Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh

    2016-09-25

    The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results.

  19. Spectroscopic studies and molecular orbital calculations of charge transfer complexation between 3,5-dimethylpyrazole with DDQ in acetonitrile.

    PubMed

    Habeeb, Moustafa M; Al-Attas, Amirah S; Al-Raimi, Doaa S

    2015-05-05

    Charge transfer (CT) interaction between 3,5-dimethylpyrazole (DMP) with the π-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ) has been investigated spectrophotometrically in acetonitrile (AN). Simultaneous reddish brown color has been observed upon mixing donor with acceptor solutions attributing to CT complex formation. The electronic spectra of the formed complex exhibited multi-charge transfer bands at 429, 447, 506, 542 and 589nm, respectively. Job(')s method of continuous variations and spectrophotometric titration methods confirmed the formation of the studied complex in 1:2 ratio between DMP and DDQ. Benesi-Hildebrand equation has been applied to calculate the stability constant of the formed complex where it recorded high value supporting formation of stable complex. Molecular orbital calculations using MM2 method and GAMESS (General Atomic and Molecular Electronic Structure System) interface computations as a package of ChemBio3D Ultra12 software were carried out for more analysis of the formed complex in the gas phase. The computational analysis included energy minimisation, stabilisation energy, molecular geometry, Mullikan charges, molecular electrostatic potential (MEP) surfaces of reactants and complex as well as characterization of the higher occupied molecular orbitals (HOMO) and lower unoccupied molecular orbitals (LUMO) surfaces of the complex. A good consistency between experimental and theoretical results has been recorded.

  20. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    PubMed

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  1. Spectroscopic and reactive properties of a newly synthesized quinazoline derivative: Combined experimental, DFT, molecular dynamics and docking study

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Mary, Y. Shyma; Mary, Y. Sheena; Panicker, C. Yohannan; Abdel-Aziz, Alaa A.-M.; Mohamed, Menshawy A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2017-04-01

    The molecular geometry, the normal mode wavenumbers and corresponding vibrational assignments, natural bond orbital analysis and the HOMO-LUMO analysis of 3-(4-oxo-phenethyl-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)propanamide were performed by B3LYP level of theory using the 6-311++G(d,p)(5D,7F) basis set. The experimentally obtained wavenumbers are in agreement with the theoretically predicted wavenumbrs. From the MEP plot it is evident that the negative charge covers carbonyl group, mono substituted phenyl ring, O59 atom and the positive region is over the nitrogen atoms and hydrogen atoms. NLO behavior of the title molecule was investigated by the determination of the first and second order hyperpolarizabilities. The molecular orbitals and molecular electrostatic potential map are also reported. The NMR spectra and Fukui indices are also analyzed. Molecule sites important from the aspect of reactivity have been determined by calculations of average local ionization energy (ALIE), Fukui functions and bond dissociation energies (BDE). BDE for hydrogen abstraction served us to investigate the possibility for autoxidation mechanism of the investigated molecule. Molecular dynamics (MD) simulations were used in order to investigate which atoms of the title molecule have the most pronounced interactions with water molecules. Molecular docking studies reveal that the inhibitor forms a stable complex with HNE as is evident from the binding affinity -10.9 kcal/mol and the results suggest that the compound exhibit inhibitory activity against HNE.

  2. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.

    2017-01-01

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  3. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin.

    PubMed

    Abdelhameed, Ali S; Alanazi, Amer M; Bakheit, Ahmed H; Darwish, Hany W; Ghabbour, Hazem A; Darwish, Ibrahim A

    2017-01-15

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 10(4)Lmol(-1). BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  4. Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial studies and molecular dynamics study of 5-[(4-nitrophenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole

    NASA Astrophysics Data System (ADS)

    Sheena Mary, Y.; Al-Shehri, Mona M.; Jalaja, K.; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Temiz-Arpaci, Ozlem; Van Alsenoy, C.

    2017-04-01

    Antimicrobial active 5-[(4-nitrophenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole (NATPB) was synthesized and observed IR, Raman bands are compared with the theoretically predicted wave numbers. In the IR spectrum the NH stretching wave number splits into a doublet with a noted difference and is red shifted from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighbouring oxygen atom. The HOMO-LUMO plots reveal the charge transfer in the molecular system through the conjugated paths. The electrophilic and nucleophilic reactive sites are identified from the MEP plot. Mapping of average local ionization energy (ALIE) values to the electron density surface served us as a tool for prediction of molecule sites possibly prone to electrophilic attacks. Other important reactive centres of the title molecule were detected by calculations of Fukui functions. Calculations of bond dissociation energies (BDE) for hydrogen abstraction were used in order to assess whether the NATPB molecules is prone to autoxidation mechanism or not, while BDE of the remaining single acyclic bonds were used in order to determine the weakest bond. Interaction properties with water were investigated by molecular dynamics (MD) simulations and calculations of radial distribution functions (RDFs). The compound possessed broad spectrum activity against all of the tested Gram-positive and Gram-negative bacteria and yeasts, their minimum inhibitory concentrations (MICs) ranging between 32 and 128 μg/ml. The compound exhibited significant antibacterial activity (32 μg/ml) against an antibiotic resistant E. faecalis isolate, at same potency with the compared standard drugs vancomycin and gentamycin sulfate. The molecular docking studies show that the compound might exhibit inhibitory activity against CDK inhibitors.

  5. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  6. Spectroscopic investigation, vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking studies of oxoaporphine alkaloid liriodenine

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B.; Oliveira, Kelson M. T.; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça

    2017-03-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the C dbnd O bond stretching between the dimeric form and the experimental IR spectra (1654 cm- 1 for the experimental, 1700 cm- 1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of - 8.5 and - 8.3 kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules.

  7. Spectroscopic Studies of Melanin.

    DTIC Science & Technology

    1986-01-01

    il), and leading to the production of oxygen radicals (12). Gallas (13) and Kozikowski et al. (14) have studied melanin fluorescence. As part of a...Raman scattering unobservable in aqueous solution by continuous wave techniques. As was also observed by Kozikowski et al. (14), the intrinsic...168B. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence spectroscopy of eumelanins. IEEE J Quant Electron 1984;OE20:1379-1382. 15. Slawinski J

  8. On the influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A

    2014-06-12

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.

  9. On the Influence of Crosslinker on Template Complexation in Molecularly Imprinted Polymers: A Computational Study of Prepolymerization Mixture Events with Correlations to Template-Polymer Recognition Behavior and NMR Spectroscopic Studies

    PubMed Central

    Shoravi, Siamak; Olsson, Gustaf D.; Karlsson, Björn C. G.; Nicholls, Ian A.

    2014-01-01

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer–crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity. PMID:24927149

  10. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.

    PubMed

    Sengupta, Abhigyan; Singh, Reman K; Gavvala, Krishna; Koninti, Raj Kumar; Mukherjee, Arnab; Hazra, Partha

    2014-02-20

    Here, we investigate the effect of urea in the unfolding dynamics of flavin adenine dinucleotide (FAD), an important enzymatic cofactor, through steady state, time-resolved fluorescence spectroscopic and molecular dynamics (MD) simulation studies. Steady state results indicate the possibility of urea induced unfolding of FAD, inferred from increasing emission intensity of FAD with urea. The TCSPC and up-conversion results suggest that the stack-unstack dynamics of FAD severely gets affected in the presence of urea and leads to an increase in the unstack conformation population from 15% in pure water to 40% in 12 M urea. Molecular dynamics simulation was employed to understand the nature of the interaction between FAD and urea at the molecular level. Results depict that urea molecules replace many of the water molecules around adenine and isoalloxazine rings of FAD. However, the major driving force for the stability of this unstack conformations arises from the favorable stacking interaction of a significant fraction of the urea molecules with adenine and isoalloxazine rings of FAD, which overcomes the intramolecular stacking interaction between themselves observed in pure water.

  11. Molecular encapsulation of 5-nitroindazole derivatives in 2,6-dimethyl-beta-cyclodextrin: electrochemical and spectroscopic studies.

    PubMed

    Pérez-Cruz, Fernanda; Jullian, Carolina; Rodriguez, Jorge; Arán, Vicente J; Olea-Azar, Claudio

    2009-07-01

    Four different 5-nitroindazole derivatives (1-4) and its inclusion with Heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DMbetaCD) were investigated. The stoichiometric ratios and stability constants describing the extent of formation of the complexes were determined by phase-solubility measurements obtaining in all cases a type-A(L) diagram. Also electrochemical studies were carried out, where the observed change in the E(PC) value indicated a lower feasibility of the nitro group reduction. The same behavior was observed in the ESR studies. The detailed spatial configuration is proposed based on 2D NMR methods. These results are further interpreted using molecular modeling studies. The latter results are in good agreement with the experimental data.

  12. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  13. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  14. A Study of the Interaction of Bovine Hemoglobin with Synthetic Dyes Using Spectroscopic Techniques and Molecular Docking

    PubMed Central

    Kamaljeet; Bansal, Saurabh; SenGupta, Uttara

    2017-01-01

    Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, and drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine hemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modeling was used to visualize the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with hemoglobin to allow for the formation of potentially toxic interactions. Molecular modeling showed that all four dyes bind within the central cavity of the hemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye. PMID:28119912

  15. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  16. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin.

    PubMed

    Assaran Darban, Reza; Shareghi, Behzad; Asoodeh, Ahmad; Chamani, Jamshidkhan

    2016-12-26

    The present study was carried out to characterize Angiotensin-converting enzyme (ACE) inhibitory peptides which are released from the trypsin hydrolysate of wheat gluten protein. The binding of two inhibitory peptide (P4 and P6) to human serum albumin (HSA) under physiological conditions has been investigated by multi-spectroscopic in combination with molecular modeling techniques. Time-resolved and quenching fluorescence spectroscopies results revealed that the quenching of HSA fluorescence by P4 and P6 in the binary and ternary systems caused HSA-peptides complexes formation. The results indicated that both peptides quenched the fluorescence intensity of HSA through a static mechanism. The binding affinities and number of binding sites were obtained for the HSA-peptides complexes. The circular dichroism (CD) data revealed that the presence of both peptides increased the α-helix content of HSA and induced the remarkable folding of the polypeptide of the protein. Therefore, the CD data determined that the protein structure has been stabilized in the percent of ACE inhibitory peptides in binary and ternary systems. The binding distances between HSA and both peptides were estimated by the Forster theory, and it was revealed that nonradiative energy transfer from HSA to peptides occurred with a high probability. ITC experiments reveal that, in the absence and presence of P6, the dominant forces are electrostatic in binary and ternary systems. Furthermore, molecular modeling studies confirmed the experimental results. Molecular modeling investigation suggested that P4 bound to the site IA and IIA of HSA in binary and ternary systems, respectively. This study on the interaction of peptides with HSA should prove helpful for realizing the distribution and transportation of food compliments and drugs in vivo, elucidating the action mechanism and dynamics of food compliments and drugs at the molecular level. It should moreover be of great use for understanding the

  17. Potential charge transfer probe induced conformational changes of model plasma protein human serum albumin: Spectroscopic, molecular docking, and molecular dynamics simulation study.

    PubMed

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Guchhait, Nikhil

    2012-10-01

    The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.

  18. Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-09-01

    In this study; spectroscopic investigation of adenosine having clinical importance was studied computationally and obtained results were compared with experimental ones. In this scope, geometric optimization and conformational analysis were studied and vibrational spectroscopic properties were studied on the most stable form. NMR and TD-DFT studies on the title compound were conducted with its experimental data. In addition atomic charge distribution, NBO, frontier molecular analysis, thermodynamic analysis and hyperpolarization features were studied.

  19. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).

    PubMed

    Shen, Guo-Feng; Liu, Ting-Ting; Wang, Qi; Jiang, Min; Shi, Jie-Hua

    2015-12-01

    The binding interactions of three kinds of tyrosine kinase inhibitors (TKIs), such as gefitinib, lapatinib and sunitinib, with bovine serum albumin (BSA) were studied using ultraviolet spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The experimental results showed that the intrinsic fluorescence quenching of BSA induced by the three TKIs resulted from the formation of stable TKIs-BSA complexes through the binding interaction of TKIs with BSA. The stoichiometry of three stable TKIs-BSA complexes was 1:1 and the binding constants (Kb) of the three TKIs-BSA complexes were in the order of 10(4)M(-1) at 310 K, indicating that there was a strong binding interaction of the three TKIs with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be deduced that the binding process of the three TKIs with BSA was spontaneous and enthalpy-driven process, and the main interaction forces between the three TKIs and BSA were van der Waals force and hydrogen bonding interaction. Moreover, from the results of CD, FT-IR and molecular docking, it can be concluded that there was a significant difference between the three TKIs in the binding site on BSA, lapatinib was located on site II (m) of BSA while gefitinib and sunitinib were bound on site I of BSA, and there were some changes in the BSA conformation when binding three TKIs to BSA but BSA still retains its secondary structure α-helicity.

  20. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques.

    PubMed

    Li, Shu; Tang, Lin; Bi, Hongna

    2016-03-01

    The aim of this study is to evaluate the binding behavior between pelargonidin-3-O-glucoside (P3G) and bovine serum albumin (BSA) using multi-spectroscopic, transmission electron microscopy (TEM) and molecular docking methods under physiological conditions. Fluorescence spectroscopy and time-resolved fluorescence showed that the fluorescence of BSA could be quenched remarkably by P3G via a static quenching mechanism, and there is a single class of binding site on BSA. In addition, the thermodynamic functions ΔH and ΔS were -21.69 kJ/mol and 24.46 J/mol/K, indicating that an electrostatic interaction was a main acting force. The distance between BSA and P3G was 2.74 nm according to Förster's theory, illustrating that energy transfer occurred. In addition, the secondary structure of BSA changed with a decrease in the α-helix content from 66.2% to 64.0% as seen using synchronous fluorescence, UV/vis, circular dichroism and Fourier transform infrared spectroscopies, whereas TEM images showed that P3G led to BSA aggregation and fibrillation. Furthermore, site marker competitive experiments and molecular docking indicated that P3G could bind with subdomain IIA of BSA. The calculated results of the equilibrium fraction showed that the concentration of free P3G in plasma was high enough to be stored and transported from the circulatory system to its target sites to provide therapeutic effects.

  1. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M.; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C6H3B(OH)2F2) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm-1) and the FT-Raman spectrum (3500-10 cm-1) in the solid phase were recorded for 2,3-DFPBA. The 1H and 13C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. 13C and 1H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra.

  2. Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analysis.

    PubMed

    Rabbani, Gulam; Baig, Mohammad Hassan; Lee, Eun Ju; Cho, Won Kyung; Ma, Jin Yeul; Choi, Inho

    2017-04-05

    Eperisone hydrochloride (EH) is a widely used as a muscle relaxant for patients with muscular contracture, low back pain, or spasticity. Human serum albumin (HSA), a highly soluble negatively charged, endogenous and abundant plasma protein ascribed with the ligand binding and transport properties. The current study was undertaken to explore the interaction between EH and the serum transport protein, HSA. Study of the interaction between HSA and EH was carried by UV-vis, fluorescence quenching, circular dichroism (CD) spectroscopy, FRET, and ITC. Tryptophan fluorescence intensity of HSA was strongly quenched by EH. The binding constants (Kb) were obtained by fluorescence quenching and results shows that the EH-HSA interaction revealed a static mode of quenching, with binding constant Kb ~104 reflecting high affinity of EH for HSA. The negative ΔGº value for binding indicated that HSA-EH interaction is a spontaneous process. Thermodynamic analysis shows HSA-EH complex formation occurs primarily due to hydrophobic interactions and hydrogen bonds were facilitate the binding of EH. EH binding induces α-helix of HSA as obtained by far-UV CD and FTIR spectroscopy. In addition, the distance between EH (acceptor) and Trp residue of HSA (donor) was calculated 2.18 nm using Förster's resonance energy transfer theory. Furthermore, molecular docking results revealed EH binds with HSA, and binding site is positioned in Sudlow Site I of HSA (subdomain IIA). This work provides a useful experimental strategy for studying the interaction of myorelaxant with HSA, helping to understand the activity and mechanism of drug binding.

  3. Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial and antimicrobial studies of 5-ethylsulphonyl-2-(p-aminophenyl)benzoxazole

    NASA Astrophysics Data System (ADS)

    Parveen S, Shana; Al-Alshaikh, Monirah A.; Panicker, C. Yohannan; El-Emam, Ali A.; Arisoy, Mustafa; Temiz-Arpaci, Ozlem; Van Alsenoy, C.

    2016-07-01

    The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 5-ethylsulphonyl-2-(p-aminophenyl)benzoxazole have been investigated experimentally and theoretically based on density functional theory. Synthesis and antibacterial and antimicrobial activities of the title compound were reported. The FT-IR and FT-Raman spectra were recorded in solid phase and the experimental bands were assigned and characterized on the basis of potential energy distribution. The HOMO and LUMO energies show that the charge transfer occur within the molecule. Stability arising from hyperconjugative interactions and charge delocalization were analysed using natural bond orbital analysis. Binding free energy of -9.8 kcal/mol as predicted by docking studies suggests good binding affinity and the inhibitor forms a stable complex with FAK as is evident from the ligand-receptor interactions. The title compound possesses lower activity against Candida albicans with MIC value of 64 μg/ml than the compared reference drugs as fluconazole and amphotericin B and possesses the same activity with value of 64 μg/ml against Candida krusei as the reference drug, fluconazole.

  4. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, and (119)Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands.

  5. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and α-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  6. The molecular structure of the borate mineral szaibelyite MgBO2(OH) - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria

    2015-06-01

    We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm-1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm-1 with a shoulder band at 1093 cm-1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm-1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm-1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm-1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm-1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm-1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.

  7. Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.

    2017-03-01

    The most stable, optimized structure of the 2-amino-3-chloro-5-trifluoromethyl pyridine (ACTP) molecule was predicted by the density functional theory calculations using the B3LYP method with cc-pVQZ basis set. Antitumor activity of the ACTP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical vibrational wavenumbers were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the ACTP molecule. The molecular docking analysis reveals the better inhibitory nature of the ACTP molecule against the colony-stimulating factor 1 (CSF1) gene which causes tenosynovial giant-cell tumor. Hence, the ACTP molecule can act as a potential inhibitor against tenosynovial giant-cell tumor.

  8. Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A potential bioactive agent.

    PubMed

    Mohamed Asath, R; Premkumar, R; Mathavan, T; Milton Franklin Benial, A

    2017-03-15

    The most stable, optimized structure of the 2-amino-3-chloro-5-trifluoromethyl pyridine (ACTP) molecule was predicted by the density functional theory calculations using the B3LYP method with cc-pVQZ basis set. Antitumor activity of the ACTP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical vibrational wavenumbers were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the ACTP molecule. The molecular docking analysis reveals the better inhibitory nature of the ACTP molecule against the colony-stimulating factor 1 (CSF1) gene which causes tenosynovial giant-cell tumor. Hence, the ACTP molecule can act as a potential inhibitor against tenosynovial giant-cell tumor.

  9. Structure and Dynamics of Antifreeze Protein--Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study.

    PubMed

    Kar, Rajiv K; Mroue, Kamal H; Kumar, Dinesh; Tejo, Bimo A; Bhunia, Anirban

    2016-02-11

    Antifreeze proteins (AFPs) are the key biomolecules that enable species to survive under subzero temperature conditions. The physiologically relevant activities of AFPs are based on the adsorption to ice crystals, followed by the inhibition of subsequent crystal layer growth of ice, routed with depression in freezing point in a noncolligative manner. The functional attributes governing the mechanism by which AFPs inhibit freezing of body fluids in bacteria, fungi, plants, and fishes are mainly attributed to their adsorption onto the surface of ice within the physiological system. Importantly, AFPs are also known for their application in cryopreservation of biological samples that might be related to membrane interaction. To date, there is a paucity of information detailing the interaction of AFPs with membrane structures. Here, we focus on elucidating the biophysical properties of the interactions between AFPs and micelle models that mimic the membrane system. Micelle model systems of zwitterionic DPC and negatively charged SDS were utilized in this study, against which a significant interaction is experienced by two AFP molecules, namely, Peptide 1m and wfAFP (the popular AFP sourced from winter flounder). Using low- and high-resolution biophysical characterization techniques, such as circular dichroism (CD) and NMR spectroscopy, a strong evidence for the interactions of these AFPs with the membrane models is revealed in detail and is corroborated by in-depth residue-specific information derived from molecular dynamics simulation. Altogether, these results not only strengthen the fact that AFPs interact actively with membrane systems, but also demonstrate that membrane-associated AFPs are dynamic and capable of adopting a number of conformations rendering fluidity to the system.

  10. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-08-07

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10(10) L mol(-1) s(-1), indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10(5) M(-1), indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  11. Molecular, spectroscopic and thermal studies on catechol, 4,5-dibromocatechol, resorcinol, hydroquinone and 4-4‧-dihydroxybiphenyl derivatives armed with benzothiazole moieties

    NASA Astrophysics Data System (ADS)

    Alshargabi, Arwa; Yeap, Guan-Yeow; Mahmood, Wan Ahmad Kamil; Samikannu, Rakesh

    2013-05-01

    A new series of catechol, 4,5-dibromocatechol, resorcinol, hydroquinone and 4-4'-dihydroxybiphenyl derivatives possessing two benzothiazole moieties at respective positions of 1,2, 1,3, 1,4 and/or 4,4' has successfully been synthesized. The molecular structures were fully elucidated by spectroscopic techniques (1H NMR, 13C NMR and two dimensional COSY, HMBC, HMQC, DEPT-135 and DEPT-90). The connectivity study between the cause of using different core systems in the target compounds and the anisotropic behavior as inferred from phase transition temperature and relevant morphology studies has led to some unique features arising from this series. Compounds with ortho substituent exhibit enantiotropic N and SmA phases. The analogues containing resorcinol and 4,4'-disubstituentbiphenyl show enanotiotropic nematic behavior while the hydroquinone derivative induces the formation of monotropic nematogen. An extensive study to further substantiate the relationship between the stability of the nematic phase and associated transition temperatures due to different core systems is also reported.

  12. Molecular structure, experimental and theoretical spectroscopic characterization and non-linear optical properties studies of a new non-centrosymmetric hybrid material

    NASA Astrophysics Data System (ADS)

    Chihaoui, Nejla; Hamdi, Besma; Dammak, Thameur; Zouari, Ridha

    2016-11-01

    This paper gathers the synthesis and study of a novel nonlinear organic-inorganic (1,2-diammoniumcyclohexane tetrabromozincate (II) monohydrate; [C6H10(NH3)2]ZnBr4·H2O) hybrid. The newly developed hybrid was characterized by XRD and spectroscopic (FT-IR, Raman, UV-Visible and CP/MAS-NMR) studies. All theoretical calculations and structural optimization parameters were conducted by using DFT approach with B3LYP/6-31G(d) basis set and the vibrational wavenumbers were evaluated for the affectation of [C6H10(NH3)2]ZnBr4·H2O compound by using transferable scale factor. The inspection of intermolecular links in the studied framework has been executed by the Hirshfeld surface analysis. The nonlinear optical characteristics of this compound were theoretically explored also the molecular orbitals (HOMO) and (LUMO) properties are performed to describe the charge transfer within the crystal.

  13. Study on spectroscopic parameters and molecular constants of HC1(X1Σ+) molecule by using multireference configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Niu; Shi, De-Heng; Zhang, Jin-Ping; Zhu, Zun-Lüe; Sun, Jin-Feng

    2010-05-01

    Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HC1(X1Σ+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell-Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, D0, ωeχe, αe and Be). Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants D0, De, Re, ωe, ωeχe, αe and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 nm, 2993.33 cm-1, 52.6273 cm-1, 0.2981 cm-1 and 10.5841 cm-1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg-Klein-Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.

  14. Spectroscopic, DFT, molecular dynamics and molecular docking study of 1-butyl-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Mary, Y. Sheena; Varghese, Hema Tresa; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.

    2017-04-01

    FT-IR and FT-Raman spectrum of 1-butyl-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide were recorded and theoretical study has been made using Gaussian09 software package. DFT/B3LYP calculations have been done using 6-311++G (d, p) (5D, 7F) basis sets to investigate the vibrational frequencies and geometrical parameters. The assignments of the normal modes are done by potential energy distribution (PED) calculations. First and second hyperpolarizabilities are calculated in order to find its role in non-linear optics. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular Electrostatic Potential was calculated by the DFT method and predicts the most reactive part in the molecule. The calculated NMR values are in good agreement with experimental data. Reactive sites of the title molecule have been determined by calculations of average local ionization surfaces and Fukui functions. Analyzing electron density between atoms, intra-molecular non-covalent interactions have been determined. Possible locations prone to autoxidation and locations where degradation could start have been determined by calculation of bond dissociation energies for all single acyclic bonds. Atoms with pronounced interactions with water molecules have been located by calculations of radial distribution functions, obtained after molecular dynamics simulations. The docked title compound forms a stable complex with CDK inhibitor and gives a binding affinity value of -6.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against CDK inhibitor.

  15. Computational and spectroscopic studies of a new Schiff base 3-hydroxy-4-methoxybenzylidene(2-hydroxyphenyl)amine and molecular structure of its corresponding zwitterionic form.

    PubMed

    Habibi, Mohammad Hossein; Shojaee, Elahe; Ranjbar, Mahnaz; Memarian, Hamid Reza; Kanayama, Akihiko; Suzuki, Takayoshi

    2013-03-15

    Computational and spectroscopic properties of a novel Schiff base compound, 3-hydroxy-4-methoxybenzylidene(2-hydroxyphenyl)amine were studied. The crystal structures of the title compound and its corresponding zwitterionic form were analyzed by X-ray diffraction. The presence of N-H, C-O and C=N stretching vibrations in IR spectrum strongly suggest that the title compound has zwitterionic form in the solid state. Molecular geometry of the title compound in the ground state has been calculated using the density functional method (DFT) at B3LYP 6-31++G(d,p) basis set and was compared with the experimental data. The calculated results of the title compound show that the optimized geometry can well reproduce the crystal structure. The molecule shows absorption bands at 345 and 363 nm in EtOH. The shoulder-shaped bands at 415 nm can be assigned to n→π(*) transitions. The absorption band is observed at 285 nm in EtOH corresponds to the π→π(*) transitions.

  16. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH)ṡ5H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH)ṡ5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [ soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm-1 are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm-1 are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm-1 with sharper bands at 3459, 3530 and 3562 cm-1 assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite.

  17. Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques.

    PubMed

    He, Ling-Ling; Wang, Zhi-Xin; Wang, Yong-Xia; Liu, Xian-Ping; Yang, Yan-Jie; Gao, Yan-Ping; Wang, Xin; Liu, Bin; Wang, Xin

    2016-09-01

    Fluorescence, absorption, time-correlated single photon counting (TCSPC), and circular dichroism (CD) spectroscopic techniques as well as molecular modeling methods were used to study the binding characterization of promethazine (PMT) to human serum albumin (HSA) and the influence of flavonoids, rutin and baicalin, on their affinity. The results indicated that the fluorescence quenching mechanism of HSA by PMT is a static quenching due to the formation of complex. The reaction was spontaneous and mainly mediated by hydrogen bonds and hydrophobic interactions. The binding distance between the tryptophan residue of HSA and PMT is less than 8nm, which indicated that the energy transfer from the tryptophan residue of HSA to PMT occurred. The binding site of PMT on HSA was located in sites I and the presence of PMT can cause the conformational changes of HSA. There was the competitive binding to HSA between PMT and flavonoids because of the overlap of binding sites in HSA. The flavonoids could decrease the association constant and increase the binding distance. In addition, their synergistic effect can further change the conformation of HSA. The decrease in the affinities of PMT binding to HSA in the presence of flavonoids may lead to the increase of free drug in blood, which would affect the transportation or disposition of drug and evoke an adverse or toxic effect. Hence, rationalising dosage and diet regimens should be taken into account in clinical application of PMT.

  18. Synthesis, molecular structure and spectroscopic studies of some new quinazolin-4(3H)-one derivatives; an account on the N- versus S-Alkylation

    NASA Astrophysics Data System (ADS)

    Hagar, Mohamed; Soliman, Saied M.; Ibid, Farahate; El Ashry, El Sayed H.

    2016-03-01

    A new series of N- and S-alkylated products of 3-aryl-1H,3H-quinazolin-2,4-dione and 3-aryl-2-mercapto-3H-quinazolin-4-one, respectively, were prepared in good yields via efficient nucleophilic substitution reaction of the SH and NH substrates with methyl iodide, ethyl bromoacetate, allyl bromide, propagyl bromide, 2-bromoethanol, 1,3-dibromopropane or phenacyl bromide in DMF as a solvent and anhydrous potassium carbonate. The quinazolin-2,4-dione favored the N-alkylation while the 2-mercapto-3H-quinazolin-4-one goes via the S-alkylation. DFT reactivity studies showed that the former have the N-site with higher nucleophilicity compared to the O-site. In contrast, the S-site is the more nucleophilic centre than the N-atom of the latter. The structures of the synthesized products have been established on the basis of their melting point (m.p), IR and 1HNMR data. The molecular structures of the products were calculated using the DFT B3LYP/6-311G(d,p) method. The electronic and spectroscopic properties (Uv-Vis and NMR spectra) were calculated using the same level of theory. The chemical reactivity descriptors that could help to understand the biological activity of the products are also predicted.

  19. The molecular structure of the phosphate mineral kidwellite NaFe93+(PO4)6(OH)11ṡ3H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Scholz, Ricardo; Souza, Larissa

    2014-09-01

    The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11ṡ3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm-1 and 1014 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm-1 are attributed to the ν3 antisymmetric stretching bands of the PO43- and HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm-1are assigned to the PO43- ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm-1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

  20. The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies.

    PubMed

    Arczewska, Marta; Kamiński, Daniel M; Górecka, Ewa; Pociecha, Damian; Rój, Edward; Sławińska-Brych, Adrianna; Gagoś, Mariusz

    2013-02-01

    Xanthohumol (XN) is the major prenylated flavonoid found in hop resin. It has attracted considerable attention in recent years due to its wide spectrum of biological activities and the beneficial effect on human health. Since lipid membrane is first target for biologically active compounds, we decided to investigate the influence of XN on the dipalmitoylphosphatidylcholine (DPPC) multibilayers. Interactions of XN with DPPC were investigated as a function of temperature and its concentration by using X-ray diffraction and the ATR-FTIR spectroscopy techniques. The aim of understanding the mechanisms of molecular interactions between XN and DPPC was to indicate the localization of the XN with respect to the membrane and the type of interaction with phospholipids. The results revealed that XN changes the physical properties of the DPPC multibilayers in the form of dry film. A new complex formation between XN and DPPC is reported. The detailed analysis of refraction effect indicates the changes in electron density ratio between hydrophobic and hydrophilic zones of lipid at phase transition. This is in compliance with reported changes in FTIR spectra where at pretransition XN moves from interface region between polar heads to the neighborhood of phosphate groups.

  1. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  2. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt--NMR, FT-IR and DFT studies.

    PubMed

    Samsonowicz, M; Kowczyk-Sadowy, M; Regulska, E; Lewandowski, W

    2014-01-24

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. Theinfluence ofsodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G(**) method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. (1)H and (13)C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  3. FT-IR spectroscopic study on the variations of molecular structures of some carboxyl acids induced by free electron laser

    NASA Astrophysics Data System (ADS)

    Yang, Limin; Xu, Yizhuang; Su, Yunlan; Wu, Jinguang; Zhao, Kui; Chen, Jia'er; Wang, Mingkai

    2005-12-01

    Free electron laser has been developed as tunable lasers over a wide range of wavelengths. Devices irradiating in the region of 6-16 μm (1666-625 cm -1) are operable in the Beijing free electron lasers facilities (BFEL). For understanding the interactions between FEL and biological tissues, in this study wavelength-selective infrared-induced structure changes of substances under irradiation by FEL were measured using FT-IR spectroscopy. The carboxyl acids and carboxylates samples investigated include salicylic acid, sulfosalicylic acid, cholic acid, deoxycholic acid, sodium cholate and sodium deoxycholate. The changes of the FT-IR spectra of the molecules prove that the spectral variations of the samples induced by FEL are closely related to their hydrogen bond networks.

  4. The molecular structure of the phosphate mineral beraunite Fe2+Fe53+(PO4)4(OH)5ṡ4H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano

    2014-07-01

    The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe2+Fe53+(PO4)4(OH)5ṡ4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm-1 and 1011 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm-1 are assigned to the PO43- ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.

  5. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)-2-Amino-1-PhenylEthanol

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Periandy, S.

    2016-08-01

    A systematic spectroscopic study of (R)-2-Amino-1-Phenylethanol was carried out using FT-IR, FT-Raman, NMR and UV analysis. FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectrum of the title molecule were recorded in solid phase, the 1H and 13C NMR spectra were recorded in CDCl3 (deuterated chloroform) solution phase and the UV-Vis (200-800 nm) spectrum was recorded in gas phase and ethanol solution phase. Potential energy surface (PES) scan was performed using B3LYP functional with 6-311++G (d, p) basis set. The geometrical parameters (such as bond length, bond angle, dihedral angles) and theoretical frequencies of the title compound were studied from density functional theory (DFT) using B3LYP and B3PW91 functionals with 6-311++G (d, p) basis sets. The computed frequencies were scaled and compared with the experimental values and potential energy distribution (PED) has been tabulated. A comparative study of atomic charges was made by calculating Mulliken, Natural Population Analysis (NPA) and Electrostatic Potential (ESP) simultaneously, with B3LYP/6-311++G (d, p) basis set. 1H and 13C NMR spectra were recorded and chemical shifts were compared to TMS by Gauge-Independent Atomic Orbital (GIAO) method. Electronic properties such as excitation energy, energy gap between HOMO and LUMO was calculated using time dependent DFT technique. NBO analysis, which predicts the different possibilities of electronic transition in the molecule, was computed using B3PW91 functional with 6-311++G (d, p) basis set. The thermodynamic properties such as heat capacity, entropy and enthalpy at different temperatures were computed and analyzed. Molecular docking study shows that the secondary hydroxyl group and the primary amino group in the aliphatic chain attached to the benzene ring are crucial for binding and the title compound might exhibit inhibitory activity against Bacteroides fragilis (3P24) and may act as anti-bacterial agent.

  6. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  7. Molecular imaging true-colour spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Wilson, Christy; Grant, Gerald; Wax, Adam

    2011-12-01

    Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages. For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.

  8. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  9. Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: a comparison study.

    PubMed

    Rahnama, Elaheh; Mahmoodian-Moghaddam, Maryam; Khorsand-Ahmadi, Sabra; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2015-01-01

    The interaction between metformin and human serum albumin (HSA), as well as its glycated form (gHSA) was investigated by multiple spectroscopic techniques, zeta potential, and molecular modeling under physiological conditions. The steady state and time-resolved fluorescence data displayed the quenching mechanism of HSA-metformin and gHSA-metformin was static. The binding information, including the binding constants, number of binding sites, effective quenching constant showed that the binding affinity of metformin to HSA was greater than to gHSA which also confirmed by anisotropy measurements. It was determined that metformin had two and one set of binding sites on HSA and gHSA, respectively. Far-UV CD spectra of proteins demonstrated that the α-helical content decreased with increasing metformin concentration. The zeta potential and resonance light scattering (RLS) diagrams provided that lower drug concentration induced metformin aggregation on gHSA surface as compare to HSA. The increase in polarizability was one of the important factors for the enhancement of RLS and the formation of drug/protein complexes. The zeta potential results suggested that both hydrophobic and electrostatic interactions played important roles in the protein-metformin complex formation. Site marker experiments and molecular modeling showed that the metformin bound to subdomain IIIA (Sudlow's site II) on HSA and gHSA.

  10. Vibrational spectroscopic investigations, molecular dynamic simulations and molecular docking studies of N‧-diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide

    NASA Astrophysics Data System (ADS)

    Pillai, Renjith Raveendran; Menon, Vidya V.; Mary, Y. Shyma; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan

    2017-02-01

    FT-IR and FT-Raman spectra of N‧-diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide were recorded and analyzed. Due to the industrial and biological importance of pyrazole derivatives, we have carried out an extensive quantum chemical study on N‧-diphenylmethylidene-5-methyl-1H-pyrazole-3-carbohydrazide. The theoretical ground state geometry and electronic structure of the title molecule were optimized by DFT/B3LYP/6-311G++(d,p) method and compared with those of the crystal data. The wave numbers obtained are assigned by potential energy distribution. The ring breathing modes of the benzene rings are assigned theoretically at 1009 cm-1 for the mono substituted phenyl rings. The first order hyperpolarizability is comparable with that of similar derivatives and 16 times that of the standard NLO material urea. Conformational analysis was conducted in order to locate all possible conformations of the title compound, followed by investigation of local reactivity properties by MEP and ALIE surfaces. Natural bond orbital analysis has been carried out to analyse the stability of the molecule arising from hyper-conjugative interactions and charge delocalization. Further, reactive properties via autoxidation and hydrolysis mechanisms have been assessed through calculations of bond dissociation energies and radial distribution functions. Docking results confirmed that the compound was a potential inhibitor of CDK2s and were in agreement with the previous reported studies.

  11. Spectroscopic detectability of the molecular Aharonov-Bohm effect.

    PubMed

    Englman, R

    2016-01-14

    It is theoretically shown that the emission spectra from an excited Jahn-Teller state in which the ions undergo a forced periodic trajectory have an M-shaped form, directly due to the sign change by the Berry-phase factor. The presence of a weak spectral sideline is noted and the effects of a nonlinear vibronic coupling are calculated. Experimental verifications of the results, e.g., on R'-centers in LiF, are proposed. The dip in the M-shaped emission line is a novel, and perhaps unique, spectroscopic manifestation of the "molecular Aharonov-Bohm effect."

  12. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  13. Measurement artifacts identified in the UV-vis spectroscopic study of adduct formation within the context of molecular imprinting of naproxen

    NASA Astrophysics Data System (ADS)

    Perez, Martin; Concu, Riccardo; Ornelas, Mariana; Cordeiro, M. Natália D. S.; Azenha, Manuel; Fernando Silva, A.

    2016-01-01

    The ultraviolet-visible spectroscopy has been assessed as a technique for the evaluation of the strength of template-precursor adduct in the development of molecular imprints of the non-steroidal anti-inflammatory drug naproxen (NAP). The commonly employed approach relies on the collection of UV spectra of drug + precursor mixtures at different proportions, the spectra being recorded against blanks containing the same concentration of the precursor. The observation of either blue or red band-shifts and abatement of a major band are routinely attributed to template-precursor adduct formation. Following the described methodology, the precursors 1-(triethoxysilylpropyl)-3-(trimethoxysilylpropyl)-4,5-dihydroimidazolium iodide (AO-DHI+) and 4-(2-(trimethoxysilyl)ethyl)pyridine (PETMOS) provoked a blue-shift and band abatement effect on the NAP spectrum. Molecular dynamics simulations indicated a reasonable affinity between NAP and these precursors (coordination numbers 0.33 for AO-DHI+ and 0.18 for PETMOS), hence showing that NAP-precursor complexation is in fact effective. However, time dependent density functional theory (TD-DFT) calculations of the spectra of both free and precursor-complexed NAP were identical, thus providing no theoretical basis for the complexation-induced effects observed. We realized that the intense spectral bands of AO-DHI+ and PETMOS (at around 265 nm) superimpose partially with the NAP bands, and the apparent "blue-shifting" in the NAP spectra when mixed with AO-DHI + and PETMOS was in this case a spurious effect of the intense background subtraction. Therefore, extreme care must be taken when interpreting other spectroscopic results obtained in a similar fashion.

  14. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  15. Synthesis, spectroscopic studies, molecular modeling and antimicrobial activity of binuclear Co(II) and Cu(II) complexes of 4,6-diacetylresorcinol.

    PubMed

    Shebl, Magdy; Khalil, Saied M E; Taha, A; Mahdi, M A N

    2013-09-01

    Reactions of 4,6-diacetylresorcinol with different cobalt(II) and copper(II) salts viz., OAc(-), Cl(-), NO3(-) and SO4(2-), yielded a new series of binuclear metal complexes. Reactions of the ligand with these metal ions in the presence of a secondary ligand (L') [O,O-donor; acetylacetone, N,O-donor; 8-hydroxyquinoline or N,N-donor; 1,10-phenanthroline and N,N,N',N'-tetramethylethylenediamine] in 1:2:2 (L:M:L') molar ratio yielded mixed-ligand complexes with different molar ratios. The metal complexes were characterized by elemental and thermal analyses, IR, electronic, ESR and mass spectra as well as conductivity and magnetic susceptibility measurements. The analytical and spectroscopic data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the type of the anion and secondary ligand used, through the two phenolic and two carbonyl groups. Electronic spectra, magnetic and conductivity measurements showed that all complexes are octahedral with non-electrolytic nature. The profile of ESR spectra of copper(II) complexes suggested the octahedral geometry and the spin Hamiltonian parameters of the complexes were calculated and discussed. Molecular orbital calculations were performed for metal complexes using Hyperchem 7.52 program on the bases of PM3 level and the results correlated with the experimental data. The free ligand and some of its metal complexes showed antimicrobial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  16. Synthesis, spectroscopic studies, molecular modeling and antimicrobial activity of binuclear Co(II) and Cu(II) complexes of 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2013-09-01

    Reactions of 4,6-diacetylresorcinol with different cobalt(II) and copper(II) salts viz., OAc-, Cl-, NO3- and SO42-, yielded a new series of binuclear metal complexes. Reactions of the ligand with these metal ions in the presence of a secondary ligand (L‧) [O,O-donor; acetylacetone, N,O-donor; 8-hydroxyquinoline or N,N-donor; 1,10-phenanthroline and N,N,N‧,N‧-tetramethylethylenediamine] in 1:2:2 (L:M:L‧) molar ratio yielded mixed-ligand complexes with different molar ratios. The metal complexes were characterized by elemental and thermal analyses, IR, electronic, ESR and mass spectra as well as conductivity and magnetic susceptibility measurements. The analytical and spectroscopic data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the type of the anion and secondary ligand used, through the two phenolic and two carbonyl groups. Electronic spectra, magnetic and conductivity measurements showed that all complexes are octahedral with non-electrolytic nature. The profile of ESR spectra of copper(II) complexes suggested the octahedral geometry and the spin Hamiltonian parameters of the complexes were calculated and discussed. Molecular orbital calculations were performed for metal complexes using Hyperchem 7.52 program on the bases of PM3 level and the results correlated with the experimental data. The free ligand and some of its metal complexes showed antimicrobial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  17. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  18. Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Kumar, Amit; Deval, Vipin; Gupta, Archana; Tandon, Poonam; Patil, P. S.; Deshmukh, Prathmesh; Chaturvedi, Deepika; Watve, J. G.

    2017-02-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of the chalcone derivative 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one (2C6F2SC) is reported. Initial geometry generated from single crystal X-ray diffraction parameters was minimized at DFT level employing B3LYP/6-311++G (d,p) without any constraint to the potential energy surface. The molecule has been characterized using various experimental techniques FT-IR, FT-Raman, UV-Vis, 1H NMR, TD-THz and the spectroscopic data have been analyzed theoretically by Density Functional Theory (DFT) method. Harmonic vibrational frequencies were calculated theoretically using the optimized ground state geometry and the spectra were interpreted by means of potential energy distribution. Time Dependent Density Functional Theory (TD-DFT) has been used to calculate energies, absorption wavelengths, oscillator strengths of electronic singlet-singlet transitions. The calculated energy and oscillator strength complement with the experimental findings. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. Good correlations between the experimental 1H NMR chemical shifts and calculated GIAO shielding tensors were found. Stability of the molecule, hyperconjugative interactions and charge delocalization has been analyzed by natural bond orbital (NBO) analysis. The first order hyperpolarizability (β) of this molecular system and related properties (μ, <α> and Δα) have been calculated using the finite-field approach.

  19. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation)

    NASA Astrophysics Data System (ADS)

    Rothman, Laurence S.; Rinsland, Curtis P.; Goldman, Aaron; Massie, Steven T.; Edwards, David P.; Flaud, Jean-Marie; Perrin, Agnes; Camy-Peyret, Claude; Dana, Victor; Mandin, Y.-Y.; Schroeder, John W.; Gamache, Robert R.; Wattson, R. B.; Yoshino, Kouichi; Chance, Kelly V.; Jucks, Kenneth W.; Brown, L. R.; Nemtchinov, Vassilii; Varanasi, Prasad

    1998-07-01

    Nineteen ninety-eight marks the 25th anniversary of the release of the first HITRAN database. HITRAN is recognized as the international standard of the fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that is forthcoming. A new release is planned for 1998.

  20. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  1. Computational study of the vibrational spectroscopic studies, natural bond orbital, frontier molecular orbital and second-order non-linear optical properties of acetophenone thiosemicarbazone molecule.

    PubMed

    Li, Xiao-Hong; Mei, Zheng; Zhang, Xian-Zhou

    2014-01-24

    The vibrational frequencies of acetophenone thiosemicarbazone in the ground state have been calculated using density functional method (B3LYP) with 6-31G(d), 6-31G(d,p) and 6-311++G(d,p) basis sets. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exist N-H…N and N-H…S hydrogen bonds in the title compound, which play a major role in stabilizing the molecule and are confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as second-order NLO material. In addition, the frontier molecular orbitals were analyzed and the crystal structure obtained by molecular mechanics belongs to the Pbca space group, with lattice parameters Z=8, a=16.0735 Å, b=7.1719 Å, c=7.8725 Å, ρ=0.808 g/cm(3).

  2. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh

    2008-11-01

    The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.

  3. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  4. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV-Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea.

    PubMed

    Gil, Diego M; Defonsi Lestard, M E; Estévez-Hernández, O; Duque, J; Reguera, E

    2015-06-15

    Vibrational and electronic spectra for 1-benzyl-3-(2-furoyl) thiourea were calculated by using density functional method (B3LYP) with different basis sets. The complete assignment of all vibrational modes was performed on basis of the calculated frequencies and comparing with the reported IR and Raman spectra for that thiourea derivative. UV-visible absorption spectra of the compound dissolved in methanol were recorded and analyzed using time dependent density functional theory (TD-DFT). The calculated values for the geometrical parameters of the title compound are consistent with the ones reported from XRD studies. The stability of the molecule, related to hyper-conjugative interactions, and electron delocalization were evaluated using natural bond orbital (NBO) analysis. Intra-molecular interactions were studied by AIM approach. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. Molecular electrostatic potential map was performed by the DFT method.

  5. Spectroscopic, electrochemical and molecular docking study of the binding interaction of a small molecule 5H-naptho[2,1-f][1,2] oxathieaphine 2,2-dioxide with calf thymus DNA.

    PubMed

    Mukherjee, Abhijit; Mondal, Shovan; Singh, Bula

    2017-03-14

    The interaction of 5H-naptho[2,1-f][1,2]oxathieaphine2,2-dioxide (NOTD) with calf thymus DNA in Tris-HCl buffer at physiological pH was investigated with the help of various spectroscopic and electrochemical methods along with molecular docking study. Studying the non-covalent binding interaction of a neutral fluorophore with ctDNA has become an active field of research at the interface between medicinal chemistry and biological science. NOTD is known for its various toxicological, skin sensitization, and antiviral properties. Still, to date, its interaction style with ctDNA is not well elucidated. UV-vis absorption, fluorescence emission and circular dichroism spectroscopy (CD) suggest the complex formation between NOTD and ctDNA with binding constant value in the order of 3.12-4.1(×10(4))M(-1). Binding nature of NOTD with ctDNA is affirmed from the DNA helix melting experiment, comparative displacement assay using known DNA intercalator, cyclic voltammetry and finally molecular docking study. It was evident from experimental result that the probe NOTD binds with ctDNA in groove binding mode as manifested by a decrease in iodide quenching effect, spectral change in CD, a substantial increase in denaturing temperature in DNA and change in potential value. Furthermore, the molecular docking study insisted the above mentioned experimental result in a very affectionate way.

  6. Joint molecular modeling and spectroscopic studies of DNA complexes of a bis(arginyl) conjugate of a tricationic porphyrin designed to target the major groove.

    PubMed

    Mohammadi, S; Perrée-Fauvet, M; Gresh, N; Hillairet, K; Taillandier, E

    1998-04-28

    To target selectively the major groove of double-stranded B DNA, we have designed and synthesized a bis(arginyl) conjugate of a tricationic porphyrin (BAP). Its binding energies with a series of double-stranded dodecanucleotides, having in common a central d(CpG)2 intercalation site were compared. The theoretical results indicated a significant energy preference favoring major groove over minor groove binding and a preferential binding to a sequence encompassing the palindrome GGCGCC encountered in the Primary Binding Site of the HIV-1 retrovirus. Spectroscopic studies were carried out on the complexes of BAP with poly(dG-dC) and poly(dA-dT) and a series of oligonucleotide duplexes having either a GGCGCC, CCCGGG, or TACGTA sequence. The results of UV-visible and circular dichroism spectroscopies indicated that intercalation of the porphyrin takes place in poly(dG-dC) and all the oligonucleotides. Thermal denaturation studies showed that BAP increased significantly the melting temperature of the oligonucleotides having the GGCGCC sequence, whereas it produced only a negligible stabilization of sequences having CCCGGG or TACGTA in place of GGCGCC. This indicates a preferential binding of BAP to GGCGCC, fully consistent with the theoretical predictions. IR spectroscopy on d(GGCGCC)2 indicated that the guanine absorption bands, C6=O6 and N7-C8-H, were shifted by the binding of BAP, indicative of the interactions of the arginine arms in the major groove. Thus, the de novo designed compound BAP constitutes one of the very rare intercalators which, similar to the antitumor drugs mitoxantrone and ditercalinium, binds DNA in the major groove rather than in the minor groove.

  7. Spectroscopic studies of carbon impurities in PISCES-A

    SciTech Connect

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W. . Inst. of Plasma and Fusion Research); Pospieszczyk, A. . Inst. fuer Plasmaphysik)

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and CO{sub 2} were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab.

  8. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  9. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  10. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  11. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  12. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  13. Molecular structure, spectroscopic and quantum chemical studies of 1‧,3‧,3‧-trimethylspiro[benzo[f]chromene-3,2‧-indoline

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; Ersanlı, Cem Cüneyt; Şahin, Onur; Arshad, Muhammad Nadeem; Hameed, Salem A.

    2016-05-01

    In this work, synthesis, X-ray single crystal determination, nuclear magnetic resonance (1H NMR and 13C NMR), Ultraviolet-Visible (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and quantum mechanical studies of the 1‧,3‧,3‧-trimethylspiro[benzo[f]chromene-3,2‧-indoline [(C23H21NO), TMSBCI] have been both experimentally and theoretically reported. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state has been compared using Hartree-Fock (HF) and density functional theory (DFT) with the functional B3LYP using the 6-31G(d,p) as basis set. In addition to the optimized geometrical structures, atomic charges, molecular electrostatic potential (MEP) and natural bond orbital (NBO) have been investigated by using B3LYP/6-31G(d,p) level of the theoretical approximation for the title compound. The energetic behavior of TMSBCI has been examined in solvent media using polarizable continuum model (PCM). The total dipole moment (μ), the average linear polarizability (α), and the first-order hyperpolarisability (β) values of the investigated molecule have been computed using the same method. The experimental measurements (1H NMR, 13C NMR and UV-vis) have been compared with its corresponding the calculated values (using DFT). Besides, frontier molecular orbitals (FMOs) and thermodynamic properties have also been studied.

  14. Spectroscopic and molecular docking study on the interaction between salicylic acid and the induced disease-resistant protein OsAAA1 of rice

    NASA Astrophysics Data System (ADS)

    Chen, Ya H.; Dai, Kang; Zhang, Hua; Wu, Yun H.; Wang, Chun T.; Liu, Xue Q.; Liu, Xin Q.

    2017-02-01

    The interaction between salicylic acid (SA) and the induced disease-resistant protein OsAAA1 in rice was studied using spectroscopy and molecular docking. Ultraviolet (UV) absorption spectroscopy demonstrated an interaction between OsAAA1 protein and SA. Spectroscopy showed that this interaction was a dynamic quenching process. Synchronous fluorescence spectroscopy (SFS) further revealed that this interaction caused changes in the microenvironment of tyrosine and tryptophan and that the interaction site was closer to the tryptophan residue. The structural model of protein OsAAA1 was determined by homology modeling method, and the molecular docking simulation diagram of OsAAA1 with SA was obtained. These models, in combination with a Ramachandran plot analysis, showed amino acid residues ranging from position 240 to position 420 as the possible site interacting with SA. Among them, Gly389, Lys257 and Glu425 might be three key amino acids that can form hydrogen bonds with SA.

  15. Spectroscopic and molecular docking study on the interaction between salicylic acid and the induced disease-resistant protein OsAAA1 of rice.

    PubMed

    Chen, Ya H; Dai, Kang; Zhang, Hua; Wu, Yun H; Wang, Chun T; Liu, Xue Q; Liu, Xin Q

    2017-02-15

    The interaction between salicylic acid (SA) and the induced disease-resistant protein OsAAA1 in rice was studied using spectroscopy and molecular docking. Ultraviolet (UV) absorption spectroscopy demonstrated an interaction between OsAAA1 protein and SA. Spectroscopy showed that this interaction was a dynamic quenching process. Synchronous fluorescence spectroscopy (SFS) further revealed that this interaction caused changes in the microenvironment of tyrosine and tryptophan and that the interaction site was closer to the tryptophan residue. The structural model of protein OsAAA1 was determined by homology modeling method, and the molecular docking simulation diagram of OsAAA1 with SA was obtained. These models, in combination with a Ramachandran plot analysis, showed amino acid residues ranging from position 240 to position 420 as the possible site interacting with SA. Among them, Gly389, Lys257 and Glu425 might be three key amino acids that can form hydrogen bonds with SA.

  16. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  17. Spectroscopic, quantum chemical studies, Fukui functions, in vitro antiviral activity and molecular docking of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide

    NASA Astrophysics Data System (ADS)

    Sebastian, S. H. Rosline; Al-Alshaikh, Monirah A.; El-Emam, Ali A.; Panicker, C. Yohannan; Zitko, Jan; Dolezal, Martin; VanAlsenoy, C.

    2016-09-01

    The molecular structural parameters and vibrational frequencies of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide have been obtained using density functional theory technique in the B3LYP approximation and CC-pVDZ (5D, 7F) basis set. Detailed vibrational assignments of observed FT-IR and FT-Raman bands have been proposed on the basis of potential energy distribution and most of the modes have wavenumbers in the expected range. In the present case, the NH stretching mode is a doublet in the IR spectrum with a difference of 138 cm-1 and is red shifted by 76 cm-1 from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighboring oxygen atom. The molecular electrostatic potential has been mapped for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The hyperpolarizability values are calculated in order to find its role in nonlinear optics. From the molecular docking study, amino acids Asn161, His162 forms H-bond with pyrazine ring and Trp184, Gln19 shows H-bond with Cdbnd O group and the docked ligand, title compound forms a stable complex with cathepsin K and the results suggest that the compound might exhibit inhibitory activity against cathepsin K. Moderate in vitro antiviral activity with EC50 at tens of μM was detected against feline herpes virus, coxsackie virus B4, and influenza A/H1N1 and A/H3N2.

  18. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation and molecular docking study of 1-(4-Methylbenzyl) piperazine

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Periandy, S.

    2017-04-01

    The title compound, 1-(4-Methylbenzyl) piperazine, was analyzed by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. Density functional theory (DFT) calculation with 6-311++G (d, p) basis set along with B3LYP and B3PW91 functionals have been used to compute ground state molecular geometries and vibrational frequencies. The assignments of the vibrational spectra have carried out with the help of Potential Energy distribution (PED) analysis. Factor group analysis has also been tabulated. Charge distribution, Frontier Molecular Orbitals, UV-Vis spectra, Molecular Electrostatic Potential (MEP) maps, Non-linear optical (NLO) property and thermodynamic properties of the title compound at different temperatures, were determined using B3LYP functional along with 6-311++G (d, p) basis set. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functional with 6-311++G (2d, p) basis sets. Natural Bond orbital analysis were computed and possible transitions were correlated with the electronic transitions. The title compound not only exhibits appreciable dipole moment and hyper polarizability (indicating good NLO properties) but also forms a stable complex with Bacillus cereus, (2HUC), with binding affinity -6.7 kcal/mol through molecular docking, suggesting that, it might exhibit inhibitory activity against Bacillus cereus.

  19. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  20. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    To date, there is no study on the relationship between carbohydrate (CHO) molecular structures and nutrient availability of combined feeds in ruminants. The objective of this study was to use molecular spectroscopy to reveal the relationship between CHO molecular spectral profiles (in terms of functional groups (biomolecular, biopolymer) spectral peak area and height intensity) and CHO chemical profiles, CHO subfractions, energy values, and CHO rumen degradation kinetics of combined feeds of hulless barley with pure wheat dried distillers grains with solubles (DDGS) at five different combination ratios (hulless barley to pure wheat DDGS: 100:0, 75:25, 50:50, 25:75, 0:100). The molecular spectroscopic parameters assessed included: lignin biopolymer molecular spectra profile (peak area and height, region and baseline: ca. 1539-1504 cm-1); structural carbohydrate (STCHO, peaks area region and baseline: ca. 1485-1186 cm-1) mainly associated with hemi- and cellulosic compounds; cellulosic materials peak area (centered at ca. 1240 cm-1 with region and baseline: ca. 1272-1186 cm-1); total carbohydrate (CHO, peaks area region and baseline: ca. 1186-946 cm-1). The results showed that the functional groups (biomolecular, biopolymer) in the combined feeds are sensitive to the changes of carbohydrate chemical and nutrient profiles. The changes of the CHO molecular spectroscopic features in the combined feeds were highly correlated with CHO chemical profiles, CHO subfractions, in situ CHO rumen degradation kinetics and fermentable organic matter supply. Further study is needed to investigate possibility of using CHO molecular spectral features as a predictor to estimate nutrient availability in combined feeds for animals and quantify their relationship.

  1. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), first order hyperpolarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide

    NASA Astrophysics Data System (ADS)

    Raja, M.; Muhamed, R. Raj; Muthu, S.; Suresh, M.

    2017-01-01

    The compound (E)-1-(4-bromobenzylidene)semicarbazide(4BSC) was synthesized and characterized by FT-IR, FT-Raman, UV-Visible, 1HNMR and 13CNMR spectra. The optimized molecular geometry(bond length, bond angle), the complete vibrational frequency, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, wavelength, band gap and oscillator strength are evaluated by TD-DFT in DMSO solution and gas phase methods using 6-311++G(d,p) basis set. The calculated HOMO - LUMO band gap energies confirm that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. Besides NLO and MEP were also calculated and interpreted. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antimicrobial protein. Thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations the heat capacity (C), entropy (S) and enthalpy changes (H) and temperatures.

  2. Spectroscopic studies of molecular interactions involving 2,6-diethylaniline and N-ethylaniline donors and iodine as an electron acceptor in different solvents

    NASA Astrophysics Data System (ADS)

    El-Gogary, Tarek M.; Diab, Mostafa A.; El-Tantawy, Shreen F.

    2007-01-01

    The charge-transfer complexes of 2,6-diethylaniline (DEA) and N-ethylaniline (NEA) with iodine, as a typical σ-acceptor were studied spectrophotometrically in chloroform, dichloromethane and carbontetrachloride solutions. Spectral data, formation constants and effect of solvent have been determined. Spectral characteristics and formation constants are discussed in the terms of donor molecular structure and solvent polarity. The stoichiometry of the complexes was established to be 1:1. For this purpose, optical data were subjected to the form of the Rose-Drago equation for 1:1 equilibria. The formation constant ( KAD) and molar absorptivities ( ɛλ) of complexes were determined by least square method. Electronic absorption spectra of the anilines were measured in different solvents. Spectral data were reported and band maxima were assigned to the appropriate molecular orbital transitions. Quantum chemical calculations were performed with the aid of the Gaussian 98 set of programs. The structure were fully optimized at MP2 level using 6-31 + G** basis set. The computations show that DEA is not planner with the amino group having a somewhat sp 3 hybridization-like character.

  3. Spectroscopic investigations and molecular docking study of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one, a potential precursor to bioactive agents

    NASA Astrophysics Data System (ADS)

    Al-Alshaikh, Monirah A.; Mary Y, Sheena; Panicker, C. Yohannan; Attia, Mohamed I.; El-Emam, Ali A.; Alsenoy, C. Van

    2016-04-01

    The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one have been investigated theoretically and experimentally. The calculated geometrical parameters of the title compound are in agreement with the reported XRD data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and from the MEP plot, it is evident that the negative charge covers the carbonyl group and the nitrogen atom N3 of the imidazole ring and the positive region is over the remaining portions of the molecule. The first and second hyperpolarizabilities are calculated and the first hyperpolarizability of the title compound is 16.99 times that of standard NLO material urea and the title compound and its derivatives are good object for further studies in nonlinear optics. The docked ligand title compound forms a stable complex with plasmodium falciparum and gives a binding affinity value of -5.5 kcal/mol and the preliminary results suggest that the compound might exhibit antimalarial activity against plasmodium falciparum.

  4. A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches.

    PubMed

    Khorsand Ahmadi, Sabra; Mahmoodian Moghadam, Maryam; Mokaberi, Parisa; Reza Saberi, Mohammad; Chamani, Jamshidkhan

    2015-09-01

    The interaction between bovin β-Lactoglobulin (β-LG) and retinol at two different pH values was investigated by multispectroscopic, zeta potential, molecular modeling, and conductometry measurements. The steady state and polarization fluorescence spectroscopy revealed that complex formation at two different pH values could occur through a remarkable static quenching. According to fluorescence quenching, one set of binding site at pH 2 and two sets of binding sites at pH 7 were introduced for binding of retinol to β-LG that show the enhancement of saturation score of β-LG to retinol in dimmer condition. The polarization fluorescence analysis represented that there is more affinity between β-LG and retinol at pH 7 rather than at pH 2. The effect of retinol on β-LG was studied by UV-visible, circular dichroism (CD), and synchronous fluorescence, which indicated that retinol induced more structural changes on β-LG at pH 7. β-LG-retinol complex formation at two different pH values was recorded via applying resonance light scattering (RLS) and zeta potential. Conductometry and RLS showed two different behaviors of interaction between β-LG and retinol at two different pH values; therefore, dimmer formation played important roles in different behaviors of interaction between β-LG and retinol. The zeta potential was the implied combination of electrostatic and hydrophobic forces which are involved in β-LG-retinol complex at two different pH values, and the hydrophobic interactions play a dominant role in complex formation. Molecular modeling was approved by all experimental results. The acquired results suggested that monomer and dimmer states of β-LG can be induced by retinol with different behaviors.

  5. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  6. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-05

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  7. Inhibitory effects of the dietary flavonoid quercetin on the enzyme activity of zinc(II)-dependent yeast alcohol dehydrogenase: Spectroscopic and molecular docking studies.

    PubMed

    Bhuiya, Sutanwi; Haque, Lucy; Pradhan, Ankur Bikash; Das, Suman

    2017-02-01

    A multispectroscopic exploration was employed to investigate the interaction between the metallo-enzyme alcohol dehydrogenase (ADH) from yeast with bioflavonoid quercetin (QTN). Here, we have characterized the complex formation between QTN and Zn(2+) in aqueous solution and then examined the effect of such complex formation on the enzymatic activity of a zinc(II)-dependent enzyme alcohol dehydrogenase from yeast. We have observed an inhibition of enzymatic activity of ADH in presence of QTN. Enzyme inhibition kinetic experiments revealed QTN as a non-competitive inhibitor of yeast ADH. Perturbation of Circular dichroic (CD) spectrum of ADH in presence of QTN is observed due to the structural changes of ADH on complexation with the above flavonoid. Our results indicate a conformational change of ADH due to removal of Zn(2+) present in the enzyme by QTN. This was further established by molecular modeling study which shows that the flavonoid binds to the Zn(2+) ion which maintains the tertiary structure of the metallo-enzyme. So, QTN abstracts only half of the Zn(2+) ions present in the enzyme i.e. one Zn(2+) ion per monomer. From the present study, the structural alteration and loss of enzymatic activity of ADH are attributed to the complex formation between QTN and Zn(2+).

  8. Conformation, structure and molecular solvation: a spectroscopic and computational study of 2-phenoxy ethanol and its singly and multiply hydrated clusters

    NASA Astrophysics Data System (ADS)

    Macleod, Neil A.; Simons, John P.

    2002-10-01

    The conformational landscapes of 2-phenoxy ethanol (POX) and its hydrated clusters have been studied in the gas-phase, providing a model for pharmaceutical β-blockers. A combination of experimental techniques, including resonant two-photon ionisation (R2PI), laser-induced-fluorescence (LIF) and resonant ion-dip infra-red spectroscopy (RIDIRS), coupled with high-level ab initio calculations has allowed the assignment of the individually resolved spectral features to discrete conformational and supra-molecular structures. Assignments were made by comparison of experimental vibrational spectra and partially resolved ultra-violet rotational band contours with those predicted from quantum chemical calculations. The isolated molecule displays a solitary structure with an extended geometry of the side-chain which is stabilised by an intramolecular hydrogen-bond between the alcohol (proton donor) and the ether (proton acceptor) groups of the side-chain. In singly hydrated clusters the water molecule is accommodated by insertion into the intramolecular hydrogen-bond. In the doubly hydrated and higher clusters cyclic structures are generated which incorporate both the water molecules and the terminal OH group of the side-chain; additional (weak) hydrogen bonded interactions with the phenoxy group provide a degree of selectivity but essentially, the water 'droplet' forms on the end of the alcohol side-chain.

  9. Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO-LUMO analysis and molecular docking study of Opipramol.

    PubMed

    Mary, Y Sheena; Panicker, C Yohannan; Kavitha, C N; Yathirajan, H S; Siddegowda, M S; Cruz, Sandra M A; Nogueira, Helena I S; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-02-25

    FT-IR and FT-Raman spectra of Opipramol were recorded and analyzed. SERS spectrum was recorded in silver colloid. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy distribution was done using GAR2PED program. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The presence of CH2 stretching modes in the SERS spectrum indicates the close of piperazine ring with the metal surface and the interaction of the silver surface with this moiety. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The inhibitor Opipramol forms a stable complex with P4502C9 as is evident from the ligand-receptor interactions and a -9.0 kcal/mol docking score and may be an effective P4502C9 inhibitor if further biological explorations are carried out.

  10. Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: Spectroscopic and molecular modeling approaches.

    PubMed

    Marouzi, Somaye; Sharifi Rad, Atena; Beigoli, Sima; Teimoori Baghaee, Parisa; Assaran Darban, Reza; Chamani, Jamshidkhan

    2017-04-01

    The purpose of this study was to determine how lomefloxacin (LMF) interacts with human holo-transferrin (HTF) in the presence of two kinds of essential and nonessential amino acids. The investigations were carried out by fluorescence spectroscopy, zeta potential and molecular modeling techniques under imitated physiological conditions. We were able to determine the number of binding sites, the drug binding affinity to HTF in the presence of essential and nonessential amino acids and the quenching source of HTF. The interaction between HTF with LMF suggested that the microenvironment of the Trp residues was altered causing a strong static fluorescence quenching in the binary and ternary systems. The results pointed at the formation of a complex in the binary and ternary systems which caused an enhancement of the RLS intensity that was analyzed using synchronous fluorescence spectroscopy. The density functional theory (DFT) was employed to determine the amino acid residues on HTF that interacted with LMF. Also, Steric and van der Waals forces as well as the contribution of small amounts of hydrogen bonds were stronger or Tyr 71 in chain (b) than for 128 Trp in chain (a) of HTF.

  11. Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods.

    PubMed

    Tian, Fang-Fang; Jiang, Feng-Lei; Han, Xiao-Le; Xiang, Chen; Ge, Yu-Shu; Li, Jia-Han; Zhang, Yue; Li, Ran; Ding, Xin-Liang; Liu, Yi

    2010-11-25

    Hydrazone derivatives possess potential antitumor activities based on modulation of the iron metabolism in cancer cell. A novel hydrazone, N'-(2,4-dimethoxybenzylidene)-2-hydroxybenzohydrazide (DBH), has been synthesized and characterized, which is an analogue of 311 possessing potent anticancer activity. The interactions between DBH and bovine serum albumin (BSA) have been investigated systematically by fluorescence, molecular docking, circular dichroism (CD), UV-vis absorption, and electrochemical impedance spectroscopy (EIS) methods under physiological conditions. The fluorescence quenching observed is attributed to the formation of a complex between BSA and DBH, and the reverse temperature effect of the fluorescence quenching has been found and discussed. The primary binding pattern is determined by hydrophobic interaction occurring in Sudlow's site I of BSA. DBH could slightly change the secondary structure and induce unfolding of the polypeptides of protein. An average binding distance of ~4.0 nm has been determined on the basis of the Förster resonance energy theory (FRET). The effects of iron on the system of DBH-BSA have also been investigated. It is found that iron could compete against BSA to bind DBH. All of these results are supported by a docking study using a BSA crystal model. It is shown that DBH can efficiently bind with BSA and be transported to the focuses needed. Subsequent antitumor test and detailed anticancer mechanism are undergoing in our lab.

  12. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  13. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO, NLO) investigation and molecular docking study of (R)-2-Methylamino-1-Phenylethanol (Halostachine)

    NASA Astrophysics Data System (ADS)

    Subashini, K.; Govindarajan, R.; Surendran, R.; Mukund, K.; Periandy, S.

    2016-12-01

    FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of (R)-2-Methylamino-1-Phenylethanol have been recorded in solid phase, 1H and 13C NMR in deuterated chloroform (CDCl3) phase and UV spectrum (200-400 nm) in solid phase and in ethanol solution. The different conformers of the compound and their minimum energies were studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The values of dipole moment (μ), polarizability (α) and hyper polarizability (β) of the molecule were calculated using which, the non-linear optical property of the molecule has been discussed. The observed HOMO-LUMO mappings reveals the different charge transfer possibilities within the molecule. Natural Bond Orbital analysis was computed and possible transitions were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functionals with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Bacillus anthracis (3V5O).

  14. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  15. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative.

    PubMed

    Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A

    2015-06-15

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  16. Thiazole-based nitrogen mustards: Design, synthesis, spectroscopic studies, DFT calculation, molecular docking, and antiproliferative activity against selected human cancer cell lines

    NASA Astrophysics Data System (ADS)

    Łączkowski, Krzysztof Z.; Świtalska, Marta; Baranowska-Łączkowska, Angelika; Plech, Tomasz; Paneth, Agata; Misiura, Konrad; Wietrzyk, Joanna; Czaplińska, Barbara; Mrozek-Wilczkiewicz, Anna; Malarz, Katarzyna; Musioł, Robert; Grela, Izabela

    2016-09-01

    Synthesis, characterization and investigation of antiproliferative activity of ten thiazole-based nitrogen mustard against human cancer cells lines (MV4-11, A549, MCF-7 and HCT116) and normal mouse fibroblast (BALB/3T3) is presented. The structures of novel compounds were determined using 1H and 13C NMR, FAB(+)-MS, and elemental analyses. Among the derivatives, 5b, 5c, 5e, 5f and 5i were found to exhibit high activity against human leukaemia MV4-11 cells with IC50 values of 2.17-4.26 μg/ml. The cytotoxic activity of compound 5c and 5f against BALB/3T3 cells is up to 20 times lower than against cancer cell lines. Our results also show that compounds 5e and 5i have very strong activity against MCF-7 and HCT116 with IC50 values of 3.02-4.13 μg/ml. Moreover, spectroscopic characterization and cellular localization for selected compound were performed. In order to identify potential drug targets we perform computer simulations with DNA-binding site of hTopoI and hTopoII and quantum chemical calculation of interaction and binding energies in complexes of the five most active compounds with guanine.

  17. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  18. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  19. MRCI study on the spectroscopic parameters and molecular constants of the X1Σ+, a3Σ+, A1Π and C1Σ- electronic states of the SiO molecule.

    PubMed

    Shi, Deheng; Li, Wentao; Sun, Jinfeng; Zhu, Zunlue

    2012-02-15

    The potential energy curves (PECs) of the X(1)Σ(+), a(3)Σ(+), A(1)Π and C(1)Σ(-) electronic states of the SiO molecule are studied using an ab initio quantum chemical method. The calculations have been made employing the complete active space self-consistent field (CASSCF) method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with several correlation-consistent basis sets. The effect on the PECs by the core-valence correlation and relativistic corrections is included. The way to consider the relativistic correction is to use the third-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction is carried out with the cc-pCVQZ basis set, and the relativistic correction is performed at the level of the cc-pVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs of these electronic states are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. Employing these PECs, the spectroscopic parameters are calculated and compared with those reported in the literature. With these PECs determined by the MRCI+Q/CV+DK+56 calculations, by solving the radial Schrödinger equation of nuclear motion, 110 vibrational states for the X(1)Σ(+), 69 for the a(3)Σ(+), 54 for the A(1)Π and 67 for the C(1)Σ(-) electronic state are predicted when the rotational quantum number J equals zero. The vibrational manifolds of the first 20 vibrational states are reported and compared with the available RKR data for each electronic state. On the whole, as expected, the most accurate spectroscopic parameters and molecular constants of the SiO molecule are obtained by the MRCI+Q/CV+DK+56 calculations. And the present molecular constants of the a(3)Σ(+), C(1)Σ(-) and A(1)Π electronic states determined by the MRCI

  20. Binding properties of palmatine to DNA: spectroscopic and molecular modeling investigations.

    PubMed

    Mi, Ran; Tu, Bao; Bai, Xiao-Ting; Chen, Jun; Ouyang, Yu; Hu, Yan-Jun

    2015-12-01

    Palmatine, an isoquinoline alkaloid, is an important medicinal herbal extract with diverse pharmacological and biological properties. In this work, spectroscopic and molecular modeling approaches were employed to reveal the interaction between palmatine and DNA isolated from herring sperm. The absorption spectra and iodide quenching results indicated that groove binding was the main binding mode of palmatine to DNA. Fluorescence studies indicated that the binding constant (K) of palmatine and DNA was ~ 10(4)L·mol(-1). The associated thermodynamic parameters, ΔG, ΔH, and ΔS, indicated that hydrogen bonds and van der Waals forces played major roles in the interaction. The effects of chemical denaturant, thermal denaturation and pH on the interaction were investigated and provided further support for the groove binding mode. In addition to experimental approaches, molecular modeling was conducted to verify binding pattern of palmatine-DNA.

  1. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of 3-hydroxy-6-methyl-2-nitropyridine

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.

    2012-10-01

    The optimized molecular structure and corresponding vibrational assignments of 3-hydroxy-6-methyl-2-nitropyridine have been investigated using density functional theory (DFT) B3LYP method with 6-311++G(d,p), 6-311++G(2d,2p) and 6-311++G(3d,3p) basis sets. Investigation of the relative orientation of the hydroxyl group with respect to the nitro group has shown that two conformers (O-cis) and (O-trans) exist. The vibrational analysis of the stable conformer of the title compound is performed by means of infrared absorption and Raman spectroscopy in combination with theoretical simulations. The molecular stability and bond strength were investigated by applying the natural bond orbital (NBO) analysis. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential (ESP). The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the HMNP calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  2. Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.

    2014-08-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)(H2O)2]·2H2O have been synthesized [L = N,N";-bis(2-hydroxybenzylidene)-1,1-diaminobutane]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR, SEM, EDX, thermal and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a tetradentate manner. The molar conductance of the complexes in fresh solution of DMSO lies in the range of 7.46-9.13 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen and azomethine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The molecular parameters of the ligand and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been calculated. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M sodium perchlorate.

  3. Synthesis, click reaction, molecular structure, spectroscopic and DFT computational studies on 3-(2,6-bis(trifluoromethyl)phenoxy)-6-(prop-2-yn-1-yloxy)phthalonitrile

    NASA Astrophysics Data System (ADS)

    Hasan, Muhammad; Shalaby, Mona

    2016-06-01

    The compound 3-(2,6-bis(trifluoromethyl)phenoxy)-6-(prop-2-yn-1-yloxy)phthalonitrile has been synthesized and confirmed by different characterization techniques such as elemental analysis, IR, UV-vis spectroscopy, and X-ray single-crystal determination. The molecular geometry from X-ray determination of this compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. This compound reacted with sugar azide via click reaction to form triazol ring. The synergy between carbohydrate molecule and fluorinated organic compound achieved novel synthetic pathways, properties, and applications in chemistry science.

  4. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): with the aim of the drug interactions probing.

    PubMed

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-25

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.

  5. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): With the aim of the drug interactions probing

    NASA Astrophysics Data System (ADS)

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-01

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.

  6. First principal studies of spectroscopic (IR and Raman, UV-visible), molecular structure, linear and nonlinear optical properties of L-arginine p-nitrobenzoate monohydrate (LANB): A new non-centrosymmetric material.

    PubMed

    Shkir, Mohd; AlFaify, S; Abbas, Haider; Muhammad, Shabbir

    2015-08-05

    In current work, the authors have been applied the density functional theory (DFT) using B3LYP and CAM-B3LYP exchange-correlation functional with 6-31G(∗) basis set on l-arginine p-nitrobenzoate monohydrate (LANB) molecule for the first time to optimize its geometry and study the spectroscopic, electronic structure, nonlinear optical properties. Vibrational modes were found in good agreement with experimental reports. The calculated UV spectra by B3LYP/6-31G(∗) and CAM-B3LYP/6-31G(∗) level of theory shows an electronic transition at ∼268 nm (4.63 eV) and 264 nm (4.70 eV) respectively. To explain the charge interaction taking place within the molecule highest occupied molecular orbital and lowest unoccupied molecular orbital were analyzed and their calculated energy gap was found to be 4.3eV with an oscillatory strength 0.3796 at B3LYP/6-31G(∗) level of theory. The dipole moment (μtot), average and anisotropy of polarizability (αtot, Δα) and static and total first hyperpolarizability (β0, βtot) values were calculated. The value of μtot and βtot are found to be 4.124D and 1.630 × 10(-30) esu and 4.127D and 1.133 × 10(-30) esu using B3LYP/6-31G(∗) and CAM-B3LYP/6-31G(∗) functional respectively. The value of βtot is >4 and >3 times higher than prototype urea molecule calculated at both level of theory, respectively. The molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), global reactivity descriptors and thermodynamic properties are also calculated and discussed. The properties of LANB calculated at B3LYP are in good correlation with experimental than the CAM-B3LYP level of theory. The obtained results show that LANB molecule can be treated as a good candidate for nonlinear optical devices.

  7. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  8. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  9. Preparation of cesium targets for gamma-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  10. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    NASA Astrophysics Data System (ADS)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  11. Spectroscopic studies of detonating heterogeneous explosives. [HNS

    SciTech Connect

    Renlund, A.M.; Trott, W.M.

    1985-01-01

    The experimental objectives of this work are to use real-time spectroscopic techniques, emission spectroscopy and Raman spectra to monitor chemical and physical changes in shock-loaded or detonating high explosive (HE) samples. The investigators hope to identify chemical species including any transient intermediates. Also, they wish to determine the physical state of the material when the reactions are taking place; measure the temperature and the pressure; and study the effect of different initiation parameters and bulk properties of the explosive material. This work is just part of the effort undertaken to gain information on the detailed chemistry involved in initiation and detonation. In summary, the investigators have obtained vibrational temperatures of some small radical products of detonation, which may correlate with the detonation temperature. They have also observed that NO/sub 2/ is an early product from detonating HNS and RDX, and that other electronically excited radical species such as CN(B) are formed in HNS detonations. In the Raman work, the single-pulse spectra could be obtained even in the severe environment of a detonation, and that the rate of removal of the parent molecule could be monitored. 2 refs., 6 figs.

  12. Spectroscopic Study of Low Mass Members of NGC 2244

    NASA Astrophysics Data System (ADS)

    Alty, Michelle; Ybarra, Jason E.; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2017-01-01

    The results of a near-infrared spectroscopic study of low-mass stars in open cluster NGC 2244 are presented. JH spectra of the stars were obtained using the FLAMINGOS instrument at KPNO. To determine cluster membership, we used Spitzer Space Telescope mid-infrared photometry along with X-ray detections from the Chandra X-ray Observatory. The stars were spectral typed using absorption line ratios and spectral shapes. The stars were then plotted on an H-R diagram along with theoretical isochrones. We discuss these results in context of cluster evolution in the Rosette Molecular Complex. Work supported, in part, by the Dr. John W. Martin Summer Science Research Institute at Bridgewater College.

  13. Molecular structure identification and position of a dopant ion in diaqua(2,2‧-bipyridine)malonatozinc(II) by spectroscopic studies - II: VO(II)

    NASA Astrophysics Data System (ADS)

    Parthipan, Krishnan; Ramesh, Hema; Sambasiva Rao, P.

    2011-04-01

    Single crystal EPR, optical, FT-IR and powder XRD studies of VO(II) ion doped diaqua(2,2'-bipyridine) malonato zinc complex were carried out at room temperature to ascertain the structural properties. In EPR, the angular variation of vanadium hyperfine lines indicated a single site, with spin Hamiltonian parameters as: g xx = 1.968, g yy = 1.964, g zz = 1.928, A xx = 7.54 mT, A yy = 6.36 mT and A zz = 18.81 mT. In addition, the dopant had entered the lattice in an interstitial position and the position had been identified with the help of atom positions of the host lattice. The EPR and optical data was corroborated to obtain various bonding parameters, from which the nature of the bonding in the complex was discussed. FT-IR and powder XRD studies were used to observe the effect of dopant on structural parameters of the host lattice.

  14. 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene)hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA.

    PubMed

    Sharma, Vibha; Arora, Ekta Kundra; Cardoza, Savio

    2016-05-01

    The Schiff base 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern-Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 10(5)  M(-1). Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6-311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein-Schiff base docking calculations using Argus Lab.

  15. Molecular and mass spectroscopic analysis of isotopically labeled organic residues

    NASA Technical Reports Server (NTRS)

    Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.

    1989-01-01

    Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.

  16. The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3ṡ3H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Murta, Natália; Scholz, Ricardo

    2013-09-01

    We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3ṡ3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm-1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm-1 with bands of lesser intensity at 1110, 1179 and 1206 cm-1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.

  17. Spectroscopic study of HNO3 dissociation on ice.

    PubMed

    Marchand, Patrick; Marcotte, Guillaume; Ayotte, Patrick

    2012-12-13

    A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K.

  18. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2014-11-01

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  19. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  20. The molecular structure of the phosphate mineral beraunite Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano

    2014-07-15

    The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe(2+)Fe5(3+)(PO4)4(OH)5⋅4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm(-1) and 1011 cm(-1). These bands are attributed to the PO4(3)(-) ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm(-1) are assigned to the ν3 antisymmetric stretching vibrations of PO4(3-) and the HOPO3(2-) units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm(-1) are assigned to the PO4(3-) ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm(-1) are attributed to the PO4(3-) and HOPO3(2-) ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm(-1) are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm(-1) are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.

  1. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  2. Spectroscopic, biological, and molecular modeling studies on the interactions of [Fe(III)-meloxicam] with G-quadruplex DNA and investigation of its release from bovine serum albumin (BSA) nanoparticles.

    PubMed

    Ebrahimi, Malihe; Khayamian, Taghi; Hadadzadeh, Hassan; Sayed Tabatabaei, Badraldin Ebrahim; Jannesari, Zahra; Khaksar, Ghazale

    2015-01-01

    The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5'-G3(T2AG3)3-3' (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV-vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30) × 10(5) M(-1)). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV-vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a π-π interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.

  3. Conformational stability, spectroscopic and computational studies, hikes' occupied molecular orbital, lowest unoccupied molecular orbital, natural bond orbital analysis and thermodynamic parameters of anticancer drug on nanotube-A review.

    PubMed

    Ghasemi, A S; Mashhadban, F; Hoseini-Alfatemi, S M; Sharifi-Rad, J

    2015-12-24

    Today the use of nanotubes (CNTs) is widely spread a versatile vector for drug delivery that can officiate as a platform for transporting a variety of bioactive molecules, such as drugs. In the present study, the interaction between the nanotube and anticancer drugs is investigated. Density functional theory (DFT) calculations were using the Gauss view and the complexes were optimized by B3LYP method using B3LYP/6-31G (d, p) and B3LYP/6-311++G (d, p) basis set in the gas phase and water solution at 298.15K. The calculated hikes' occupied molecular orbital (HOMO) and the lowest unoccupied (LUMO) energies Show that charge transfer occurs within the molecule. Furthermore, the effects of interactions on the natural bond orbital analysis (NBO) have been used to a deeper investigation into the studied compounds. These factors compete against each other to determine the adsorption behavior of the tube computer simulation is seen to be capable to optimize anticancer drug design. This review article mainly concentrates on the different protocols of loading anticancer drugs onto CNTs as well as how to control the anticancer drug release and cancer treatment.

  4. Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, Eileen K.

    2005-01-01

    Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.

  5. Spectroscopic detection of molecular hydrogen frozen in interstellar ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.; Geballe, Thomas R.

    1993-01-01

    A weak infrared absorption feature near 4141 wavenumbers (2.415 micrometers) in the spectrum of WL5, an infrared source in the rho Ophiuchus cloud complex, has been detected. It is attributed to molecular hydrogen created by irradiation and frozen in situ into water-rich ices. A second, broader absorption at 4125 wavenumbers centimeters (2.424 micrometers) is probably due to methanol in the ices. The column densities of frozen molecular hydrogen and methanol are inferred to be about 2.5 x 10(exp 18) and 3.0 x 10(exp 19), respectively. There is about three times more frozen molecular hydrogen than frozen carbon monoxide along this line of sight.

  6. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here.

  7. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    NASA Astrophysics Data System (ADS)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  8. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking.

    PubMed

    Wang, Jing; Liu, Rutao; Qin, Pengfei

    2012-09-01

    Acid yellow 23 (AY23) is a pervasive azo dye used in many fields which is potentially harmful to the environment and human health. This paper studied the toxic effects of AY23 on trypsin by spectroscopic and molecular docking methods. The addition of AY23 effectively quenched the intrinsic fluorescence of trypsin via static quenching with association constants of K(290 K) = 3.67 × 10(5) L mol(-1) and K(310 K) = 1.83 × 10(5) L mol(-1). The calculated thermodynamic parameters conformed that AY23 binds to trypsin predominantly via electrostatic forces with one binding site. Conformational investigations indicated the skeletal structure of trypsin unfolded and the microenvironment of tryptophan changed with the addition of AY23. Molecular docking study showed that AY23 interacted with the His 57 and Lys 224 residue of trypsin and led to the inhibition of enzyme activity. This study offers a more comprehensive picture of AY23-trypsin interaction and indicates their interaction may perform toxic effects within the organism.

  9. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  10. Photoelectron spectroscopic studies of 5-halouracil anions

    NASA Astrophysics Data System (ADS)

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Sevilla, Michael D.; Rak, Janusz; Bowen, Kit H.

    2011-01-01

    The parent negative ions of 5-chlorouracil, UCl- and 5-fluorouracil, UF- have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl- and UF- and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr-, we did not observe it, the mass spectrum exhibiting only Br- fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  11. Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): A combined multi-spectroscopic and molecular docking study.

    PubMed

    Laskar, Khairujjaman; Alam, Parvez; Khan, Rizwan Hasan; Rauf, Abdul

    2016-10-21

    An efficient synthesis of fatty acid derivatives of 1,3,4-oxadiazole has been reported and comparative study between conventional heating to that of microwave irradiation also described. The newly synthesized compounds (2A-F) were characterized by FT-IR, (1)H NMR, (13)C NMR and mass spectral analysis. The binding interaction of (Z)-2-(heptadec-8'-enyl)-5-methyl-1,3,4-oxadiazole (2C) with human serum albumin (HSA) has been evaluated by UV, fluorescence, circular dichroism (CD) and molecular docking studies. Fluorescence results showed that compound 2C interacts with HSA through static quenching mechanism with binding affinity of 2 × 10(3) M(-1) and Gibbs free energy change (ΔG) was found to be -16.83 kJ mol(-1). Molecular docking studies have been performed to evaluate possible mode of interaction of compound 2C with HSA.

  12. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  13. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties

    NASA Astrophysics Data System (ADS)

    Kasireddy, Chandana; Ellis, Jonathan M.; Bann, James G.; Mitchell-Koch, Katie R.

    2017-02-01

    Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.

  14. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties

    PubMed Central

    Kasireddy, Chandana; Ellis, Jonathan M.; Bann, James G.; Mitchell-Koch, Katie R.

    2017-01-01

    Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine. PMID:28198426

  15. Multiprobe Spectroscopic Inverstigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate

    SciTech Connect

    Sarkar, Abhra; Ali, Maroof; Baker, Gary A; Tetin, Sergey Y.; Ruan, Qiaoqiao; Pandey, Siddharth

    2009-01-01

    In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogen bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere

  16. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  17. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel

    SciTech Connect

    Sepehri, Saghar; Feaver, Aaron M.; Shaw, Wendy J.; Howard, Christopher J.; Zhang, Qifeng; Autrey, Thomas; Cao, Guozhong

    2007-12-27

    The reaction pathways leading to the thermal decomposition of solid state ammonia borane (AB) incorporated in carbon cryogels (CC) have been studied by spectroscopic methods. The time dependent thermal decomposition was followed by in situ 11B NMR and showed a significant increase in hydrogen release kinetics. Both 11B NMR and Fourier Transform Infrared Spectroscopy (FTIR) show new reaction products formed in the thermal decomposition of AB-CC that are assigned to reactions with surface oxygen groups. The results indicate that incorporation of AB in CC enhance kinetics due to reactions with residual surface-bound oxygen functional groups. The formation of new products with surface-O-B bonds is consistent with the greater reaction exothermicity observed when hydrogen is released from AB-CC materials. Scanning electron microscopy (SEM) shows different morphology of AB in ammonia borane – carbon cryogel (AB-CC) nanocomposite as compared to neat AB. Support for this work is provided by NSF (DMR-0605159), WTC, and EnerG2 LLC as well as the DoE Center of Excellence in Chemical Hydrogen Storage funded by the DOE H2 Program. FTIR experiments were performed in Professor Zhang’s lab in MSE department at UW. Part of this research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, located at the Pacific Northwest National Laboratory, which is operated by the Battelle for the U.S. Department of Energy.

  18. Spectroscopic Studies of Double Beta Decays and MOON

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2007-10-01

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0νββ experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0νββ studies with the ν-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin ββ source film.

  19. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , i.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  20. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  1. Fluorescence probes of spectroscopic and dynamical aspects of molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin D.

    1988-11-01

    Studies were made of vibrationally resolved aspects of shape resonant excitation in the photoionization of N(2)0. This experiment was performed by generating dispersed fluorescence spectra from electronically excited photoions. These results are the first vibrationally resolved results on a polyatomic shape resonance. In vibrationally resolved measurements, different internuclear configurations are probed by sampling alternative vibrational levels of the ion. As a result, the continuum electron behavior can be mapped out most clearly, and the qualitative aspects of the electron ejection can be understood clearly. A central motivation for studying polyatomic shape resonances is that alternative vibrational modes may be explored, revealing facets that are nonexistent for diatomic systems, which are the only systems that have been characterized previously.

  2. Molecular assembly in synthesised hydrotalcites of formula Cu xZn 6- xAl 2(OH) 16(CO 3) · 4H 2O—a vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, R. L.; Ding, Z.; Martens, W. N.; Johnson, T. E.; Kloprogge, J. Theo

    2003-01-01

    Infrared and Raman spectroscopy have been used to characterise synthetic hydrotalcites of formula Cu xZn 6- xAl 2(OH) 16(CO 3) · 4H 2O. The spectra have been used to assess the molecular assembly of the cations in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. The Raman spectra of the hydroxyl-stretching region enable bands to be assigned to the CuOH, ZnOH and AlOH units. It is proposed that in the hydrotalcites with minimal cationic replacement that the cations are arranged in a regular array. For the Cu xZn 6- xAl 2(OH) 16(CO 3) · 4H 2O hydrotalcites, spectroscopic evidence suggests that 'islands' of cations arte formed in the structure. In a similar fashion, the bands assigned to the interlayer water suggest that the water molecules are also in a regular well-structured arrangement. Bands are assigned to the hydroxyl stretching vibrations of water. Three types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface and (c) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite as it is hydrogen bonded to both the carbonate anion and the hydroxyl surface.

  3. Vibrational spectroscopic studies, Fukui functions, HOMO-LUMO, NLO, NBO analysis and molecular docking study of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one, a potential precursor to bioactive agents

    NASA Astrophysics Data System (ADS)

    Al-Wabli, Reem I.; Resmi, K. S.; Sheena Mary, Y.; Yohannan Panicker, C.; Attia, Mohamed I.; El-Emam, Ali A.; Van Alsenoy, C.

    2016-11-01

    The FT-IR and FT-Raman spectra of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one were recorded and analyzed experimentally and theoretically. The observed experimental and theoretical wavenumbers were assigned using potential energy distribution. The NLO properties were evaluated by the determination of first and second hyperpolarizabilities of the title compound. From the frontier molecular orbital study, the HOMO centers over the entire molecule except the methyl groups, while the LUMO is over the entire molecule except the CH2 group with the dioxole ring and one of the methyl groups. From the MEP plot, it is evident that the negative region covers the carbonyl and Cdbnd C groups and the positive region is over CH2 groups. The Fukui functions are also reported. The calculated geometrical parameters are in agreement with the XRD results. From the molecular docking study, the docked ligand title compound forms a stable complex with the androgen receptor and gives a binding affinity value of -8.1 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against androgen receptor.

  4. On-line separator for {gamma}-spectroscopic studies

    SciTech Connect

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Kabachenko, A. P.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.; Dorvaux, O.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.

    2008-05-12

    We report about R and D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA.

  5. On-line separator for γ-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Dorvaux, O.; Hauschild, K.; Kabachenko, A. P.; Korichi, A.; Lopez-Martens, A.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.

    2008-05-01

    We report about R&D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA [1, 2].

  6. Vibrational spectroscopic study of sulphated silk proteins

    NASA Astrophysics Data System (ADS)

    Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.

    2007-05-01

    Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing β-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the νasSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the δOH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.

  7. Vibrational and electronic spectroscopic studies of melatonin

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  8. Use of Mo/ller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules

    SciTech Connect

    Dunning, T.H. , Jr.; Peterson, K.A.

    1998-03-01

    The convergence of Mo/ller{endash}Plesset perturbation expansions (MP2{endash}MP4/MP5) for the spectroscopic constants of a selected set of diatomic molecules (BH, CH, HF, N{sub 2}, CO, and F{sub 2}) has been investigated. It was found that the second-order perturbation contributions to the spectroscopic constants are strongly dependent on basis set, more so for HF and CO than for BH. The MP5 contributions for HF were essentially zero for the cc-pVDZ basis set, but increased significantly with basis set illustrating the difficulty of using small basis sets as benchmarks for correlated calculations. The convergence behavior of the {ital exact} Mo/ller{endash}Plesset perturbation expansions were investigated using estimates of the {ital complete basis set limits} obtained using large correlation consistent basis sets. For BH and CH, the perturbation expansions of the spectroscopic constants converge monotonically toward the experimental values, while for HF, N{sub 2}, CO, and F{sub 2}, the expansions oscillate about the experimental values. The perturbation expansions are, in general, only slowly converging and, for HF, N{sub 2}, CO, and F{sub 2}, appear to be far from convergence at MP4. In fact, for HF, N{sub 2}, and CO, the errors in the calculated spectroscopic constants for the MP4 method are {ital larger} than those for the MP2 method (the only exception is D{sub e}). The current study, combined with other recent studies, raises serious doubts about the use of Mo/ller{endash}Plesset perturbation theory to describe electron correlation effects in atomic and molecular calculations. {copyright} {ital 1998 American Institute of Physics.}

  9. Spectroscopic Line Shapes of Vibrational Quanta in the Presence of Molecular Resonances.

    PubMed

    Meierott, Stefan; Néel, Nicolas; Kröger, Jörg

    2016-07-07

    Line shapes of molecular vibrational quanta in inelastic electron tunneling spectroscopy may indicate the strength of electron-vibration coupling, the hybridization of the molecule with its environment, and the degree of vibrational damping by electron-hole pair excitation. Bare as well as C60-terminated Pb tips of a scanning tunneling microscope and clean as well as C60-covered Pb(111) surfaces were used in low-temperature experiments. Depending on the overlap of orbital and vibrational spectral ranges different spectroscopic line shapes of molecular vibrational quanta were observed. The energy range covered by the molecular resonance was altered by modifying the adsorption configuration of the molecule terminating the tip apex. Concomitantly, the line shapes of different vibrational modes were affected. The reported observations represent an experimental proof to theoretical predictions on the contribution from resonant processes to inelastic electron tunneling.

  10. Spectroscopic study of graphene oxide membranes exposed to ultraviolet light

    SciTech Connect

    Schwenzer, Birgit; Kaspar, Tiffany C.; Shin, Yongsoon; Gotthold, David W.

    2016-05-16

    Research on graphene oxide (GO) as anything but a precursor material for synthesizing graphene started to pick up in 20061,2 and was soon followed by a first report of freestanding GO membranes (also referred to as GO paper) from R. S. Ruoff’s group at Northwestern University.3 The first GO membranes were prepared by vacuum filtration. More recently, larger scale GO membranes have been prepared by tape casting4 and other methods.5 In step with the development of new fabrication techniques, GO membranes are now tested for a wide array of applications6 ranging from energy-related4,7 or biomedical8 applications to more conventional uses for filtration9 and dehumidification.10 For all these proposed and implemented applications it remains to be seen how sensitive each of them is with respect to chemical and physical changes of the GO membranes over time. In this study, we report the effects of UV exposure on 2D-hierarchically stacked (Fig. S1 in ESI†) GO membranes. Macroscopically observable changes, such as darkening and mechanical deformation, have been correlated to chemical changes at the molecular level through spectroscopic measurements. Not only do the results of this work offer insights into the stability of GO membranes under UV light, but the findings will enable researchers, who are studying the use of these materials for different applications, to better understand the shelf life and packaging requirements for GO membranes. Furthermore, our results demonstrate the feasibility of deep ultraviolet (DUV) photolithography for graphene oxide-based devices. This approach is readily scalable as opposed to previous reports on photolithographic patterned reduction of GO to graphene by AFM,11 electron-beam12 or with an extreme ultraviolet (λ = 46.9 nm) laser.13

  11. Structural and spectroscopic studies of fluoroprotactinates.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-02-03

    Seven protactinium(V) fluoride compounds have been synthesized, and their crystal structures and Raman spectra are reported. (NH4)2PaF7, K2PaF7, Rb2PaF7, and Cs2PaF7 were found to crystallize in the monoclinic space group P21/c for the ammonium compound and C2/c for the K(+)-, Rb(+)-, and Cs(+)-containing compounds, with nine-coordinate Pa forming infinite chains through fluorine bridges. Na3PaF8 crystallizes in the tetragonal space group I4/mmm with eight-coordinate Pa in tetragonal geometry, while tetramethylammonium fluoroprotactinate shows two different structures: (Me4N)2(H3O)PaF8, an eight-coordinate molecular compound crystallizing in the monoclinic space group C2/c, and (Me4N)PaF6, an eight-coordinate Pa compound forming infinite chains and crystallizing in the orthorhombic space group Pnnm. A comparison of solid- and solution-state Raman data indicates that the PaF8(-) anion could be the predominant Pa(V) complex in concentrated solutions of aqueous HF.

  12. Effect of molecular conformation on spectroscopic properties of symmetrical Schiff bases derived from 1,4-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Cao, Chenzhong

    2013-03-01

    The relationship between the molecular conformation and spectroscopic properties of symmetrical bis-Schiff bases was explored experimentally. Seven samples of compounds p-X-C6H4CHdbnd NC6H4Ndbnd CHC6H4-p-X (X = OMe, Me, Et, Cl, F, CF3, or CN) were prepared for this study, and their crystal structures were measured by X-ray diffraction. Their λmax values in ethanol, acetonitrile, chloroform and cyclohexane solvents were measured, and their δC(Cdbnd N) values in chloroform-d were determined. The results show that the νmax is dependent on the substituents at the benzylidene ring and the dihedral angle τ of the titled molecules, and the term sin(τ) is suitable to modify the substituent effects on the νmax. However, experimental investigations indicate that the dihedral angle τ has a limited effect on the values of δC(Cdbnd N). This study provides a new understanding for the molecular conformation on spectroscopic properties of symmetrical Schiff bases.

  13. VCD spectroscopic and molecular dynamics analysis of the Trp-cage miniprotein TC5b.

    PubMed

    Copps, Jeffrey; Murphy, Richard F; Lovas, Sándor

    2007-01-01

    TC5b is a 20 residue polypeptide notable for its compact tertiary structure, a rarity for a short peptide. This structure is due to the "Trp-cage" motif, an association of aromatic, Pro, and Gly residues. The structure of TC5b has been fully characterized by NMR and electronic circular dichroism (ECD) studies, but has never been studied with vibrational circular dichroism (VCD) spectroscopy, which may reveal finer structure. In this study, we examine the VCD spectra of TC5b to characterize the spectroscopic signature of the peptide and its comprising structural elements. TC5b exhibited a negative-positive-negative triplet which is associated with alpha-helical structure in deuterated solvents but also signs of a polyproline II (PPII) helix in the amide I' region. Detection of this element was complicated by the aforementioned triplet form, as well as by an upfrequency shift in PPII helical elements due to the use of the deuterated organic solvents DMSO-d(6) and TFE-d(1). Nevertheless, while ECD spectra showed only alpha-helical structure for TC5b, VCD spectroscopy revealed a more complex structure which was in agreement with NMR results. VCD spectroscopy also showed a rapid conformational change of the peptide at temperatures above 35 degrees C in D(2)O and in aqueous solvent with greater than 75% DMSO-d(6) content. Molecular dynamics (MD) simulations to investigate this latter effect of DMSO-d(6) on TC5b were conducted in DMSO and 50% (v/v) DMSO in H(2)O. In DMSO unfolding of the peptide was rapid while in 50% (v/v) DMSO in H(2)O the unfolding was more gradual.

  14. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal

  15. Spectroscopic analysis (FT-IR, FT-Raman and NMR) and molecular docking study of ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Jalaja, K.; Abdel-Aziz, Alaa A.-M.; Al-Obaid, Abdulrahman M.; Sheena Mary, Y.; Yohannan Panicker, C.; Van Alsenoy, C.

    2016-09-01

    The vibrational wavenumbers, molecular structure, MEP, NLO, NBO and HOMO, LUMO analysis of Ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate (EPDA) were reported. The change in electron density in the antibonding orbitals and stabilization energies have been calculated by NBO analysis to give clear evidence of stabilization in the hyperconjugation of hydrogen bonded interaction. The difference in HOMO and LUMO energy support the charge transfer interaction within the molecule. NMR studies and Fukui functions are also reported. From molecular electrostatic potential plot it is evident that the negative charge covers the carbonyl groups, phenyl rings and the positive region is over the CH2 groups with the acetate group. Molecular docking studies shows that the title compound forms a stable complex with pyrrole inhibitor and gives a binding affinity value of -8.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against pyrrole inhibitor.

  16. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  17. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  18. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  19. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  20. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  1. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches

    NASA Astrophysics Data System (ADS)

    Liu, Yingying; Zhang, Guowen; Zeng, Ni; Hu, Song

    2017-02-01

    8-Methoxypsoralen (8-MOP) is a naturally occurring furanocoumarin with various biological activities. However, there is little information on the binding mechanism of 8-MOP with trypsin. Here, the interaction between 8-MOP and trypsin in vitro was determined by multi-spectroscopic methods combined with the multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics approach. An expanded UV-vis spectral data matrix was analysed by MCR-ALS, the concentration profiles and pure spectra for the three reaction species (trypsin, 8-MOP and 8-MOP-trypsin) were obtained to monitor the interaction between 8-MOP and trypsin. The fluorescence data suggested that a static type of quenching mechanism occurred in the binding of 8-MOP to trypsin. Hydrophobic interaction dominated the formation of the 8-MOP-trypsin complex on account of the positive enthalpy and entropy changes, and trypsin had one high affinity binding site for 8-MOP with a binding constant of 3.81 × 104 L mol- 1 at 298 K. Analysis of three dimensional fluorescence, UV-vis absorption and circular dichroism spectra indicated that the addition of 8-MOP induced the rearrangement of the polypeptides carbonyl hydrogen-bonding network and the conformational changes in trypsin. The molecular docking predicted that 8-MOP interacted with the catalytic residues His57, Asp102 and Ser195 in trypsin. The binding patterns and trypsin conformational changes may result in the inhibition of trypsin activity. This study has provided insights into the binding mechanism of 8-MOP with trypsin.

  2. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  3. Spectroscopic studies of silver boro tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  4. Spectroscopic studies near the proton drip line

    SciTech Connect

    Toth, K.S. ); Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A. ); Robertson, J.D. )

    1990-01-01

    We have investigated nuclei close to the proton drip line by using heavy-ion fusion reactions to produce extremely neutron-deficient nuclides. Their nuclear decay properties were studied by using on-line isotope separators at Oak Ridge (UNISOR) and Berkeley (OASIS), the Oak Ridge National Laboratory velocity filter, and a fast helium-gas-jet transport system at Lawrence Berkeley Laboratory 88-Inch Cyclotron. Many isotopes, isomers, and {beta}-delayed-proton and {alpha}-particle emitters were discovered. This contribution summarizes three topics that are part of our overall program: decay rates of even-even {alpha}-particle emitters, mass excesses of {sup 181}Pb, {sup 182}Pb, and {sup 183}Pb, and {beta}-delayed proton emitters near N = 82. 14 refs., 6 figs.

  5. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies

    PubMed Central

    Deiana, Marco; Matczyszyn, Katarzyna; Massin, Julien; Olesiak-Banska, Joanna; Andraud, Chantal; Samoc, Marek

    2015-01-01

    Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications. PMID:26069963

  6. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martínez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    2009-02-01

    At the Universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25 pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results of the kinematics of the DUNES sample.

  7. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    At the universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results on the kinematics of the DUNES sample.

  8. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  9. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  10. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  11. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  12. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  13. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    PubMed

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  14. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  15. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  16. Deciphering the Positional Influence of the Hydroxyl Group in the Cinnamoyl Part of 3-Hydroxy Flavonoids for Structural Modification and Their Interaction with the Protonated and B Form of Calf Thymus DNA Using Spectroscopic and Molecular Modeling Studies.

    PubMed

    Pradhan, Ankur Bikash; Haque, Lucy; Bhuiya, Sutanwi; Ganguly, Aniruddha; Das, Suman

    2015-06-11

    Studies on the interaction of naturally occurring flavonoids with different polymorphic forms of nucleic acid are helpful for understanding the molecular aspects of binding mode and providing direction for the use and design of new efficient therapeutic agents. However, much less information is available on the interactions of these compounds with different polymorphic forms of DNA at the molecular level. In this report we investigated the interaction of two widely abundant dietary flavonoids quercetin (Q) and morin (M) with calf thymus (CT) DNA. Spectrophotometric, spectropolarimetric, viscosity measurement, and molecular docking simulation methods are used as tools to delineate the binding mode and probable location of the flavonoids and their effects on the stability and conformation of DNA. It is observed that in the presence of the protonated form of DNA the dual fluorescence of Q and M resulting from the excited-state intramolecular proton transfer (ESIPT) is modified significantly. Structural analysis showed Q and M binds weakly to the B form (groove binding) compared to the protonated form of CT DNA (electrostatic interaction). In both cases, Q binds strongly to both forms of DNA compared to M.

  17. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Haress, Nadia G.; Al-Omary, Fatmah; El-Emam, Ali A.; Mary, Y. Sheena; Panicker, C. Yohannan; Al-Saadi, Abdulaziz A.; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-01

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the Csbnd C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  18. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole.

    PubMed

    Haress, Nadia G; Al-Omary, Fatmah; El-Emam, Ali A; Mary, Y Sheena; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-25

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the C-C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  19. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  20. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  1. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: Synthesis, spectroscopic characterization, molecular modeling and fungicidal study

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3‧-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, 1H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl-, CH3COO-. The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  2. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: synthesis, spectroscopic characterization, molecular modeling and fungicidal study.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-05

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3'-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, (1)H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl(-), CH3COO(-). The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  3. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-25

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.

  4. Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline.

    PubMed

    Pathak, S K; Srivastava, R; Sachan, A K; Prasad, O; Sinha, L; Asiri, A M; Karabacak, M

    2015-01-25

    Comprehensive investigation of geometrical and electronic structure in ground as well as the first excited state of 3,5-Difluoroaniline (C6H5NF2) was carried out. The experimentally observed spectral data (FT-TR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were measured by TD-DFT approach. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. (1)H and (13)C NMR spectra by using gauge including atomic orbital (GIAO) method of studied compound were compared with experimental data obtained. Moreover, the thermodynamic properties were evaluated.

  5. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-01

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310 K were 2.51 × 107 and 3.09 × 105, respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  6. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease.

    PubMed

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-15

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, (1)H, (13)C, (119)Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310K were 2.51×10(7) and 3.09×10(5), respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  7. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods.

    PubMed

    Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh

    2017-01-01

    Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (Kb) of 5.74×10(3) and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably.

  8. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells

    PubMed Central

    Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells. PMID:27651798

  9. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells.

    PubMed

    Vazquez-Zapien, Gustavo Jesus; Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo; Rojas-Lopez, Marlon

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.

  10. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  11. Synthesis, spectroscopic characterization of novel 16α-(3-acetyl phenyl amino)-3β-hydroxy pregn-5-ene-20-one, its molecular structure, NBO analysis, intramolecular interactions studied by DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Shukla, Dolly; Singh, Ranvijay Pratap

    2014-09-01

    A novel compound 16α-(3-acetyl phenyl amino)-3β-hydroxy pregn-5-ene-20-one was synthesized by Michael addition reaction and characterized with the aid of 1H, 13C NMR, IR, UV and mass spectrometry. The molecular geometry of synthesized compound was calculated in the ground state by density functional theory (DFT/B3LYP) using 6-31G(d,p) basis set. 1H and 13C NMR chemical shifts were calculated using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with the experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent density functional theory (TD-DFT). Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analyzed using natural bond orbital (NBO) analysis. Intramolecular interactions were analyzed by AIM approach. Local reactivity descriptors were calculated to study the reactive site within the molecule.

  12. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  13. Interaction of anticancer drug clofarabine with human serum albumin and human α-1 acid glycoprotein. Spectroscopic and molecular docking approach.

    PubMed

    Ajmal, Mohammad Rehan; Nusrat, Saima; Alam, Parvez; Zaidi, Nida; Khan, Mohsin Vahid; Zaman, Masihuz; Shahein, Yasser E; Mahmoud, Mohamed H; Badr, Gamal; Khan, Rizwan Hasan

    2017-02-20

    The binding interaction between clofarabine, an important anticancer drug and two important carrier proteins found abundantly in human plasma, Human Serum Albumin (HSA) and α-1 acid glycoprotein (AAG) was investigated by spectroscopic and molecular modeling methods. The results obtained from fluorescence quenching experiments demonstrated that the fluorescence intensity of HSA and AAG is quenched by clofarabine and the static mode of fluorescence quenching is operative. UV-vis spectroscopy deciphered the formation of ground state complex between anticancer drug and the two studied proteins. Clofarabine was found to bind at 298K with both AAG and HSA with the binding constant of 8.128×10(3) and 4.120×10(3) for AAG and HSA, respectively. There is stronger interaction of clofarabine with AAG as compared to HSA. The Gibbs free energy change was found to be negative for the interaction of clofarabine with AAG and HSA indicating that the binding process is spontaneous. Binding of clofarabine with HSA and AAG induced ordered structures in both proteins and lead to molecular compaction. Clofarabine binds to HSA near to drug site II. Hydrogen bonding and hydrophobic interactions were the main bonding forces between HSA-clofarabine and AAG-clofarabine as revealed by docking results. This study suggests the importance of binding of anticancer drug to AAG spatially in the diseases like cancers where the plasma concentration of AAG increases many folds. Design of drug dosage can be adjusted accordingly to achieve optimal treatment outcome.

  14. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  15. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  16. Crystallographic and spectroscopic study on a known orally active progestin.

    PubMed

    Ferraboschi, Patrizia; Ciuffreda, Pierangela; Ciceri, Samuele; Grisenti, Paride; Castellano, Carlo; Meneghetti, Fiorella

    2015-12-01

    6,17α-Dimethyl-4,6-pregnadiene-3,20-dione (medrogestone, 2) is for a long time known steroid endowed with progestational activity. In order to study its crystallographic and NMR spectroscopic properties with the aim to fill the literature gap, we prepared medrogestone following a traditional procedure. A careful NMR study allowed the complete assignment of the (1)H and (13)C NMR signals not only of medrogestone but also of its synthetic intermediates. The structural and stereochemical characterizations of medrogestone together with its precursor 17α-methyl-3-ethoxy-pregna-3,5-dien-20-one were described by means of X-ray analysis, allowing a deepened conformational investigation.

  17. Theoretical and spectroscopic studies of pyridyl substituted bis-coumarins and their new neodymium (III) complexes

    NASA Astrophysics Data System (ADS)

    Kostova, Irena; Trendafilova, Natasha; Mihaylov, Tzvetan

    2005-07-01

    Ab initio, DFT and spectroscopic studies of 3,3'-( o-pyridinomethylene)di-[4-hydroxycoumarin], 3,3'-( m-pyridinomethylene)di-[4-hydroxycoumarin] and 3,3'-( p-pyridinomethylene)di-[4-hydroxycoumarin] were performed. The molecular and electronic structures of the compounds were investigated using accurate HF and B3LYP/6-31G(d) calculations. Molecular quantities as vertical ionization potential, electron affinity, electronegativity, hardness and electrophilicity indices of the neutral species were calculated and discussed. Molecular electrostatic potential was considered as an additional molecular characteristic for predicting the most probable sites for electrophilic attack. The molecular structure and quantities of the dianionic species, which are active in solution, were calculated and discussed. The theoretical results suggested that both carbonyl and both hydroxyl oxygen atoms are preferred binding sites for electrophilic attack, in particular for a metal coordination. Further, the coordination abilities of the compounds were studied in complexation reactions with Nd(III). Complexes of Nd(III) with o-, m- and p-3,3'-(pyridinomethylene)di-[4-hydroxycoumarin] were synthesized and characterized by different physicochemical methods: elemental analysis, IR, 1H NMR spectroscopies and mass spectral data. The experimental data confirmed the theoretical predictions that the ligands in Nd(III) complexes are tetradentate and bound the metal ion through both carbonyl and both deprotonated hydroxyl oxygen atoms.

  18. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory

    NASA Astrophysics Data System (ADS)

    Creaven, B. S.; Devereux, M.; Georgieva, I.; Karcz, D.; McCann, M.; Trendafilova, N.; Walsh, M.

    2011-12-01

    Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, 1H NMR, 13C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2) 2(H 2O) 2] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn 2(CCA2) 4(H 2O) 2] structure. Experimental and calculated 1H, 13C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.

  19. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory.

    PubMed

    Creaven, B S; Devereux, M; Georgieva, I; Karcz, D; McCann, M; Trendafilova, N; Walsh, M

    2011-12-15

    Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2)(2)(H(2)O)(2)] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn(2)(CCA2)(4)(H(2)O)(2)] structure. Experimental and calculated (1)H, (13)C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.

  20. Confocal Raman spectroscopic analysis of cross-linked ultra-high molecular weight polyethylene for application in artificial hip joints.

    PubMed

    Pezzotti, Giuseppe; Kumakura, Tsuyoshi; Yamada, Kiyotaka; Tateiwa, Toshiyuki; Puppulin, Leonardo; Zhu, Wenliang; Yamamoto, Kengo

    2007-01-01

    Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.

  1. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  2. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    NASA Astrophysics Data System (ADS)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  3. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    PubMed Central

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-01-01

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. This demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects. PMID:26160318

  4. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  5. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  6. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGES

    Cao, R. X.; Sun, L.; Miao, B. F.; ...

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  7. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  8. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  9. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  10. Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin.

    PubMed

    Alam, Md Maroof; Abul Qais, Faizan; Ahmad, Iqbal; Alam, Parvez; Hasan Khan, Rizwan; Naseem, Imrana

    2017-03-09

    Riboflavin (RF) plays an important role in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Human serum albumin (HSA) is an important protein involved in the transportation of drugs, hormones, fatty acid and other molecules which determine the biodistribution and physiological fate of these molecules. In this study, we have investigated the interaction of riboflavin RF with HSA under simulative physiological conditions using various biophysical, calorimetric and molecular docking techniques. Results demonstrate the formation of riboflavin-HSA complex with binding constant in the order of 10(4) M(-1). Fluorescence spectroscopy confirms intermediate strength having a static mode of quenching with stoichiometry of 1:1. Experimental results suggest that the binding site of riboflavin mainly resides in sub-domain IIA of HSA and that ligand interaction increases the α-helical content of HSA. These parameters were further verified by isothermal titration calorimetry ITC which confirms the thermodynamic parameters obtained by fluorescence spectroscopy. Molecular docking was employed to suggest a binding model. Based on thermodynamic, spectroscopic and computational observations it can be concluded that HSA-riboflavin complex is mainly stabilized by various non-covalent forces with binding energy of -7.2 kcal mol(-1).

  11. Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.

    PubMed

    Puzzarini, Cristina; Barone, Vincenzo

    2011-04-21

    The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.

  12. Investigation of the behavior of HSA upon binding to amlodipine and propranolol: Spectroscopic and molecular modeling approaches

    NASA Astrophysics Data System (ADS)

    Housaindokht, Mohammad Reza; Rouhbakhsh Zaeri, Zeinab; Bahrololoom, Mahmood; Chamani, Jamshid; Bozorgmehr, Mohammad Reza

    2012-01-01

    The interaction between human serum albumin (HSA) and two drugs - amlodipine and propranolol - was investigated using fluorescence, UV absorption and circular dichroism (CD) spectroscopy. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggest that amlodipine will quench the intrinsic fluorescence of HSA; whereas propranolol enhances the fluorescence of HSA. The binding constants for the interaction of amlodipine and propranolol with HSA were found to be 3.63 × 10 5 M -1 and 2.29 × 10 4 M -1, respectively. The percentage of secondary structure feature of each one of the HSA-bound drugs, i.e. the α-helix content, was estimated empirically by circular dichroism. The results indicated that amlodipine causes an increase, and that propranolol leads to a decrease in α-helix content of HSA. The spectroscopic analysis indicates that the binding mechanisms of the two drugs are different from each other. The data obtained by the molecular modeling study indicated that these drugs bind, with different affinity, to different sites located in subdomain IIA and IIIA.

  13. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein.

    PubMed

    Satheshkumar, Angupillai; Elango, Kuppanagounder P

    2014-09-15

    The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study.

  14. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  15. Spectroscopic, thermal, antimicrobial and molecular modeling studies of mononuclear pentafunctional Schiff base metal chelates derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2015-03-01

    A new pentafunctional N3O2 Schiff base, H2L ligand, and its metal chelates with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Cr(III), Fe(III) and UO2(VI) have been synthesized and characterized by elemental analysis, spectral, molar conductance, magnetic and thermal gravimetric studies. The results showed that the complexes have octahedral geometry except UO2 complex which has pentagonal bipyramidal arrangement. The TGA analyses suggest high stability for most complexes followed by thermal decomposition in different steps. The kinetic and thermodynamic parameters for decomposition steps of metal complexes thermograms have been calculated. Molecular orbital calculations were performed for the ligand and its metal complexes by means of hyperchem 7.52 program on the bases of semiempirical PM3 level and the results were correlated with the experimental data. The antimicrobial activity of the synthesized compounds were tested in vitro against some Gram-positive and Gram-negative bacteria; yeast and fungus strains and the results were discussed in terms of extended Lewis acid-base interactions.

  16. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Varghese, Hema Tresa; Panicker, C. Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Alsenoy, C. Van

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated 1H NMR results are in good agreement with experimental data. Molecular docking study is also reported.

  17. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  18. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  19. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine.

  20. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking.

    PubMed

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-05

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.41 × 10(5) M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (ΔH(0)), entropic change (ΔS(0)) and Gibbs free energy (ΔG(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  1. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  2. Spectroscopic signatures of molecular orbitals in transition metal oxides with a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Pchelkina, Z. V.; Streltsov, S. V.; Mazin, I. I.

    2016-11-01

    A tendency to form benzenelike molecular orbitals has recently been shown to be a common feature of the 4 d and 5 d transition metal oxides with a honeycomb lattice. This tendency competes with other interactions such as the spin-orbit coupling and Hubbard correlations and can be partially or completely suppressed. In the calculations, SrRu2O6 presents the cleanest case of well-formed molecular orbitals so far; however, direct experimental evidence for or against this proposition has been missing. In this paper, we show that combined photoemission and optical studies can be used to identify molecular orbitals in SrRu2O6 . Symmetry-driven election selection rules suppress optical transitions between certain molecular orbitals, while photoemission and inverse photoemission measurements are insensitive to them. Comparing the photoemission and optical conductivity spectra, one should be able to observe clear signatures of molecular orbitals.

  3. Interaction between phillygenin and human serum albumin based on spectroscopic and molecular docking

    NASA Astrophysics Data System (ADS)

    Song, W.; Ao, M. Z.; Shi, Y.; Yuan, L. F.; Yuan, X. X.; Yu, L. J.

    2012-01-01

    In this paper, the interaction of human serum albumin (HSA) with phillygenin was investigated by fluorescence, circular dichroism (CD), UV-vis spectroscopic and molecular docking methods under physiological conditions. The Stern-Volmer analysis indicated that the fluorescence quenching of HSA by phillygenin resulted from static mechanism, and the binding constants were 1.71 × 10 5, 1.61 × 10 5 and 1.47 × 10 4 at 300, 305 and 310 K, respectively. The results of UV-vis spectra show that the secondary structure of the protein has been changed in the presence of phillygenin. The CD spectra showed that HSA conformation was altered by phillygenin with a major reduction of α-helix and an increase in β-sheet and random coil structures, indicating a partial protein unfolding. The distance between donor (HSA) and acceptor (phillygenin) was calculated to be 3.52 nm and the results of synchronous fluorescence spectra showed that binding of phillygenin to HSA can induce conformational changes in HSA. Molecular docking experiments found that phillygenin binds with HSA at IIIA domain of hydrophobic pocket with hydrogen bond interactions. The ionic bonds were formed with the O (4), O (5) and O (6) of phillygenin with nitrogen of ASN109, ARG186 and LEU115, respectively. The hydrogen bonds are formed between O (2) of phillygenin and SER419. In the presence of copper (II), iron (III) and alcohol, the apparent association constant KA and the number of binding sites of phillygenin on HSA were both decreased in the range of 88.84-91.97% and 16.09-18.85%, respectively. In view of the evidence presented, it is expected to enrich our knowledge of the interaction dynamics of phillygenin to the important plasma protein HSA, and it is also expected to provide important information of designs of new inspired drugs.

  4. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol.

    PubMed

    Muthu, S; Renuga, S

    2014-01-24

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm(-1) and 4000-100 cm(-1) respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of α and β electron (αβDOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

  5. Electrochemical and spectroscopic study of octadecyltrimethylammonium bromide/DNA surfoplexes.

    PubMed

    Rodríguez-Pulido, Alberto; Aicart, Emilio; Junquera, Elena

    2009-04-21

    The use of cationic micelles consisting of octadecyltrimethylammonium bromide (C18TAB) to compact calf thymus DNA has been investigated in aqueous buffered solution at 310.15 K by means of conductometry, electrophoretic mobility, and several fluorescence spectroscopy methods. The results indicate that C18TAB micelles, consisting of 44 monomers on average, may compact DNA molecule by an electrostatic interaction that takes place at the cationic spherical micelle surface. The surfoplexes thus formed show a surface density charge that goes from negative to positive values at a Lmic/D mass ratio of around 1.0 (where Lmic and D are the masses of micellized cationic surfactant and DNA), called the isoneutrality ratio (Lmic/D)phi. Values of this characteristic parameter, determined in this work not only from the electrochemical experimental data but also from spectroscopic measurements, are in very good agreement with those ones calculated from molecular parameters and some other properties also obtained in this work. The electrostatic character of the DNA-micelle interaction has been confirmed by analyzing the decrease in fluorescence emission of the fluorophore ethidium bromide, EtBr, initially intercalated between DNA base pairs, as long as the surfoplexes are formed. Fluorescence anisotropy experiments have revealed that micelle packing becomes more rigid in the presence of DNA, but once the surfoplex is formed, the fluidity increases with the Lmic/D mass ratio, attaining its maximum when the isoneutrality ratio is exceeded. This fact, together with the net positive charge of the surfoplexes with the Lmic/D mass ratio over the isoneutrality ratio, makes this regimen of lipid and DNA content the optimum for efficiency in the transfection process.

  6. In situ real-time spectroscopic ellipsometry measurement for the investigation of molecular orientation in organic amorphous multilayer structures

    NASA Astrophysics Data System (ADS)

    Yokoyama, Daisuke; Adachi, Chihaya

    2010-06-01

    To investigate molecular orientation in organic amorphous films, in situ real-time spectroscopic ellipsometry measurements were performed during vacuum deposition. Three materials with different molecular shapes were adopted to confirm the generality of the molecular orientation. In all three cases, more than 200 000 values for the ellipsometric parameters measured during deposition were well simulated simultaneously over the entire spectral range and measurement period using a simple model where the films possessed homogeneous optical anisotropy. This demonstrated the homogeneity of the molecular orientation in the direction of film thickness. The molecular orientation can be controlled by the substrate temperature even in multilayer structures. It is also demonstrated that a "multilayer structure" can be fabricated using only one material, where each layer has different optical and electrical properties.

  7. Laser irradiated gas jet: A spectroscopic experimental and theoretical study

    SciTech Connect

    Lee, R.W.; Matthews, D.L.; Koppel, L.; Busch, G.E.; Charatis, G.; Dunning, M.J.; Mayer, F.J.

    1983-09-01

    We present x-ray spectroscopic measurements of the longitudinal electron density profile and the longitudinal and transverse electron temperature profiles for a laser irradiated gas jet. We attempt to verify our spectroscopic method by laser interferometry and by comparison of inferred quantities to those determined from laser plasma interaction simulations. Because temperature profiles were time dependent, we used a theoretical time dependent radiation transport code to analyze the data.

  8. Synthesis, molecular structure, spectroscopic properties and stability of (Z)-N-methyl-C-2,4,6-trimethylphenylnitrone

    NASA Astrophysics Data System (ADS)

    Lasri, Jamal; Ismail, Ali I.; Haukka, Matti; Soliman, Saied M.

    2015-02-01

    New N-methyl-C-2,4,6-trimethylphenylnitrone 1 has been synthesized starting from N-methylhydroxylamine and mesitaldehyde. The product was fully characterized using different spectroscopic techniques; FTIR, NMR, UV-Vis, high resolution mass spectrometry and X-ray diffraction. The relative stability and percent of population of its two possible isomers (E and Z) were calculated using the B3LYP/6-311++G(d,p) method in gas phase and in solution. In agreement with the X-ray results, it was found that Z-isomer is the most stable one in both gas phase and solution. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO), and chemical shift values were also calculated using the same level of theory. The TD-DFT results of the studied nitrone predicted a π-π∗ transition band at 285.1 nm (fosc = 0.3543) in the gas phase. The rest of the spectral bands undergo either hyperchromic or hypsochromic shifts in the presence of solvent. Polarizability and HOMO-LUMO gap values were used to predict the nonlinear optical properties (NLO) of the studied compound. NBO analysis has been used to determine the most accurate Lewis structure of the studied molecule.

  9. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), Fukui function, antimicrobial and molecular docking study of (E)-1-(3-bromobenzylidene)semicarbazide by DFT method

    NASA Astrophysics Data System (ADS)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.

    2017-02-01

    The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.

  10. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation.

    PubMed

    Suess, Daniel L M; Britt, R David

    2015-09-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H(+) and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN(-) ligands of the H-cluster, tracing (57)Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN(-) ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

  11. Newly synthesized dihydroquinazoline derivative from the aspect of combined spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Mary, Y. Sheena; Mary, Y. Shyma; Panicker, C. Yohannan; Abdel-Aziz, Alaa A.-M.; El-Sherbeny, Magda A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2017-04-01

    In this work, spectroscopic characterization of 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione have been obtained with experimentally and theoretically. Complete assignments of fundamental vibrations were performed on the basis of the potential energy distribution of the vibrational modes and good agreement between the experimental and scaled wavenumbers has been achieved. Frontier molecular orbitals have been used as indicators of stability and reactivity. Intramolecular interactions have been investigated by NBO analysis. The dipole moment, linear polarizability and first and second order hyperpolarizability values were also computed. In order to determine molecule sites prone to electrophilic attacks DFT calculations of average local ionization energy (ALIE) and Fukui functions have been performed as well. Intra-molecular non-covalent interactions have been determined and analyzed by the analysis of charge density. Stability of title molecule have also been investigated from the aspect of autoxidation, by calculations of bond dissociation energies (BDE), and hydrolysis, by calculations of radial distribution functions after molecular dynamics (MD) simulations. In order to assess the biological potential of the title compound a molecular docking study towards breast cancer type 2 complex has been performed.

  12. Vibrational spectroscopic study of newly developed self-forming lipids and nanovesicles.

    NASA Astrophysics Data System (ADS)

    Bista, Rajan; Bruch, Reinhard

    2009-03-01

    We present the first experimental study of self-forming synthetic nanovesicles, trademarked as QuSomes, using vibrational spectroscopic techniques namely near-infrared (NIR) and laser tweezers Raman spectroscopy. Raman spectra of these new artificial nanovesicles suspended in Phosphate Buffered Saline (PBS) have been obtained by using an inverted confocal laser-tweezers-Raman-microscopy system in the spectral range of 3100 to 500 cm-1. This spectrometer works with an 80 mW diode-pumped solid-state laser, operating at a wavelength of 785 nm in the TEM00 mode. The laser is used both for optical trapping and Raman excitation. Similarly, NIR absorption spectra of these novel nanovesicles have been recorded in the spectral range of 9000-4800 cm-1 by using a new miniaturized micro-mirror spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In this work, we have found that the most prominent bands in the studied spectral region of Raman spectra are dominated by vibrational modes arising from C-C and CH2 bonds. Similarly, NIR spectra are primarily assigned as first and second overtone of C-H stretching mode and second overtone of C=O stretching mode. These spectroscopic techniques have proven to be an excellent tool to establish the fingerprint region revealing the molecular structure and conformation of QuSomes nanoparticles.

  13. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    PubMed

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  14. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  15. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  16. Characterization of water molecular state in in-vivo thick tissues using diffuse optical spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Chung, So Hyun

    Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm. The precise NIR peak's shape and position are highly sensitive to water molecular disposition. A bound water index (BWI) was developed that quantifies the spectral shift and shape changes observed in tissue water absorption spectra measured by broadband diffuse optical spectroscopic imaging (DOSI). DOSI quantitatively measures light absorption and scattering spectra in cm-deep tissues and therefore reveals bound water spectral shifts. BWI as a water state index was validated by comparing broadband DOSI to MRI and a conductivity cell using bound water phantoms. Non-invasive BWI measurements of malignant and normal tissues in 18 subjects showed a significantly higher fraction of free water in malignant tissues (p<0.0001) compared to normal tissues. BWI showed potential as a prognostic index based on high correlations with tumor grade and size. An algorithm for absolute temperature measurements in deep tissues was developed based on resolving opposing effects of water vibrational frequency shifts due to macromolecular binding. DOSI measures absolute temperature with a difference of 1.1+/-0.91°C from a thermistor. Deep tissue temperature measured in forearms during cold-stress was consistent with previously reported invasively-measured deep tissue temperature. Finally, the BWI was compared to Apparent Diffusion Coefficient (ADC) of diffusion weighted MRI in 9 breast cancer patients. The BWI and ADC correlated (R=0.8, p=<0.01) and both parameters decreased with increasing bulk water content in cancer tissues. Although BWI and ADC are positively correlated in

  17. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis.

    PubMed

    Pawar, Suma K; Jaldappagari, Seetharamappa

    2017-02-24

    In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.

  18. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  19. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation.

  20. Spectroscopic Study on the Interaction of 4-dimethylaminochalcones with Phospholipids

    NASA Astrophysics Data System (ADS)

    Tomečková, V.; Revická, M.; Sassen, A.; Veliká, B.; Stupák, M.; Perjési, P.

    2014-11-01

    The ultraviolet-visible and fluorescence spectroscopic properties of 4'-dimethylaminochalcone ( 1a) and its cyclic analogs 2a-4a have been studied in the presence of phospholipid vesicles (i.e., egg yolk lecithin and dipalmitoylpho sphatidylcholine), bovine serum albumin (BSA), and lipoprotein particles (i.e., bovine serum albumin plus egg yolk lecithin). The spectral results showed that compounds 1a-4a formed hydrophobic interactions with the phospholipids, lipoproteins, and BSA at the polar/nonpolar interface. Compounds 3a and 4a exhibited the strongest hydrophobic interactions of all of the compounds tested towards the phospholipids. Compound 2a gave the best fluorescent fluorophore indicating interactions with the lipids, lipoproteins, and proteins. Fluorescent microscopic imaging of breast cancer cells treated with compounds 1a-4a revealed that they could be used to stain all of the cellular components and destroy the nuclear structure. Compounds 1a-4a were found to be concentrated predominantly on the surfaces of the liposomes and lipoproteins.

  1. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-05

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects.

  2. Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Vega, Alberto; Ligero, Pablo; Farrera-Rebollo, Reynold R; Mendoza-Pérez, Jorge A; Calderón-Domínguez, Georgina; Vera, Norma Güemes

    2016-10-01

    The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

  3. Spectroscopic studies of cryogenic fluids: Benzene in propane

    NASA Astrophysics Data System (ADS)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  4. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  5. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations.

    PubMed

    Monti, Susanna; Bramanti, Emilia; Della Porta, Valentina; Onor, Massimo; D'Ulivo, Alessandro; Barone, Vincenzo

    2013-09-21

    The binding of chlorosulphonated paraffins to collagen triple helices is studied by means of classical molecular dynamics simulations and experimental spectroscopic techniques in order to disclose the principal characteristics of their interaction during the leather fattening process. Indeed, collagen is the main target to develop new leather modifying agents with specific characteristics, and an accurate design of the collagen binders, supported by predictive computational strategies, could be a successful tool to obtain new effective eco-compatible compounds able to impart to the leather the required functionalities and distinctive mechanical properties. Possible effects caused by the tanning agents on the collagen matrix have been identified from both experimental and theoretical points of view. Computational data in agreement with experiment have revealed that chlorosulphonated paraffins can interact favorably with the collagen residues having amine groups in their side chains (Arg, Lys, Asn and Gln) and reduce the tendency of the solvated collagen matrix to swell. However, the interference of chlorosulphonated paraffins with the unfolding process, which is operated mainly by the action of water, can be due both to covalent cross-linking of the collagen chains and intermolecular hydrogen bonding interactions involving also the hydroxyl groups of Hyp, Ser and Thr residues.

  6. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    PubMed

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-05

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (P<0.05) ratios of amide I to II peak height (1.698 vs. 1.805) and area (1.843 vs. 2.017). A significant correlation was observed between the amide I and II peak height (r=0.48) and peak area (r=-0.42) ratio with protein content. Compared with yellow-type, the green-type peas had lower (P<0.05) α-helix:β-sheet ratio (1.015 vs. 0.926), indicating varietal difference in protein secondary structure makeup. All processing applications increased α-helix:β-sheet ratio, with the largest (P<0.05) increase being observed with roasting and microwaving. The heat-induced changes in α-helix:β-sheet ratio was strongly correlated to intestinal digestibility of protein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas.

  7. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  8. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques.

    PubMed

    Zolfagharzadeh, Mahboobeh; Pirouzi, Maliheh; Asoodeh, Ahmad; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2014-12-01

    This paper describes the interaction between 2,4-dinitrophenol (DNP) with the two drug carrier proteins - human serum albumin (HSA) and human holo transferrin (HTF). Hence, binding characteristics of DNP to HSA and HTF were analyzed by spectroscopic and molecular modeling techniques. Based on results obtained from fluorescence spectroscopy, DNP had a strong ability to quench the intrinsic fluorescence of HSA and HTF through a static quenching procedure. The binding constant and the number of binding sites were calculated as 2.3 × 10(11) M(-1) and .98 for HSA, and 1.7 × 10(11) M(-1) and 1.06 for HTF, respectively. In addition, synchronous fluorescence results showed that the microenvironment of Trp had a slight tendency of increasing its hydrophobicity, whereas the microenvironment of the Tyr residues of HSA did not change and that of HTF showed a significant trend (red shift of about 4 nm) of an increase in polarity. The distance between donor and acceptor was obtained by the Förster energy according to fluorescence resonance energy transfer, and was found to be 3.99 and 3.72 nm for HSA and HTF, respectively. The critical induced aggregation concentration (CCIAC) of the drug on both proteins was determined and confirmed by an inflection point of the zeta potential behavior. Circular dichroism data revealed that the presence of DNP caused a decrease of the α-helical content of HSA and HTF, and induced a remarkable mild denaturation of both proteins. The molecular modeling data confirmed our experimental results. This study is deemed useful for determining drug dosage.

  9. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  10. Spectroscopic investigations and molecular docking study of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Parveen, Shana; Al-Alshaikh, Monirah A.; Panicker, C. Yohannan; El-Emam, Ali A.; Salian, Vinutha V.; Narayana, B.; Sarojini, B. K.; van Alsenoy, C.

    2016-09-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one. The computations were performed at DFT level of theory to get the optimizedgeometry and vibrational wave numbers of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 83.85 times that of standard NLO material urea. From the MEP plot, the negative electrostatic potential regions are mainly localized over the carbonyl group, the phenyl rings and are possible sites for electrophilic attack. The positive regions are localized over all the hydrogen atoms and are possible sites for nucleophilic attack. The molecular docking results suggest that the compound might exhibit inhibitory activity against lymphocyte-specific kinase and may results in design of novel T-cell immunosuppressants.

  11. Spectroscopic studies on 9H-carbazole-9-(4-phenyl) boronic acid pinacol ester by DFT method

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kurt, M.; Can, M.; Horzum, N.; Atac, A.

    2016-08-01

    9H-Carbazole-9-(4-phenyl) boronic acid pinacol ester (9-CPBAPE) molecule was investigated by FT-IR, Raman, UV-vis, 1H and 13C NMR spectra. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H, 13C NMR and UV-vis spectra were recorded in dimethyl sulfoxide (DMSO) solution. The results of theoretical calculations for the spectra of the title molecule were compared with the experimental spectra. The highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential (MEP) analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G (d,p) basis set calculations using the Gaussian 09 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analyses were performed using GaussSum 2.2 program.

  12. A spectroscopic study of anomalous stellar populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney Elizabeth

    A population of stars exists in the old, open cluster M67, whose photometry, color magnitude diagram locations and associated evolutionary states cannot be explained by current, standard single star evolution theory. These stars are often referred to as "yellow straggler" stars. Yellow stragglers have been identified in multiple star clusters suggesting that these stars constitute a real population. Additionally, according to independent studies, at least some of the yellow straggler stars in M67 are likely cluster members. Therefore, cluster non-membership is not a sufficient explanation for the observed anomalous photometry of these stars. It is possible that the yellow stragglers occupy their precarious color magnitude diagram positions as a result of the evolution of mass transfer blue straggler stars. These are stars which have been formed by Roche Lobe overflow mass transfer in close binary systems. If this the case for the yellow stragglers, it is hypothesized that they could potentially exhibit two spectroscopic characteristics that can be indicative of this type of mass transfer system. Specifically, variable radial velocities can be used to indicate that the yellow stragglers exist in binary systems and enhancements of s-process elements in yellow stragglers can indicate Roche Lobe overflow mass transfer from a once asymptotic giant branch star which has since evolved into a white dwarf. This dissertation details the radial velocity survey and the chemical abundance analysis that have been conducted to investigate the yellow stragglers with regard to this hypothesis. The radial velocity survey revealed that eight of the ten yellow stragglers studied exhibit variable radial velocities indicating that the yellow straggler population of M67 possess a high binary frequency. However, the chemical abundance analysis revealed that none of the yellow stragglers exhibited enhancements of the s-process elements Y and Ba. Therefore, a history which involves Roche

  13. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  14. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  15. Synthesis, Spectroscopic, Structural and Quantum Chemical Studies of a New Imine Oxime and Its Palladium(II) Complex: Hydrolysis Mechanism.

    PubMed

    Kaya, Yunus; Yilmaz, Veysel T; Buyukgungor, Orhan

    2016-01-21

    In this work, we report synthesis, crystallographic, spectroscopic and quantum chemical studies of a new imine oxime, namely (4-nitro-phenyl)-(1-phenyl-ethylimino)-acetaldehyde oxime (nppeieoH). Spectroscopic and X-ray diffraction studies showed that nppeieoH is hydrolyzed in aqueous solution, forming nitroisonitrosoacetophenone (ninap) and the hydrolysis product binds to Pd(II) to yield [Pd(nppeieo)(ninap)]. The mechanism of the hydrolysis reaction has been theoretically investigated in detail, using density functional theory (DFT) with the B3LYP method. The vibrational and the electronic spectra of nppeieoH and its Pd(II) complex, the HOMO and LUMO analysis, Mulliken atomic charges and molecular electrostatic potential were also performed. The predicted nonlinear optical properties of both compounds are higher than those of urea.

  16. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  17. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method.

    PubMed

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-15

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔH(θ)) and entropy change (ΔS(θ)) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  18. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  19. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations.

  20. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  1. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  2. Spectroscopic Evidence for Room Temperature Interaction of Molecular Oxygen with Cobalt Porphyrin Linker Sites within a Metal-Organic Framework.

    PubMed

    Lahanas, Nicole; Kucheryavy, Pavel; Lockard, Jenny V

    2016-10-17

    Metalloporphyrin-based metal-organic frameworks offer a promising platform for developing solid-state porous materials with accessible, coordinatively unsaturated metal sites. Probing small-molecule interactions at the metalloporphyrin sites within these materials on a molecular level under ambient conditions is crucial for both understanding and ultimately harnessing this functionality for potential catalytic purposes. Co-PCN-222, a metal-organic framework based on cobalt(II) porphyrin linkers. is investigated using in situ UV-vis diffuse-reflectance and X-ray absorption spectroscopy. Spectroscopic evidence for the axial interaction of diatomic oxygen with the framework's open metalloporphyrin sites at room temperature is presented and discussed.

  3. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  4. X-ray spectroscopic studies of secondary battery materials

    NASA Astrophysics Data System (ADS)

    Kostov, Svilen Dimitar

    1998-09-01

    X-ray spectroscopic methods, both NEXAFS and EXAFS were used in the study of the structural and electronic properties of different types of new battery materials. NEXAFS analysis of the spectra of Lisb{1-x}CoO2 secondary battery cathodes revealed that the addition of Li proceeds is strongly correlated to the increase in electronic charge on the Co ion. A structural phase transition is confirmed for x=0.5. The presence of Mnsp{+2} is detected in the conventionally made LiMnOsb2 cathodes but not in ones prepared according to the new ADL process. Lisb{x}Vsb6Osb{13} cathode material, where 0≤ x≤6, was measured using x-ray absorption, EPR and NMR techniques. The intercalation mechanism involves a conversion of Vsp{+5} to Vsp{+4} in Vsb6Osb{13} until the composition Lisb2Vsb6Osb{13} is reached. Further addition of lithium is accompanied by the conversion of Vsp{+4} to Vsp{+3} until Lisb8Vsb6Osb{13} is reached. The process is complicated and involves structural phase changes and increasing structural disorder within the multi-phase system as Li concentration is increased. Studies of LiNi/CoOsb2 intercalation cathodes prepared by a novel sol-gel technique suggests that although the partial substitution of Co for Ni stabilizes the system by removing Nisp{+2}, a Jahn-Teller type structural distortion in the predominantly Nisp{=3} system persists. In-situ EXAFS measurements of the pyrite cathode in a new Li/CPE/FeSsb2 showed two distinct environments of the Fe ion, which were interpreted as those of metallic Fe and residual FeSsb2 at high lithium concentration, and Lisb2FeSsb2 and residual FeSsb2 at low lithium concentration. The formation of FeS was not detected. A new type of hydrogen ion battery incorporating a MnSOsb4sp&*slash;Hsb2O based cathode and polymer electrolyte was also studied. Heavily cycled and discharged cathodes showed an almost identical Mn local structure to that of single cycled ones. The Mn environment becomes very different in the charged cathodes

  5. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  6. Molecular recognition and binding of beta-lactamase II from Bacillus cereus with penicillin V and sulbactam by spectroscopic analysis in combination with docking simulation.

    PubMed

    Zhang, Yeli; Qiao, Pan; Li, Shuaihua; Feng, Xuan; Bian, Liujiao

    2017-02-10

    The molecular recognition and binding interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) at 277 K were studied by spectroscopic analysis and molecular docking. The results showed that a non-fluorescence static complex was separately formed between Bc II and two ligands, the molecular ratio of Bc II to PV or Sul was both 1:1 in the binding and the binding constants were 2.00 × 10(6) and 3.98 × 10(5) (L/mol), respectively. The negative free energy changes and apparent activation energies indicated that both the binding processes were spontaneous. Molecular docking showed that in the binding process, the whole Sul molecule entered into the binding pocket of Bc II while only part of the whole PV molecule entered into the pocket due to a long side chain, and electrostatic interactions were the major contribution to the binding processes. In addition, a weak conformational change of Bc II was also observed in the molecular recognition and binding process of Bc II with PV or Sul. This study may provide some valuable information for exploring the recognition and binding of proteins with ligands in the binding process and for the design of novel super-antibiotics.

  7. Structural, spectroscopic and theoretical study of novel ephedrinum salt

    NASA Astrophysics Data System (ADS)

    Ivanova, B.; Kolev, T.; Lamshöft, M.; Mayer-Figge, H.; Seidel, R.; Sheldrick, W. S.; Spiteller, M.

    2010-05-01

    Ephedrinum violurate dihydrate was synthesized, spectroscopically and structural elucidated. The data are compared with those of the free-base ephedrine hemihydrate. Discussion on the stable conformer of the ephedrinum cation is carried out. Quantum chemical calculations were performed for the theoretical elucidation of the conformational preference of the ephedrinum cation and its vibrational properties. The model systems neutral ephedrine hemihydrate ( 1) and violurate salt dihydrate ( 2) are elucidated.

  8. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods

    PubMed Central

    Xu, Hongliang; Yao, Nannan; Xu, Haoran; Wang, Tianshi; Li, Guiying; Li, Zhengqiang

    2013-01-01

    This study investigated the interaction between eupatorin and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular modeling at pH 7.4. Results of UV-vis and fluorescence spectroscopies illustrated that BSA fluorescence was quenched by eupatorin via a static quenching mechanism. Thermodynamic parameters revealed that hydrophobic and electrostatic interactions played major roles in the interaction. Moreover, the efficiency of energy transfer, and the distance between BSA and acceptor eupatorin, were calculated. The effects of eupatorin on the BSA conformation were analyzed using UV-vis, CD, and synchronous fluorescence. Finally, the binding of eupatorin to BSA was modeled using the molecular docking method. PMID:23839090

  9. Spectroscopic and structural investigation of interaction product of 8-mercaptoquinoline with molecular iodine

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Starikova, Zoya A.; Karginova, Anastasia O.; Kolesnikova, Tatiana S.; Tereznikov, Alexander Yu.

    2013-11-01

    The behavior of 8-mercaptoquinoline, which is a potential antithyroid drug toward molecular iodine was investigated. The ability of 8-mercaptoquinoline to form the outer-sphere charge-transfer complex C9H7NS·I2 with iodine molecular in dilute chloroform solution has been studied by UV/vis spectroscopy (lg β = 3.14). The crystal structure of the new salt 8-(quinoline-8-yldisulfonyl)quinolinium triiodide - product of irreversible oxidation of 8-mercaptoquinoline was determined by X-ray diffraction. Intramolecular hydrogen bond of N-H⋯N type is presented in the organic cation. The triiodide ion is the nearly centrosymmetrical anion. The 8-(quinoline-8-yldisulfanyl)quinolinium cations form dimers through π-π-stacking interaction between quinolinium rings. The reduced intramolecular interactions are observed between iodine - sulfur atoms and iodine-hydrogen atoms with shortened contacts (less of sum of van-der-waals contacts).

  10. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  11. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: a combined experimental and quantum chemical approach.

    PubMed

    Li, Linwei; Cai, Tiancheng; Wang, Zhiqiang; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2014-01-01

    In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively. 13C and 1H NMR spectra were recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule were calculated based on the gauge-independent atomic orbital (GIAO) method. Finally all of the calculation results were applied to simulate IR, Raman, 1H NMR and 13C NMR spectrum of the title compound which showed excellent agreement with observed spectrum. Furthermore, reliable vibrational assignments which have been made on the basis of potential energy distribution (PED) and characteristic vibratinonal absorption bands of the title compound in IR and Raman have been figured out. HOMO-LUMO energy and Mulliken atomic charges have been evaluated, either.

  12. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  13. A Raman Spectroscopic Study of Kernite to 25 GPa

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.

    2015-12-01

    A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4­ groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be

  14. Structural and spectroscopic properties of the second generation phosphorus-viologen “molecular asterisk”

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandukov, A. E.; Katir, N.; Majoral, J. P.; El Kadib, A.; Caminade, A. M.; Bousmina, M.; Kovalenko, V. I.

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4‧-bipyridinium (BFBP) molecule without counter ions PF6- does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  15. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    PubMed

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution.

  16. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking.

    PubMed

    Shi, Jie-Hua; Liu, Ting-Ting; Jiang, Min; Chen, Jun; Wang, Qi

    2015-06-01

    The binding interaction of gefitinib with calf thymus DNA (ct-DNA) under the simulated physiological pH condition was studied employing UV absorption, fluorescence, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that gefitinib preferred to bind to the minor groove of ct-DNA with the binding constant (Kb) of 1.29 × 10(4)Lmol(-1) at 298K. Base on the signs and magnitudes of the enthalpy change (ΔH(0)=-60.4 kJ mol(-1)) and entropy change (ΔS(0)=-124.7 J mol(-1)K(-1)) in the binding process and the results of molecular docking, it can be concluded that the main interaction forces between gefitinib and ct-DNA in the binding process were van der Waals force and hydrogen bonding interaction. The results of CD experiments revealed that gefitinib did not disturb native B-conformation of ct-DNA. And, the significant change in the conformation of gefitinib in gefitinib-ct-DNA complex was observed from the molecular docking results and the change was close relation with the structure of B-DNA fragments, indicating that the flexibility of gefitinib molecule also plays an important role in the formation of the stable gefitinib-ct-DNA complex.

  17. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking.

    PubMed

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao; Wang, Qi

    2015-01-01

    The binding interaction of sorafenib with bovine serum albumin (BSA) was studied using fluorescence, circular dichrosim (CD) and molecular docking methods. The results revealed that there was a static quenching of BSA induced by sorafenib due to the formation of sorafenib-BSA complex. The binding constant and number of binding site of sorafenib with BSA under simulated physiological condition (pH=7.4) were 6.8×10(4) M(-1) and 1 at 310 K, respectively. Base on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)=-72.2 kJ mol(-1) and ΔS(0)=-140.4J mol(-1) K(-1)) and the results of molecular docking, it could be suggested that the binding process of sorafenib and BSA was spontaneous and the main interaction forces of sorafenib with BSA were van der Waals force and hydrogen bonding interaction. From the results of site marker competitive experiments and molecular docking, it could be deduced that sorafenib was inserted into the subdomain IIA (site I) of BSA and leads to a slight change of the conformation of BSA. And, the significant change of conformation of sorafenib occurred in the binding process with BSA to increase the stability of the sorafenib-BSA system, implying that the flexibility of sorafenib played an important role in the binding process.

  18. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  19. Spectroscopic and Vibrational Energy Transfer Studies in Molecular Bromine

    DTIC Science & Technology

    1993-12-01

    Society Review , 15: 405-448 (1986). 19. Herzberg, G. Spectrum of Diatomic Molecules. Van Nostrand, New York, 1953. 132 20. Hirschfelder, J.O., C.F. Curtis...Laser," Journal of Chemical Physics, 82: 4831 (1985). 18. Heaven, M. C. "Fluorescence Decay Dynamics of the Halogens and Interhalogens," Chemical

  20. Rotational state-dependent attachment of He atoms to cold molecular ions: An action spectroscopic scheme for rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, Sandra; Kluge, Lars; Stoffels, Alexander; Pérez-Ríos, Jesús; Schlemmer, Stephan

    2017-02-01

    We present a kinetics model description of a newly developed action spectroscopic method for rotational spectroscopy based on rotational state-dependent three-body attachment of He atoms to cold molecular ions stored in a cryogenic 22-pole ion trap. The model results from numerical simulations and an approximate analytical expression are compared to measurements of the J = 1- 0 rotational transition of CD+, for which we obtain a refined transition frequency of 453.5218509(7) GHz. From the analysis of the spectroscopic data recorded at varying experimental conditions, e.g. over a wide range of He number densities and excitation powers, we deduce that the ternary rate coefficient in the first excited rotational state of CD+ is reduced to (55 ± 5) % of the rotational ground state value. This decrease in the rate coefficient can be rationalized as an increase of the redissociation probability in the ternary collision process. A summary of rotational spectroscopy measurements of other molecular ions using the new method will be given, and its general applicability is discussed.

  1. Magnetic resonance and optical spectroscopic studies of carotenoids

    SciTech Connect

    Kispert, L.D.

    1991-05-01

    It is our goal to study the role of a host lattice in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. We are thus manipulating the host matrix so as to understand the carotenoid function (protection, quenching, energy transfer and antenna) and the structure of carotenoid cations. To characterize their properties, we have carried out EPR, ENDOR, optical, molecular orbital and electrochemical studies of carotenoids and carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 36 refs.

  2. Mono and binuclear ruthenium(II) complexes containing 5-chlorothiophene-2-carboxylic acid ligands: Spectroscopic analysis and computational studies

    NASA Astrophysics Data System (ADS)

    Swarnalatha, Kalaiyar; Kamalesu, Subramaniam; Subramanian, Ramasamy

    2016-11-01

    New Ruthenium complexes I, II and III were synthesized using 5-chlorothiophene-2-carboxylic acid (5TPC), as ligand and the complexes were characterized by elemental analysis, FT-IR, 1H, 13C NMR, and mass spectroscopic techniques. Photophysical and electrochemical studies were carried out and the structures of the synthesized complex were optimized using density functional theory (DFT). The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies and Mulliken atomic charges of the molecules are determined at the B3LYP method and standard 6-311++G (d,p) basis set starting from optimized geometry. They possess excellent stabilities and their thermal decomposition temperatures are 185 °C, 180 °C and 200 °C respectively, indicating that the metal complexes are suitable for the fabrication processes of optoelectronic devices.

  3. Spectroscopic, luminescence, electrochemical and antimicrobial studies of lanthanide complexes of bis-benzimidazole derived ligands

    NASA Astrophysics Data System (ADS)

    Siddiqi, Zafar A.; Shahid, Anjuli M.; Khalid, Mohd.; Sharma, Prashant K.; Siddique, Armeen

    2013-04-01

    The lanthanide complexes of [1,2-bis(benzimidazole-2-yl)ethane dihydrochloride], L1·2HCl and [1,4-bis(benzimidazole-2-onium)butane dihydrochloride], L2·2HCl having molecular formulae [Ln(L1)2Cl3H2O] and [Ln(L2)2Cl3H2O]·2H2O (Ln = La3+, Pr3+, Nd3+ and Gd3+), respectively, were prepared and characterized through IR, 1H and 13C NMR, ESI-mass, UV-visible and luminescence spectroscopic techniques. TGA data suggested presence of the coordinated and the lattice water. The oscillator strengths of the f-f transitions and the covalency parameters (β, b1/2 and δ) have been evaluated from the electronic spectral data. The proposed octa coordinate geometry for the complexes has been ascertained from the molecular model computations. CV studies indicate formation of stable quasi-reversible redox couples PrIII/IV, Nd III/IV and GdIII/IV in solution. The in vitro antimicrobial activities of the complexes have been evaluated against gram +ve and gram -ve bacteria and fungi.

  4. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands.

    PubMed

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A; Piro, Oscar E; Pis-Diez, Reinaldo; González-Baró, Ana C

    2015-02-25

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular O-H⋯N interactions in salicylaldehyde derivatives between the O-H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  5. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands

    NASA Astrophysics Data System (ADS)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2015-02-01

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular Osbnd H⋯N interactions in salicylaldehyde derivatives between the Osbnd H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  6. Application of spectroscopic techniques for the analysis of kidney stones: a pilot study

    NASA Astrophysics Data System (ADS)

    Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.

    2016-03-01

    Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.

  7. The spectroscopic study of simple polyatomic molecules by synchrotron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaminski, Lech

    This thesis describes the spectroscopic study of simple poly-atomic molecules, for example NO and Cl2O by UV radiation derived from synchrotron and laser sources. Synchrotron studies were carried out at the Daresbury Laboratory Synchrotron Radiation Source, and the laser studies performed at University College London. The thesis is composed of six chapters. The first chapter discusses molecular structure; UV absorption of photons by simple molecules and describes the modern techniques of Resonance Enhanced Multi Photon Ionisation (REMPI) and Laser Induced Fluorescence (LIF) processes. Chapter two describes the apparatus and the experimental techniques developed during this project at the Daresbury Laboratory Synchrotron Radiation Source. Details are given on the different photoabsorption cells that were built and used, as well as details of synthesis plants used to create short lived molecules of particular importance to atmospheric chemistry, for example N2O5. Chapter three gives a full description of the laser system constructed to study REMPI and LIF processes. The data collection and experimental methodology of the final experimental configuration to study REMPI phenomena is also detailed. Chapter four describes the results obtained by photoabsorption studies for the atmospheric nitrogen and chlorine oxides (Cl2O, N2O5 and ClONO2) Chapter five gives an overview of the results obtained by photoabsorption studies of Polycyclic Aromatic Hydrocarbons. Chapter six presents conclusions of the current work and discusses future experiments that may be undertaken in the apparatus developed during this PhD program.

  8. High level ab initio structural and spectroscopic studies of interstellar ion-molecule complexes and interstellar triatomic molecules

    NASA Astrophysics Data System (ADS)

    Cotton, C. Eric

    Ion molecule complexes are considered possible novel intermediates in the molecular complexification of the interstellar medium. This study reports the results of calculations on the CO, CS, PN, HCN, and HNC molecules and the HCO+, HCS+, HPN+, and HNCH+ ions and their ion-molecule complexes, CO-HCO +, SC-HCS+, and PN-HNP+, HCN-HCNH +, HNC-HCNH+, and HCN-HNCH+. Results from calculations on the triatomic molecules HNSx, HSN x, HPSx, and HNSx (x = -1, 0 , +1) and their low lying electronic excited states are reported. Binging energies of the complexes are found to be significant, implying that these complexes may be observable. It is also found that the interaction of HNC with HNCH+ leads to a novel barrierless isomerization pathway for HNC to HCN. Structural and spectroscopic results from the highly correlated CCSD(T)/aug-cc-pV(6+d)Z and the explicitly correlated CCSD(T)-F12/VQZ-F12 calculations are within 1% when compared to available experimental values. Essential structural and spectroscopic properties for ions and molecules as well as ion-molecule complex are reported. This study provides evidence of novel intermediates and triatomic molecules that can be included in the molecular pathways that constitute the chemical models describing molecular complexification in the interstellar medium.

  9. Potential toxicity of sarafloxacin to catalase: spectroscopic, ITC and molecular docking descriptions.

    PubMed

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  10. Potential toxicity of sarafloxacin to catalase: Spectroscopic, ITC and molecular docking descriptions

    NASA Astrophysics Data System (ADS)

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  11. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  12. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  13. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0(sup 0)(sub 0) band performed.

  14. Advances in Understanding the Molecular Structures and Functionalities of Biodegradable Zein-Based Materials Using Spectroscopic Techniques: A Review.

    PubMed

    Turasan, Hazal; Kokini, Jozef L

    2017-02-13

    Zein's amphiphilic properties, film forming capability, and biodegradability make it a highly demanded polymer for fabrication of packaging materials, production of drug carrier nanoparticles, scaffolds in tissue engineering, and formation of biodegradable platforms for biosensors including microfluidic devices. Zein properties can be improved by chemical modifications, which are often analyzed with spectroscopic techniques. However, there is not a consensus on the structure of zein. For this reason, in this Review the aim is to compile the recent studies conducted on zein-based products and compare them under five main spectroscopic techniques: Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, circular dichroism (CD), X-ray diffraction (XRD) and atomic force microscopy (AFM). This Review serves as a library of recent zein studies and helps readers to have a better perception of contradictions in the literature to take their studies one step further.

  15. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  16. Spectroscopic STM studies of single gold(III) porphyrin molecules.

    PubMed

    Müllegger, Stefan; Schöfberger, Wolfgang; Rashidi, Mohammad; Reith, Lorenz M; Koch, Reinhold

    2009-12-16

    Low-temperature scanning tunneling microscopy, a well-established technique for single-molecule investigations in an ultrahigh vacuum environment, has been used to study the electronic properties of Au(III) 5,10,15,20-tetraphenylporphyrin (AuTPP) molecules on Au(111) at the submolecular scale. AuTPP serves as a model system for chemotherapeutically relevant Au(III) porphyrins. For the first time, real-space images and local scanning tunneling spectroscopy data of the frontier molecular orbitals of AuTPP are presented. A comparison with results from density functional theory reveals significant deviations from gas-phase behavior due to a non-negligible molecule/substrate interaction. We identify the oxidation state of the central metal ion in the adsorbed AuTPP as Au(3+).

  17. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  18. Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA

    NASA Astrophysics Data System (ADS)

    Wu, Xinhu; Liu, Jianjun; Wang, Qiang; Xue, Weiwei; Yao, Xiaojun; Zhang, Yan; Jin, Jing

    2011-09-01

    Various spectroscopy and molecular docking methods were used to examine the binding of Clozapine (CLZ) to human serum albumin (HSA) in this paper. By monitoring the intrinsic fluorescence of single Trp214 residue and performing Dansylamide (DNSA) displacement measurement, the specific binding of CLZ in the vicinity of Sudlow's Site I of HSA has been clarified. An apparent distance of 27.3 Å between the Trp214 and CLZ was obtained via fluorescence resonance energy transfer (FRET) method. In addition, the changes in the secondary structure of HSA after its complexation with CLZ ligand were studied with CD spectroscopy, which indicate that CLZ does not has remarkable effect on the structure of the protein. Moreover, thermal denaturation experiment shows that the HSA-CLZ complexes are conformationally more stable. Finally, the binding details between CLZ and HSA were further confirmed by molecular docking studies, which revealed that CLZ was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, van der Waals forces and hydrogen bonding.

  19. Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA.

    PubMed

    Wu, Xinhu; Liu, Jianjun; Wang, Qiang; Xue, Weiwei; Yao, Xiaojun; Zhang, Yan; Jin, Jing

    2011-09-01

    Various spectroscopy and molecular docking methods were used to examine the binding of Clozapine (CLZ) to human serum albumin (HSA) in this paper. By monitoring the intrinsic fluorescence of single Trp214 residue and performing Dansylamide (DNSA) displacement measurement, the specific binding of CLZ in the vicinity of Sudlow's Site I of HSA has been clarified. An apparent distance of 27.3 Å between the Trp214 and CLZ was obtained via fluorescence resonance energy transfer (FRET) method. In addition, the changes in the secondary structure of HSA after its complexation with CLZ ligand were studied with CD spectroscopy, which indicate that CLZ does not has remarkable effect on the structure of the protein. Moreover, thermal denaturation experiment shows that the HSA-CLZ complexes are conformationally more stable. Finally, the binding details between CLZ and HSA were further confirmed by molecular docking studies, which revealed that CLZ was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, van der Waals forces and hydrogen bonding.

  20. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    SciTech Connect

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  1. Optical spectroscopic studies of heme proteins at high pressure

    SciTech Connect

    Swanson, B.I.; Agnew, S.F.; Ondrias, M.R.; Alden, R.G.

    1986-01-22

    There has been considerable interest in studying the physical and chemical behavior of small molecules at high static pressure by using diamond-anvil cells. In contrast to the relatively rich chemistry now developing on small molecules at high densities, studies of metalloproteins have largely been limited to relatively low pressures (<7 kbar) using UV-vis absorption, magnetic susceptibility, or NMR spectroscopy. Low-pressure studies of a variety of oxidized heme proteins have conclusively shown evidence for spin-state changes for the iron site at pressures above 1 kbar. Optical absorption studies of reduced heme proteins, while not conclusive, have also been interpreted in terms of spin-state changes. Other changes within the heme pocket most notably in the proximal histidine in the ..beta..-chain of Hb via proton NMR, have also been detected. The molecular bases for these changes and the behavior of the heme electronic states at higher pressures, however, remain open questions. In this paper both resonance Raman and absorption spectroscopy are used to address these problems in reduced heme proteins. Resonance Raman scattering is well suited for this application as it provides a structurally specific probe of the heme active site. 11 references, 2 figures.

  2. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  3. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions

    NASA Astrophysics Data System (ADS)

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-01

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO22+) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO22+ is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD = 10 μM), cyt c (KD = 87 μM), and cyt b5-cyt c complex (KD = 30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  4. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.

    PubMed

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-24

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO2(2+)) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO2(2+) is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD=10 μM), cyt c (KD=87 μM), and cyt b5-cyt c complex (KD=30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  5. Using Spectroscopic Profiles to Study the Morphology of Comets

    NASA Astrophysics Data System (ADS)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2016-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3. CH, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets. We will present results for several comets, including 2009P1 (Garradd). This work was funded by NASA's Planetary Atmospheres program (Award No. NNX14AH186).

  6. A Spectroscopic Study of Anomalous Stellar Populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney; King, Jeremy R.; Deliyannis, Constantine P.

    2015-01-01

    A population of so-called "yellow straggler" stars occupy precarious color magnitude diagram positions in the old open cluster M67 that cannot be explained by standard single star evolution theory. These stars may have been formed by Roche lobe overflow mass transfer in close binary systems. We present new radial velocities and spectroscopic abundances of M67 yellow stragglers to test this hypothesis, and find that these objects possess a high binary frequency, but no enhancements of s-process elements that might be a smoking gun signature of mass transfer. Observations were conducted using the WIYN 3.5 m telescope in conjunction with the HYDRA spectrograph at Kitt Peak National Observatory. Support for this project was provided by NSF grants AST 09-08342, AST 0607567, and AST 1211699.

  7. Models of chemical biosignatures - a vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bödeker, B.; Böttger, U.; Hübers, H.-W.; deVera, J.-P.; Fox, S.; Strasdeit, H.

    2013-09-01

    Investigating possible biosignatures is of central interest in the search for the oldest traces of terrestrial life. Possible biosignatures are: (i) physical structures, such as fossilized single-celled or colonyforming microorganisms; (ii) biomolecules and their altered residues (chemical biosignatures); (iii) altered element, isotope and mineral compositions in former microbial habitats and related effects caused by metabolic activity [1]. New insights in this field of research are also important in the search for life on other planets and moons, especially Mars. However, abiotically formed organic compounds are widely distributed in the universe. Therefore, in future Mars missions, it will be essential to know whether organic molecules are actually of biological origin. Here, we describe the syntheses and spectroscopic (Raman and infrared) properties of artificial chemical biosignatures that might help answering this question.

  8. Spectroscopic study of Er:Sm doped barium fluorotellurite glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2010-09-15

    In this paper, we report the physical and spectroscopic properties of Er(3+), Sm(3+) and Er(3+):Sm(3+) ions codoped barium fluorotellurite (BFT) glasses. Different Stokes and anti-Stokes emissions were observed under 532 nm and 976 nm laser excitations. Energy transfer from Er(3+) ion to Sm(3+) ion was confirmed on the basis of luminescence intensity variation and decay curve analysis in both the cases. Under green (532 nm) excitation emission intensity of Sm(3+) ion bands improves whereas on NIR (976 nm) excitation new emission bands of Sm(3+) ions were observed in Er:Sm codoped samples. Ion interactions and the different energy transfer parameters were also calculated.

  9. Raman spectroscopic study of a genetically altered kidney cell

    NASA Astrophysics Data System (ADS)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  10. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  11. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  12. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data.

    PubMed

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I

    2010-07-21

    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  13. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  14. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  15. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  16. Spectroscopic studies of the interaction mechanisms between mono-caffeoylquinic acids and transferrin.

    PubMed

    Guan, Yanqing; Dong, Jing; Chen, Shizhong; Liu, Meixian; Wang, Daidong; Zhang, Xiaotian; Wang, Hong; Lin, Zongtao

    2017-03-07

    Transferrin (Tf) is an important protein responsible for circulating and transporting iron into cytoplasm. Tf can be taken into cells through endocytosis mediated by Tf receptor, which usually overexpresses in cancer cells. The Tf-Tf receptor pathway opens a possible avenue for novel targeted cancer therapy by utilizing Tf-binding active compounds. Among which, anti-cancer active caffeoylquinic acids (CQAs) were recently found to be promising Tf-binders by our group. For better understanding the anti-cancer activities of CQAs, it is important to unveil the binding mechanisms between CQAs and Tf. In this study, the fluorescence quenching, surface plasmon resonance (SPR), circular dichroism (CD) and molecular docking were used to investigate the interactions between CQA and Tf. The results showed that the calculated apparent association constants of interactions between 1-, 3-, 4- and 5-CQA and Tf at 298K were 7.97×10(5)M(-1), 4.36×10(7)M(-1), 6.58×10(5)M(-1) and 4.42×10(6)M(-1), respectively. The thermodynamic parameters indicated that the interaction between 1-, 3-, 5-CQA and Tf is due to H-bonding, and electrostatic interactions were likely involved in the binding of 4-CQA and Tf. The CD results indicated that bindings of 1-CQA, 4-CQA and 5-CQA with Tf resulted in more stretched β-turn and random coil translated from β-sheet. In contrast, 3-CQA led to more stable a-helix conformation. Molecular docking studies of CQAs with Tf further displayed that CQAs were able to interact with residues near Fe(3+) binding site. The spectroscopic studies revealed the action mechanisms, thermodynamics and interacting forces between CQAs and Tf, and thus are helpful for future design and discovery of Tf-binders for targeted cancer therapy applying Tf-Tf receptor pathway.

  17. Synthesis, X-ray crystallographic, spectroscopic and computational studies of aminothiazole derivatives

    NASA Astrophysics Data System (ADS)

    Adeel, Muhammad; Braga, Ataualpa A. C.; Tahir, Muhammad Nawaz; Haq, Fazal; Khalid, Muhammad; Halim, Mohammad A.

    2017-03-01

    Aminothiazole organic compounds have diverse biological applications. Herein we report the synthesis of two aminothiazole derivatives: 4-(biphenyl-4-yl)thiazol-2-amine (1) and 4-(2‧,4‧-difluorobiphenyl-4-yl)thiazol-2-amine (2) via Suzuki-Miyaura cross coupling reaction. The chemical structures of 1 and 2 are confirmed using 1HNMR, 13CNMR, FT-IR, UV-Vis and single crystal x-ray studies. The XRD study reveals that the both solid state structures (1) and (2) are diffused to form poly chain structures due to presence of intra molecular hydrogen bonding (H.B). Furthermore, these compounds were analysed by density functional theory (DFT) at M06-2X/6-311G(d,p), B3LYP/6-31G(d) B3LYP/6-31G(d,p) and B3LYP/6-311G(2d,p) level of theories to obtain optimized geometry, electronic and spectroscopic properties. DFT optimized geometry supports the experimental XRD parameters. Natural bond orbital (NBO) calculation predicted the hyper conjugative interaction and hydrogen bonding in all derivatives. The FT-IR and thermodynamic studies also confirm the presence of hydrogen bonding network in the dimers which agrees well with the XRD results. Moreover, UV-Vis analysis reveals that maximum excitations take place in 1 and 2 due to HOMO → LUMO(98%) and HOMO → LUMO(97%) respectively which show good agreement to experimental data. The first order hyperpolarizability of both molecules is remarkably greater than the value of urea. The global reactivity parameters which are obtained by frontier molecular orbitals disclose that the molecules might be bioactive.

  18. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  19. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  20. Characterization of the binding of shikonin to human immunoglobulin using scanning electron microscope, molecular modeling and multi-spectroscopic methods.

    PubMed

    He, Wenying; Ye, Xinyu; Yao, Xiaojun; Wu, Xiuli; Lin, Qiang; Huang, Guolei; Hua, Yingjie; Hui, Yang

    2015-11-05

    Shikonin, one of the active components isolated from the root of Arnebia euchroma (Royle) Johnst, have anti-tumor, anti-bacterial and anti-inflammatory activities and has been used clinically in phlebitis and vascular purpura. In the present work, the interaction of human immunoglobulin (HIg) with shikonin has been investigated by using scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, fluorescence polarization, synchronous and 3D fluorescence spectroscopy in combination with molecular modeling techniques under physiological conditions with drug concentrations of 3.33-36.67 μM. The results of SEM exhibited visually the special effect on aggregation behavior of the complex formed between HIg and shikonin. The fluorescence polarization values indicated that shikonin molecules were found in a motionally unrestricted environment introduced by HIg. Molecular docking showed the shikonin moiety bound to the hydrophobic cavity of HIg, and there are four hydrogen-bonding interactions between shikonin and the residues of protein. The synchronous and 3D fluorescence spectra confirmed that shikonin could quench the intrinsic fluorescence of HIg and has an effect on the microenvironment around HIg in aqueous solution. The changes in the secondary structure of HIg were estimated by qualitative and quantitative FT-IR spectroscopic analysis. The binding constants and thermodynamic parameters for shikonin-HIg systems were obtained under different temperatures (300 K, 310 K and 320 K). The above results revealed the binding mechanism of shikonin and HIg at the ultrastructure and molecular level.

  1. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions.

    PubMed

    Nie, Haichen; Su, Yongchao; Zhang, Mingtao; Song, Yang; Leone, Anthony; Taylor, Lynne S; Marsac, Patrick J; Li, Tonglei; Byrn, Stephen R

    2016-11-07

    It has been technically challenging to specify the detailed molecular interactions and binding motif between drugs and polymeric inhibitors in the solid state. To further investigate drug-polymer interactions from a molecular perspective, a solid dispersion of clofazimine (CLF) and hypromellose phthalate (HPMCP), with reported superior amorphous drug loading capacity and physical stability, was selected as a model system. The CLF-HPMCP interactions in solid dispersions were investigated by various solid state spectroscopic methods including ultraviolet-visible (UV-vis), infrared (IR), and solid-state NMR (ssNMR) spectroscopy. Significant spectral changes suggest that protonated CLF is ionically bonded to the carboxylate from the phthalyl substituents of HPMCP. In addition, multivariate analysis of spectra was applied to optimize the concentration of polymeric inhibitor used to formulate the amorphous solid dispersions. Most interestingly, proton transfer between CLF and carboxylic acid was experimentally investigated from 2D (1)H-(1)H homonuclear double quantum NMR spectra by utilizing the ultrafast magic-angle spinning (MAS) technique. The molecular interaction pattern and the critical bonding structure in CLF-HPMCP dispersions were further delineated by successfully correlating ssNMR findings with quantum chemistry calculations. These high-resolution investigations provide critical structural information on active pharmaceutical ingredient-polymer interaction, which can be useful for rational selection of appropriate polymeric carriers, which are effective crystallization inhibitors for amorphous drugs.

  2. Determining uranium speciation in Fernald soils by molecular spectroscopic methods. FY 1993 progress report

    SciTech Connect

    Allen, P.G.; Berg, J.M.; Crisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-07-01

    This progress report describes new experimental results and interpretations for data collected from October 1, 1992, through September 30, 1993, as part of the Characterization Task of the Uranium in Soils Integrated Demonstration of the Office of Technology Development, Office of Environmental Restoration and Waste Management of the US Department of Energy. X-ray absorption, optical luminescence, and Raman vibrational spectroscopies were used to determine uranium speciation in contaminated soils from the US DOE`s former uranium production facility at Fernald, Ohio. These analyses were carried out both before and after application of one of the various decontamination technologies being developed within the Integrated Demonstration. This year the program focused on characterization of the uranium speciation remaining in the soils after decontamination treatment. X-ray absorption and optical luminescence spectroscopic data were collected for approximately 40 Fernald soil samples, which were treated by one or more of the decontamination technologies.

  3. Kinetic and Spectroscopic Studies of Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Wilke, Todd E.

    1990-01-01

    The selective oxidation of ethylene was studied on a high surface area colloidal silver catalyst. In 0.1 to 1 torr of 20% ethylene in oxygen, the catalyst produced ethylene oxide with a selectivity of 20 to 30% at temperatures between 473 and 573 K. Surface-enhanced Raman (SER) spectra exhibited a distinct feature at 995 cm^ {-1}. This band was also observed for catalysts exposed to just oxygen, and it shifted to 980 cm^{-1} after heating the catalyst to 873 K in ^{18} O_2. No isotopic shift was observed with ^{18}O _2 at temperatures below 573 K. Similar spectral results were obtained at atmospheric pressure. For silver catalysts that contain adsorbed chlorine, SER bands were observed at 240, 1015, and 1045 cm^ {-1} in oxygen-containing atmospheres; the 995 cm^{-1} band was not evident. The extension of SERS to other metals that do not exhibit the surface-enhanced effect was examined by electrodepositing thin layers (2 to 3 monolayers) of platinum, rhodium, and ruthenium on a roughened gold substrate. At atmospheric pressure and temperatures between 298 and 473 K, metal-oxygen features were observed at 500 cm ^{-1}, and 490 and 600 cm ^{-1} in SER spectra of rhodium and ruthenium surfaces exposed to oxygen, respectively. Bands attributed to adsorbed carbon monoxide were observed in SER spectra of platinum (470, 2060, 390, and 1890 cm ^{-1}) and rhodium (465 and 2040 cm^{-1}) surfaces exposed to carbon monoxide and oxygen mixtures. The temporal replacement of adsorbed carbon monoxide by nitric oxide as well as temperature-induced changes in the surface composition were studied on a seconds timescale with a spectrograph -charge coupled device detector arrangement. The adsorption and oxidation of sulfur dioxide was also studied. A band assigned to the S-O stretch of molecularly adsorbed sulfur dioxide was observed at 1130 cm^{-1} on unmodified gold and platinum-coated gold surfaces exposed to sulfur dioxide at 298 K. Dissociative chemisorption of sulfur dioxide on

  4. Optical properties of InN studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Chunya, Ye; Wei, Lin; Jin, Zhou; Shuping, Li; Li, Chen; Heng, Li; Xiaoxuan, Wu; Songqing, Liu; Junyong, Kang

    2016-10-01

    With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices. Project supported by the State Key Development Program for Basic Research of China (No. 2012CB619301), the National High Technology Research and Development Program of China (No. 2014AA032608), the National Natural Science Foundation of China (Nos. 11204254, 11404271), and the Fundamental Research Funds for the Central Universities (Nos. 2012121014, 20720150027).

  5. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  6. Acid doping of polyaniline: Spectroscopic and electrochemical studies

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-16

    A detailed investigation of the acid doping behavior of polyaniline has led to a robust and reproducible procedure for controlled adjustment of the redox state of dry polyaniline films. The initial step in this procedure is the casting of PANI films from formic acid. The subsequent exchange of the trapped formic acid for other primary dopants obtained from mono- and polyprotic acids (e.g., CH{sub 3}COO{sup {minus}}, BF{sub 4}{sup {minus}}, HSO{sub 4}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and HPO{sub 4}{sup 2{minus}}) is demonstrated. The voltammetric and the spectroscopic behavior of the PANI doped with different anions indicate that both the protons and the anions of dopant acids influence the structure and redox properties of the polymer. The redox state of PANI doped with homologous series of chloroacetic and carboxylic acids correlates with the pK{sub a} of the dopant acid. These results show that it is possible to prepare the polymer with a desired oxidation state according to the pK{sub a} of the dopant acid of a given homologous series. The exchange of the formic acid for both stronger and weaker doping acid can be repeatedly accomplished by electrochemical cycling.

  7. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  8. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  9. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  10. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases

    NASA Astrophysics Data System (ADS)

    Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2017-01-01

    Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.

  11. Molecular structure and spectroscopic properties of novel manganese(II) complex with sulfamethazine drug

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.

    2013-03-01

    [MnLCl(H2O)3]·H2O complex (HL = 4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide, sulfamethazine) has been synthesized and characterized by elemental analysis, TG/DTA, MS, FT-IR, UV-Vis, magnetic, electrochemical, and X-ray powder diffraction. The experimental studies were complemented by quantum chemical calculations at DFT/B3LYP level of theory. Sulfamethazine behaves as a mono-negatively bidentate ligand and interacts with Mn(II) ion through sulfonamidic (N15) and pyrimidic (N23) nitrogen atoms. Electronic structures were investigated using TD-DFT method and the descriptions of frontier molecular orbitals and the relocation of the electron density were determined. The voltammogram of NaL shows one irreversible one-electron process due to oxidation of p-amino group, and one anodic peak characteristic of reduction of sbnd SO2 group. The synthesized complex, in comparison to the parent drug, was screened for its antibacterial activity.

  12. Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao

    2015-02-01

    The binding interaction of sorafenib with calf thymus DNA (ct-DNA) was studied using UV-vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that there was obvious binding interaction between sorafenib and ct-DNA. The binding constant (Kb) of sorafenib with ct-DNA was 5.6 × 103 M-1 at 298 K. The enthalpy and entropy changes (ΔH0 and ΔS0) in the binding process of sorafenib with ct-DNA were -27.66 KJ mol-1 and -21.02 J mol-1 K-1, respectively, indicating that the main binding interaction forces were van der Waals force and hydrogen bonding. The docking results suggested that sorafenib preferred to bind on the minor groove of A-T rich DNA and the binding site of sorafenib was 4 base pairs long. The conformation change of sorafenib in the sorafenib-DNA complex was obviously observed and the change was close relation with the structure of DNA, implying that the flexibility of sorafenib molecule played an important role in the formation of the stable sorafenib-ct-DNA complex.

  13. A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin

    NASA Astrophysics Data System (ADS)

    Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.

    2017-01-01

    Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  14. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  15. Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA)

    NASA Astrophysics Data System (ADS)

    Li, Junfen; Li, Jinzeng; Jiao, Yong; Dong, Chuan

    2014-01-01

    In this work, the interaction of jatrorrhizine with human serum albumin (HSA) was studied by means of UV-vis and fluorescence spectra. The intrinsic fluorescence of HSA was quenched by jatrorrhizine, which was rationalized in terms of the static quenching mechanism. The results show that jatrorrhizine can obviously bind to HSA molecules. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), apparent quenching constant (KSV) at different temperatures were obtained. The binding constants K are 4059 L mol-1 and 1438 L mol-1 at 299 K and 304 K respectively, and the number of binding sites n is almost 1. The thermodynamic parameters determined by the Van't Hoff analysis of the binding constants (ΔH -12.25 kJ mol-1 and ΔS 28.17 J mol-1 K-1) clearly indicate that the electrostatic force plays a major role in the process. The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (jatrorrhizine) were calculated as 22.2% and 3.19 nm according to Föster's non-radiative energy transfer theory. In addition, synchronous fluorescence spectroscopy reveals that jatrorrhizine can influence HSA's microstructure. That is, jatrorrhizine is more vicinal to tryptophane (Trp) residue than to tyrosine (Tyr) residue and the damage site is also mainly at Trp residue. Molecular modeling result shows that jatrorrhizine-HSA complex formed not only on the basis of electrostatic forces, but also on the basis of π-π staking and hydrogen bond. The research results will offer a reference for the studies on the biological effects and action mechanism of small molecule with protein.

  16. Electron Spectroscopic Studies of Surfaces and Interfaces for Adhesive Bonding.

    DTIC Science & Technology

    1980-01-01

    Carbon ls XPS spectra of molecularly adsorbed (a) methanol and (b) acetone MoS2 . Spectrometer resolution was I eV...temperature and (e) methanol on MoS2 . Spectrometer resolution was I eV.-------- 5 Oxygen ls XPS spectra from chromic acid anodized aluminum (a) after...methanol on MoS2 . Spectrometer resolution was 1 eV. ----------- 15 10 XPS spectrum of phosphoric acid anodized aluminum, as prepared

  17. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    NASA Astrophysics Data System (ADS)

    Varma, Vikram

    for study. The Shigella flexneri Y O-antigen is a linear polysaccharide that is composed of rhamnose units linked alpha- scL-(1 to 3) and alpha- scL-(1 to 2), interspersed by N-acetyl-beta - scD-glucosamine (beta- scD -GlcpNAc) to form a periodic repeating unit ABCD. &rm A&rm B&rm C&rm Dcr [{-alpha}{-}L {-}Rha{it p}-(1to2){ -alpha}{-}L{-}Rha{it p}{-}(1to3){-alpha} {-}L{-}Rha{it p}{ -}(1to3){-}beta{-}D {-}Glc{it p}NAc{-}(1 to2){-}]_{it n}A heptasaccharide corresponding to the fragment (ABCDA^'B ^'C^' ) of the Shigella flexneri Y polysaccharide has been investigated. The conformational properties of all of the oligosaccharides have been studied using molecular dynamics simulations. Interproton distances derived from ROESY spectra are used to determine the starting conformations of the oligosaccharides used in the dynamics calculations, and dynamics simulations are computed with proton pairs constrained to the ROESY -derived distances, as well as with the constraints removed. These dynamics trajectories are used to calculate ROESY buildup curves with CROSREL, a program that treats cross relaxation by means of a full matrix relaxation approach. The calculated buildup curves compare favorably with the experimental buildup curves. The study demonstrates that molecular dynamics, in conjunction with NMR spectroscopy, can be a useful tool in the understanding of the conformational behavior of oligosaccharides in solution. The results provide a model for antigen topology that can be used to infer some of the critical features of antibody-antigen interactions.

  18. Investigation of interaction of antibacterial drug sulfamethoxazole with human serum albumin by molecular modeling and multi-spectroscopic method.

    PubMed

    Wang, Qin; Zhang, Sheng-Rui; Ji, Xiaohui

    2014-04-24

    Interaction of sulfamethoxazole (SMX) with human serum albumin (HSA) was investigated by molecular modeling and multi-spectroscopic methods under physiological conditions. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HSA. The binding parameters and the thermodynamic parameters at different temperatures for the reaction had been calculated according to the Stern-Volmer, Hill, Scatchard and the Van't Hoff equations, respectively. One independent class of binding site existed during the interaction between HSA and SMX. The binding constants decreased with the increasing temperatures, which meant that the quenching mechanism was a static quenching. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH(0) and entropy ΔS(0), had been calculated to be -16.40 kJ mol(-1) and 32.33 J mol(-1) K(-1), respectively, which suggested that the binding process was exothermic, enthalpy driven and spontaneous. SMX bound to HSA was mainly based on electrostatic interaction, but hydrophobic interactions and hydrogen bonds could not be excluded from the binding. The conformational changes of HSA in the presence of SMX were confirmed by the three-dimensional fluorescence spectroscopy, UV-vis absorption spectroscopy and circular dichroism (CD) spectroscopy. CD data suggested that the protein conformation was altered with the reduction of α-helices from 55.37% to 41.97% at molar ratio of SMX/HSA of 4:1.

  19. Complementary spectroscopic studies of materials of security interest

    NASA Astrophysics Data System (ADS)

    Burnett, Andrew; Fan, Wenhui; Upadhya, Prashanth; Cunningham, John; Edwards, Howell; Munshi, Tasnim; Hargreaves, Michael; Linfield, Edmund; Davies, Giles

    2006-09-01

    We demonstrate that, through coherent measurement of the transmitted terahertz frequency electric fields, broadband (0.3 - 8 THz) time-domain spectroscopy can be used to measure far-infrared vibrational modes of a range of drugs-of-abuse and high explosives that are of interest to the forensic and security services. Our results indicate that absorption features in these materials are highly sensitive to the structural and spatial arrangement of the molecules. Terahertz frequency spectra are also compared with high-resolution low-frequency Raman spectra to assist in understanding the low-frequency inter- and intra-molecular vibrational modes of the molecules.

  20. Near-infrared spectroscopic studies of self-forming lipids and nanovesicles

    NASA Astrophysics Data System (ADS)

    Bista, Rajan K.; Bruch, Reinhard F.

    2009-02-01

    Lipids and liposomes have remained an active research topic for several decades due to their significance as membrane model. Several vibrational spectroscopic techniques have been developed and employed to study the properties of lipids and liposomes. In this study, near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids trademarked as QuSomesTM. The three amphiphiles used in this study, differ in their apolar hydrophobic chain length and contain various units of polar polyethylene glycol (PEG) head groups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes spontaneously upon hydration, without the supply of external activation energy. Whilst the NIR spectra of QuSomesTM show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm-1 (~2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In particular, we have established specific band structures as "molecular fingerprints" corresponding to overtones and combinations vibrational modes involving mainly C-H and O-H functional groups for sample analysis of QuSomesTM. Moreover, we have demonstrated that the nanovesicles formed by such lipids in polar solvents show high stability and obey Beer's law at low concentration. The results reported in this study may find applications in various field including the development of lipids based drug delivery systems.

  1. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques.

    PubMed

    Benítez, José J; Matas, Antonio J; Heredia, Antonio

    2004-08-01

    Atomic force microscopy, FT-IR spectroscopy, and solid-state nuclear magnetic resonance have been used to improve our current knowledge on the molecular characteristics of the biopolyester cutin, the main component of the plant cuticle. After comparison of samples of cutin isolated from young and mature tomato fruit cuticles has been possible to establish different degrees of cross-linking in the biopolymer and that the polymer is mainly formed after esterification of secondary hydroxyl groups of the monomers that form this type of cutin. Atomic force microscopy gave useful structural information on the molecular topography of the outer surface of the isolated samples. The texture of these samples is a consequence of the cross-linking degree or chemical status of the polymer. Thus, the more dense and cross-linked cutin from ripe or mature tomato fruit is characterized by a flatter and more globular texture in addition to the development of elongated and orientated superstructures.

  2. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2002-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in star-forming molecular cloud cores, while the laboratory work is focused on the complex species that characterize the prebiotic chemistry of carbon. We outline below our results over the past two years acquired, in part, with Exobiology support.

  3. Binding of hydroxylated polybrominated diphenyl ethers with human serum albumin: Spectroscopic characterization and molecular modeling.

    PubMed

    Yang, Lulu; Yang, Wu; Wu, Zhiwei; Yi, Zhongsheng

    2017-02-21

    Three hydroxylated polybrominated diphenyl ethers (OH-PBDEs), 3-OH-BDE-47, 5-OH-BDE-47, and 6-OH-BDE-47, were selected to investigate the interactions between OH-PBDEs with human serum albumin (HSA) under physiological conditions. The observed fluorescence quenching can be attributed to the formation of complexes between HSA and OH-PBDEs. The thermodynamic parameters at different temperatures indicate that the binding was caused by hydrophobic forces and hydrogen bonds. Molecular modeling and three-dimensional fluorescence spectrum showed conformational and microenvironmental changes in HSA. Circular dichroism analysis showed that the addition of OH-PBDEs changed the conformation of HSA with a minor reduction in α-helix content and increase in β-sheet content. Furthermore, binding distance r between the donor (HSA) and acceptor (three OH-PBDEs) calculated using Förster's nonradiative energy transfer theory was <7 nm; therefore, the quenching mechanisms for the binding between HSA and OH-PBDEs involve static quenching and energy transfer. Combined with molecular dynamics simulations, the binding free energies (ΔGbind ) were calculated using molecular mechanics/Poisson - Boltzmann surface area method, and the crucial residues in HSA were identified.

  4. Study of Characterization of Pure and Malachite Green Doped Samples Using Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti; Mishra, Pankaj K.; Khare, P. K.

    2011-07-01

    This paper describes the results of SEM, EDX, UV-vis and TSDC study of malachite green doped PVK thermelectrets. TSDC study has been carried out in the temperature range 300 °C to 1500 °C with four different polarizing fields. One peak was observed at 110±10 °C which shifts toward high temperature with the increase in polarizing field. The activation energy found by initial rise method are 0.27±0.02 eV for pure and 0.40±0.03 eV for malachite green doped PVK thermoelectrets. Spectroscopic study concluded that impregnation of malachite green in polymer matrix forms charge transfer complexes.

  5. In situ spectroscopic studies on vapor phase catalytic decomposition of dimethyl oxalate.

    PubMed

    Hegde, Shweta; Tharpa, Kalsang; Akuri, Satyanarayana Reddy; K, Rakesh; Kumar, Ajay; Deshpande, Raj; Nair, Sreejit A

    2017-03-15

    Dimethyl Oxalate (DMO) has recently gained prominence as a valuable intermediate for the production of compounds of commercial importance. The stability of DMO is poor and hence this can result in the decomposition of DMO under reaction conditions. The mechanism of DMO decomposition is however not reported and more so on catalytic surfaces. Insights into the mechanism of decomposition would help in designing catalysts for its effective molecular transformation. It is well known that DMO is sensitive to moisture, which can also be a factor contributing to its decomposition. The present work reports the results of decomposition of DMO on various catalytic materials. The materials studied consist of acidic (γ-Al2O3), basic (MgO), weakly acidic (ZnAl2O4) and neutral surfaces such as α-Al2O3 and mesoporous precipitated SiO2. Infrared spectroscopy is used to identify the nature of adsorption of the molecule on the various surfaces. The spectroscopy study is done at a temperature of 200 °C, which is the onset of gas phase decomposition of DMO. The results indicate that the stability of DMO is lower than the corresponding acid, i.e. oxalic acid. It is also one of the products of decomposition. Spectroscopic data suggest that DMO decomposition is related to surface acidity and the extent of decomposition depends on the number of surface hydroxyl groups. Decomposition was also observed on α-Al2O3, which was attributed to the residual surface hydroxyl groups. DMO decomposition to oxalic acid was not observed on the basic surface (MgO).

  6. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  7. The Effect of Approximating Some Molecular Integrals in Coupled-Cluster Calculations: Fundamental Frequencies and Rovibrational Spectroscopic Constants of Cyclopropenylidene

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2005-01-01

    The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), has been used, in conjunction with approximate integral techniques, to compute highly accurate rovibrational spectroscopic constants of cyclopropenylidene, C3H2. The approximate integral technique was proposed in 1994 by Rendell and Lee in order to avoid disk storage and input/output bottlenecks, and today it will also significantly aid in the development of algorithms for distributed memory, massively parallel computer architectures. It is shown in this study that use of approximate integrals does not impact the accuracy of CCSD(T) calculations. In addition, the most accurate spectroscopic data yet for C3H2 is presented based on a CCSD(T)/cc-pVQZ quartic force field that is modified to include the effects of core-valence electron correlation. Cyclopropenylidene is of great astronomical and astrobiological interest because it is the smallest aromatic ringed compound to be positively identified in the interstellar medium, and is thus involved in the prebiotic processing of carbon and hydrogen. The singles and doubles coupled-cluster method that includes a perturbational estimate of

  8. Dirty H2 Molecular Clusters as the DIB Sources: Spectroscopic and Physical Properties

    NASA Astrophysics Data System (ADS)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K.

    2014-02-01

    We propose that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion (``seed''), embedded in a single-layer shell of H2 molecules (Bernstein et al. 2013). Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as CHCs (Contaminated H2 Clusters). CHC spectroscopy matches the diversity of observed DIB spectral profiles, and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~cm-sized, dirty H2 ice balls, called CHIMPs (Contaminated H2 Ice Macro-Particles), formed in cold, dense, Giant Molecular Clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain cm-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. Thus, CHCs offer a natural explanation to the anomalous microwave emission (AME) feature in the ~10-100 GHz spectral region.

  9. The investigation of the binding behavior between ethyl maltol and human serum albumin by multi-spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Jianming; Yao, Meihuan; Yao, Xiaojun; Fan, Jing; Ji, Hanxuan

    2012-10-01

    This paper was designed to investigate the interaction of ethyl maltol with human serum albumin (HSA) under physiological condition by fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transformation infrared spectra, and molecular docking method. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of HSA by ethyl maltol was static quenching mechanism. The binding constants of ethyl maltol-HSA complexes were observed to be 2.59, 1.88, 1.54, 1.13 × 104 M-1 at 289, 296, 303 and 310 K, respectively. The thermodynamic parameters, ΔH0 and ΔS0 were calculated to be -28.61 kJ mol-1 and -14.59 J mol-1 K-1. Energy transfer from tryptophan to ethyl maltol occurred by a FRET mechanism, and the donor-acceptor distance (3.04 nm) had been determined according to Förster's theory. Molecular docking studies revealed that ethyl maltol situated within subdomain IIA (site I) of HSA. Fluorescence displacement experiments also proved the binding sites between ethyl maltol and HSA.

  10. The investigation of the binding behavior between ethyl maltol and human serum albumin by multi-spectroscopic methods and molecular docking.

    PubMed

    Yue, Yuanyuan; Liu, Jianming; Yao, Meihuan; Yao, Xiaojun; Fan, Jing; Ji, Hanxuan

    2012-10-01

    This paper was designed to investigate the interaction of ethyl maltol with human serum albumin (HSA) under physiological condition by fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transformation infrared spectra, and molecular docking method. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of HSA by ethyl maltol was static quenching mechanism. The binding constants of ethyl maltol-HSA complexes were observed to be 2.59, 1.88, 1.54, 1.13×10(4) M(-1) at 289, 296, 303 and 310 K, respectively. The thermodynamic parameters, ΔH(0) and ΔS(0) were calculated to be -28.61 kJ mol(-1) and -14.59 J mol(-1) K(-1). Energy transfer from tryptophan to ethyl maltol occurred by a FRET mechanism, and the donor-acceptor distance (3.04 nm) had been determined according to Förster's theory. Molecular docking studies revealed that ethyl maltol situated within subdomain IIA (site I) of HSA. Fluorescence displacement experiments also proved the binding sites between ethyl maltol and HSA.

  11. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-05

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations.

  12. Interaction of Sulfadiazine with Model Water Soluble Proteins: A Combined Fluorescence Spectroscopic and Molecular Modeling Approach.

    PubMed

    Islam, Mullah Muhaiminul; Moyon, N Shaemningwar; Gashnga, Pynsakhiat Miki; Mitra, Sivaprasad

    2014-03-01

    The binding behavior of antibacterial drug sulfadiazine (SDZ) with water soluble globular proteins like bovine as well as human serum albumin (BSA and HSA, respectively) and lysozyme (LYS) was monitored by fluorescence titration and molecular docking calculations. The experimental data reveal that the quenching of the intrinsic protein fluorescence in presence of SDZ is due to the strong interaction in the drug binding site of the respective proteins. The Stern-Volmer plot shows positive deviation at higher quencher concentration for all the proteins and was explained in terms of a sphere of action model. The calculated fluorophore-quencher distances vary within 4 ~ 11 Å in different cases. Fluorescence experiments at different temperature indicate thermodynamically favorable binding of SDZ with the proteins with apparently strong association constant (~10(4)-10(5) M(-1)) and negative free energy of interaction within the range of -26.0 ~ -36.8 kJ mol(-1). The experimental findings are in good agreement with the respective parameters obtained from best energy ranked molecular docking calculation results of SDZ with all the three proteins.

  13. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  14. Spectroscopic and structural study of proton and halide ion cooperative binding to gfp.

    PubMed

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-07-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E(2)GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E(2)GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5-10, of a single fully protonated E(2)GFP.halogen complex. To resolve the structural determinants of E(2)GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I(-), Br(-), and Cl(-) bound E(2)GFP. Remarkably the first high-resolution (1.4 A) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 A) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E(2)GFP.halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed.

  15. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    NASA Astrophysics Data System (ADS)

    Vera, L. P.; Pérez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3Πg→a3Πu), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  16. In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide.

    PubMed

    Loring, John S; Schaef, Herbert T; Turcu, Romulus V F; Thompson, Christopher J; Miller, Quin R S; Martin, Paul F; Hu, Jianzhi; Hoyt, David W; Qafoku, Odeta; Ilton, Eugene S; Felmy, Andrew R; Rosso, Kevin M

    2012-05-08

    The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  17. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-04-25

    The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  18. In vivo localized proton spectroscopic studies of human gastrocnemius muscle

    SciTech Connect

    Narayana, P.A.; Jackson, E.F.; Hazle, J.D.; Fotedar, L.K.; Kulkarni, M.V.; Flamig, D.P.

    1988-10-01

    In vivo proton magnetic resonance spectroscopy studies of gastrocnemius muscle were performed in six normal volunteers. Both spatially resolved spectroscopy (SPARS) and stimulated echo acquisition mode (STEAM) sequences were used for volume localization. A number of water suppression sequences have been combined with these localization schemes. Among the various techniques investigated in these studies, STEAM with an inversion pulse (T1-discriminated spectrum) seems to have the best potential for in vivo localized high-resolution proton spectroscopy studies of human muscle.

  19. A combined spectroscopic and molecular docking approach to characterize binding interaction of megestrol acetate with bovine serum albumin.

    PubMed

    Shi, Jie-hua; Zhu, Ying-yao; Wang, Jing; Chen, Jun

    2015-02-01

    The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA-BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb ) and number of binding sites (n) for MA binding to BSA were 2.8 × 10(5)  L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G(0) in the binding process. The enthalpy change (∆H(0) ) and entropy change (∆S(0) ) were - 124.0 kJ/mol and -295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA-BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA.

  20. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  1. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  2. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    PubMed

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  3. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    PubMed

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-03-21

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides. This analysis revealed that changing the size of the side chain at the X amino acid site from Gly to Ala to Val substantially alters the conformation of the peptide. To quantify this effect, proline peak shifts and intensity changes were compared to a structure-based spectroscopic model. These simulated spectra were used to assign the population of type-II β turns, bulged turns, and irregular β turns for each peptide. Of particular interest was the Val variant commonly found in the protein elastin, which contained a 25% population of irregular β turns containing two peptide hydrogen bonds to the proline C═O.

  4. Conceptual design study to determine optimal enclosure vent configuration for the Maunakea Spectroscopic Explorer (MSE)

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; Vogiatzis, Konstantinos; Hangan, Horia; Jubayer, Chowdhury M.; Breckenridge, Craig; Loewen, Nathan; Bauman, Steven; Salmon, Derrick

    2014-07-01

    The Maunakea Spectroscopic Explorer (MSE; formerly Next Generation Canada-France-Hawaii Telescope) is a dedicated, 10m aperture, wide-field, fiber-fed multi-object spectroscopic facility proposed as an upgrade to the existing Canada-France-Hawaii Telescope on the summit of Mauna Kea. The enclosure vent configuration design study is the last of three studies to examine the technical feasibility of the proposed MSE baseline concept. The enclosure vent configuration study compares the aero-thermal performance of three enclosure ventilation configurations based on the predicted dome thermal seeing and air flow attenuation over the enclosure aperture opening of a Calotte design derived from computational fluid dynamics simulations. In addition, functional and operation considerations such as access and servicing of the three ventilation configurations is discussed.

  5. Spectroscopic and theoretical study on alkali metal phenylacetates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of phenylacetic acid was studied. The FT-IR, FT-Raman and 1H and 13C NMR spectra were recorded for studied compounds. Characteristic shifts in IR and NMR spectra along alkali metal phenylacetates were observed. Good correlations between the wavenumbers of the vibrational bands in the IR spectra of phenylacetates and some alkali metal parameters such as ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy were found. The density functional hybrid method B3LYP with 6-311++G** basis set was used to calculate optimized geometrical structures of studied compounds. Aromaticity indices, atomic charges, dipole moments and energies were calculated as well as the wavenumbers and intensities of IR spectra and chemical shifts in NMR spectra. The theoretical parameters were compared to experimental characteristic of alkali metal phenylacetates.

  6. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    NASA Astrophysics Data System (ADS)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-03-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  7. Molecular structure activity on pharmaceutical applications of Phenacetin using spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.

    2017-01-01

    The pharmaceutical compound; Phenacetin was investigated by analyzing FT-IR, FT-Raman and 1H &13C NMR spectra. The hybrid efficient computational calculations performed for computing physical and chemical parameters. The cause of pharmaceutical activity due to the substitutions; carboxylic, methyl and amine groups in appropriate positions on the pedestal compound was deeply investigated. Moreover, 13C NMR and 1H NMR chemical shifts correlated with TMS standard to explain the truth of compositional ratio of base and ligand groups. The bathochromic shift due to chromophores over the energy levels in UV-Visible region was strongly emphasized the Anti-inflammatory chemical properties. The chemical stability was pronounced by the strong kubo gap which showed the occurring of charge transformation within the molecule. The occurrence of the chemical reaction was feasibly interpreted by Gibbs free energy profile. The standard vibrational analysis stressed the active participation of composed ligand groups for the existence of the analgesic as well as antipyretic properties of the Phenacetin compound. The strong dipole interaction energy utilization for the transition among non-vanishing donor and acceptor for composition of the molecular structure was interpreted.

  8. Molecular modeling, spectroscopic signature and NBO analysis of some building blocks of organic conductors.

    PubMed

    Mukherjee, V

    2014-11-11

    Vibrational spectra with IR and Raman intensities in optimum state have been calculated for 2,2'-Bi-1,3-diselenole (commonly known as tetraselenafulvalene) and its halogen derivatives. All these calculations have been done by employing density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2) methods incorporated with suitable functionals and basis sets. Normal coordinate analysis has also been performed to calculate potential energy distributions (PEDs) to make a conspicuous assignment. The vibrational frequencies of all the four molecules have been assigned using PEDs and the results are compared with available values for the most similar molecules like tetrathiafulvalene. The molecular stability and bond strength have investigated by applying the Natural Bond Orbital (NBO) analysis. The energy gap between HOMO and LUMO is 2.041 eV for tetraselenafulvalene and it is slightly less than 2eV for halogen derivatives which implies that these molecules fall in the wide band gap semiconductor groups.

  9. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  10. Spectroscopic study of a light-driven chloride ion pump from marine bacteria.

    PubMed

    Inoue, Keiichi; Koua, Faisal Hammad Mekky; Kato, Yoshitaka; Abe-Yoshizumi, Rei; Kandori, Hideki

    2014-09-25

    Thousands of light-driven proton-pumping rhodopsins have been found in marine microbes, and a light-driven sodium-ion pumping rhodopsin was recently discovered, which utilizes sunlight for the energy source of the cell. Similarly, a light-driven chloride-ion pump has been found from marine bacteria, and three eubacterial light-driven pumps possess the DTE (proton pump), NDQ (sodium-ion pump), and NTQ (chloride-ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR). The corresponding motif of the known haloarchaeal chloride-ion pump, halorhodopsin (HR), is TSA, which is entirely different from the NTQ motif of a eubacterial chloride-ion pump. It is thus intriguing to compare the molecular mechanism of these two chloride-ion pumps. Here we report the spectroscopic study of Fulvimarina rhodopsin (FR), a eubacterial light-driven chloride-ion pump from marine bacterium. FR binds a chloride-ion near the retinal chromophore and chloride-ion binding causes a spectral blue-shift. FR predominantly possesses an all-trans retinal, which is responsible for the light-driven chloride-ion pump. Upon light absorption, the red-shifted K intermediate is formed, followed by the appearance of the L and O intermediates. When the M intermediate does not form, this indicates that the Schiff base remains in the protonated state during the photocycle. These molecular mechanisms are common in HR, and a common mechanism for chloride-ion pumping by evolutionarily distant proteins suggests the importance of the electric quadrupole in the Schiff base region and their changes through hydrogen-bonding alterations. One noticeable difference between FR and HR is the uptake of chloride-ion from the extracellular surface. While the uptake occurs upon decay of the O intermediate in HR, chloride-ion uptake accompanies the rise of the O intermediate in FR. This suggests the presence of a second chloride-ion binding site near the extracellular surface of FR, which is

  11. Green-synthesis, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods.

    PubMed

    Marwani, Hadi M; Asiri, Abdullah M; Khan, Salman A

    2012-01-01

    Preparation, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods were achieved. The Schiff base dyes were prepared by the reaction of salicylaldehyde/2-Hydroxy-1-naphthaldehyde with aminophenazone under microwave irradiation. The spectroscopic (FT-IR, 1H NMR, 13C-NMR, Mass) studies and elemental analyses were in good agreement with chemical structure of synthesized compounds. In addition, UV-Vis and fluorescence spectroscopic experiments showed that these dyes are good absorbent and fluorescent. Based on the photostability study of these dyes, minimal to no loss in fluorescence intensities of 4-[(2-Hydroxy-benzylidene)-amino] 1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D1) (6.14%) and 4-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D2) (2.95%) was observed with an increase in the exposure time using time-based fluorescence steady-state experiments. These studies also inferred that these Schiffbase dyes have a high photostability against photobleaching. In addition, Dye 2 is found to be more sensitive than Dye 1 to the polarity of the microenvironment provided by different solvents based on the results of fluorescence polarity studies.

  12. Spectroscopic and computational study of a new isomer of salinomycin

    NASA Astrophysics Data System (ADS)

    Pankiewicz, Radosław

    2013-09-01

    A new derivative of polyether ionophore salinomycin was obtained as a result of a rearrangement catalysed by sulphuric acid in two-phase medium of water/methylene chloride solution. The new isomer was fully characterized by multinuclear 2D NMR, NOESY and MALDI-TOF. The properties of the new compound were additionally study by semiempirical (PM5) and DFT (B3LYP) methods. A potential mechanism of the rearrangement was also proposed.

  13. Spectroscopic Studies of Metal-Ligand-Surface Interactions

    DTIC Science & Technology

    1988-10-01

    recent calculations by Bauschlicher. In this theoretical study the complexes’ bonding was attributed to an electrostatic interaction between the...section about the bonding mechanisms in the ammonia versus the hydrazine complexes. 3. Normal Coordinate Calculations on Metal.Ammonia Complexes To...and Benzene ...... o......46 III CALCULATIONS OF THE VIBRATIONAL SPECTRA OF N2 H4 ,’ ALL ITS DEUTERATED DERIVATIVES AND CH3 N2 13 . ........ oo.o

  14. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  15. Mössbauer spectroscopic study of iron-chelate trammels

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Meena, S. S.; Ningthoujam, R. S.; Goswami, D.

    2014-04-01

    Any kind of waste effluent in the Indian context and other countries contains a lot of iron in any ore. During mining, milling, extraction and purification process iron acts as contaminant towards other metal's purity. It is essential to remove iron to the maximum extent. In this case, an "IN-HOUSE" resin polyacrylamidehydroxamic acid (PHOA) has been designed and developed which is highly hydrophilic three dimensionally cross-linked. It has an excellent iron binding capacity with almost no leaching. Interaction of resin with ammonium ferrous sulphate and red-mod (Fe2O3) is studied using Mössbauer spectroscopy.

  16. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations

  17. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-05

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed.

  18. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  19. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  20. [Infrared spectroscopic study on leaf senescence of evergreen tree].

    PubMed

    Li, Lun; Zhou, Xiang-Ping; Liu, Gang; Zhang, Li; Ou, Quan-Hong; Hao, Jian-Ming

    2013-02-01

    In order to investigate plant physiological process of leaf senescence and aging, Fourier transform infrared (FTIR) spectroscopy was used to study the young, mature, and old yellow leaves from seven species of evergreen trees. The spectra of the leaves from different growing period are different in the region of 1 800-700 cm(-1). The absorption ratios A1 070/A2 927, A1 070/A1 160 were used to evaluate the relative changes of polysaccharides, and A1 318/A2 922 was used to estimate the change of calcium oxalate during leaf senescence. Decomposition and curve-fitting analysis was performed in the region of 1 800 -1 500 cm(-1). The sub-band absorption ratio H1 650/H1 740 was used to evaluate the relative changes of protein in the leaves. The results show that the accumulation and mobilization of polysaccharides, protein, and calcium oxalate during leaf growing period were different in different plant species. This study demonstrates the potential of mid-infrared spectroscopy for investigation of plants senescence, as well as physiological and biochemical changes of plants.

  1. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  2. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  3. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  4. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  5. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  6. Theoretical spectroscopic study of protonated and deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  7. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  8. Identification and derivatization of selected cathinones by spectroscopic studies.

    PubMed

    Nycz, Jacek E; Pazdziorek, Tadeusz; Malecki, Grzegorz; Szala, Marcin

    2016-09-01

    In this study we identified three novel hydrochloride salts of cathinones 2-(pyrrolidin-1-yl)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)pentan-1-one (1a) (TH-PVP), 2-(methylamino)-1-(2-methylphenyl)-1-propanone (1b) (2-MMC) and 1-(4-chlorophenyl)-2-(methylamino)propan-1-one (1c) (4-CMC). Their properties have been examined through combinations of GC-MS, IR, NMR, electronic absorption spectroscopy and single crystal X-ray diffraction method. NMR solution spectra showed readily diagnostic H-1 and C-13 signals from methyl, N-methyl and carbonyl groups. Additionally the use of thionation and amination reactions for identification of selected cathinones was presented.

  9. Spectroscopic Study of Sediments from Chapala Lake in Western Mexico

    NASA Astrophysics Data System (ADS)

    Arízaga, G. G. Carbajal; Doumer, M. E.; Lucio, G. Álvarez; Salazar, S. Gómez; Mangrich, A. S.; Huerta, A. García

    2016-11-01

    The first 10 cm of sediment from Lake Chapala, Western Mexico are in constant activity related to the exchange and speciation of metal cations. Samples of this sediment were analyzed in electron paramagnetic resonance (EPR) equipment to study the paramagnetic metals. Assays indicated that only Fe3+ was present in a detectable amount. This cation, along with chemical fractions of sediment obtained by sequential extraction, was analyzed by EPR. The analysis supported by infrared data revealed that Fe3+ was present in diluted and concentrated domains. Easily exchangeable iron was retained by carbonyl groups in organic matter. The carbonate fraction and oxides contained iron in concentrated domains. The alumina-silicate fraction (that resisted the sequential extraction digestions) presented diluted domains of iron in the octahedral alumina sheet along with occlusions of concentrated domains. This last inference was obtained by comparing EPR results against the spectrum of iron in synthetic model clay.

  10. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  11. Preparations and spectroscopic studies of organotin complexes of diclofenac*1

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Nikolaos; Demertzis, Mavroudis A.; Kovala-Demertzi, Dimitra; Koutsodimou, Aglaia; Moukarika, Alice

    2004-08-01

    The reactions of the potent and widely used anti-inflammatory drug diclofenac, HL, with diorganotin(IV) oxides were studied. The dimeric tetraorganodistannoxane complexes [Me 2LSnOSnLMe 2] 2, [Bu 2LSnOSnLBu 2] 2, [Ph 2LSnOSnLPh 2] 2 and the dibutyltin complex [Bu 2SnL 2], have been prepared and structurally characterized in the solid state by means of vibrational and 119Sn Mössbauer spectroscopy. Determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy. From the variable-temperature Mössbauer effect, the Debye temperature was determined. The complexes have been characterized in solution by NMR ( 1H and 13C) spectroscopy. Vibrational, Mössbauer, and NMR data are discussed in terms of the proposed structures.

  12. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  13. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  14. [Spectroscopic studies of guanidine hydrochloride-induced unfolding of hemoglobin].

    PubMed

    Li, Jin-Jing; Tang, Qian; Cao, Hong-Yu; Zhang, Yu-Jiao; Zhang, Tao; Zheng, Xue-Fang

    2012-09-01

    In the present paper, based on the ultraviolet-visible (UV-Vis) absorption spectroscopy, fluorescence spectroscopy, and stopped flow-fluorescence spectroscopy, the authors studied the protein unfolding process of hemoglobin induced by GdmHcl. The experiments result shows that there were two different procedures about GdmHcl inducing hemoglobin unfolding from the evidences of UV-Vis absorption spectrum and fluorescence phase diagrams. Namely, the hemoglobin subunit exhibits depolymerization, forming the intermediates when incubated with GdmHcl at the concentration of 1. 0 mol x L(-1). With the increase in the concentration, various subunit structure became loose gradually, and the protoheme collapsed eventually. UV-Vis absorption spectroscopy indicates that the addition of reductant can cooperate with the depolymerization of hemoglobin subunit and the disaggregation of protoheme. The reductant results in the unfolding procedure that hemoglobin from "three-state model" turns into "two-state model".

  15. A spectroscopic study of the blue stragglers in M67

    NASA Astrophysics Data System (ADS)

    Liu, G. Q.; Deng, L.; Chávez, M.; Bertone, E.; Davo, A. Herrero; Mata-Chávez, M. D.

    2008-10-01

    Based on spectrophotometric observations from the Guillermo Haro Observatory (Cananea, Mexico), a study of the spectral properties of the complete sample of 24 blue straggler stars (BSs) in the old Galactic open cluster M67 (NGC 2682) is presented. All spectra, calibrated using spectral standards, were recalibrated by means of photometric magnitudes in the Beijing-Arizona-Taipei-Connecticut system, which includes fluxes in 11 bands covering ~3500-10000 Å. The set of parameters was obtained using two complementary approaches that rely on a comparison of the spectra with (i) an empirical sample of stars with well-established spectral types and (ii) a theoretical grid of optical spectra computed at both low and high resolution. The overall results indicate that the BSs in M67 span a wide range in Teff(~ 5600 -12600 K) and surface gravities that are fully compatible with those expected for main-sequence objects (log g = 3.5 -5.0 dex).

  16. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  17. Computational and vibrational spectroscopic studies of ipratropium bromide.

    PubMed

    Ali, H R H; Edwards, H G M; Kendrick, J; Scowen, I J

    2009-02-01

    In this study, ipratropium bromide is investigated using vibrational spectroscopy and quantum chemical calculations. The structure of ipratropium bromide was optimised using density functional theory calculations and the geometry optimisation has been carried out on two conformations with and without intramolecular hydrogen bonding. Infrared and Raman spectra were calculated from the optimised structures. Many modes in the calculated spectra could be matched with the experimental spectra and a description of the modes is given. By analysis of the theoretical vibrational modes, it is shown that ipratropium bromide specimens are likely to be a mixture of the two conformations with and without intramolecular hydrogen bonding. In addition, several spectral features and band intensities in the CH and OH stretching regions are explained. Quantum mechanical calculations allowed improved understanding of ipratropium bromide and its vibrational spectra.

  18. Conformational analysis and vibrational spectroscopic studies on dapsone

    NASA Astrophysics Data System (ADS)

    Ildiz, Gulce Ogruc; Akyuz, Sevim

    2012-11-01

    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  19. Raman spectroscopic study of ancient South African domestic clay pottery.

    PubMed

    Legodi, M A; de Waal, D

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  20. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples