NASA Technical Reports Server (NTRS)
Moore, Craig E.; Cardelino, Beatriz H.; Frazier, Donald O.; Niles, Julian; Wang, Xian-Qiang
1997-01-01
Calculations were performed on the valence contribution to the static molecular third-order polarizabilities (gamma) of thirty carbon-cage fullerenes (C60, C70, five isomers of C78, and twenty-three isomers of C84). The molecular structures were obtained from B3LYP/STO-3G calculations. The values of the tensor elements and an associated numerical uncertainty were obtained using the finite-field approach and polynomial expansions of orders four to eighteen of polarization versus static electric field data. The latter information was obtained from semiempirical calculations using the AM1 hamiltonian.
NASA Technical Reports Server (NTRS)
Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.
1998-01-01
The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.
Static third-order polarizability calculations for C{sub 60}, C{sub 70}, and C{sub 84}
Moore, C.E.; Cardelino, B.H.; Wang, X.Q.
1996-03-21
Valence electron contributions to the static molecular third-order polarizabilities ({gamma}) are calculated for C{sub 60}, C{sub 70}, and two stable structures of C{sub 84} (D{sub 2} and D{sub 2d}). The method utilized is based on the finite-field approach coupled with semiempirical polarization calculations on all-valence electrons. An increase in the third-order polarizability contributions is observed for molecular structures with a reduction in group symmetry, in agreement with recent experimental observations for these fullerenes. This increase is attributed mainly to the appearance of aromatic structures within the molecules as well as to the increase in molecular volume. 26 refs., 4 tabs.
Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis
NASA Astrophysics Data System (ADS)
Kojima, S.; Hensley, S.
2012-12-01
There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume
NASA Technical Reports Server (NTRS)
Pan, C.-L.; She, C.-Y.; Fairbank, W. M., Jr.; Billman, K. W.
1977-01-01
Effects of quantum mechanical interferences on third-order susceptibilities in molecules are studied. First principle calculations for molecular hydrogen are presented and shown to agree with results derived from experimental stimulated Raman gain and spontaneous Raman cross-section data. 10 percent third-harmonic conversion efficiency in H2 at 1 atm without phase matching should require a 150 MW per sq cm at 4.81 microns. As little as 5.9-MW power is sufficient when the beam is properly focused. Resonance Raman scattering (RRS) is proposed for experimentally investigating the interference effects, which tend to reduce the strength of third-order nonlinear susceptibilities.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Nishida, Jun; Fayer, Michael D.
2014-04-14
Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary to completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.
NASA Astrophysics Data System (ADS)
Pardo, A.; Camacho, J. J.; Poyato, J. M. L.; Fernandez-Alonso, J. I.
1986-03-01
Potential energy curves for the X 1Σ +state of 6LiH, 7LiH and 6LiD, 7LiD molecules have been calculated by the third-order RKR inversion procedure by including the Kaise correction. The results are in agreement with previously obtained curves by other authors using differents methods. As a check, the exact vibrational eigenfunctions, appropriate to these potentials, are obtained by direct numerical solutions of the radical Schrödinger equation.
NASA Astrophysics Data System (ADS)
Karakas, A.; Karakaya, M.; Taser, M.; Ceylan, Y.; Gozutok, A.; Arof, A. K.; El Kouari, Y.; Sahraoui, B.
2016-03-01
The electric dipole moments (μ), static dipole polarizabilities (α) and first hyperpolarizabilities (β) of styrylquinolinium dyes, D8 and D21, have been computed by density functional theory (DFT). The one-photon absorption (OPA) characterizations have been investigated using UV-vis spectroscopy and further interpreted using computational chemistry. The time-dependent Hartree-Fock (TDHF) method has been used to describe the dynamic dipole polarizabilities, dynamic second-order and also static and dynamic third-order nonlinear optical (NLO) properties. D8-D21 have rather high β and second hyperpolarizabilities (γ). The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps for D8-D21 have been evaluated by DFT.
Filter for third order phase locked loops
NASA Technical Reports Server (NTRS)
Crow, R. B.; Tausworthe, R. C. (Inventor)
1973-01-01
Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.
Third Order Distortion And Spectacle Lens Design
NASA Astrophysics Data System (ADS)
Atchison, David A.
1986-05-01
Third order (primary) aberration theory has had little application to the design of aspheric spectacle lenses. Such an application would be useful because: 1. Third order theory is useful in designing simple optical systems, as relatively simple equations can be used to obtain approximate magnitudes of aberrations and to show how these aberrations change with variations in design parameters without recourse to a large mass of data. 2. Aspherising one or both surfaces of spectacle lenses allows the correction of off-axis power errors in high positive power lenses where this would be otherwise impossible, and enables other factors, such as distortion correction, to be considered simultaneously with off-axis power error correction over the total range of lens powers. Third order formulae are developed for calculation of distortion in thin spectacle lenses, when one or both surfaces are conicoid aspherics. Results are presented which show the validity of using third order theory. Solutions which allow correction of rotatory or peripheral distortion, when one lens surface is a conicoid aspheric, are illustrated. A study of these solutions shows that one of the off-axis power errors (eg. oblique astigmatism) and one of the distortions can be simultaneously eliminated, but the lens forms required are too curved to be cosmetically feasible.
Novel third-order Lovelock wormhole solutions
NASA Astrophysics Data System (ADS)
Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.
2016-06-01
In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.
Third Order Elastic Coefficients of Rocks
NASA Astrophysics Data System (ADS)
Bandyopadhyay, K.
2006-12-01
We present a methodology to determine third order elastic (TOE) coefficients of rock from velocity measurements at different hydrostatic stress level. TOE coefficients help us to obtain a quantitative measure of the variation of velocity with stress. It is one of the most general ways to parameterize the stress sensitivity of rocks. We usually determine the isotropic TOE coefficients from measurements of all the independent stiffness elements under non-hydrostatic stress. However, for initially isotropic or weakly anisotropic rocks, most of the laboratory experiments are carried out under hydrostatic stress. In that case, the measurements of P- and S-wave velocities at different hydrostatic pressure alone are not enough to invert for the isotropic TOE parameters. In this underdetermined situation, more information about the rock microstructure causing the non-linearity is required to predict seismic velocities at any arbitrary stress state. Our workflow is based on the model of Mavko et al. (1995) to compute stress-induced anisotropy. This model assumes that the cause of elastic nonlinearity is the presence of compliant crack-like pore. The pressure dependence of generalized compliances is mainly governed by normal tractions resolved across cracks. This assumption allows one to map the pressure dependence from hydrostatic stress to any state of stress. Applying the model of Mavko et al. (1995), we obtain the full stiffness tensor at different non-hydrostatic stress levels from the usual Vp and Vs measurements. Changes in elastic stiffness elements from a reference state of stress are then used to invert for the TOE coefficients, C111, C112 and C123 using the third order stress- strain relations. This method allows us to compute the TOE elements using hydrostatic measurements of an initially isotropic rock. We show an application of the workflow with laboratory measurements of P- and S-wave velocities under varying hydrostatic stress. This enables us to express
Green, Anthony J; Space, Brian
2015-07-23
Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features. PMID:25415752
Magnetic branes in third order Lovelock-Born-Infeld gravity
Dehghani, M. H.; Bostani, N.; Hendi, S. H.
2008-09-15
Considering both the nonlinear invariant terms constructed by the electromagnetic field and the Riemann tensor in gravity action, we obtain a new class of (n+1)-dimensional magnetic brane solutions in third order Lovelock-Born-Infeld gravity. This class of solutions yields a spacetime with a longitudinal nonlinear magnetic field generated by a static source. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle {delta}. We find that, as the Born-Infeld parameter decreases, which is a measure of the increase of the nonlinearity of the electromagnetic field, the deficit angle increases. We generalize this class of solutions to the case of spinning magnetic solutions and find that, when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Finally, we use the counterterm method in third order Lovelock gravity and compute the conserved quantities of these spacetimes. We found that the conserved quantities do not depend on the Born-Infeld parameter, which is evident from the fact that the effects of the nonlinearity of the electromagnetic fields on the boundary at infinity are wiped away. We also find that the properties of our solution, such as deficit angle, are independent of Lovelock coefficients.
Is there a third order phase transition for supercritical fluids?
Zhu, Jinglong; Zhang, Pingwen; Wang, Han; Site, Luigi Delle
2014-01-01
We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime. PMID:24410228
[Zn(C 7H 3O 5N)] n · nH 2O: A third-order NLO Zn coordination polymer with spiroconjugated structure
NASA Astrophysics Data System (ADS)
Zhou, Guo-Wei; Lan, You-Zhao; Zheng, Fa-Kun; Zhang, Xin; Lin, Meng-Hai; Guo, Guo-Cong; Huang, Jin-Shun
2006-08-01
[Zn(C 7H 3O 5N)] n · nH 2O ( 1) possesses an anticlockwise windmill-like framework structure and formats spiroconjugation over the infinite molecular layer that is predicted to have large static third-order polarizability and the convergence value of γxxxx reaches 6.86 × 10 -33 esu in the case of zero input photon energy. The third-order NLO properties of 1 were investigated via Z-scan techniques at wavelength of 532 nm. It showed strong third-order NLO absorptive properties, and its n2 value was calculated to be 4.15 × 10 -11 esu. The relationship between the spiroconjugated structure and the NLO property has been discussed, which supposed to be more valuable for the NLO research.
Suppression of third-order intermodulation in a klystron by third-order injection.
Bhattacharjee, S; Marchewka, C; Welter, J; Kowalczyk, R; Wilsen, C B; Lau, Y Y; Booske, J H; Singh, A; Scharer, J E; Gilgenbach, R M; Neumann, M J; Keyser, M W
2003-03-01
The first observations and measurements are reported on suppression of the third-order intermodulation (IM3) product arising from nonlinear mixing of two drive frequencies in a klystron, by externally injecting a wave at the IM3 product frequency. Optimum amplitude and phase of the injected wave for maximum suppression are examined. Results indicate that suppression of the IM3 product by as much as 30 dB can be achieved. Experimental results compare favorably with predictions of a 1D simulation code that takes into account all kinematical and dynamical effects including charge overtaking and space charge forces. PMID:12689260
Koelsch, Patrick; Muglali, Mutlu; Rohwerder, Michael; Erbe, Andreas
2013-01-01
Vibrational sum-frequency-generation (SFG) spectroscopy experiments at electrified interfaces involve incident laser radiation at frequencies in the IR and near-IR/visible regions as well as a static electric field on the surface. Here we show that mixing the three fields present on the surface can result in third-order effects in resonant SFG signals. This was achieved for closed packed self-assembled monolayers (SAMs) with molecular groups of high optical nonlinearity and surface potentials similar to those typically applied in cyclic voltammograms. Broadband SFG spectroscopy was applied to study a hydrophobic well-ordered araliphatic SAM on a Au(111) surface using a thin-layer analysis cell for spectro-electrochemical investigations in a 100 mM NaOH electrolyte solution. Resonant contributions were experimentally separated from non-resonant contributions of the Au substrate and theoretically analyzed using a fitting function including third-order terms. The resulting ratio of third-order to second-order susceptibilities was estimated to be [Formula: see text](10(-10)) m/V. PMID:24235781
Photoassociation dynamics driven by second- and third-order phase-modulated laser fields
NASA Astrophysics Data System (ADS)
Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin
2016-05-01
We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.
Ghost imaging with thermal light by third-order correlation
Bai Yanfeng; Han Shensheng
2007-10-15
Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.
Mobile and static molecular disorder in liquids
NASA Astrophysics Data System (ADS)
Huyskens, Pierre L.
1992-11-01
The fraction of time during which a molecule of a pure alcohol does not undergo H-bonding, estimated from the vapor pressure, is two orders of magnitude larger than the fraction of molecules that at a given time are not bound by an H-bond to their neighbors, as deduced from IR spectroscopic data. This obviously "anti-ergodic" statement renders questionable all the thermodynamic treatments of H-bonding in liquids, which are based on the usual Boltzmann expression. This expression equates the thermodynamic probability of a system with the static probability of distribution of the various states and, as outlined by Einstein, does not hold for non-ergodic systems. As pointed out by Pais (A. Pais, Subtle is the Lord. The Science and the Life of Albert Einstein, Oxford University Press, 1982), another Boltzmann relation relates the thermodynamic probability of a state to the fraction of time during which the system is found in that state. The latter definition was used by Einstein in his treatment of the ergodic problem. Similarly, the theory of the thermodynamics of mobile order in H-bonded liquids, of Huyskens and Siegel (P.L. Huyskens and G.G. Siegel, Bull. Soc. Chim. Belg., 97 (1988) 821), considers not the static configurations of the liquid, but the fraction of time during which an OH proton follows the oxygen atom of one or another neighboring molecules in its motion through the liquid. This coordination lowers the entropy and this reduction can be evaluated quantitatively. The present paper establishes a distinction between the static disorder, which is due to the possibility of exchange between the positions of the molecules and exists in mixed crystals, and the mobile disorder, which is due to the enlargement of the domain available for the motions of a given molecule, provoked by the mixing of two real gases. The mixing of two liquids allows an exchange in the positions, but also an expansion of the individual domains available for the motions. Thus, the
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf
2016-03-01
It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first-order static hyperpolarizability (β0), the second-order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6-311G(d,p) level of density functional theory. The UV-vis spectra were simulated using TD/HSEh1PBE/6- 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η) and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.
Third-order chromatic dispersion stabilizes Kerr frequency combs.
Parra-Rivas, Pedro; Gomila, Damià; Leo, François; Coen, Stéphane; Gelens, Lendert
2014-05-15
Using numerical simulations of an extended Lugiato-Lefever equation we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators, taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton. PMID:24978250
A third order Runge-Kutta algorithm on a manifold
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Grossman, R. G.; Yan, Y.
1992-01-01
A third order Runge-Kutta type algorithm is described with the property that it preserves certain geometric structures. In particular, if the algorithm is initialized on a Lie group, then the resulting iterates remain on the Lie group.
Third order TRANSPORT with MAD (Methodical Accelerator Design) input
Carey, D.C.
1988-09-20
This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix. (LSP)
Effect of third-order dispersion on dark solitons
NASA Astrophysics Data System (ADS)
Afanasjev, Vsevolod V.; Kivshar, Yuri S.; Menyuk, Curtis R.
1996-12-01
Third-order dispersion has a detrimental effect on dark solitons, leading to resonant generation of growing soliton tails and soliton decay. This effect is shown to be much stronger than that for bright solitons.
Analyzing molecular static linear response properties with perturbed localized orbitals
NASA Astrophysics Data System (ADS)
Autschbach, Jochen; King, Harry F.
2010-07-01
Perturbed localized molecular orbitals (LMOs), correct to first order in an applied static perturbation and consistent with a chosen localization functional, are calculated using analytic derivative techniques. The formalism is outlined for a general static perturbation and variational localization functionals. Iterative and (formally) single-step approaches are compared. The implementation employs an iterative sequence of 2×2 orbital rotations. The procedure is verified by calculations of molecular electric-field perturbations. Boys LMO contributions to the electronic static polarizability and the electric-field perturbation of the ⟨r2⟩ expectation value are calculated and analyzed for ethene, ethyne, and fluoroethene (H2CCHF). For ethene, a comparison is made with results from a Pipek-Mezey localization. The calculations show that a chemically intuitive decomposition of the calculated properties is possible with the help of the LMO contributions and that the polarizability contributions in similar molecules are approximately transferable.
Higher-dimensional thin-shell wormholes in third-order Lovelock gravity
NASA Astrophysics Data System (ADS)
Mehdizadeh, Mohammad Reza; Zangeneh, Mahdi Kord; Lobo, Francisco S. N.
2015-08-01
In this paper, we explore asymptotically flat charged thin-shell wormholes of third order Lovelock gravity in higher dimensions, taking into account the cut-and-paste technique. Using the generalized junction conditions, we determine the energy-momentum tensor of these solutions on the shell, and explore the issue of the energy conditions and the amount of normal matter that supports these thin-shell wormholes. Our analysis shows that for negative second-order and positive third-order Lovelock coefficients, there are thin-shell wormhole solutions that respect the weak energy condition. In this case, the amount of normal matter increases as the third-order Lovelock coefficient decreases. We also find novel solutions which possess specific regions where the energy conditions are satisfied for the case of a positive second-order and negative third-order Lovelock coefficients. Finally, a linear stability analysis in higher dimensions around the static solutions is carried out. Considering a specific cold equation of state, we find a wide range of stability regions.
Achromatic phase matching at third orders of dispersion
Richman, Bruce
2003-10-21
Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.
Mark, J. Abraham Hudson Peter, A. John
2014-04-24
Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.
Constructing higher-order hydrodynamics: The third order
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Kaplis, Nikolaos
2016-03-01
Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper, we go beyond the presently understood second-order hydrodynamics and discuss the systematization of obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68 in the nonconformal case. As we do not consider any constraints that could potentially arise from the local entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To investigate the physical implications of these new transport coefficients, we obtain the third-order corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we apply our field theoretic results to the N =4 supersymmetric Yang-Mills fluid at infinite 't Hooft coupling and an infinite number of colors to find the values of five new linear combinations of the conformal transport coefficients.
Thermodynamics of asymptotically flat charged black holes in third order Lovelock gravity
Dehghani, M.H.; Shamirzaie, M.
2005-12-15
We present a new class of asymptotically flat charge static solutions in third order Lovelock gravity. These solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. We find that the uncharged asymptotically flat solutions can present black holes with two inner and outer horizons. This kind of solution does not exist in Einstein or Gauss-Bonnet gravity, and it is a special effect in third order Lovelock gravity. We compute temperature, entropy, charge, electric potential, and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the determinant of the Hessian matrix of the mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that there exists only an intermediate stable phase.
Third order nonlinear optical property of Bi₂Se₃.
Lu, Shunbin; Zhao, Chujun; Zou, Yanhong; Chen, Shuqing; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun; Tang, Dingyuan
2013-01-28
The third order nonlinear optical property of Bi₂Se₃, a kind of topological insulator (TI), has been investigated under femto-second laser excitation. The open and closed aperture Z-scan measurements were used to unambiguously distinguish the real and imaginary part of the third order optical nonlinearity of the TI. When excited at 800 nm, the TI exhibits saturable absorption with a saturation intensity of 10.12 GW/cm² and a modulation depth of 61.2%, and a giant nonlinear refractive index of 10⁻¹⁴ m²/W, almost six orders of magnitude larger than that of bulk dielectrics. This finding suggests that the TI:Bi₂Se₃ is indeed a promising nonlinear optical material and thus can find potential applications from passive laser mode locker to optical Kerr effect based photonic devices. PMID:23389188
Third-order solution of an artificial-satellite theory
NASA Technical Reports Server (NTRS)
Kinoshita, H.
1977-01-01
A third-order solution was developed for the motions of artificial satellites moving in the gravitational field of the earth, whose potential includes the second-, third-, and fourth-order zonal harmonics. Third-order periodic perturbations with fourth-order secular perturbations were derived by the Hori perturbation method. All quantities were expanded into power series of the eccentricity, but the solution was obtained so as to be closed with respect to the inclination. A comparison with the results of numerical integration of the equations of motion indicates that the solution can predict the position of a close-earth, small-eccentricity satellite with an accuracy of better than one cm over a period of one month.
Third order equations of motion and the Ostrogradsky instability
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; Suyama, Teruaki
2015-04-01
It is known that any nondegenerate Lagrangian containing time derivative terms higher than first order suffers from the Ostrogradsky instability, pathological excitation of positive and negative energy degrees of freedom. We show that, within the framework of analytical mechanics of point particles, any Lagrangian for third order equations of motion, which evades the nondegeneracy condition, still leads to the Ostrogradsky instability. Extension to the case of higher odd order equations of motion is also considered.
Third-order nonlinear optical response of energy transfer systems
NASA Astrophysics Data System (ADS)
Yang, Mino; Fleming, Graham R.
1999-07-01
The third-order nonlinear optical response of energy transfer systems is theoretically investigated. A system composed of two chromophores having the same electronic transition energies is considered. The dynamics of energy transfer between the two chromophores is assumed to occur via a hopping (incoherent) mechanism. We introduce new types of pathways incorporating the hopping processes occurring while the system is in population states and reconstruct a third-order response function which is computationally viable. The nuclear propagators in the electronic population states are written as convolution integrals between those of the nonreactive two-state system weighted by some factors for the energy transfer. The response function is given by multitime correlation functions and these are analyzed by the cumulant expansion method. Based on this approach, the three-pulse photon echo peak shift for several models of energy transfer systems is discussed. It is shown that the rephasing capability of the induced signal is reduced by the memory loss due to resonant energy transfer. A previous model which incorporates resonant energy transfers in an intuitive way is reviewed and modified to supplement the loss of dynamic correlation of nuclear motion within the framework of the theory. The response function obtained by our new approach gives a more accurate description than the existing theory and a comparative discussion is given. The effect of inhomogeneity in rate constants on the third-order signal is discussed and the temperature dependence of the echo signal is examined.
Third-order TRANSPORT: A computer program for designing charged particle beam transport systems
Carey, D.C.; Brown, K.L.; Rothacker, F.
1995-05-01
TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.
D'silva, E.D.; Podagatlapalli, G. Krishna; Venugopal Rao, S.; Dharmaprakash, S.M.
2012-11-15
Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.
Multifield cosmological perturbations at third order and the ekpyrotic trispectrum
Lehners, Jean-Luc; Renaux-Petel, Sebastien
2009-09-15
Using the covariant formalism, we derive the equations of motion for adiabatic and entropy perturbations at third order in perturbation theory for cosmological models involving two scalar fields. We use these equations to calculate the trispectrum of ekpyrotic and cyclic models in which the density perturbations are generated via the entropic mechanism. In these models, the conversion of entropy into curvature perturbations occurs just before the big bang, either during the ekpyrotic phase or during the subsequent kinetic energy dominated phase. In both cases, we find that the nonlinearity parameters f{sub NL} and g{sub NL} combine to leave a very distinct observational imprint.
Global attractors for a third order in time nonlinear dynamics
NASA Astrophysics Data System (ADS)
Caixeta, Arthur H.; Lasiecka, Irena; Cavalcanti, Valéria N. D.
2016-07-01
Long time behavior of a third order (in time) nonlinear PDE equation is considered. This type of equations arises in the context of nonlinear acoustics [12,20,22,24] where modeling accounts for a finite speed of propagation paradox, the latter results in hyperbolic nature of the dynamics. It will be proved that the underlying PDE generates a well-posed dynamical system which admits a global and finite dimensional attractor. The main difficulty associated with the problem studied is the lack of Lyapunov function along with the lack of compactness of trajectories, which fact prevents applicability of standard tools in the area of dynamical systems.
Thermodynamic instability of black holes of third order Lovelock gravity
Dehghani, M. H.; Pourhasan, R.
2009-03-15
In this paper, we compute the mass and the temperature of the uncharged black holes of third order Lovelock gravity as well as the entropy using the first law of thermodynamics. We perform a stability analysis by studying the curves of the temperature versus the mass parameter, and find that an intermediate thermodynamically unstable phase exists for black holes with a hyperbolic horizon. This unstable phase for the uncharged topological black holes of third order Lovelock gravity does not exist in lower order Lovelock gravity. We also perform a stability analysis for a spherical, seven-dimensional black hole of Lovelock gravity and find that, while these kinds of black holes for small values of Lovelock coefficients have an intermediate unstable phase, they are stable for large values of Lovelock coefficients. We also find that an intermediate unstable phase exists for these black holes in higher dimensions. This analysis shows that the thermodynamic stability of black holes with curved horizons is not a robust feature of all the generalized theories of gravity.
Asymptotically flat radiating solutions in third order Lovelock gravity
Dehghani, M. H.; Farhangkhah, N.
2008-09-15
In this paper, we present an exact spherically symmetric solution of third order Lovelock gravity in n dimensions which describes the gravitational collapse of a null dust fluid. This solution is asymptotically (anti-)de Sitter or flat depending on the choice of the cosmological constant. Using the asymptotically flat solution for n{>=}7 with a power-law form of the mass as a function of the null coordinate, we present a model for a gravitational collapse in which a null dust fluid radially injects into an initially flat and empty region. It is found that a naked singularity is inevitably formed whose strength is different for the n=7 and n{>=}8 cases. In the n=7 case, the limiting focusing condition for the strength of curvature singularity is satisfied. But for n{>=}8, the strength of curvature singularity depends on the rate of increase of mass of the spacetime. These considerations show that the third order Lovelock term weakens the strength of the curvature singularity.
Bounding Quantum Contextuality with Lack of Third-Order Interference.
Henson, Joe
2015-06-01
Recently, many simple principles have been proposed that can explain quantum limitations on possible sets of experimental probabilities in nonlocality and contextuality experiments. However, few implications between these principles are known. Here it is shown that the lack of irreducible third-order interference (a generalization of the idea that no probabilistic interference remains unaccounted for once we have taken into account interference between pairs of slits in a n-sit experiment) implies the principle known as the E principle or consistent exclusivity (that, if each pair of a set of experimental outcomes are exclusive alternatives in some measurement, then their probabilities are consistent with the existence of a further measurement in which they are all exclusive). This is a step towards a more unified understanding of quantum nonlocality and contextuality, which promises to allow derivations of important results from minimal, easily grasped assumptions. As one example, this result implies that lack of third-order interference bounds violation of the Clauser-Horne-Shimony-Holt-Bell inequality to 2.883. PMID:26196605
Bounding Quantum Contextuality with Lack of Third-Order Interference
NASA Astrophysics Data System (ADS)
Henson, Joe
2015-06-01
Recently, many simple principles have been proposed that can explain quantum limitations on possible sets of experimental probabilities in nonlocality and contextuality experiments. However, few implications between these principles are known. Here it is shown that the lack of irreducible third-order interference (a generalization of the idea that no probabilistic interference remains unaccounted for once we have taken into account interference between pairs of slits in a n -sit experiment) implies the principle known as the E principle or consistent exclusivity (that, if each pair of a set of experimental outcomes are exclusive alternatives in some measurement, then their probabilities are consistent with the existence of a further measurement in which they are all exclusive). This is a step towards a more unified understanding of quantum nonlocality and contextuality, which promises to allow derivations of important results from minimal, easily grasped assumptions. As one example, this result implies that lack of third-order interference bounds violation of the Clauser-Horne-Shimony-Holt-Bell inequality to 2.883.
Third order nonlinear optical properties of bismuth zinc borate glasses
Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.
2013-12-28
Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.
Third-order intermodulation distortion in graphene resonant channel transistors
NASA Astrophysics Data System (ADS)
Lekas, Michael; Lee, Sunwoo; Cha, Wujoon; Hone, James; Shepard, Kenneth
2015-02-01
Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band signals. In this letter, we measure and model IM3 in a strain-engineered graphene mechanical resonator operated as a graphene resonant channel transistor (G-RCT). The device analyzed in this work has a voltage third-order intercept point (VIIP3) of 69.5 dBm V at a gate-to-source DC bias (Vgs) of 2.5 V, which drops to 52.1 dBm V at Vgs = 4.5 V when driven with two out-of-band input tones spaced 5 and 10 MHz from the resonant frequency. The decrease in the VIIP3 with Vgs coincides with an increase in the transmission response (S21) of the device, illustrating a trade-off between transduction efficiency and linearity. In addition, we find that conventional micro-electro-mechanical systems theory for IM3 calculation does not accurately describe our measurement data. To resolve this discrepancy, we develop a model for IM3 in G-RCTs that takes into account all of the output current terms present in the embedded transistor structure, as well as an effective Duffing parameter (αeff).
Third order nonlinear optical properties of bismuth zinc borate glasses
NASA Astrophysics Data System (ADS)
Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.
2013-12-01
Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi2O3-30ZnO-(70-x) B2O3 (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σe) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.
Maxwell's second- and third-order equations of transfer for non-Maxwellian gases
NASA Technical Reports Server (NTRS)
Baganoff, D.
1992-01-01
Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.
Spacetimes with longitudinal and angular magnetic fields in third order Lovelock gravity
Dehghani, M. H.; Bostani, N.
2007-04-15
We obtain two new classes of magnetic solutions in third order Lovelock gravity. The first class of solutions yields an (n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static source. We generalize this class of solutions to the case of spinning magnetic strings with one or more rotation parameters. These solutions have no curvature singularity and no horizons, but have a conic geometry. For the spinning string, when one or more rotation parameters are nonzero, the string has a net electric charge which is proportional to the magnitude of the rotation parameters, while the static string has no net electric charge. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Although the second class of solutions may be made electrically charged by a boost transformation, the transformed solutions do not present new spacetimes. Finally, we use the counterterm method in third order Lovelock gravity and compute the conserved quantities of these spacetimes.
Topology and static response of interaction networks in molecular biology.
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2006-02-22
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace-Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason-Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
Topology and static response of interaction networks in molecular biology
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2005-01-01
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
New Third-Order Moments for the PBL
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Cheng, Y.; Howard, A.; Hansen, James E. (Technical Monitor)
2000-01-01
Turbulent convection is inherently non-local and a primary condition for a successful treatment of the PBL is a reliable model of non-locality. In the dynamic equations governing the convective flux, turbulent kinetic energy, etc, non-locality enters through the third-order moments, TOMs. Since the simplest form, the so-called down gradient approximation (DGA , severely underestimates the TOMs (by up to an order of magnitude), a more physical model is needed. In 1994, an analytical model was presented which was derived directly from the dynamical equations for the TOMs. It considerably improved the DGA but was a bit cumbersome to use. Here, we present a new analytic expression for the TOMs which is considerably simpler than the 1994 expression and which at the same time yields a much better fit to the LES data.
Third order LPF type compensator for flexible rotor suspension
NASA Astrophysics Data System (ADS)
Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki
1994-05-01
The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.
Third order LPF type compensator for flexible rotor suspension
NASA Technical Reports Server (NTRS)
Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki
1994-01-01
The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.
Photographic evidence for the third-order rainbow.
Grossmann, Michael; Schmidt, Elmar; Haussmann, Alexander
2011-10-01
The first likely photographic observation of the tertiary rainbow caused by sunlight in the open air is reported and analyzed. Whereas primary and secondary rainbows are rather common and easily seen phenomena in atmospheric optics, the tertiary rainbow appears in the sunward side of the sky and is thus largely masked by forward scattered light. Up to now, only a few visual reports and no reliable photographs of the tertiary rainbow are known. Evidence of a third-order rainbow has been obtained by using image processing techniques on a digital photograph that contains no obvious indication of such a rainbow. To rule out any misinterpretation of artifacts, we carefully calibrated the image in order to compare the observed bow's angular position and dispersion with those predicted by theory. PMID:22016237
Dynamic properties and third order diffusion coefficients of ions in electrostatic fields
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
1997-05-01
Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of <ΔvZ(0)ΔvX(t)2>, <ΔvZ(0)ΔvY(t)2>, and <ΔvZ(0)ΔvZ(t)2>, with Δv(t)=v(t) -
Transmission Measurement of the Third-Order Susceptibility of Gold
NASA Technical Reports Server (NTRS)
Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael
1999-01-01
Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.
New Third-Order Moments for the CBL
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Cheng, Y.; Howard, A.; Hansen, James E. (Technical Monitor)
2001-01-01
Turbulent convection is an inherently non-local phenomenon and a primary condition for a successful treatment of the CBL (convective boundary layer) is a reliable model of non-locality. In the dynamic equations governing the convective flux, the turbulent kinetic energy, etc., non-locality is represented by the third-order moments, TOMs. Since the simplest form, the so-called down gradient approximation (DGA), severely underestimates the TOMs (up to an order of magnitude), a more physical model is needed. In 1994, an analytical model was presented which was derived directly from the dynamical equations for the TOMs. It considerably improved the DGA but was a bit cumbersome to use and, more importantly, it was based on the quasi-normal (QN) approximation for the fourth-order moments. Here, we present a new analytic expression for the TOMs which is structurally simpler than the 1994 expression and which avoids the QN approximation. The resulting fit to the LES data is superior to that of the 1994 model.
Cerebral hydrodynamics are at a most a third order system.
Shepherd, Simon J; Beggs, Clive B
2011-05-01
The human body employs a sophisticated windkessel mechanism to dampen the arterial pulse entering the brain, thus ensuring the smooth flow of blood through the cerebral capillary bed. The energy from the arterial pulse is transferred to the cerebrospinal fluid (CSF), which pulses backwards and forwards across the foramen magnum. The dynamics associated with this system are complex and poorly understood. In an attempt to better understand the physiology, a number of researchers have constructed electrical analogue circuits to simulate the hydrodynamic behaviour of the brain. These generally consist of several low-pass filters. While such models have great potential, to date, they have met with only limited success. We suspect that this is in part due to a failure to identify the order of the model required to successfully capture the hydrodynamics of the brain. Here, we advance the hypothesis that the cerebral hydrodynamic system is at most a third order system, using evidence collected from the spectral eigen-system of the arterial, venous and CSF flows. Using singular spectrum analysis we computed the singular vectors for the measured arterial, venous and CSF flows from an individual. This revealed that the first singular vector contributes 67% of the observed variance; the first plus the second singular vectors contribute 96% of the variance; and sum of the first three singular vectors contribute more than 99.5% of the observed variance. PMID:21292407
Second and third order nonlinear optical properties of conjugated molecules and polymers
NASA Technical Reports Server (NTRS)
Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.
1988-01-01
Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.
Effect of vorticity on second- and third-order statistics of passive scalar gradients.
Gonzalez, Michel
2002-05-01
The influence of vorticity on second- and third-order moments of the spatial derivatives of a forced, passive scalar field has been studied in the framework of a simplified problem; the analysis is restricted to dominating rotation and molecular diffusion is represented by a linear model. The results reveal that, in the case of a passive scalar experiencing forcing in an isotropic medium, both vorticity and diffusion counteract anisotropy imposed on the scalar field. Anisotropy at the level of second-order moments appears to be destroyed essentially by the action of vorticity. PMID:12059703
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur
2016-11-01
A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks
Jovanović, Stojan
2016-01-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. PMID:27271768
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Jovanović, Stojan; Rotter, Stefan
2016-06-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. PMID:27271768
Niu Yunyin . E-mail: niuyy@zzu.edu.cn; Li Zhongjun; Song Yinglin; Tang Mingsheng; Wu Benlai; Xin Xinquan
2006-12-15
A new three-dimensional non-interpenetrating coordination polymer, [{l_brace}Cu(dps){sub 2}(SO{sub 4}){r_brace}.3H{sub 2}O.DMF]{sub n} (1) (dps=4,4'-dipyridyl sulfide) was synthesized and structurally characterized. 1 crystallizes in triclinic system, space group P-1 with cell parameters of a=10.9412(1)A, b=11.8999(1)A, c=12.5057(1)A, V=1400.7(3)A{sup 3}, Z=2, D{sub c}=1.573gcm{sup -3}, F(0 0 0)=686, {mu}=1.059mm{sup -1}. R{sub 1}=0.0436, wR{sub 2}=0.1148. In the polymeric architecture, SO{sub 4}{sup 2-} serve as bridging coligands to connect highly puckered [Cu{sub 2}(dps){sub 2}]{sub n} frameworks resulting in a 3D motif containing channels for guest molecule inclusion. Quantum chemistry calculation shows that the third-order NLO properties of polymer 1 are controlled by SO{sub 4}{sup 2-} groups and dps ligands, and metal ions have less influence on the third-order NLO properties.
Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones
NASA Astrophysics Data System (ADS)
Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.
2016-03-01
This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.
Using Static and Dynamic Visuals to Represent Chemical Change at Molecular Level
NASA Astrophysics Data System (ADS)
Ardac, Dilek; Akaygun, Sevil
2005-09-01
The study examines the effectiveness of visually enhanced instruction that emphasizes molecular representations. Instructional conditions were specified in terms of the visual elaboration level (static and dynamic) and the presentation mode (whole class and individual). Fifty-two eighth graders (age range 14 15 years) participated in one of the three instructional conditions (dynamic individual, dynamic whole class, and static whole class) designed to improve molecular understanding on chemical change. The results indicated significantly higher performance for students who used dynamic visuals compared with those who used static visuals. Furthermore, students who used dynamic visuals on an individual basis were more consistent in their use of molecular representations compared with students who received whole-class instruction with dynamic or static visuals. The results favour the use of dynamic visuals (preferably on an individual basis) over static visuals when presenting molecular representations. The results also imply that the effectiveness of instruction will improve if teachers challenge and question the inconsistencies and contradictions between verbal explanations and corresponding molecular representations
First- and third-order analysis of aperture stop location in infrared zoom lens systems
NASA Astrophysics Data System (ADS)
Mann, Allen
1995-10-01
First and third order principles for location of the aperture stop in infrared zoom lens systems are discussed. Factors to be considered include lens diameters, third order aberrations, chromatic correction, and illumination requirements at the image plane. In particular, the importance of aperture stop location in infrared applications is considered. An example illustrating these principles is presented.
Relativistic third-order viscous corrections to the entropy four-current from kinetic theory
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Jaiswal, Amaresh; Pal, Subrata; Ryblewski, Radoslaw
2015-02-01
By employing a Chapman-Enskog like iterative solution of the Boltzmann equation in relaxation-time approximation, we derive a new expression for the entropy four-current up to third order in gradient expansion. We show that unlike second-order and third-order entropy four-current obtained using Grad's method, there is a nonvanishing entropy flux in the present third-order expression. We further quantify the effect of the higher-order entropy density in the case of boost-invariant one-dimensional longitudinal expansion of a system. We demonstrate that the results obtained using the third-order evolution equation for the shear stress tensor, derived by employing the method of Chapman-Enskog expansion, show better agreement with the exact solution of the Boltzmann equation as well as with the parton cascade bamps, as compared to those obtained using the third-order equations from the method of Grad's 14-moment approximation.
NASA Astrophysics Data System (ADS)
Castro, Adailton N.; Almeida, Leonardo R.; Anjos, Murilo M.; Oliveira, Guilherme R.; Napolitano, Hamilton B.; Valverde, Clodoaldo; Baseia, Basílio
2016-06-01
Coumarin derivatives exist widely in nature and show a wide range of biological activities such as anti-inflammatory, anti-oxidative and anti-cancer. The structure of C11H7BrO3 has been redetermined using 3330 measured reflections with 1666 unique [Rint = 0.0088] with final indices R1 = 0.0128 [I > 2σ(I)] and wR2 = 0.0347 (all data). The bromocoumarin molecule is almost planar and has three planar dimers stabilized by interaction of type Csbnd H⋯Br and Csbnd H⋯O, which form parallel layers connected via several π-π interactions [centroid-centroid distances = 3.958(1) Å]. To provide a view of the non-linear optical behavior of third order of the crystal bromocoumarin in both cases static and dynamic, we calculate the linear polarizability (α) and the second hyperpolarizability (γ) using a new supermolecule approach combined with an iterative electrostatic scheme where the neighboring molecules are represented by point charges. The results of calculations of the HOMO and LUMO energies show the occurrence of charge transfer inside the molecule. The computational results of the second (static and dynamics) hyperpolarizabilities show the molecule exhibiting second hyperpolarizability with values different of zero, which implies a third order microscopic behavior.
Determination of third-order elastic moduli via parameters of bulk strain solitons
NASA Astrophysics Data System (ADS)
Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.; Shvartz, A. G.
2016-02-01
A method is proposed aimed for determination of the third-order elastic moduli (Murnaghan moduli) based on the estimation of measured parameters of bulk strain solitons in the three main waveguide configurations, a rod, a plate, and a shell. Formulas connecting the third-order moduli of the waveguide material and the parameters of a solitary strain wave (amplitude, velocity, full width at half-maximum) are derived. If the soliton parameters measured in three waveguide types manufactured from the same material are available, determination of the third-order elastic moduli is reduced to the solution of a system of three algebraic equations with a nondegenerate matrix.
Third-order nonlinear optical property of a polyphenylene oligomer: poly(2,5-dialkozyphenylene)
NASA Astrophysics Data System (ADS)
Wu, Jianyao; Yan, Jun; Sun, Diechi; Li, Fuming; Zhou, Luwei; Sun, Meng
1997-02-01
The third-order nonlinear optical (NLO) property of a soluble, π-backbone conjugated polymer poly(2,5-dialkozyphenylene) (for abbreviation called dialkozy-PP) is studied at the picosecond time region. The near resonance third-order hyperpolarizability γxxxx at 532 nm is 8.2×10 -30 esu, and the corresponding macroscopic third-order susceptibility χ(3)(- ω, ω, ω, - ω) and nonlinear refractive index n2 are estimated to be 6.3×10 -10 esu and 1.4×10 -8 esu, respectively. The half-width of the laser pulse is 35 ps.
Using Static and Dynamic Visuals to Represent Chemical Change at Molecular Level
ERIC Educational Resources Information Center
Ardac, Dilek; Akaygun, Sevil
2005-01-01
The study examines the effectiveness of visually enhanced instruction that emphasizes molecular representations. Instructional conditions were specified in terms of the visual elaboration level (static and dynamic) and the presentation mode (whole class and individual). Fifty-two eighth graders (age range 14-15 years) participated in one of the…
Resonant-type third-order optical nonlinearity and optical bandgap in multicomponent oxide glasses
El-Diasty, Fouad; Abdel-Baki, Manal; Bakry, Assem M.
2009-05-01
Optical nonlinearity or the nonlinear hyperpolarizability of amorphous materials (e.g., glasses) is related directly to the complex third-order susceptibility. The imaginary part of third-order susceptibility affects negatively the maximum data rate in telecommunication systems. In addition, many transition metals containing glasses have bandgaps with semiconductor-like behavior. So, due to the necessity of operation near the absorption band edge, the study of optical nonlinearity and band structure in glasses is very essential. In this work, we investigated the relationship between the imaginary third-order nonlinear susceptibility and the bandgap of some different series of prepared oxide glasses. A universal empirical formula is given to correlate the imaginary part of the third-order nonlinear susceptibility of the glasses and their optical bandgaps. The obtained nonlinearity is discussed in view of available theories and mechanisms.
Z-scan: A simple technique for determination of third-order optical nonlinearity
Singh, Vijender; Aghamkar, Praveen
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Second- and third-order elastic coefficients in polycrystalline aluminum alloy AMg6
NASA Astrophysics Data System (ADS)
Volkov, A. D.; Kokshaiskii, A. I.; Korobov, A. I.; Prokhorov, V. M.
2015-11-01
All independent second- and third-order elastic coefficients were measured in the isotropic polycrystalline aluminum alloy AMg6 (Al-Mg-Mn system) using the Ritec RAM-5000 SNAP SYSTEM ultrasonic automated complex operating in the pulsed mode. The third-order elastic coefficients were determined using the Thurston-Bragger method from the experimentally measured velocity of shear and longitudinal elastic waves in AMg6 alloy as a function of uniaxial compression.
The actual scaling of a nominally third-order Reynolds stress
Krommes, J. A. Hammett, G. W.
2014-05-15
It is shown that a particular higher-order Reynolds stress arising from a term in the third-order gyrokinetic Hamiltonian is smaller than it nominally appears to be. However, it does not follow that all third-order terms are unimportant. The discussion is relevant to the ongoing debate about the importance of higher-order terms in the gyrokinetic theory of momentum transport.
Pulse shape measurement by a non-collinear third-order correlation technique
NASA Astrophysics Data System (ADS)
Priebe, G.; Janulewicz, K. A.; Redkorechev, V. I.; Tümmler, J.; Nickles, P. V.
2006-03-01
A third-order correlator suitable for detailed shape measurements of picosecond laser pulses has been developed. The working principle in both the single shot and the scanning mode is based on detection of the phase-matched difference frequency non-collinear generated signal in a non-linear crystal. This third-order OPA correlator was applied for the characterization of the specifically shaped picosecond laser pulses from the MBI CPA Nd: glass laser system.
NASA Astrophysics Data System (ADS)
Zuo, Yanlei; Zhou, Kainan; Wu, Zhaohui; Wang, Xiao; Xie, Na; Su, Jingqin; Zeng, Xiaoming
2016-05-01
It is necessary to eliminate third-order dispersion to acquire an ultrashort pulse of less than 30 fs. We demonstrate for the first time, to the best of our knowledge, the alignment of a petawatt-class laser compressor using the equiphase lines in the spatial and spectral interference patterns. Third-order dispersion has been completely eliminated and a Fourier-transform-limited pulsewidth of 19.6 fs has been approached.
NASA Astrophysics Data System (ADS)
Gomez-Sosa, Gustavo; Beristain, Miriam F.; Ortega, Alejandra; Martínez-Viramontes, Jaquelin; Ogawa, Takeshi; Fernández-Hernández, Roberto C.; Tamayo-Rivera, Lis; Reyes-Esqueda, Jorge-Alejandro; Isoshima, Takashi; Hara, Masahiko
2012-03-01
Novel polymers containing xanthene groups with high dye concentrations were prepared, and their third order nonlinear optical properties were studied by electroabsorption spectroscopy technique. The polymers were amorphous with refractive indices above 1.6 in the non-resonant region. The UV-Visible absorption spectra indicate the fluoresceins molecules in the polymers are H-aggregated. They showed third order nonlinear susceptibility, χ(3) (-ω:ω, 0, 0), of 2.5-3.5 × 10-12 esu.
Third-order nonlinear optical property of a heterocyclic ladder polymer
NASA Astrophysics Data System (ADS)
Yan, Jun; Wu, Jianyao; Zhu, Heyuan; Zhang, Xiaotian; Sun, Diechi; Li, Fuming; Sun, Meng
1995-02-01
The third-order nonlinear optical (NLO) property of a processable, low-absorption and high thermal stable material, non-either PPQ, is studied. The near-resonance third-order hyperpolarizability γxxxx is measured to be 8.2×10 -30 esu at 532 nm, its response time is faster than 35 ps (the measurement is limited by the pulse width of the laser used). The corresponding third-order NLO susceptibility χ(3)(- ω, ω, ω, - ω) is estimated to be 3.6×10 -10 esu and the figure of merit {χ (3)}/{α}=9×10 -12 esu is larger than that of most currently known nonlinear optical polymers.
Instability of black strings in the third-order Lovelock theory
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film
Singh, Vijender; Aghamkar, Praveen
2014-03-17
We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.
Mixed Convection Peristaltic Flow of Third Order Nanofluid with an Induced Magnetic Field
Noreen, Saima
2013-01-01
This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed. PMID:24260130
Third order nonlinear optical response exhibited by mono- and few-layers of WS2
NASA Astrophysics Data System (ADS)
Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; Gutiérrez, Humberto R.; Cullen, David A.; Berkdemir, Ayse; López-Urías, Florentino; Terrones, Humberto; Terrones, Mauricio
2016-06-01
In this work, strong third order nonlinear optical properties exhibited by WS2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. We envision applications for developing all-optical bidimensional nonlinear optical devices.
A note on the nonlocal boundary value problem for a third order partial differential equation
NASA Astrophysics Data System (ADS)
Belakroum, Kheireddine; Ashyralyev, Allaberen; Guezane-Lakoud, Assia
2016-08-01
The nonlocal boundary-value problem for a third order partial differential equation d/3u (t ) d t3 +A d/u (t ) d t =f (t ), 0
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo
2003-01-01
Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.
A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Huang, Chieh-Sen; Arbogast, Todd; Hung, Chen-Hui
2014-04-01
A WENO re-averaging (or re-mapping) technique is developed that converts function averages on one grid to another grid to high order. Nonlinear weighting gives the essentially non-oscillatory property to the re-averaged function values. The new reconstruction grid is used to obtain a standard high order WENO reconstruction of the function averages at a select point. By choosing the reconstruction grid to include the point of interest, a high order function value can be reconstructed using only positive linear weights. The re-averaging technique is applied to define two variants of a classic CWENO3 scheme that combines two linear polynomials to obtain formal third order accuracy. Such a scheme cannot otherwise be defined, due to the nonexistence of linear weights for third order reconstruction at the center of a grid element. The new scheme uses a compact stencil of three solution averages, and only positive linear weights are used. The scheme extends easily to problems in higher space dimensions, essentially as a tensor product of the one-dimensional scheme. The scheme maintains formal third order accuracy in higher dimensions. Numerical results show that this CWENO3 scheme is third order accurate for smooth problems and gives good results for non-smooth problems, including those with shocks.
Second-order cascading in third-order nonlinear optical processes
NASA Astrophysics Data System (ADS)
Meredith, Gerald R.
1982-12-01
Because cascaded second-order processes make substantial qualitative and quanitative differences to the results of third-order nonlinear optical experiments, a formalism for their treatment is presented. The symmetry dictates concerning the occurrence and relationships of magnitudes of cascading are tabulated for the higher symmetry crystal classes. Angular momentum considerations are applied to the situations allowing circularly polarized light waves.
Third-order elastic constants of the alloy Fe 72Pt 28
NASA Astrophysics Data System (ADS)
Vinu, T. P.; Menon, C. S.
2004-09-01
The complete sets of second- and third-order elastic constants of the cubic Fe72Pt28 have been obtained using the strain energy density derived from interactions up to three nearest neighbours of each atom in the unit cell. The finite strain elasticity theory has been used to get the strain energy density of Fe72Pt28. The strain energy density is compared with the strain-dependent lattice energy density obtained from the continuum model approximation and the expressions for the second- and third-order elastic constants of Fe72Pt28 are given. The second-order potential parameter is deduced from the measured second-order elastic constants of Fe72Pt28 and the third-order potential parameter is estimated from the Lennard-Jones inter-atomic potential for Fe72Pt28. The inter-lattice displacements; the three independent second-order elastic constants and the six independent third-order elastic constants of Fe72Pt28 are also determined. The second-order elastic constants are compared with the experimental elastic constants of Fe72Pt28. We also study the effect of pressure on the second-order elastic constants of Fe72Pt28.
Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions
NASA Technical Reports Server (NTRS)
Bjorklund, G. C.
1975-01-01
Third-order nonlinear processes in isotropic media have been successfully used for tripling the efficiency of high-power laser radiation for the production of tunable and fixed-frequency coherent vacuum UV radiation and for up-conversion of IR radiation. The effects of focusing on two processes of this type are studied theoretically and experimentally.
Mi, Yongsheng; Liang, Pengxia; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai; Yu, Lian
2016-02-01
Recently, third-order nonlinear properties of porphyrins and porphyrin polymers and coordination compounds have been extensively studied in relation to their use in photomedicine and molecular photonics. A new functionalized porphyrin dye containing electron-rich alkynes was synthesized and further modified by formal [2+2] click reactions with click reagents tetracyanoethylene (TCNE) and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ). The photophysical properties of these porphyrin dyes, as well as the click reaction, were studied by UV/Vis spectroscopy. In particular, third-order nonlinear optical properties of the dyes, which showed typical d-π-A structures, were characterized by Z-scan techniques. In addition, the self-assembly properties were investigated through the phase-exchange method, and highly organized morphologies were observed by scanning electron microscopy (SEM). The effects of the click post-functionalization on the properties of the porphyrins were studied, and these functionalized porphyrin dyes represent an interesting set of candidates for optoelectronic device components. PMID:27308215
Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas
2014-03-01
Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.
Prediction of static contact angles on the basis of molecular forces and adsorption data
NASA Astrophysics Data System (ADS)
Diaz, M. Elena; Savage, Michael D.; Cerro, Ramon L.
2016-08-01
At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations—particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.
Second-order closure PBL model with new third-order moments: Comparison with LES data
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Minotti, F.; Ronchi, C.; Ypma, R. M.; Zeman, O.
1994-01-01
This paper contains two parts. In the first part, a new set of diagnostic equations is derived for the third-order moments for a buoyancy-driven flow, by exact inversion of the prognostic equations for the third-order moment equations in the stationary case. The third-order moments exhibit a universal structure: they all are a linear combination of the derivatives of all the second-order moments, bar-w(exp 2), bar-w theta, bar-theta(exp 2), and bar-q(exp 2). Each term of the sum contains a turbulent diffusivity D(sub t), which also exhibits a universal structure of the form D(sub t) = a nu(sub t) + b bar-w theta. Since the sign of the convective flux changes depending on stable or unstable stratification, D(sub t) varies according to the type of stratification. Here nu(sub t) approximately equal to wl (l is a mixing length and w is an rms velocity) represents the 'mechanical' part, while the 'buoyancy' part is represented by the convective flux bar-w theta. The quantities a and b are functions of the variable N(sub tau)(exp 2), where N(exp 2) = g alpha derivative of Theta with respect to z and tau is the turbulence time scale. The new expressions for the third-order moments generalize those of Zeman and Lumley, which were subsequently adopted by Sun and Ogura, Chen and Cotton, and Finger and Schmidt in their treatments of the convective boundary layer. In the second part, the new expressions for the third-order moments are used to solve the ensemble average equations describing a purely convective boundary laye r heated from below at a constant rate. The computed second- and third-order moments are then compared with the corresponding Large Eddy Simulation (LES) results, most of which are obtained by running a new LES code, and part of which are taken from published results. The ensemble average results compare favorably with the LES data.
NASA Astrophysics Data System (ADS)
Endres, F.; Steinmann, P.
2014-12-01
Molecular dynamics (MD) simulations of ferroelectric materials have improved tremendously over the last few decades. Specifically, the core-shell model has been commonly used for the simulation of ferroelectric materials such as barium titanate. However, due to the computational costs of MD, the calculation of ferroelectric hysteresis behaviour, and especially the stress-strain relation, has been a computationally intense task. In this work a molecular statics algorithm, similar to a finite element method for nonlinear trusses, has been implemented. From this, an algorithm to calculate the stress dependent continuum deformation of a discrete particle system, such as a ferroelectric crystal, has been devised. Molecular statics algorithms for the atomistic simulation of ferroelectric materials have been previously described. However, in contrast to the prior literature the algorithm proposed in this work is also capable of effectively computing the macroscopic ferroelectric butterfly hysteresis behaviour. Therefore the advocated algorithm is able to calculate the piezoelectric effect as well as the converse piezoelectric effect simultaneously on atomistic and continuum length scales. Barium titanate has been simulated using the core-shell model to validate the developed algorithm.
NASA Astrophysics Data System (ADS)
Yan, Hao-Peng; Liu, Wen-Biao
2016-08-01
Using Parikh-Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein-Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
Sharma, Mamta; Tripathi, S. K. E-mail: surya-tr@yahoo.com
2015-06-24
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.
Mitsuishi, Kazutaka; Takeguchi, Masaki; Kondo, Yukihito; Hosokawa, Fumio; Okamoto, Kimiharu; Sannomiya, Takumi; Hori, Madoka; Iwama, Takeshi; Kawazoe, Muneyuki; Furuya, Kazuo
2006-12-01
Initial results from an ultrahigh-vacuum (UHV) third-order spherical aberration (Cs) corrector for a dedicated scanning transmission electron microscopy, installed at the National Institute for Materials Science, Tsukuba, Japan, are presented here. The Cs corrector is of the dual hexapole type. It is UHV compatible and was installed on a UHV column. The Ronchigram obtained showed an extension of the sweet spot area, indicating a successful correction of the third-order spherical aberration Cs. The power spectrum of an image demonstrated that the resolution achieved was 0.1 nm. A first trial of the direct measurement of the fifth-order spherical aberration C5 was also attempted on the basis of a Ronchigram fringe measurement. PMID:19830936
NASA Astrophysics Data System (ADS)
Aghababaei, Ramin; Reddy, J. N.
2009-09-01
The third-order shear deformation plate theory of Reddy [A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745-752] is reformulated using the nonlocal linear elasticity theory of Eringen. This theory has ability to capture the both small scale effects and quadratic variation of shear strain and consequently shear stress through the plate thickness. Analytical solutions of bending and free vibration of a simply supported rectangular plate are presented using this theory to illustrate the effect of nonlocal theory on deflection and natural frequency of the plates. Finally, the relations between nonlocal third-order, first-order and classical theories are discussed by numerical results.
Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion
NASA Astrophysics Data System (ADS)
Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung
2015-12-01
We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as that of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.
The determination of third order linear models from a seventh order nonlinear jet engine model
NASA Technical Reports Server (NTRS)
Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex
1989-01-01
Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.
Mohanasubha, R.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2015-01-01
We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle–Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples.
A third-order multistep time discretization for a Chebyshev tau spectral method
NASA Astrophysics Data System (ADS)
Vreman, A. W.; Kuerten, J. G. M.
2016-01-01
A time discretization scheme based on the third-order backward difference formula has been embedded into a Chebyshev tau spectral method for the Navier-Stokes equations. The time discretization is a variant of the second-order backward scheme proposed by Krasnov et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible channel flow have been performed to compare the backward scheme to the Runge-Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge-Kutta scheme leads to a poor convergence of some third-order spatial derivatives in the direct vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The convergence at the wall is shown to be significantly improved if the backward scheme is applied.
Third-order nonlinearity of Er3+-doped lead phosphate glass
Santos, C. C.; Guedes Da Silva, Ilde; Siqueira, J. P.; Misoguti, L.; Zilio, S. C.; Boatner, Lynn A
2010-01-01
The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
NASA Technical Reports Server (NTRS)
Sanghadasa, Mohan; Shin, In-Seek; Barr, Thomas A.; Clark, Ronald D.; Guo, Huai-Song; Martinez, Angela; Penn, Benjamin G.
1998-01-01
In recent years, there has been a growing interest in the development of passive optical power limiters for the protection of the human eye and solid-state sensors from damage caused by energetic light pulses and also for other switching applications. One of the key issues involved is the search for appropriate materials that show effective reverse saturable absorption. Phthalocyanines seem to be good candidates for such applications because of their higher third order nonlinearity and the unique electronic absorption characteristics. A series of 1,4,8,11,15, 18,22,25-octa-alkoxy metallophthalocyanines containing various central metal atoms such as zinc, copper, palladium, cobalt and nickel were characterized for their third order nonlinearity and for their nonlinear absorptive properties to evaluate their suitability to function as reverse saturable absorbers.
Divertor with a third-order null of the poloidal field
Ryutov, D. D.; Umansky, M. V.
2013-09-15
A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, the configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.
Gillman, A.; Amadio, G.; Matouš, K.; Jackson, T. L.
2015-01-01
Obtaining an accurate higher order statistical description of heterogeneous materials and using this information to predict effective material behaviour with high fidelity has remained an outstanding problem for many years. In a recent letter, Gillman & Matouš (2014 Phys. Lett. A 378, 3070–3073. ()) accurately evaluated the three-point microstructural parameter that arises in third-order theories and predicted with high accuracy the effective thermal conductivity of highly packed material systems. Expanding this work here, we predict for the first time effective thermo-mechanical properties of granular Platonic solid packs using third-order statistical micromechanics. Systems of impenetrable and penetrable spheres are considered to verify adaptive methods for computing n-point probability functions directly from three-dimensional microstructures, and excellent agreement is shown with simulation. Moreover, a significant shape effect is discovered for the effective thermal conductivity of highly packed composites, whereas a moderate shape effect is exhibited for the elastic constants. PMID:27547103
Third-order 2N-storage Runge-Kutta schemes with error control
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Kennedy, Christopher A.
1994-01-01
A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.
NASA Astrophysics Data System (ADS)
Gariel, J.; Marcilhacy, G.; Santos, N. O.
2008-02-01
We extend the method of separation of variables, studied by Léauté and Marcilhacy [Ann. Inst. Henri Poincare, Sect. A 331, 363 (1979)], to obtain transcendent solutions of the field equations for stationary axisymmetric systems. These solutions depend on transcendent functions satisfying a third order differential equation. For some solutions this equation satisfies the necessary conditions, but not sufficient, to have fixed critical points.
Non-local bias contribution to third-order galaxy correlations
NASA Astrophysics Data System (ADS)
Bel, J.; Hoffmann, K.; Gaztañaga, E.
2015-10-01
We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.
Subpiosecond Third Order Nonlinear Response in Polythiophene and Thiopene Based Thin Films
NASA Technical Reports Server (NTRS)
Harris, D.; Royer, E.; Dorsinville, R.
1995-01-01
Ultrafast relaxation kinetics of the third order nonlinear susceptibility of polythiophene and polycondensed thiophene-based polymer was determined by the forward degenerate four-wave mixing technique. Deep into the absorption band the nonlinear response shows only a fast component (less than 900 fs at 587 nm) while at the edge of the absorption band at 642 nm a much slower and complex decay was measured.
Third-order accurate entropy-stable schemes for initial-boundary-value conservation laws
NASA Astrophysics Data System (ADS)
Svärd, Magnus
2012-08-01
We consider initial-boundary-value conservation laws with the objective to obtain high-order approximations. We study two different approaches to obtain third-order accuracy, local entropy stability and a global bound on the entropy. The results are applicable to, for example the Euler equations of gas dynamics, for which we present numerical results demonstrating the robustness and accuracy of the scheme.
Transformation properties and third-order aberrations of thin dynamic χ(2) holograms
NASA Astrophysics Data System (ADS)
Miloglyadov, E. V.; Stasel'ko, D. I.
2016-07-01
The results of a theoretical study of the transformation properties of thin dynamic χ(2) holograms for all frequency mixing versions are generalized, and a general pattern of transformations of reconstructed images (recorded and read at different frequencies) is developed. The principles of ray geometric construction of reconstructed images are determined. The theory of thin dynamic χ(2) holograms is extended to the range of third-order aberrations.
Chaotic attractors based on unstable dissipative systems via third-order differential equation
NASA Astrophysics Data System (ADS)
Campos-Cantón, E.
2016-07-01
In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.
NASA Astrophysics Data System (ADS)
Podesta, J. J.
It is known that Kolmogorov's four-fifths law for statistically homogeneous and isotropic turbulence can be generalized to anisotropic turbulence. This fundamental result for homogeneous anisotropic turbulence says that in the inertial range the divergence of the vector third-order moment |v(r) is constant and is equal to -4, where is the dissipation rate of the turbulence. This law can be extended to incompressible magnetohydrodyamic (MHD) turbulence where statistical isotropy is often not valid due, for example, to the presence of a large-scale magnetic field. Laws for anisotropic incompressible MHD turbulence were first derived by Politano and Pouquet. In this paper, the laws for vector third-order moments in homogeneous non-isotropic incompressible MHD turbulence are derived by a technique due to Frisch that clarifies the relationship between the energy flux in Fourier space and the vector third-order moments in physical space. This derivation is different from the original derivation of Politano and Pouquet which is based on the Kn-Howarth equation, and provides some new physical insights. Separate laws are derived for the cascades of energy, cross-helicity and magnetic-helicity, the three ideal invariants of incompressible MHD for flows in three dimensions. These laws are of fundamental importance in the theory of MHD turbulence where non-isotropic turbulence is much more prevalent than isotropic turbulence.
Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.
Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank
2005-06-27
We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium. PMID:19498473
NASA Astrophysics Data System (ADS)
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2016-06-01
The symplectic integration method is popular in high-accuracy numerical simulations when discretizing temporal derivatives; however, it still suffers from time-dispersion error when the temporal interval is coarse, especially for long-term simulations and large-scale models. We employ the inverse time dispersion transform (ITDT) to the third-order symplectic integration method to reduce the time-dispersion error. First, we adopt the pseudospectral algorithm for the spatial discretization and the third-order symplectic integration method for the temporal discretization. Then, we apply the ITDT to eliminate time-dispersion error from the synthetic data. As a post-processing method, the ITDT can be easily cascaded in traditional numerical simulations. We implement the ITDT in one typical exiting third-order symplectic scheme and compare its performances with the performances of the conventional second-order scheme and the rapid expansion method. Theoretical analyses and numerical experiments show that the ITDT can significantly reduce the time-dispersion error, especially for long travel times. The implementation of the ITDT requires some additional computations on correcting the time-dispersion error, but it allows us to use the maximum temporal interval under stability conditions; thus, its final computational efficiency would be higher than that of the traditional symplectic integration method for long-term simulations. With the aid of the ITDT, we can obtain much more accurate simulation results but with a lower computational cost.
NASA Astrophysics Data System (ADS)
Rahmani, O.; Jandaghian, A. A.
2015-06-01
In this paper, a general third-order beam theory that accounts for nanostructure-dependent size effects and two-constituent material variation through the nanobeam thickness, i.e., functionally graded material (FGM) beam is presented. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. A detailed derivation of the equations of motion based on Eringen nonlocal theory using Hamilton's principle is presented, and a closed-form solution is derived for buckling behavior of the new model with various boundary conditions. The nonlocal elasticity theory includes a material length scale parameter that can capture the size effect in a functionally graded material. The proposed model is efficient in predicting the shear effect in FG nanobeams by applying third-order shear deformation theory. The proposed approach is validated by comparing the obtained results with benchmark results available in the literature. In the following, a parametric study is conducted to investigate the influences of the length scale parameter, gradient index, and length-to-thickness ratio on the buckling of FG nanobeams and the improvement on nonlocal third-order shear deformation theory comparing with the classical (local) beam model has been shown. It is found out that length scale parameter is crucial in studying the stability behavior of the nanobeams.
Third-order nonlinear optical properties of methylammonium lead halide perovskite films
Johnson, Justin C.; Li, Zhen; Ndione, Paul F.; Zhu, Kai
2016-01-01
We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due to the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.
Relationship between second- and third-order acoustic nonlinear parameters in relative measurement.
Ren, Gang; Kim, Jongboem; Jhang, Kyung-Young
2015-02-01
The higher-order acoustic nonlinear parameters are considered effective damage indices in the field of nondestructive evaluation (NDE). They are defined by using the displacement amplitudes of the fundamental frequency and the harmonics, which are called the absolute nonlinear parameters. Generally, however, it is difficult to measure the very small displacement amplitudes of high-frequency harmonics. Therefore, the simplified parameters using the detected wave signal amplitudes, which are known as the relative nonlinear parameters, have been widely used, although their applications are limited to the relative comparison of before and after damage of a single material under consistent experimental circumstances. In this paper, in order to make clear the concept of relative parameter, we presented first that the relative ratio of the simplified parameters is identical to that of the absolute parameters when the detected signal amplitudes are linearly proportional to the actual displacement amplitudes with respect to the fundamental frequency and the harmonics. In addition, the new relationship between the relative ratio of simplified second-order parameter and the relative ratio of simplified third-order parameter was derived from the relationship between the absolute second- and third-order parameters. This new relationship was successfully verified based on experimental results obtained from Al 6061-T6 processed for different heat treatment times, where it was confirmed in advance that the PZT detection signal amplitudes at the fundamental frequency and its second- and third-order harmonics were linearly proportional to the displacement amplitudes. PMID:25455194
NASA Astrophysics Data System (ADS)
Rode, Michał F.; Jankowska, Joanna; Sobolewski, Andrzej L.
2016-04-01
In this work, we present a reversible ferroelectric molecular switch controlled by an external electric field. The studied (2Z)-1-(6-((Z)-2-hydroxy-2-phenylvinyl)pyridin-3-yl)-2-(pyridin-2(1H)-ylidene)ethanone (DSA) molecule is polarized by two uniaxial intramolecular hydrogen bonds. Two protons can be transferred along hydrogen bonds upon an electric field applied along the main molecular axis. The process results in reversion of the dipole moment of the system. Static ab initio and on-the-fly dynamical simulations of the DSA molecule placed in an external electric field give insight into the mechanism of the double proton transfer (DPT) in the system and allow for estimation of the time scale of this process. The results indicate that with increasing strength of the electric field, the step-wise mechanism of DPT changes into the downhill barrierless process in which the synchronous and asynchronous DPTs compete with each other.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-03-01
We perform a meticulous analysis of profiles of third-order nonlinear optical susceptibility (TONOS) of impurity doped quantum dots (QDs) in the presence and absence of noise. We have invoked Gaussian white noise in the present study and noise has been introduced to the system additively and multiplicatively. The QD is doped with a Gaussian impurity. A magnetic field applied perpendicularly serves as a confinement source and the doped system has been exposed to a static external electric field. The TONOS profiles have been monitored against a continuous variation of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, Al concentration, dopant potential, relaxation time, anisotropy, and noise strength assume different values. Moreover, the influence of mode of introduction of noise (additive/multiplicative) on the TONOS profiles has also been addressed. The said profiles are found to be consisting of interesting observations such as shift of TONOS peak position and maximization/minimization of TONOS peak intensity. The presence of noise alters the features of TONOS profiles and sometimes enhances the TONOS peak intensity from that of noise-free state. Furthermore, the mode of application of noise also often tailors the TONOS profiles in diverse fashions. The observations accentuate the possibility of tuning the TONOS of doped QD systems in the presence of noise.
Third-order theory of the Risley-prism-based beam steering system.
Li, Yajun
2011-02-10
Nonparaxial ray tracing is performed to investigate the field scanned out by a single beam through two rotatable thick prisms with different parameters, and a general solution is obtained and then expanded into a power series to establish the third-order theory for Risley prisms that paves the way to investigate topics of interest such as optical distortions in the scan pattern and an analytical solution of the inverse problem of a Risley-prism-based laser beam steering system; i.e., the problem is concerned with how to direct a laser beam to any specified direction within the angular range of the system. PMID:21343989
The third-order nonlinear optical properties of unsymmetrical trimethine cyanine dyes
NASA Astrophysics Data System (ADS)
He, Xuemei; Yang, Junyi; Fang, Yu; Zhou, Feng; Song, Yinglin
2015-10-01
In this paper, we investigate the nonlinear optical properties of unsymmetrical trimethine cyanine dyes(ethyl-4-(3-(3-ethylbenzo[d]xazole-2(3H)-ylidene)prop-1-en-1-yl)quinolin-1-iumiodidebenzo[d]xa zole group) by conducting Z-scan technique at 532 nm and time-resolved pump probe with phase object (POPP). Pronounced reverse saturable absorption (RSA) and positive refraction are observed. Moreover, the relevant third-order NLO photo-physical parameters of unsymmetrical trimethine cyanine dyes determined unambiguously.
Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E.
1989-01-01
Chloride and nitrate were coinjected into the surface waters of a third-order stream for 20 d to exmaine solute retention, and the fate of nitrate during subsurface transport. A series of wells (shallow pits) 0.5-10 m from the adjacent channel were sampled to estimate the lateral interflow of water. Two subsurface return flows beneath the wetted channel were also examined. Results indicated that the capacity of the hyporheic zone for transient solute storage and as potential biological habitat varies with channel morphology, bed roughness, and permeability. A conceptual model that considers the groundwater-stream water interface as the fluvial boundary is proposed. -from Authors
Third-order elastic constants of diamond determined from experimental data
NASA Astrophysics Data System (ADS)
Winey, J. M.; Hmiel, A.; Gupta, Y. M.
2016-06-01
The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.
Third-Order Nonlinear Optical Properties and Optical Switching of Palladium (I) Complex
NASA Astrophysics Data System (ADS)
Manjunatha, K. B.; Dileep, R.; Vikas, M. Shelar; Umesh, G.; Satyanarayan, M. N.; Bhat, B. Ramachandra
2011-10-01
We report the third-order nonlinear optical, optical power limiting and optical switching study of palladium-N-(2-pyridyl)-N'- (5-amino salicylidene) hydrazine triphenylphosphine, using Z-scan technique and pump-probe technique. The measured nonlinear refractive index is n2 = -6.022×10-9 esu. The complex exhibits the reverse saturable absorption (RSA), the nonlinear absorption coefficient of β = 10.748×10-9 m/W. The good optical power limiting and optical switching behavior were observed in this complex. These suggest that this complex is a potential molecule for photonic applications.
Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids
NASA Astrophysics Data System (ADS)
Fujiwara, Masazumi; Yamauchi, Kensei; Sugisaki, Mitsuru; Yanagi, Kazuhiro; Gall, Andrew; Robert, Bruno; Cogdell, Richard J.; Hashimoto, Hideki
2008-10-01
We show that a very large enhancement of third-order optical nonlinearity (γ) of π -conjugated molecules can be realized without a major redshift of the absorption spectrum that disturbs optical transparency in the visible region. By changing the number (n) of C=C bonds of β carotene (n=11) from 7 to 15, a remarkable 3.4-fold increase in the γ value was observed when n=15 relative to that of β carotene. This enhancement of γ mainly originates from three-photon resonance of a lowest optically allowed excited state. The controversial higher-lying essential state is not important for generating the large value of γ .
Third order nonlinearity in pulsed laser deposited LiNbO3 thin films
NASA Astrophysics Data System (ADS)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal; Raju, K. C. James
2016-05-01
Lithium niobate (LiNbO3) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes
NASA Astrophysics Data System (ADS)
Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.
2012-12-01
In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.
Computation of turbulent pipe and duct flow using third order upwind scheme
NASA Technical Reports Server (NTRS)
Kawamura, T.
1986-01-01
The fully developed turbulence in a circular pipe and in a square duct is simulated directly without using turbulence models in the Navier-Stokes equations. The utilized method employs a third-order upwind scheme for the approximation to the nonlinear term and the second-order Adams-Bashforth method for the time derivative in the Navier-Stokes equation. The computational results appear to capture the large-scale turbulent structures at least qualitatively. The significance of the artificial viscosity inherent in the present scheme is discussed.
X-ray third-order nonlinear dynamical diffraction in a crystal
Balyan, M. K.
2015-12-15
The dynamic diffraction of an X-ray wave in a crystal with a third-order nonlinear response to external field strength has been theoretically investigated. General equations for the wave propagation in crystal and nonlinear Takagi equations for both ideal and deformed crystals are derived. Integrals of motion are determined for the nonlinear problem of dynamic diffraction. The results of the numerical calculations of reflectivity in the symmetric Laue geometry for an incident plane wave and the intensity distributions on the output crystal surface for a point source are reported as an example.
On scaling properties of crossing the third-order resonance in particle accelerator
Lee, S.Y.; Pang, X.; Jing, Y.; Luo, T.; Ng, K.Y.; /Fermilab
2011-12-01
We study effects of charged particle beams crossing a third-order resonance in an accelerator. The distortion of invariant torus during the resonance crossing is used to set 20% emittance growth or 2.5% of trap fraction as the critical resonance strength. We find a simple scaling law for the critical resonance strength vs the tune ramp rate and the initial emittance. The scaling law can be derived by solving Hamilton's equation of motion with stationary phase condition. Such scaling law can be used to evaluate the performance in high power accelerators, such as the FFAG and cyclotron.
Improved electronic properties from third-order SCC-DFTB with cost efficient post-SCF extensions.
Kaminski, Steve; Gaus, Michael; Elstner, Marcus
2012-12-01
The present work outlines the implementation and performance of two cost efficient post-SCF extensions into the third-order SCC-DFTB code. The first one, the charge model 3 (CM3), corrects for errors in bond dipoles for an improved description of molecular charge distribution as compared to the standard Mulliken partitioning scheme. The second one focuses on the response of the charge density, that is, the electronic molecular polarizability, described inaccurately from SCC-DFTB due to the usage of a minimal atomic orbital basis. Here, a variational approach, based on scaled dipole integrals, was implemented, which clearly outperforms standard finite electric field approaches for polarizability calculations by approximately 1 order of magnitude. Both extensions in the present work rely on a set of empirical parameters, which were fitted against 112 organic molecules to match a reference data set from full density functional calculations with a large basis. As an achievement, notably improved electronic properties, that is, molecular dipole moments and polarizabilities, result from SCC-DFTB calculations at negligible additional computational cost. Furthermore, the accuracy of infrared and Raman intensities was tested as first-order derivatives of the new dipoles and polarizabilities as a function of normal mode vibrations. As a result, the current implementations cannot contribute to an improved prediction of relative intensity pattern from SCC-DFTB as compared to ab initio reference data. PMID:23167841
MDSLB: A new static load balancing method for parallel molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Wu, Yun-Long; Xu, Xin-Hai; Yang, Xue-Jun; Zou, Shun; Ren, Xiao-Guang
2014-02-01
Large-scale parallelization of molecular dynamics simulations is facing challenges which seriously affect the simulation efficiency, among which the load imbalance problem is the most critical. In this paper, we propose, a new molecular dynamics static load balancing method (MDSLB). By analyzing the characteristics of the short-range force of molecular dynamics programs running in parallel, we divide the short-range force into three kinds of force models, and then package the computations of each force model into many tiny computational units called “cell loads”, which provide the basic data structures for our load balancing method. In MDSLB, the spatial region is separated into sub-regions called “local domains”, and the cell loads of each local domain are allocated to every processor in turn. Compared with the dynamic load balancing method, MDSLB can guarantee load balance by executing the algorithm only once at program startup without migrating the loads dynamically. We implement MDSLB in OpenFOAM software and test it on TianHe-1A supercomputer with 16 to 512 processors. Experimental results show that MDSLB can save 34%-64% time for the load imbalanced cases.
Dehghani, M.H.; Mann, R.B.
2006-05-15
We generalize the quasilocal definition of the stress-energy tensor of Einstein gravity to the case of third order Lovelock gravity, by introducing the surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of third order Lovelock gravity with zero curvature boundary at constant t and r. Then, we compute the charged rotating solutions of this theory in n+1 dimensions with a complete set of allowed rotation parameters. These charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are suitably chosen. We compute temperature, entropy, charge, electric potential, mass and angular momenta of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.
Perception of second- and third-order orientation signals and their interactions
Victor, Jonathan D.; Thengone, Daniel J.; Conte, Mary M.
2013-01-01
Orientation signals, which are crucial to many aspects of visual function, are more complex and varied in the natural world than in the stimuli typically used for laboratory investigation. Gratings and lines have a single orientation, but in natural stimuli, local features have multiple orientations, and multiple orientations can occur even at the same location. Moreover, orientation cues can arise not only from pairwise spatial correlations, but from higher-order ones as well. To investigate these orientation cues and how they interact, we examined segmentation performance for visual textures in which the strengths of different kinds of orientation cues were varied independently, while controlling potential confounds such as differences in luminance statistics. Second-order cues (the kind present in gratings) at different orientations are largely processed independently: There is no cancellation of positive and negative signals at orientations that differ by 45°. Third-order orientation cues are readily detected and interact only minimally with second-order cues. However, they combine across orientations in a different way: Positive and negative signals largely cancel if the orientations differ by 90°. Two additional elements are superimposed on this picture. First, corners play a special role. When second-order orientation cues combine to produce corners, they provide a stronger signal for texture segregation than can be accounted for by their individual effects. Second, while the object versus background distinction does not influence processing of second-order orientation cues, this distinction influences the processing of third-order orientation cues. PMID:23532909
Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity
NASA Astrophysics Data System (ADS)
Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein
2015-12-01
In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.
Regenerator performance in a Vuilleumier refrigerator compared with a third-order numerical model
NASA Technical Reports Server (NTRS)
Bradley, P. E.; Radebaugh, Ray; Gary, John
1991-01-01
A three-stage Vuilleumier refrigerator was used to measure the performance of various third stage regenerators. The refrigerator operates between 2.5 and 5.0 Hz and, depending on the material used in the third stage regenerator, achieves temperatures of 8 to 20 K at the cold end of the third stage. This paper presents a comparison of regenerator performance for four regenerator materials: 229 micron diameter spheres of Pb(+)5 pct Sb, 229 micron diameter spheres of brass, 216 micron irregularly-shaped GdRh powder, and a mixture of 229 microns and 762 microns diameter spheres of Pb(+5) pct Sb. The experimental results are compared with a first-order model that neglects the void volume within the regenerator and with a third-order model that considers the effect of pressure oscillations in the regenerator void volume. Experimental results indicate that regenerator losses are dominated by the pressure oscillation in the void volume rather than the mass flow through the temperature gradient in the regenerator. These results are consistent with the third-order numerical model. This model shows that the heat capacity of the gas in the void space as well as the heat capacity of the matrix influences the regenerator performance.
Growth and characterization of potassium acid phthalte for third order NLO applications
NASA Astrophysics Data System (ADS)
Sivakumar, B.; Raj, S. Gokul; Kumar, G. Ramesh; Mohan, R.
2013-02-01
Nonlinear optical crystals of potassium acid phthalate (COOK C6H4 COOH)-KAP were grown from aqueous solution. Transparent crystals of size (21×17×4) mm3 with well defined morphology were grown from slow cooling techniques. The grown crystals were characterized by single crystal X-ray diffraction. The crystal structure of Potassium Acid Phthalate C8H5K+O4 was orthorhombic with the following unit-cell dimensions at 298(2) K; a = 9.5970(3) Å; b = 13.2869(5) Å; c = 6.4643(3) Å; α = 90°; β = 90°; γ = 90°; with a space group PCa21. Spectral analysis were carried out to investigate confirm its presence of various functional groups and to study the optical absorption properties. Third order nonliner studies have also been studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results have been discussed in detail.
Dhanalakshmi, B.; Ponnusamy, S.; Muthamizhchelvan, C.; Subhashini, V.
2015-10-15
Highlights: • EDA4NPH crystal possesses negative nonlinear refractive index. • The crystal exhibits high third-order NLO susceptibility. • Wide transparency of the crystal makes it suitable for NLO applications. • Dielectric studies substantiate the suitability for electro-optic applications. • The crystal possesses suitable mechanical strength for device fabrication. - Abstract: Bulk crystals of the charge-transfer complex, ethylenediamine-4-nitrophenolate monohydrate, were grown by slow solvent evaporation method from aqueous solution at room temperature. The X-ray diffraction measurements showed that the crystal belongs to centrosymmetric space group C2/c of monoclinic system. The functional groups in the complex were identified using FTIR, FTRaman and FTNMR analyses. The Z-scan measurements revealed the negative nonlinear refractive index of the crystal. The nonlinear absorption coefficient and third order nonlinear optical susceptibility calculated from the measurements were −3.5823 × 10{sup −3} cm/W and 2.3762 × 10{sup −6} esu respectively. The crystal was shown to be highly transparent above 366 nm by UV–vis spectroscopy and a yellow fluorescence was observed from PL spectrum. The TG–DTA and DSC analyses showed that the crystal is thermally stable up to 117.4 °C. The crystals were characterized by dielectric, etching and microhardness studies.
Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena
NASA Astrophysics Data System (ADS)
Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory
2012-02-01
Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.
Time-Resolved Third Order Harmonic Generation on Shocked Silicon Crystals
NASA Astrophysics Data System (ADS)
Dalton, D. A.; Grigsby, W.; Quevedo, H.; Bernstein, A. C.; Ditmire, T.
2008-04-01
We are using nonlinear optical diagnostics to probe the shock-induced melt transition in silicon. Pump-probe shock experiments on [100] Si crystals were carried out using the Ti:Sapphire THOR laser (800 nm, 1 J, 600 ps-chirped, 40 fs-compressed). Two dimensional interferometry was used to map rear surface displacement at discrete times to infer a peak shock pressure. Third order harmonic generation (THG) is used to probe the bulk material's long range order, while a reflectivity diagnostic is used in conjuction with the THG diagnostic to determine it's validity. Preliminary evidence shows the anomalous response that at shock pressures <100 kbar (˜elastic limit) the THG signal does not decrease; however, at higher pressures of ˜300-400 kbar the THG signal falls dramatically indicating fast crystalline disordering.
NASA Astrophysics Data System (ADS)
Zhong, Jianghong; Tian, Jie; Yang, Xin; Qin, Chenghu
2011-03-01
Applying Cerenkov luminescence tomography (CLT) to localizing Cerenkov light sources in situ is still in its nascent stage. One of the obstacles hindering the development of the CLT is the lack of dedicated imaging mode. In this contribution, the paper presented a Cerenkov optical imaging mode, in which the propagation of optical photons inside tissues generated by the Vavilov-Cerenkov effect is modeled based on simplified spherical harmonics approximation. As a significantly more transport-like and computational-efficient approximation theory, the performance of the third-order simplified spherical harmonics approximation (SP3) in the CLT forward is investigated in stages. Finally, the performance of the proposed forward model is validated using numerical phantoms and compared with the simulation data based on the Monte Carlo method.
Second- and third-order upwind difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Yang, J. Y.
1984-01-01
Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.
Retention and transport of nutrients in a third-order stream: channel processes
Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E.
1989-01-01
Chloride was injected as a conservative tracer with nitrate to examine nitrate retention (storage plus biotic uptake) and transport in a 327-m reach of a third-order stream draining a forested basin in northwestern California. Prior to injections, diel patterns of nutrient concentrations were measured under background conditions. Nitrate concentration of stream water increased downstream, indicating that the reach was a source of dissolved inorganic nitrogen to downstream communities under background, low-flow conditions, despite uptake by photoautotrophs. At the onset of continuous solute injection over a 10-d period, timing the passage of the solute front indicated that storage dominated nitrate retention. Instantaneous concentration differences at the base of the reach at hour 24 indicated that biotic uptake accounted for 13% of the nitrate amendment while hydrologic storage constituted 29%. -from Authors
Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses
NASA Astrophysics Data System (ADS)
Almeida, J. M. P.; de Boni, L.; Hernandes, A. C.; Mendonça, C. R.
2011-08-01
We have determined two-photon absorption and nonlinear refraction spectra of the 50BO1.5 - (50-x)PbF2 - xPbO glasses (with x = 25, 35, 50 cationic %) at the range of the 470 and 1550 nm. The replacement of fluor atoms by oxygen leads to an increase in the third-order susceptibility, due to the formation of non-bridging oxygens (NBO). The nonlinear index of refraction is one order of magnitude higher than the one for fused silica, and it increases almost twice for the sample with x = 50. This sample has also shown promising features for all-optical switching as well as for optical limiting.
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials
Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.
2016-01-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2. PMID:27335268
Correcting variable third-order astigmatism introduced by conformal aspheric surfaces
NASA Astrophysics Data System (ADS)
Whalen, Michael R.
1998-09-01
Conformal dome surfaces may enhance the overall performance of missile systems employing optical sensors by providing a more aerodynamically shaped airframe, however realistic implementation of these highly aspheric surfaces is currently limited by the severe image aberrations they introduce to the transmitted wavefront. This paper proposes an optical correction technique designed to combat the large magnitude and varying nature of third order astigmatism introduced by conformal missile domes. The newly developed technique utilizes axial translation of crossed cylindrical elements to provide variable astigmatism correction as a function of sensor gimbal angle. Theoretical motivation for the optical correction technique is provided, and its performance is assessed in a sample conformal dome and optical sensor systems.
A third-order-accurate upwind scheme for Navier-Stokes solutions at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Agarwal, R. K.
1981-01-01
A third-order-accurate upwind scheme is presented for solution of the steady two-dimensional Navier-Stokes equations in stream-function/vorticity form. The scheme is found to be accurate and stable at high Reynolds numbers. A series of test computations is performed on flows with large recirculating regions. In particular, highly accurate solutions are obtained for flow in a driven square cavity up to Reynolds numbers of 10,000. These computations are used to critically evaluate the accuracy of other existing first- and second-order-accurate upwind schemes. In addition, computations are carried out for flow in a channel with symmetric sudden expansion, flow in a channel with a symmetrically placed blunt base, and the flowfield of an impinging jet. Good agreement is obtained with the computations of other investigators as well as with the available experimental data.
Application of a Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings
NASA Technical Reports Server (NTRS)
Bangalore, A.; Phaengsook, N.; Sankar, L. N.
1994-01-01
A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given.
Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire.
Wang, Kai; Zhou, Jun; Yuan, Longyan; Tao, Yuting; Chen, Jian; Lu, Peixiang; Wang, Zhong Lin
2012-02-01
We report a systematic study about the anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire by using the Z-scan method with a femtosecond laser. The two-photon absorption coefficient and nonlinear refraction index, which are measured as a function of polarization angle and sample orientation angle, exhibit oscillation curves with a period of π/2, indicating a highly polarized optical nonlinearity of the ZnO micro/nanowire. Further studies show that the polarized optical nonlinearity of the ZnO micro/nanowire is highly size-dependent. The results indicate that ZnO nanowire has great potential in applications of nanolasers, all-optical switching and polarization-sensitive photodetectors. PMID:22214490
Research on third-order susceptibility tensor of silicon at telecom wavelength
NASA Astrophysics Data System (ADS)
Zhang, Yu-Hong; Liu, Hang; Chen, Zhan-Guo; Jia, Gang; Ren, Ce
2010-10-01
In this paper, the electro-induced birefringence based on Kerr effect and Franz-Keldysh effect in bulk silicon crystal at 1.3μm wavelengths has been measured. By using Kerr effect, the third-order susceptibility tensor of bulk crystalline silicon has been calculated.The two independent tensor of silicon X (3) susceptibility can be obtained by calculation (3) 6.22 (1 2.2%) 10 -20 m2 V2 and Xxyxy(3) = and xxxx(3) 9.13 (1 +/-2.2%) 10-20 m2 V 2 = m2/V2. The research can drive the silicon utility in the photo-electricity field.
Third-order nonlinear optical properties of phthalocyanines in solution and in polystyrene films
NASA Astrophysics Data System (ADS)
Reeves, Roger J.; Powell, Richard C.; Chang, Young H.; Ford, Warren T.; Zhu, Weiming
1996-01-01
Degenerate four-wave mixing (DFWM) measurements of third-order nonlinear optical (NLO) coefficients of metal-free, Cu, Pt, Pb and Bi octa(2-ethylhexyloxy) phthalocyanines (MPc's) were done with 20 ps duration laser pulses under resonant conditions at 532 nm in polystyrene films and under nonresonant conditions at 1064 nm in chloroform solutions. The NLO coefficients ξxxxx(3) show saturation with increasing incident intensity and no strong dependence on the central metal atom of the MPc below the saturation intensity. Optical delays of the probe-pulse up to 3 ns show an acoustic phonon response in both the polystyrene films and the chloroform solutions. An intensity-dependent absorption coefficient was measured by a pump/probe experiment and used in a simple model to qualitatively account for the saturation of ξ(3) measured by DFWM.
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials.
Shorokhov, Alexander S; Okhlopkov, Kirill I; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R; Pertsch, Thomas; Fedyanin, Andrey A
2016-01-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial's χ((3)) was observed; the all-optical χ((3)) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm(2). PMID:27335268
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials
NASA Astrophysics Data System (ADS)
Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.
2016-06-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2.
NASA Astrophysics Data System (ADS)
Kwong, Nai-Hang; Takayama, Ryu; Binder, Rolf H.
2001-07-01
We present a microscopic theory of the coherent third order optical response of semiconductor quantum well micro cavities, specialized to the four-wave-mixing configuration in the spectral vicinity of the lowest exciton frequency. The theory is that of a quantum mechanical many-electron system dipole-coupled to a classical radiation field. The many-electron dynamics is treated within the dynamics- controlled-truncation formalism restricted to the 1s-exciton subspace. Within this limitation, al Coulomb correlation effects are included, resulting in an effective theory of exciton-polariton scattering. The theory is evaluated for various polarization configurations each of which depends differently on the underlying many-body effects, such as phase-space filing, Hartree-Fock exchange, and two-exciton correlations.
A fluctuation method to calculate the third order elastic constants in crystalline solids
Chen, Zimu; Qu, Jianmin
2015-05-28
This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.
Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)
2015-01-01
A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.
Problems in simulating the stratocumulus-topped boundary layer with a third-order closure model
NASA Technical Reports Server (NTRS)
Moeng, C.-H.; Randall, D. A.
1984-01-01
The Andre et al. (1976, 1978) third-order closure model, in which the time rate of change terms, the relaxation and rapid effects for pressure-related terms, and the clipping approximation are used along with the quasi-normal closure, is invoked in the study of turbulence in a cloudy layer that is radiatively cooled from above. A spurious oscillation whose greatest amplitude lies near the inversion is shown by analysis to arise from the mean gradient and buoyancy terms of the triple-moment equations. An attempt is made to damp the oscillation through the introduction of diffusion terms into the triple-moment equations. The results obtained are noted to be sensitive to the ad hoc eddy coefficient applied in the third-moment equations.
Third-order perturbation theory for van der Waals interaction coefficients
Tang Liyan; Shi Tingyun; Yan Zongchao; Mitroy, J.
2011-11-15
The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C{sub 9}/R{sup 9} interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C{sub 9} coefficient are given for the homonuclear alkali-metal dimers. The size of the C{sub 9}:C{sub 3} dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C{sub 11} and C{sub 13} coefficients between two helium atoms and lithium atoms in their ground states are also given.
NASA Astrophysics Data System (ADS)
Castro, Hemerson P. S.; Wender, Heberton; Alencar, Márcio A. R. C.; Teixeira, Sergio R.; Dupont, Jairton; Hickmann, Jandir M.
2013-11-01
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
Design constraints for third-order PLL nodes in master-slave clock distribution networks
NASA Astrophysics Data System (ADS)
Bueno, A. M.; Rigon, A. G.; Ferreira, A. A.; Piqueira, José R. C.
2010-09-01
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results.
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M.; Wender, Heberton; Teixeira, Sergio R.; Dupont, Jairton
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
Third order optical nonlinearity and optical limiting studies of propane hydrazides
NASA Astrophysics Data System (ADS)
Naseema, K.; Manjunatha, K. B.; Sujith, K. V.; Umesh, G.; Kalluraya, Balakrishna; Rao, Vijayalakshmi
2012-09-01
Four hydrazones, 2-(4-isobutylphenyl)-N'-[phenylmethylene] propanehydrazide (P1), 2-(4-isobutylphenyl)-N'-[(4- tolyl)methylene] propane hydrazide (P2), 2-(4-isobutylphenyl)-N'-[1-(4- chlorophenyl)ethylidene] propanehydrazide (P3) and 2-(4-isobutylphenyl)-N'-[1-(4-Nitrrophenyl)ethylidene] propane hydrazide (P4) were synthesized and their third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. The measurement on the compound-P1 is not reported as there is no detectable nonlinear response. Open aperture data of the other three compounds indicate two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The values obtained are comparable with the values obtained for 4-methoxy chalcone derivatives and dibenzylideneacetone derivatives. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound-P4 are 1.42 cm/GW, -0.619 × 10-11 esu, -0.663 × 10-13 esu, 0.22 × 10-13 esu, 0.34 × 10-32 esu and 0.33 respectively. Further the compound-P4 exhibited the best optical power limiting behavior at 532 nm among the compounds studied. Our studies suggest that compounds P2, P3 and P4 are potential candidates for the optical device applications such as optical limiters and optical switches.
Third order wave equation in Duffin-Kemmer-Petiau theory: Massive case
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Markova, M. A.; Bondarenko, A. I.
2015-11-01
Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a more consistent approach to the derivation of the third order wave equation obtained earlier by M. Nowakowski [1] on the basis of heuristic considerations is suggested. For this purpose an additional algebraic object, the so-called q -commutator (q is a primitive cubic root of unity) and a new set of matrices ημ instead of the original matrices βμ of the DKP algebra are introduced. It is shown that in terms of these ημ matrices we have succeeded in reducing a procedure of the construction of cubic root of the third order wave operator to a few simple algebraic transformations and to a certain operation of the passage to the limit z →q , where z is some complex deformation parameter entering into the definition of the η -matrices. A corresponding generalization of the result obtained to the case of the interaction with an external electromagnetic field introduced through the minimal coupling scheme is carried out and a comparison with M. Nowakowski's result is performed. A detailed analysis of the general structure for a solution of the first order differential equation for the wave function ψ (x ;z ) is performed and it is shown that the solution is singular in the z →q limit. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
Sakai, Masatoshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro
2005-03-01
Wire-like crystals of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) charge-transfer complexes were grown under a static electric field by employing electric-field assisted evaporation. TTF-TCNQ molecular wires grew from the edges of two gold electrodes opposite to each other along the electric lines of force, and finally make a connection at their front end to form a single wire. Self-organization of the wire bridge is derived from a higher local electric field between the tips of the opposing molecular wires. Oriented molecular wires, which have diffuse branches, exhibit the effects of a local electric field. Preferential growth of TCNQ at the tip of the molecular wire during coevaporation of TTF and TCNQ is clearly revealed by microscopic Raman spectroscopy. Asymmetrical growth of coevaporated TTF-TCNQ wire under a static electric field is dominated by the drift motion of TCNQ{sup -}.
NASA Astrophysics Data System (ADS)
Sakai, Masatoshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro
2005-03-01
Wire-like crystals of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) charge-transfer complexes were grown under a static electric field by employing electric-field assisted evaporation. TTF-TCNQ molecular wires grew from the edges of two gold electrodes opposite to each other along the electric lines of force, and finally make a connection at their front end to form a single wire. Self-organization of the wire bridge is derived from a higher local electric field between the tips of the opposing molecular wires. Oriented molecular wires, which have diffuse branches, exhibit the effects of a local electric field. Preferential growth of TCNQ at the tip of the molecular wire during coevaporation of TTF and TCNQ is clearly revealed by microscopic Raman spectroscopy. Asymmetrical growth of coevaporated TTF-TCNQ wire under a static electric field is dominated by the drift motion of TCNQ-.
NASA Astrophysics Data System (ADS)
Li, Wenchao; Yang, Jianyu; Huang, Yulin; Kong, Lingjiang
For Doppler parameter estimation of forward-looking SAR, the third-order Doppler parameter can not be neglected. In this paper, the azimuth signal of the transmitter fixed bistatic forward-looking SAR is modeled as a cubic polynomial phase signal (CPPS) and multiple time-overlapped CPPSs, and the modified cubic phase function is presented to estimate the third-order Doppler parameter. By combining the cubic phase function (CPF) with Radon transform, the method can give an accurate estimation of the third-order Doppler parameter. Simulations validate the effectiveness of the algorithm.
Third-order nonlinear and linear time-dependent dynamical diffraction of X-rays in crystals.
Balyan, Minas K
2016-07-01
For the first time the third-order nonlinear time-dependent Takagi's equations of X-rays in crystals are obtained and investigated. The third-order nonlinear and linear time-dependent dynamical diffraction of X-rays spatially restricted in the diffraction plane pulses in crystals is investigated theoretically. A method of solving the linear and the third-order nonlinear time-dependent Takagi's equations is proposed. Based on this method, results of analytical and numerical calculations for both linear and nonlinear diffraction cases are presented and compared. PMID:27359140
Schneider, M.; Wormit, M.; Dreuw, A.; Soshnikov, D. Yu.; Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.
2015-10-14
The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.
NASA Astrophysics Data System (ADS)
Schneider, M.; Soshnikov, D. Yu.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.; Wormit, M.; Dreuw, A.; Trofimov, A. B.
2015-10-01
The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n5 with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Parrish, Robert M.; Martínez, Todd J.
2012-07-01
Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.
NASA Astrophysics Data System (ADS)
Wang, Yichao; Andersen, David R.
2016-06-01
We compute the terahertz third-order nonlinear conductance of metallic armchair graphene nanoribbons using time-dependent perturbation theory. Significant enhancement of the intrinsic third-order conductance over the result for instrinsic 2D single-layer graphene is observed over a wide range of temperatures. We also investigate the nonlinear response of extrinsic metallic acGNR with | EF|≪200 meV . We find that the third-order conductance exhibits a strong Fermi level dependence at low temperatures. A third-order critical field strength of between ˜1 and 5 kV /m is computed for the Kerr conductance as a function of temperature. For the third-harmonic conductance, the minimum critical field is computed to be ˜5 kV /m .
Woon, D.E.; Dunning, T.H. Jr. )
1994-02-15
An accurate description of the electrical properties of atoms and molecules is critical for quantitative predictions of the nonlinear properties of molecules and of long-range atomic and molecular interactions between both neutral and charged species. We report a systematic study of the basis sets required to obtain accurate correlated values for the static dipole ([alpha][sub 1]), quadrupole ([alpha][sub 2]), and octopole ([alpha][sub 3]) polarizabilities and the hyperpolarizability ([gamma]) of the rare gas atoms He, Ne, and Ar. Several methods of correlation treatment were examined, including various orders of Moller--Plesset perturbation theory (MP2, MP3, MP4), coupled-cluster theory with and without perturbative treatment of triple excitations [CCSD, CCSD(T)], and singles and doubles configuration interaction (CISD). All of the basis sets considered here were constructed by adding even-tempered sets of diffuse functions to the correlation consistent basis sets of Dunning and co-workers. With multiply-augmented sets we find that the electrical properties of the rare gas atoms converge smoothly to values that are in excellent agreement with the available experimental data and/or previously computed results. As a further test of the basis sets presented here, the dipole polarizabilities of the F[sup [minus
Quasi-static multiaxial testing of PBX 9501: Creep effects on Estane molecular weight
Peterson, P.D.; Idar, D.J.; Rabie, R.; Fugard, C.S.; King, W.; Buntain, G.A.; Crane, N.B.
1999-02-01
High explosives (HE) can be subjected to low level loading due to weapon design. As with other materials, loads well below the elastic limit may still lead to material property changes over time. PBX 9501, a conventional high explosive, has been used in several system designs. To evaluate potential environmental aging effects on HE, it is necessary to characterize material-flow and mechanical-property changes occurring in PBX 9501. Low-level loads may bring about material changes if creep related phenomena, such as polymer disentanglement or uncrosslinking, occur in the material. Recently, several studies on HE have increased understanding of the effects of density and the relative percentage of constituents on materials properties, e.g. elastic modulus, ultimate strength, and strain at ultimate strength, at low strain rates ({approx} 10{sup {minus}3} to 10{sup {minus}1} s{sup {minus}1}). However, the authors are only beginning to understand the effects of quasi-static multiaxial loading on PBX 9501 and Estane molecular weight (MW) changes. The results of these experiments are presented in this report.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
NASA Astrophysics Data System (ADS)
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams.
Willow, Soohaeng Yoo; Hirata, So
2014-01-14
A new, alternative set of interpretation rules of Feynman-Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mEh after 10(6) Monte Carlo steps. PMID:24437869
Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
Willow, Soohaeng Yoo; Hirata, So
2014-01-14
A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE{sub h} after 10{sup 6} Monte Carlo steps.
A third-order mode high frequency biosensor with atomic resolution.
Cai, Hua-Lin; Yang, Yi; Chen, Xiao; Mohammad, Mohammad Ali; Ye, Tian-Xiang; Guo, Cang-Ran; Yi, Li-Ting; Zhou, Chang-Jian; Liu, Jing; Ren, Tian-Ling
2015-09-15
An atomic resolution ultra-high sensitivity surface acoustic wave (SAW) biosensor for DNA sequences and cells detection is proposed. Interdigitated transducers (IDTs) fabricated on LiNbO3 substrate achieve a high quality factor (Q) of over 4000 at a frequency of 6.4 GHz (third-order harmonic mode) using an optimized design and process. The biosensor shows excellent linear responses to target DNA in the range from 1 μg/ml to 1 ng/ml with a high sensitivity of 6.7 × 10(-16)g/cm(2)/Hz, hence the difference of a single hybridized DNA base can also be distinguished. With such a high mass resolution, the biosensor is capable of quantitative detection of living cancer cells. The frequency responses of single mouse mammary adenocarcinoma (EMT6) cell and mouse fibroblast (3T3) cell are studied. The interferences in the experiments show insignificant influence on the frequency shift, which verifies the high selectivity of the biosensor. The biosensor is also able to repeat the sensing ability after rough cleaning, therefore cost reduction is achieved from the recycling process in practical applications. The detection limit is defined from the noise analysis of the device, atomic resolution is realized according to the calculation, thereby initiating a potential tool for high-precision medical diagnoses and phenomena observation at the atomic-level. PMID:25913447
Convergence of third-order velocity structure functions in axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Godeferd, Fabien; Delache, Alexandre
2011-11-01
Kolmogorov theory (1941) for isotropic turbulence establishes asymptotic scaling laws for the statistics of n-th order structure functions at high Reynolds number, in terms of dissipation ɛ and separation distance r for the velocity increment δu . A famed relationship is the -4/5 law. When the turbulent flow is anisotropic, due to external distortions (background rotation,...) to inhomogeneities or initial conditions (jets, ``isotropic'' grid turbulence), such laws may fail. We examine the applicability of the K41 predictions for third-order moments of velocity structure functions, and evaluate low Reynolds number effects and anisotropic effects on the departure with the -4/5 law. We consider rotating or stably stratified turbulence, whose statistics are obtained by Direct Numerical Simulations or by a two-point statistical model allowing to reach high Reynolds numbers. We link anisotropic spectral statistics for energy transfer with <(δu) 3 > and derive physical space statistics from spectral data of the statistical model. Although K41 scalings may arguably not apply to anisotropic turbulence, some justifications for anisotropic turbulence statistics can be provided (Taylor et al. PRE 2003) by specific data processing in DNS.
Tailored hybrid hyperbranched polyglycidol-silica nanocomposites with high third-order nonlinearity
NASA Astrophysics Data System (ADS)
Postnova, Irina; Bezverbny, Alexander; Golik, Sergey; Kulchin, Yury; Li, Haiqing; Wang, Jing; Kim, Il; Ha, Chang-Sik; Shchipunov, Yury
2012-07-01
One of the most convenient techniques for optical material fabrication is the sol-gel processing. It can be performed at low temperature that enables one to entrap even relatively unstable organic substances into silica matrix at the nanometer scale, thus developing homogeneous hybrid organic-inorganic nanocomposite materials of various functionalities. Here, novel hybrid organic-inorganic nanocomposites with good optical transparency and high third-order nonlinearity were prepared biomimetically through the mineralization of dendritic macromolecules (hyperbranched polyglycidols) using a compatible ethylene glycol-containing silica precursor. The synthesis was performed at neutral pH media in aqueous solutions without addition of organic solvents at ambient conditions owing to the catalysis of processing. Polyglycidols provided also the formation of gold nanoparticles localized in their core. They served as reducing and stabilizing agents. It is shown that trace amounts of nanoparticles could regulate nonlinear properties of a nanocomposite. High nonlinearity manifests itself in a supercontinuum generation at remarkably short lengths ca. 1 mm. The phenomenon consists of filamentous intense white lighting due to the spectral broadening of initial ultrashort (femtosecond) laser pulses propagating through the material. The developed hybrid nanocomposites possessing large nonlinearity, high-speed optical response, stability under intense lighting, low-cost, and easy preparation are promising for a diverse range of applications as active components for all-optical signal processing from chemical sensing to biological cell imaging and lighting control in telecommunication.
Thangaraj, M; Ravi, G; Sabari Girisun, T C; Vinitha, G; Loganathan, A
2015-03-01
Single crystals of ethylenediaminium di(4-nitrophenolate) [EDA4NP] were grown by slow evaporation solution growth technique using ethanol as solvent at constant temperature. It crystallizes in monoclinic centrosymmetric space group C2/c with cell dimension a=11.326Ǻ, b=7.264Ǻ, c=20.036Ǻ; β=93.55°. Fourier Transform Infra Red (FT-IR) spectrum was recorded to identify various functional groups present in EDA4NP. Nuclear Magnetic Resonance (NMR) spectral studies were performed to confirm the functional groups. Thermogravimetric analysis and differential thermal analysis showed that the compound melts at 142.9°C. The material possesses a wide optical transparency window in the visible and near IR region (500-1200nm). The nonlinear refractive index, nonlinear absorption coefficient and third-order nonlinear susceptibility of EDA4NP were estimated to be n2=5.46×10(-8)cm(2)W(-1), β=0.65×10(-3)cmW(-1) and χ((3))=2.96×10(-6)esu respectively. The limiting behavior observed with the sample is attributed mainly to nonlinear refraction. PMID:25498811
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing . E-mail: xjq@mail.jlu.edu.cn; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-15
Both the homometal cluster [P(ph{sub 4})]{sub 2}[Mo{sub 2}O{sub 2}({mu}-S){sub 2}(S{sub 2}){sub 2}] (1) and [Mo{sub 2}O{sub 2}({mu}-S){sub 2}(Et{sub 2}dtc){sub 2}] (2) (Et{sub 2}dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10{sup -30}esu for (1) and 5.428x10{sup -30}esu for (2)
Third-order transport coefficients for electron and positron swarms in gases
NASA Astrophysics Data System (ADS)
Simonovic, Ilija; Dujko, Sasa; White, Ronald; Petrovic, Zoran
2015-09-01
A multi term solution of the Boltzmann equation has been used to calculate third-order transport coefficients of charged particle swarms in neutral gases under the influence of electric and magnetic fields. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. A group projector technique is employed to determine the structure and symmetries along individual elements of the skewness tensor when both electric and magnetic fields are present. Results are given for electron and positron swarms for certain model and real gases over a range of electric and magnetic field strengths. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. Various aspects in the behavior of skewness tensor elements are investigated, including the existence of correlation with low-order transport coefficients, sensitivity to post-ionization energy partitioning and errors of two-term approximation for solving Boltzmann's equation.
Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
Amura, Mikael; Meo, Michele; Amerini, F
2011-10-01
Prediction of crack growth and fatigue life estimation of metals using linear/nonlinear acousto-ultrasound methods is an ongoing issue. It is known that by measuring nonlinear parameters, the relative accumulated fatigue damage can be evaluated. However, there is still a need to measure two crack propagation states to assess the absolute residual fatigue life. A procedure based on the measurement of a third-order acoustic nonlinear parameter is presented to assess the residual fatigue life of a metallic component without the need of a baseline. The analytical evaluation of how the cubic nonlinear-parameter evolves during crack propagation is presented by combining the Paris law to the Nazarov-Sutin crack equation. Unlike other developed models, the proposed model assumes a crack surface topology with variable geometrical parameters. Measurements of the cubic nonlinearity parameter on AA2024-T351 specimens demonstrated high sensitivity to crack propagation and excellent agreement with the predicted theoretical behavior. The advantages of using the cubic nonlinearity parameter for fatigue cracks on metals are discussed by comparing the relevant results of a quadratic nonlinear parameter. Then the methodology to estimate crack size and residual fatigue life without the need of a baseline is presented, and advantages and limitations are discussed. PMID:21973336
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Bandrauk, André D.
2011-06-01
Molecular high-order harmonic generation (MHOHG) by a combined intense circularly polarized laser pulse and static electric field has been studied from the appropriate time-dependent Schrödinger equation (TDSE) for the H2+ molecular ion. It is found that for a particular static field strength derived from a classical model, efficient MHOHG spectra are obtained with maximum energy Ip + 9.05Up, where Ip is the ionization potential and Up=E02/4meω02 is the ponderomotive energy at amplitude E0 and frequency ω0 of the circularly polarized laser pulse. The static field controls recollision of the electron with parent ions and is confirmed by numerical solutions of the H2+ TDSE at equilibrium. To produce circularly polarized MHOHG spectra, a combination of an elliptically polarized pulse and a static electric field is found to be most efficient. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision times responsible for the generation of these high-order harmonics. It is found that only single recollision trajectories contribute to the circularly polarized harmonics, thus generating new sources for high-frequency circularly polarized attosecond pulses.
Picosecond Laser Studies of Third-Order Nonlinear Optical Properties in Organic Polymers
NASA Astrophysics Data System (ADS)
Cao, Xiaofan
This dissertation makes the following theoretical and experimental contributions to the understanding of organic nonlinear optical materials in general, and of the nonlinear optical properties of polyquinoxaline (PQL) ladder polymers and metal-phthalocyanines doped in polycarbonate thin films in particular. (1) We developed a new model of the third-order nonlinear polarization density which has both "fast" (compared to 10psec, such as from electronic or lattice excitations) nonlinearity and "slow" (acoustic and thermal) components. This model enables a more accurate analysis than was possible previously of the different nonlinear optical processes seen in the picosecond laser studies of nonlinear optical properties of organic materials than was possible previously. (2) We interpreted our own picosecond four wave mixing measurements in ten polymers (in the PQL family) in terms of the new model parameters. (3) We have performed picosecond four-wave mixing measurement at 1064, (580-640), and 532 nm in Cr-phthalocyanine doped polycarbonate thin films. Our study supports the excitonic picture proposed by Ho et al.^{104 } (4) We observed for the first time a two -photon absorption state in Cr-Phthalocyanine near 0.5 eV. The two photon absorption coefficients which we determined by three independent methods agree well. (5) We showed that measuring the decay of ultrasonic waves induced by picosecond pulses is a superior way to measure acoustic velocity, acoustic damping, acousto-optic coupling constants, and thermal conductivity of materials. With this we studied the anomalous frequency dependence of sound damping in glasses and polymers. We propose a model for the diffusion of lattice "voids" in amorphous materials that accounts for some aspects of the anomalous ultrasonic sound damping. (6) We measured third harmonic generation in several PQL polymers and in a Cr-phthalocyanine doped polymer. Differences in four-wave mixing measurement were compared for five metal
Third-order aberrations in GRIN crystalline lens: A new method based on axial and field rays
Río, Arturo Díaz del; Gómez-Reino, Carlos; Flores-Arias, M. Teresa
2014-01-01
This paper presents a new procedure for calculating the third-order aberration of gradient-index (GRIN) lenses that combines an iterative numerical method with the Hamiltonian theory of aberrations in terms of two paraxial rays with boundary conditions on general curved end surfaces and, as a second algebraic step has been presented. Application of this new method to a GRIN human is analyzed in the framework of the bi-elliptical model. The different third-order aberrations are determined, except those that need for their calculation skew rays, because the study is made only for meridional rays. PMID:25444647
Third-order aberrations in GRIN crystalline lens: a new method based on axial and field rays.
Río, Arturo Díaz Del; Gómez-Reino, Carlos; Flores-Arias, M Teresa
2015-01-01
This paper presents a new procedure for calculating the third-order aberration of gradient-index (GRIN) lenses that combines an iterative numerical method with the Hamiltonian theory of aberrations in terms of two paraxial rays with boundary conditions on general curved end surfaces and, as a second algebraic step has been presented. Application of this new method to a GRIN human is analyzed in the framework of the bi-elliptical model. The different third-order aberrations are determined, except those that need for their calculation skew rays, because the study is made only for meridional rays. PMID:25444647
Slovin, Mitchell R; Shirts, Michael R
2015-07-28
We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing. PMID:26110823
Marhic, M E; Kagi, N; Chiang, T K; Kazovsky, L G
1995-04-15
We show that in principle it is possible to cancel third-order nonlinear effects in optical fiber links. The necessary conditions exist in two-segment links, with dispersion compensation, phase conjugation, and amplification between the two, as well as opposite chromatic dispersion coefficients in the segments. The cancellation is independent of loss, modulation format, and modulation frequency. PMID:19859355
A Kramers-Moyal Approach to the Analysis of Third-Order Noise with Applications in Option Valuation
Popescu, Dan M.; Lipan, Ovidiu
2015-01-01
We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula’s theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option’s and its underlier’s price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a “delta-hedged” portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856
A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.
Popescu, Dan M; Lipan, Ovidiu
2015-01-01
We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856
NASA Astrophysics Data System (ADS)
Ashyralyyev, Charyyar; Dedeturk, Mutlu
2016-08-01
Approximation of Dirichlet type overdetermined multidimensional elliptic problem with Dirichlet-Neumann boundary conditions are discussed. A third order of accuracy difference scheme for its approximate solution is proposed. The stability, almost coercive stability and coercive stability inequalities for the solution of constructed difference scheme are established. Test example for a two-dimensional elliptic problem is presented.
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
Nishimoto, Yoshio
2015-09-01
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well. PMID:26342360
NASA Astrophysics Data System (ADS)
Pan, Liang; Xu, Kun
2016-08-01
In this paper, for the first time a third-order compact gas-kinetic scheme is proposed on unstructured meshes for the compressible viscous flow computations. The possibility to design such a third-order compact scheme is due to the high-order gas evolution model, where a time-dependent gas distribution function at cell interface not only provides the fluxes across a cell interface, but also presents a time accurate solution for flow variables at cell interface. As a result, both cell averaged and cell interface flow variables can be used for the initial data reconstruction at the beginning of next time step. A weighted least-square procedure has been used for the initial reconstruction. Therefore, a compact third-order gas-kinetic scheme with the involvement of neighboring cells only can be developed on unstructured meshes. In comparison with other conventional high-order schemes, the current method avoids the Gaussian point integration for numerical fluxes along a cell interface and the multi-stage Runge-Kutta method for temporal accuracy. The third-order compact scheme is numerically stable under CFL condition CFL ≈ 0.5. Due to its multidimensional gas-kinetic formulation and the coupling of inviscid and viscous terms, even with unstructured meshes, the boundary layer solution and vortex structure can be accurately captured by the current scheme. At the same time, the compact scheme can capture strong shocks as well.
NASA Technical Reports Server (NTRS)
Brown, C. M., Jr.; Monopoli, R. V.
1974-01-01
A linear system identification technique developed by Lion is adapted for use on a third-order system with six unknown parameters and noisy input-output measurements. A digital computer is employed so that rapid identification takes place with only two state variable filters. Bias in the parameter estimates is partially eliminated by a signal-to-noise ratio testing procedure.
Calderín, L; González, L E; González, D J
2009-05-21
We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841
NASA Astrophysics Data System (ADS)
Jayakrishnan, K.; Joseph, Antony; Mathew, K. Paulson; Siji, T. B.; Chandrasekharan, K.; Narendran, N. K. Siji; Jaseela, M. A.; Muraleedharan, K.
2016-08-01
The third order nonlinear optical features of certain novel thiocoumarin derivatives have been studied. Single beam Z-scan study on these compounds reveals that the compounds exhibit self defocusing effect upon irradiation with 532 nm, 7 ns pulses of Nd:YAG laser. Nonlinear absorption coefficient, nonlinear refractive index and second-order molecular hyperpolarizability values were estimated. The optical power limiting properties of the compounds are found to be attributable to both two-photon and excited state absorption. Some of the samples show nonlinear absorption coefficient (βeff) as high as 24.5 cm/GW. UV-Visible and photoluminescence outputs of these compounds reveal remarkable absorptive and emissive properties. This article also reports extraordinary growth of third order optical nonlinearity in pure coumarin upon certain donor substitutions in lieu of hydrogen. Degenerate Four Wave Mixing (DFWM) signals of the compounds were analyzed to verify the Z-scan results. Electrostatic Surface Potential (ESP) mapping and structure optimization techniques have been employed to interpret the structure-property relationship of each molecule.
NASA Astrophysics Data System (ADS)
Sivanandan, T.; Kalainathan, S.
2015-04-01
The third order nonlinear optical properties of Monothiourea-cadmium Sulphate Dihydrate crystal were measured using a He-Ne laser (λ=632.8 nm) by a Z-scan technique. The magnitude of nonlinear refractive index (n2) and nonlinear absorption coefficient was found to be 4.4769×10-11 m2/W and 1.233×10-2 m/W respectively. The third order non-linear optical susceptibility χ(3) was found to be in the order of 3.6533×10-2 esu. The negative sign of non-linear refractive index shows the self-defocusing nature of the gel grown crystal. The second-order molecular hyperpolarizability γ of the grown crystal is 1.2822×10-33 esu. Laser damage threshold was measured by using an Nd: YAG laser (1064 nm). Photoconductivity studies of the gel grown crystal revealed that the crystal possesses positive photoconducting nature. The results obtained from Z-scan, laser damage threshold and photoconducting studies reveal that the crystal can be a possible candidate material for photonics device, optical switches, and optical power limiting application.
Chen, L.X.; Laible, P.D.; Spano, F.C.; Manas, E.S.
1997-09-01
Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching.
English, Niall J; Garate, José-A
2016-08-28
An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region. PMID:27586951
Rodríguez-Santiago, Luis; Alí-Torres, Jorge; Vidossich, Pietro; Sodupe, Mariona
2015-05-28
Several lines of evidence supporting the role of metal ions in amyloid aggregation, one of the hallmarks of Alzheimer's disease (AD), have turned metal ion chelation into a promising therapeutic treatment. The design of efficient chelating ligands requires proper knowledge of the electronic and molecular structure of the complexes formed, including their hydration properties. Among various potential chelators, clioquinol (5-chloro-7-iodo-8-hydroxyquinoline, CQH) has been evaluated with relative success in in vitro experiments and even in phase 2 clinical trials. Clioquinol interacts with Zn(ii) to lead to a binary metal/ligand 1 : 2 stoichiometric complex in which the phenolic group of CQH is deprotonated, resulting in Zn(CQ)2 neutral complexes, to which additional water molecules may coordinate. In the present work, the coordinative properties of clioquinol in aqueous solution have been analyzed by means of static, minimal cluster based DFT calculations and explicit solvent ab initio molecular dynamics simulations. Results from static calculations accounting for solvent effects by means of polarized continuum models suggest that the preferred metal coordination environment is tetrahedral Zn(CQ)2, whereas ab initio molecular dynamics simulations point to quasi degenerate penta Zn(CQ)2(H2O) and hexa Zn(CQ)2(H2O)2 coordinated complexes. The possible reasons for these discrepant results are discussed. PMID:25939963
Chen, Yuxiang; Cao, Wei; Wang, Chiming; Qi, Dongdong; Wang, Kang; Jiang, Jianzhuang
2016-03-21
2(3),9(10),16(17),23(24)-Tetrakis(dibutylamino)phthalocyanine compounds M{Pc[N(C4H9)2]4} (1-5; M = 2H, Mg, Ni, Cu, Zn) were prepared and characterized by a range of spectroscopic methods in addition to elemental analysis. Electrochemical and electronic absorption spectroscopic studies revealed the more effective conjugation of the nitrogen lone pair of electrons in the dibutylamino side chains with the central phthalocyanine π system in M{Pc[N(C4H9)2]4} than in M{Pc[N(C4H9)2]8}, which, in turn, results in superior third-order nonlinear-optical (NLO) properties of H2{Pc[N(C4H9)2]4} (1) over H2{Pc[N(C4H9)2]8}, as revealed by the obviously larger effective imaginary third-order molecular hyperpolarizability (Im{χ((3))}) of 6.5 × 10(-11) esu for the former species than for the latter one with a value of 3.4 × 10(-11) esu. This is well rationalized on the basis of both structural and theoretical calculation results. The present result seems to represent the first effort toward directly connecting the peripheral functional substituents, electronic structures, and NLO functionality together for phthalocyanine molecular materials, which will be helpful for the development of functional phthalocyanine materials via molecular design and synthesis even through only tuning of the peripheral functional groups. PMID:26931202
Aly, Shawkat M; AbdulHalim, Lina G; Besong, Tabot M D; Soldan, Giada; Bakr, Osman M; Mohammed, Omar F
2016-03-14
Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV(2+)) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. PMID:26548942
NASA Astrophysics Data System (ADS)
Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.
2015-10-01
Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.
NASA Astrophysics Data System (ADS)
Williams, G. R. J.
1996-07-01
Excited-State Absorption (ESA), Two-Photon Absorption (TPA) and the third-order polarizability γ(ω;ω,ω, - ω) have been investigated for a model dichloride derivative of a symmetrically substituted benzylidene analine (SBAC), using a multielectron configuration-interaction procedure. The calculations indicate that SBAC exhibits ESA across the visible region of the spectrum, but that it is not as extensive as for molecules such as the phthalocyanines. The magnitude of the third-order polarizability is dominated by resonance enhancement from a very strong A g → B u one-photon absorption. The calculated off-resonance value for γ(ω;ω,ω, - ω) suggests that SBAC is a potential candidate for ultrafast switching applications.
Kruglov, Vladimir I.; Aguergaray, Claude; Harvey, John D.
2011-08-15
We develop a theory for pulses propagating in normal dispersion fiber amplifiers with constant and varying gain, and for dispersion-decreasing fibers, including the effect of third-order dispersion. These solutions of the generalized nonlinear Schroedinger equation are based on asymptotical methods, first-order perturbation theory, and a renormalization procedure. We have also found an explicit equation for the critical length corresponding to pulse breakup and a criterion which ensure the accuracy of the asymptotic solutions. This criterion is confirmed numerically, showing that the analytical description of the pulses and the critical length formulas developed here for fiber amplifiers and dispersion-decreasing fibers with third-order dispersion are very accurate.
NASA Astrophysics Data System (ADS)
Mirershadi, S.; Ahmadi-Kandjani, S.; Zawadzka, A.; Rouhbakhsh, H.; Sahraoui, B.
2016-03-01
The nonlinear optical response of CH3NH3PbBr3 perovskites is investigated using Z-scan technique, employing 10 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. The effect of organic and inorganic composition ratio on the nonlinear susceptibility is studied experimentally. In all cases, the nonlinear absorption and refraction have been determined. The corresponding third-order susceptibilities and second-order hyperpolarizability are determined to be as large as 10-6 (esu) and 10-28 (esu) under ns laser excitation respectively. Showing large third-order optical nonlinearity in CH3NH3PbBr3 thin films, suggesting their potential for photonics applications.
Linear and third order nonlinear optical properties of LiRbB4O7 single crystal
NASA Astrophysics Data System (ADS)
Sukumar, M.; Babu, R. Ramesh; Ramamurthi, K.
2016-01-01
Lithium rubidium borate (LiRbB4O7) single crystal has been grown by the Czochralski method. Crystalline perfection and optical homogeneity of the grown LiRbB4O7 crystal are analyzed by high resolution X-ray diffraction and birefringence interferometric technique, respectively. Third order nonlinear optical parameters of LiRbB4O7 crystal are determined by Z-scan experimental technique. The nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ3) are estimated to be -4.935 × 10-11 cm2/W and 2.719 × 10-7 esu, respectively. The measured (n2) value reveals the self-focusing nature of LiRbB4O7 crystal.
Suntsov, S.; Abdollahpour, D.; Tzortzakis, S.; Papazoglou, D. G.
2010-03-15
We study, both experimentally and theoretically, the underlying physics of third-harmonic generation in air by a filamented infrared femtosecond laser pulse propagating through a thin plasma channel. It is shown that the recently observed more than two-order-of-magnitude increase of the efficiency of third-harmonic generation occurs due to the plasma-enhanced third-order susceptibility. An estimate of the effective value of this susceptibility is given.
NASA Astrophysics Data System (ADS)
Tyra, T. A.; Maya, E.; Atudorei, V.; Stephen, L. A.
2007-12-01
Recent work suggests a link between third-order (~1-5 Myr) sea-level fluctuations and climate change, even in greenhouse periods. Upper Ordovician third-order transgressive-regressive sequences are pervasive in the stratigraphic record, can be correlated worldwide (i.e. North America, Baltica, China), and ambiguous in cause. We are evaluating climate's role in third-order sea-level change by analyzing the δ18O of conodont apatite, which is a proxy for both glacio-eustasy and paleotemperature. Conodont phosphatic oxygen is a more robust repository of primary oxygen isotope values than more extensively-studied calcareous fossils, which have been extensively studied. If sea-level change is climatically-driven (glacio-eustasy and thermo-eustasy), δ18O values will decrease with sea-level rise and increase with sea-level fall. We report preliminary results from Upper Ordovician sequences in the Monitor Range of central Nevada. The six stratigraphic sequences (30m-95m thick) preserve basinal-to-outer-shelf carbonates with the youngest sequence representing the Hirnantian glaciation. We collected conodont samples at a 2-10m resolution and also determined bulk carbonate δ13C for additional chemostratigraphy. With this information, we hope to determine if glacio-eustasy has a role within the five pre-Hirnantian sequences.
NASA Astrophysics Data System (ADS)
Patil, P. S.; Maidur, Shivaraj R.; Rao, S. Venugopal; Dharmaprakash, S. M.
2016-07-01
Transparent good quality single crystals of organic nonlinear optical material, 3, 4-Dimethoxy -4‧-methoxychalcone (DMMC) were grown by slow evaporation solution growth technique in acetone at ambient temperature. The lattice parameters were estimated from powder X-ray diffraction. The crystalline perfection has been evaluated by high resolution X-ray diffractometry (HRXRD). The UV-vis-NIR absorption spectrum reveals that the crystal is transparent between 440 nm and 900 nm for optical applications. The fluorescence spectrum shows a peak at about 482 nm and indicates that the crystal has a blue fluorescence emission. The third order nonlinear optical properties of solution of DMMC in N, N-Dimethylformamide (DMF) solvent has been investigated using Z-scan technique with femtosecond (fs) Ti:sapphire laser pulses at 800 nm wavelength. The calculated values of nonlinear refractive index, nonlinear absorption coefficient, and the magnitude of third-order susceptibility are of the order of - 7.7×10-14cm2/W, 1.7×10-9 cm/W and 6.7×10-12 e.s.u. respectively. The two photon absorption (2PA) cross section and molecular second-order hyperpolarizability values obtained is of the order of 10-49 cm4 s/photon/molecule and 2.8×10-31 e.s.u. respectively. The crystal shows optical-limiting (OL) effects for femtosecond laser pulses at 800 nm. The results suggest that the nonlinear properties investigated for DMMC are comparable with some of the reported chalcone derivatives and can be desirable for nonlinear optical applications.
NASA Astrophysics Data System (ADS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-11-01
In this paper, we construct second- and third-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the accuracy of the second-order hyperbolic schemes in [J. Comput. Phys. 227 (2007) 315-352] and [J. Comput. Phys. 229 (2010) 3989-4016] can be greatly improved by requiring the scheme to preserve exact quadratic solutions. The improved second-order scheme can be easily extended to a third-order scheme by further requiring the exactness for cubic solutions. These schemes are constructed based on the SUPG methodology formulated in the framework of the residual-distribution method, and thus can be considered as economical and powerful alternatives to high-order finite-element methods. For both second- and third-order schemes, we construct a fully implicit solver by the exact residual Jacobian of the proposed second-order scheme, and demonstrate rapid convergence, typically with no more than 10-15 Newton iterations (and about 200-800 linear relaxations per Newton iteration), to reduce the residuals by ten orders of magnitude. We also demonstrate that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids even for a curved boundary problem, without introducing curved elements. A quadratic reconstruction of the curved boundary normals and a high-order integration technique on curved boundaries are also provided in details.
NASA Astrophysics Data System (ADS)
Souto, J.; Alemany, M. M. G.; Gallego, L. J.; Gonzalez, L. E.; Gonzalez, D. J.
2013-03-01
We perform an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi-Pb alloy at three concentrations, including the eutectic one. This alloy is of particular technological interest for its possible use as coolant in fast reactors. Our predictions are in good agreement with the available experimental data. In particular, the computed total static structure factors reproduce accurately the neutron diffraction results, and the predicted adiabatic sound velocity and shear viscosity compare well with the experimental values. The partial dynamic structure factors exhibit clear side peaks indicative of propagating density fluctuations, and the longitudinal and transverse dispersion relations show several branches.The electronic density of states show that the liquid Bi-Pb alloy is a good metal, but with strong deviations from the free-electron parabolic curve. Supported by FIS2008-02490/FIS, FIS2008-04894/FIS, VA068A06, GR120, INCITE09E2R206033ES and INCITE08PXIB206107PR
NASA Astrophysics Data System (ADS)
Cheng, A.; Xu, K.
2013-12-01
This presentation describes the implementation and testing of an advanced third-order turbulence closure, an intermediately-prognostic higher-order turbulence closure (IPHOC), into the Community Atmosphere Model version 5 (CAM5). The third-order turbulence closure introduces a joint double-Gaussian distribution of liquid water potential temperature, total water mixing ratio, and vertical velocity to represent the subgrid scale variations including skewed turbulence circulations. The distribution is inferred from the first-, second-, and third-order moments of the variables given above and is used to diagnose cloud fraction and grid-mean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. In addition, a diagnostic planetary boundary layer (PBL) height approach has been incorporated in IPHOC in order to resolve the strong inversion above PBL for the coarse general circulation model (GCM) vertical grid-spacing. The IPHOC replaces PBL, shallow convection, and cloud macrophysics parameterizations in CAM5. The coupling of CAM5 with IPHOC (CAM5-IP) represents a more unified treatment of boundary layer and shallow convective processes. Results from global climate simulations are presented and suggest that CAM5-IP can provide a better treatment of boundary layer clouds and processes when compared to CAM5. The global annual mean low cloud fraction and precipitation are compared among CAM5, CAM5-IP, and a multi-scale modeling framework model with IPHOC (MMF-IP). The low cloud amounts near the west coast of the subtropical continents are well produced in CAM5-IP and are more abundant than in other two models. The global mean liquid water path is the closest to the SSM/I observation. The cloud structures from CAM5-IP, represented by the cloud fraction and cloud water content at 15°S transect, compare well with the CloudSat/CALIPSO observations. The shallow cumulus
Su, Juan; Feng, Guoying
2012-05-10
We provide a detailed analytical expression of group-delay dispersion (GDD) and third-order dispersion (TOD) for a reflection grism-pair compressor without the first-order approximation of grating diffraction. The analytical expressions can be used to design a grism-pair compressor for compensating the dispersive material without ray tracing. Furthermore, the dispersion performance of the grism pair compressor, depending on compressor parameters, is comprehensively analyzed. Results are shown that we can adjust several parameters to obtain a certain GDD and TOD, such as the incidence angle of the beam, refractive index of the prism, grating constant, and the separation of the grism pair. PMID:22614499
Alemany, Manuel M. G.; Longo, Roberto; Gallego, Luis; Gonzales, D. J.; Gonzales, L. E.; Tiago, Murilo L; Chelikowsky, James
2007-01-01
We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.
NASA Astrophysics Data System (ADS)
Endres, Florian; Steinmann, Paul
2016-01-01
Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.
Static Properties and Stark Effect of the Ground State of the HD Molecular Ion
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Drachman, Richard J.
1999-01-01
We have calculated static properties of the ground state of the HD(+) ion and its lowest-lying P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2(+) and D2(+) [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary to include high powers of the internuclear distance to localize the nuclear motion. We obtain good values of the energies of the ground S-state and lowest P-state and compare them with earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability was then calculated using second-order perturbation theory with intermediate P pseudostates. Since the nuclei in HD(+) are not of equal mass there is dipole coupling between the lowest two rotational states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is calculated variationally as a function of the applied electric field.
NASA Astrophysics Data System (ADS)
Liu, Jun; Cao, Dapeng; Zhang, Liqun
2009-07-01
The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks.
Liu, Jun; Cao, Dapeng; Zhang, Liqun
2009-07-21
The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature T(g) increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor phi(q)(s)(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks. PMID:19624229
Tretyakov, Nikita; Müller, Marcus; Todorova, Desislava; Thiele, Uwe
2013-02-14
We study equilibrium properties of polymer films and droplets on a solid substrate employing particle-based simulation techniques (molecular dynamics) and a continuum description. Parameter-passing techniques are explored that facilitate a detailed comparison of the two models. In particular, the liquid-vapor, solid-liquid, and solid-vapor interface tensions, and the Derjaguin or disjoining pressure are determined by molecular dynamics simulations. This information is then introduced into continuum descriptions accounting for (i) the full curvature and (ii) a long-wave approximation of the curvature (thin film model). A comparison of the dependence of the contact angle on droplet size indicates that the theories agree well if the contact angles are defined in a compatible manner. PMID:23425491
Hu, Gonghao; Miao, Hao; Mei, Hua; Zhou, Shuai; Xu, Yan
2016-05-10
The first polyoxometalates modified by a porphyrin-resembling planar Schiff base have been successfully designed and synthesized under hydrothermal conditions. The third-order NLO responses indicated that they are excellent third-order NLO materials. Their catalytic performances are also investigated. PMID:27117492
NASA Astrophysics Data System (ADS)
Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.
2016-04-01
We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.
Bentley, T. William
2015-01-01
Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228
Third-order nonlinearity and passive Q-switching of Cr⁴⁺:YGG garnet crystal.
Wang, Shuxian; Zhang, Yuxia; Wu, Kui; Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Zhang, Guanghui; Xiong, Qihua
2015-05-15
We demonstrate the third-order nonlinear optical properties of Cr(4+):Y(3)Ga(5)O(12) (Cr(4+):YGG) and Q-switched lasers with Cr(4+):YGG as the saturable absorber for the first time to our knowledge. The third-order nonlinear properties, including the optical Kerr nonlinearity and saturable absorption, were systematically measured and analyzed in detail by using a Z-scan technique. The measured data show that Cr(4+):YGG has a large nonlinear refractive index, ground-state absorption cross section, and excited-state absorption cross section in contrast to Cr(4+):Y(3)Al(5)O(12) (Cr(4+):YAG). With a Nd:YGG crystal as the gain medium and a Cr(4+):YGG crystal as the saturable absorber, the passively Q-switched laser was performed. The shortest pulse width and largest pulse energy were achieved at the absorbed pump power of 8 W with the values of 9.1 ns and 26.1 μJ, respectively, corresponding to the average output power of 0.87 W and peak power of 2.9 kW. The results indicate that Cr(4+):YGG is an available and promising optical switcher for pulsed lasers. PMID:26393755
Xiang, Weidong; Gao, Haihong; Ma, Li; Ma, Xin; Huang, Yunyun; Pei, Lang; Liang, Xiaojuan
2015-05-20
The integrated and transparent sodium borosilicate glasses that contain copper exhibiting different colors, that is, red, green, and blue were synthesized by combining the sol-gel process and heat treatment in H2 gas. To reveal substantially the cause of different colors in the glass, X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were systematically applied to investigate and determine the microstructure of the doped matter. The results showed three different crystals had formed in the red, green and blue glass, and the sizes of these crystals were range from 9 to 34, 1 to 6, and 1 to 5 nm, respectively. The valence state of copper was further analyzed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). The third-order nonlinear optical properties of the glasses were investigated by using Z-scan technique at the wavelength of 800 nm. Interestingly, the third-order nonlinear absorption of the red, green, and blue glass can be successfully controlled from reverse saturable absorption, no absorption to saturable absorption and the optical nonlinear susceptibility χ((3)) of the red, green and blue glass were estimated to be 6.4 × 10(-14), 1.6 × 10(-14), and 2.6 × 10(-14) esu in the single-pulse energy of 0.36 μJ, respectively. PMID:25928895
Pokladek, Ziemowit; Ripoche, Nicolas; Betou, Marie; Trolez, Yann; Mongin, Olivier; Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Samoc, Marek; Humphrey, Mark G; Blanchard-Desce, Mireille; Paul, Frédéric
2016-07-11
The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1-3 and 2') incorporating 2- or 2,7-fluorenyl and diphenylamino moieties are reported. The electroactivity of 1-3 and 2' was studied by cyclic voltammetry (CV), while the linear optical and (third-order) nonlinear optical (NLO) properties were investigated by electronic spectroscopy and Z-scan studies, respectively. All experimental investigations were rationalized by DFT computations, providing an insight into the electronic structure of these derivatives and on their application potential. We show that these derivatives are nonluminescent in solution at ambient temperatures, but become fluorescent in solvent glasses. This finding constitutes an unprecedented observation for TCBD derivatives. Also, we show by Z-scan studies that these derivatives behave as two-photon absorbers in the near-IR range (800-1050 nm). These third-order NLO properties are discussed and compared with those of their alkynyl precursors (4-6), which have been investigated by two-photon excited fluorescence (TPEF). PMID:27297358
Li, P H; Qu, Y L; Xu, X J; Zhu, Y W; Yu, T; Chin, K C; Mi, J; Gao, X Y; Lim, C T; Shen, Z X; Wee, A T S; Ji, W; Sow, C H
2006-04-01
We report a new morphology of "cactus" top-decorated aligned carbon nanotubes grown by the PECVD method using pure C2H2 gas. Unlike most previous reports, no additional carrier gas is used for pretreatment. Carbon nanotubes can still grow and maintain the tubular structure underneath the "cactus" tops. It is proposed that the H atoms produced by the dissociation of C2H2 activate the catalyst nanoparticles. Scanning electron microscopy (SEM) shows that the top "cactus" morphology is composed of a large quantity of small nanosheets. Transmission electron microscopy (TEM) reveals the amorphous carbon nature of these "cactus" structures. The formation of these "cactus" structures is possibly due to covalent absorption and reconstruction of carbon atoms on the broken graphite layers of nanotubes produced by the strong ion bombardment under plasma. The third-order optical nonlinearities and nonlinear dynamics are also investigated. The third-order nonlinear susceptibility magnitude /chi(3)/ is found to be 2.2 x 10(-11) esu, and the relaxation process takes place in about 1.8 ps. PMID:16736755
NASA Astrophysics Data System (ADS)
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.
2016-05-01
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.
Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan
NASA Astrophysics Data System (ADS)
Li, F.-Q.; Zong, N.; Zhang, F.-F.; Yang, J.; Yang, F.; Peng, Q.-J.; Cui, D.-F.; Zhang, J.-Y.; Wang, X.-Y.; Chen, C.-T.; Xu, Z.-Y.
2012-08-01
The third-order optical nonlinearity of deep-ultraviolet (DUV) nonlinear optical (NLO) crystal KBe2BO3F2 (KBBF) was investigated using single-beam Z-scan technique for the first time. The Z-scans were performed on a c-cut KBBF crystal and a KBBF prism-coupling device (PCD) with picosecond pulses at 355 nm. No two-photon absorption was observed in the experiment. The measured nonlinear refraction index n 2 showed positive signs, indicating self-focusing Kerr effects. The n 2 values were estimated to be (1.75±0.35)×10-15 cm2/W with the c-cut sample and (1.85±0.37)×10-15 cm2/W with the PCD, corresponding to the third-order nonlinear optical susceptibilities χ_{eff}^{(3)} of (0.99±0.20)×10-13 esu and (0.94±0.19)×10-13 esu, respectively. The results are expected to promote the investigation of frequency conversion processes with ultra-short laser in KBBF crystal.
Rustad, J.R.; Felmy, A.R.; Hay, B.P.
1996-05-01
Molecular statics calculations are used to model the major FeOOH polymorphs and hematite. The potentials were taken from a previous investigation of Fe(III) in aqueous solutions which involved the extrapolation of the gas-phase Fe(III)-OH{sub 2} potential energy surface to the solvated hexaaqua complex. Using this model for the solid phases, lattice parameters for goethite, akaganeite, lepidocrocite, and hematite are generally within 4% of experiment. Internal energies (at 0 K) were computed for each structure; lepidocrocite is energetically the most stable polymorph, followed by akaganeite, with goethite being the least stable. While the model exhibits some variances with experiment, it performs remarkably well, despite the challenges constraint of being consistent with a dissociating molecular dynamics model for water in its gas, aqueous, and solid phases. Because of this consistency, the model allows qualitative theoretical treatment of previously unapproachable problems in mineral-water interface geochemistry. We apply the model to identify surface species on the solvated (110) surface of goethite. 29 refs., 5 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.
1996-05-01
Molecular statics calculations are used to model the major FeOOH polymorphs and hematite. The potentials were taken from a previous investigation of Fe(III) in aqueous solutions which involved the extrapolation of the gas-phase Fe(III)-OH 2 potential energy surface to the solvated hexaaqua complex. Using this model for the solid phases, lattice parameters for goethite, akaganeite, lepidocrocite, and hematite are generally within 4% of experiment. Internal energies (at 0 K) were computed for each structure; lepidocrocite is energetically the most stable polymorph, followed by akaganeite, with goethite being the least stable. While the model exhibits some variances with experiment, it performs remarkably well, despite the challenging constraint of being consistent with a dissociating molecular dynamics model for water in its gas, aqueous, and solid phases. Because of this consistency, the model allows qualitative theoretical treatment of previously unapproachable problems in mineral-water interface geochemistry. We apply the model to identify surface species on the solvated (110) surface of goethite.
Static and dynamic properties of confined, cold ion plasmas: MD (molecular dynamics) simulations
Schiffer, J.P.
1989-01-01
Some four years ago it was suggested that in the new generation of heavy ion accelerator storage rings for multiply charged ions, being planned in Europe, one may well attain internal temperatures that would correspond to very cold plasmas. Since that time, the techniques of electron or laser cooling of such beams has evolved and it may well be possible to reach temperatures corresponding to a plasma coupling parameter {Gamma} >> 100. I was fortunate to have had an opportunity to collaborate during 1986-87 with my former colleague Aneesur Rahman, of Molecular Dynamics fame, and we adapted the MD method to the calculation of the properties of cold confined plasmas. After Rahman's premature death two years ago I have continued the exploration of these systems and would like to summarize the results here. 9 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Rambaux, N.; Chambat, F.; Castillo-Rogez, J. C.
2015-12-01
Context. We investigate the hydrostatic shape and gravitational potential coefficients of self-gravitating and rotating bodies large enough to have undergone internal differentiation and chemical stratification. Quantifying these properties under the assumption of hydrostatic equilibrium forms the basis for interpreting shape and gravity data in terms of interior structure and infer deviations from hydrostaticity that can bring information on the thermal and chemical history of the objects. Aims: The main purpose is to show the importance of developing the reference hydrostatic shape for relatively fast rotating bodies up to third order to reach an accuracy of a few tens of meters. This paper especially focuses on Ceres, for which high-resolution shape data are being obtained by the Dawn spacecraft, with a projected accuracy better than 200 m/pixel. Methods: To improve the accuracy on the determination of geodetic parameters, we numerically integrated Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter. Results: Previous studies of Ceres have been based on shape models developed to first order. However, we show that the first-order theory underestimates (a-c) (where a and c are the equatorial and polar radii) by 1.8 km, which leads to underestimating the extent of mass concentration and is insufficient to interpret the upcoming observations by Dawn space mission. Instead, by using the third-order theory, we obtain an accuracy of 25 meters that is better than the accuracy expected from Dawn. Then, we derive the following geodetical quantities: flattening and other shape parameters, gravitational potential coefficients, and moments of inertia, by using the Ceres models constrained by observations obtained with the Hubble Space Telescope and ground-based adaptive optics telescopes. The difference in equatorial and polar radii for a large parametric space of interior models is investigated, and the
NASA Astrophysics Data System (ADS)
Ren, Gan; Wang, Yan-Ting
2015-12-01
The behavior of saturated aqueous NaCl solutions under a constant external electric field (E) was studied by molecular dynamics (MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation. Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 91227115, 11274319, and 11421063).
Mueller, Alexander; Fuerbach, Alexander
2016-03-20
The standard technique commonly utilized to introduce large amounts of negative group delay dispersion (GDD) into the beam path of ultrashort laser pulses with low insertion losses is the use of a pair of prisms in a double pass configuration. However, one disadvantage of this approach is the unavoidable introduction of additional high-order spectral phase errors, most notably third-order dispersion (TOD) due to the characteristics of the refractive index of available optical materials. In this paper we provide an overview of the dispersive properties of more than 100 common types of optical glasses, used either as a bulk stretcher or in a prism compressor configuration. In addition, we present a novel method that enables independent control of GDD and TOD in a prism-only setup. The performance of different prism combinations is analyzed numerically, and design guidelines are given. PMID:27140563
NASA Astrophysics Data System (ADS)
Hamanaka, Yasushi; Ogawa, Tetsuya; Tsuzuki, Masakazu; Kuzuya, Toshihiro; Sumiyama, Kenji
2013-07-01
Third-order nonlinear optical susceptibilities (χ(3)) have been investigated for chalcopyrite CuInS2 and AgInS2 nanocrystals within a strong confinement regime. The imaginary part of χ(3) (Imχ(3)) of 2.0- and 4.9-nm-sized CuInS2 nanocrystals and 2.6- and 4.3-nm-sized AgInS2 nanocrystals are negative and exhibit resonant enhancement around the absorption between the highest quantized levels of valence band and the lowest conduction band due to the state-filling effect. Figure of merit of |Imχ(3)| ranges 10-20-10-19 m3/V2, which is comparable to those of CdSSe nanocrystals.
Zhou Yu; Simon, Jason; Liu Jianbin; Shih, Yanhua
2010-04-15
In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon is the result of three-photon interference. By making use of this property, we measured the three-photon thermal light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal light ghost image.
NASA Astrophysics Data System (ADS)
Pramodini, S.; Poornesh, P.
2014-11-01
We report thermally induced third-order nonlinearity and optical limiting behaviour of Indigo Carmine dye. z-Scan technique was used to determine the sign and magnitude of absorptive and refractive nonlinearities. Continuous wave (CW) He-Ne laser operating at 633 nm was used as source of excitation. In open aperture z-scan experiments, samples exhibited reverse saturable absorption (RSA) process. For closed aperture z-scan experiments, samples revealed self-defocusing property. The presence of donor and acceptor groups in the structure increases the conjugation length and in turn increases the optical nonlinearity. Induced self-diffraction rings pattern was recorded for the samples and it is attributed to refractive index change and thermal lensing. Also, optical limiting and clamping studies were carried out for various input power. Optical clamping of about ~1 mW was observed. This endorses that the dye under investigation is a positive candidate for opto-electronic and photonic applications.
NASA Astrophysics Data System (ADS)
Nakagawa, Ryo; Suzuki, Takanao; Shimizu, Hiroshi; Kyoya, Haruki; Nako, Katsuhiro; Hashimoto, Ken-ya
2016-07-01
In this paper, we discuss the generation mechanisms of third-order nonlinearity in surface acoustic wave (SAW) devices on the basis of simulation results, which are obtained by a proposed method for this discussion. First, eight nonlinear terms are introduced to the piezoelectric constitutive equations, and nonlinear stress and electric flux fields are estimated using linear strain and electric fields calculated by a linear analysis, i.e., the coupling of mode simulation. Then, their contributions are embedded as voltage and current sources, respectively, in an equivalent circuit model, and nonlinear signals appearing at external ports are estimated. It is shown that eight coefficients of the nonlinear terms can be determined from a series of experiments carried out at various driving and resulting frequencies. This is because the effect of each nonlinear term on the nonlinear signal outputs changes markedly with the conditions. When the coefficients are determined properly, the simulations agree well with some measurement results under various conditions.
Kildishev, Alexander V; Sivan, Yonatan; Litchinitser, Natalia M; Shalaev, Vladimir M
2009-11-01
An enhanced method is developed for analysis of third-order nonlinearities in optical nanostructures with a scalar magnetic field frequency-domain formulation; it is shown to produce fast and accurate results for 2D problems without a superfluous vector electric field formalism. While a standard TM representation using cubic nonlinear susceptibility results in an intractable implicit equation, our technique alleviates this problem. In addition to a universal approach, simpler, more efficient solutions are proposed for media having solely either a real (lossless Kerr-type medium) or an imaginary (nonlinear absorbing medium) nonlinearity. Combining these solutions with a finite-element method, we show simulation examples validated with alternative approaches. PMID:19881595
An assessment of four-noded plate finite elements based on a generalized third-order theory
NASA Technical Reports Server (NTRS)
Averill, R. C.; Reddy, J. N.
1992-01-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source
Corona, Maria; Garay-Palmett, Karina; U'Ren, Alfred B.
2011-09-15
We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
NASA Astrophysics Data System (ADS)
Dhavamurthy, M.; Raja, R.; Syed Suresh Babu, K.; Mohan, R.
2016-08-01
Guanidinium cinnamate (GUCN), a single crystal, was grown by slow evaporation technique. Single-crystal X-ray diffraction study revealed that GUCN crystal belongs to monoclinic crystal system with the space group P21/c. Thermal studies revealed that the GUCN is thermally stable up to 238 °C. The optical transmittance studies were carried out for the crystal, and the lower cutoff wavelength of the grown crystal was observed at 322 nm. The luminescent study showed that the GUCN crystal has high degree of luminescence. Third-order nonlinear refractive index n2, nonlinear absorption coefficient β and susceptibility χ(3) parameters were estimated by Z-scan technique. The four independent tensor coefficients ɛ11, ɛ22, ɛ33 and ɛ13 of dielectric permittivities for monoclinic GUCN were calculated. The mechanical properties of the grown crystals were studied using Vickers micro-hardness tester at different planes.
NASA Astrophysics Data System (ADS)
Lazur, V. Yu.; Pavlyk, O. F.; Reity, A. K.
2010-10-01
We solve the problem of interaction two quasimolecular electrons located at an arbitrary separation near different atoms (nuclei). We consider third-order effects in quantum electrodynamics, which include the virtual photon exchange between electrons with emission (absorption) of a real photon. We obtain the general expression for matrix elements of the operator of the effective interaction energy of two quasimolecular electrons with the external radiation field, which allows calculating probabilities of inelastic processes with rearrangement at slow collisions of multicharge ions with relativistic atoms. We demonstrate that consistently taking the natural condition of the interaction symmetry with respect to the two electrons into account results in the appearance of additional terms in the operators of spin-orbit, spin-spin, and retarded interactions compared with the previously obtained expressions for these operators. We construct the operator of the dipole-dipole interaction of two neutral atoms located at an arbitrary separation.
Pulse compression to 14 fs by third-order dispersion control in a hybrid grating-prism compressor.
Zeytunyan, Aram; Yesayan, Garegin; Mouradian, Levon
2013-11-10
A pulse compressor consisting of a fiber and a compact hybrid grating-prism dispersive delay line (DDL) is used to compress readily-available 140-fs pulses from a Ti:sapphire laser. We generate broadband pulses of up to 75 THz FWHM bandwidth in normally-dispersive single-mode conventional and photonic crystal fibers, with a potential of compression to 6 fs. Pulse dechirping in our hybrid DDL through second- and third-order dispersion (TOD) compensation results in 10× compression to 14 fs, limited by the bandwidth of the DDL transfer function and higher-order dispersion. The large tunability of the TOD of the hybrid DDL is shown. PMID:24216734
NASA Astrophysics Data System (ADS)
Rehbein, S.; Guttmann, P.; Werner, S.; Schneider, G.
2011-09-01
The Helmholtz-Zentrum Berlin (HZB) operates a transmission x-ray microscope (TXM) in the soft x-ray photon energy range with an energy resolution up to E/ΔE = 104 [1]. An approach to achieve ultrahigh spatial resolution with conventional, standard zone plate optics is to employ higher orders of diffraction of the zone plate objective [2]. In this paper, we demonstrate that 11-nm lines and spaces of a multilayer test structure are clearly resolved by the x-ray microscope using the third order of diffraction of a zone plate objective with 20-nm outermost zone width. The disadvantage of high-order imaging is an about one order of magnitude lower diffraction efficiency of the used zone plates employed in the third order compared to the first order of diffraction. In addition, the measured background signal in the TXM images is no longer negligible. Therefore, we worked on the fabrication of zone plates with sub-20-nm outermost zone width to increase the spatial resolution in the first order of diffraction. A new high-resolution 100-keV e-beam lithography system from VISTEC, which was recently installed at the Helmholtz-Zentrum Berlin, makes these developments possible. Initial results on zone plates with an outermost zone width down to 15 nm exposed with the new e-beam system are presented. Furthermore, the contrast transfer function of the transmission x-ray microscope operating in partial coherence mode is measured by using the first and third diffraction order of the zone plate objective.
Rehbein, S.; Guttmann, P.; Werner, S.; Schneider, G.
2011-09-09
The Helmholtz-Zentrum Berlin (HZB) operates a transmission x-ray microscope (TXM) in the soft x-ray photon energy range with an energy resolution up to E/{Delta}E = 10{sup 4}. An approach to achieve ultrahigh spatial resolution with conventional, standard zone plate optics is to employ higher orders of diffraction of the zone plate objective. In this paper, we demonstrate that 11-nm lines and spaces of a multilayer test structure are clearly resolved by the x-ray microscope using the third order of diffraction of a zone plate objective with 20-nm outermost zone width. The disadvantage of high-order imaging is an about one order of magnitude lower diffraction efficiency of the used zone plates employed in the third order compared to the first order of diffraction. In addition, the measured background signal in the TXM images is no longer negligible. Therefore, we worked on the fabrication of zone plates with sub-20-nm outermost zone width to increase the spatial resolution in the first order of diffraction. A new high-resolution 100-keV e-beam lithography system from VISTEC, which was recently installed at the Helmholtz-Zentrum Berlin, makes these developments possible. Initial results on zone plates with an outermost zone width down to 15 nm exposed with the new e-beam system are presented. Furthermore, the contrast transfer function of the transmission x-ray microscope operating in partial coherence mode is measured by using the first and third diffraction order of the zone plate objective.
NASA Astrophysics Data System (ADS)
Masella, Biagio; Zhang, Xiupu
2006-09-01
We present a simplified radio over fiber balanced system that uses only one wavelength, optical modulator and fiber. In this balanced system the upper and lower sidebands produced by subcarrier modulation along with its optical carrier are separated before balanced photodetection. Optical time delays are introduced to one of the sidebands by means of two cascaded tunable nonlinearly chirped fiber Bragg gratings. The first nonlinearly chirped fiber Bragg grating produces relative time delay that has the following relationship τ delay ~ 1/2f, while the second produces a relative time delay of τ delay ~ 1/f. The first nonlinearly chirped fiber Bragg grating will have a large enough bandwidth and group velocity dispersion to introduce a relative time delay for the subcarrier and second order distortion, while the second will have the bandwidth and group velocity dispersion to introduce a different relative time delay for the third order distortion. The net effect of the relative time delays is to provide a phase shift of π for the subcarrier, second order distortion currents and a phase shift of 2π for the third order distortion current. Simulated results show a suppression of 2nd and 3rd harmonic distortion of 25.4 dB and 2.6 dB, respectively. In the case of 2 nd and 3 rd intermodulation distortion suppression of 33 dB and 20 dB, respectively have been reported. Simulation also shows that the power penalty improvement is approximately 2.5 dB for bit error rate of 10-9 for subcarrier at 10 and 35 GHz and relative intensity noise is suppressed by 3 dB.
NASA Astrophysics Data System (ADS)
Thankappan, Aparna; Thomas, Sheenu; Nampoori, V. P. N.
2013-10-01
We report on the solvent effect on the third order optical nonlinearity of betanin natural dye extracted from red beet root and their third order nonlinear optical (NLO) properties have been studied using a Q-switched Nd:YAG laser at 532 nm. The third order nonlinearity of these samples are dominated by nonlinear absorption, which leads to strong optical limiting and their strength is influenced by the solvent used, suggesting that betanin natural dyes are promising candidate for the development of photonic nonlinear optic devices.
NASA Astrophysics Data System (ADS)
Thirupugalmani, K.; Karthick, S.; Shanmugam, G.; Kannan, V.; Sridhar, B.; Nehru, K.; Brahadeeswaran, S.
2015-11-01
The title compound, 2-amino-4-picolinium-nitrophenolate-nitrophenol (2A4PNN), has been synthesized and optical quality single crystals of 2A4PNN were grown by solution growth technique. The crystal structure was solved by single crystal X-ray diffraction method. The 2A4PNN molecule was found to possess intermolecular herringbone structure and to crystallize in orthorhombic crystal system with a noncentrosymmetric space group of Pna21 (Point group mm2). The functional groups of 2A4PNN were confirmed through FT-IR and Raman vibrational spectroscopic studies and NMR spectrum was recorded to study its molecular structure. The UV-Vis and photoluminescence spectra were recorded to explore its optical transmittance and emission properties respectively. The SHG efficiency and phasematchability were investigated through Kurtz and Perry powder technique using sieved/graded powders derived from polycrystals of 2A4PNN. The laser damage threshold studies of 2A4PNN single crystal were performed on (1 0 0) plane using a pulsed Nd:YAG laser (1064 nm). The third-order optical properties of 2A4PNN single crystal were measured by Z-scan technique. In addition, the quantum chemical studies were performed on the isolated 2A4PNN molecule using density functional theory (DFT) calculations at the B3LYP/6-311++G (d, p) basis set.
NASA Astrophysics Data System (ADS)
Varadarajan, Ravikumar
In 2005, about 629,000 total joint replacement (TJR) surgeries were performed in the United States alone and the number is expected to increase by 343% by 2030. In addition, the average age of the patient receiving TJR is decreasing. Therefore, there is an immediate need to enhance the material properties of the implants. Fracture of ultra high molecular weight polyethylene (UHMWPE) components used in total joint replacements is a clinical concern. In this work, static and cyclic fracture resistance of conventional and highly crosslinked and post-processed UHMWPE materials were evaluated in ambient air and physiologically relevant environmental conditions. Applicability of a compliance based automated system for crack length measurement during fatigue crack propagation (FCP) tests was demonstrated for UHMWPE materials. The Standard compliance calibration coefficients were found to accurately predict the fatigue crack growth only in the low da/dN regime (da/dN < 10-4 mm/cycle). New compliance calibration coefficients that can accurately predict the fatigue crack growth were computed for different UHMWPE materials. FCP studies were conducted in ambient air and in 37°C PBS environments to evaluate the cyclic fracture resistance of UHMWPE materials. In a 37°C PBS environment, the resistance to fatigue crack inception and propagation of sterilized and highly crosslinked UHMWPE materials were found to be reduced compared to ambient air. This findings suggests that under in-vivo conditions UHMWPE implants are more likely to be susceptible to fatigue fracture than might be expected from tests conducted in ambient air. The presence of crack closure overestimates the FCP resistance in the near threshold regime. Crack closure was not observed for any of the UHMWPE materials under the testing conditions selected for this study. Under in-vivo conditions, UHMWPE components may be subjected to overloads. On application of an overload, some test specimens exhibited crack
AKOPIAN, A.; SZIKRA, T.; CRISTOFANILLI, M.; KRIZAJ, D.
2010-01-01
Ligand-gated ion channels (ionotropic receptors) link to the cortical cytoskeleton via specialized scaffold proteins and thereby to appropriate signal transduction pathways in the cell. We studied the role of filamentous actin in the regulation of Ca influx through glutamate receptor-activated channels in third-order neurons of salamander retina. Staining by Alexa-Fluor 488-phalloidin, to visualize polymerized actin, we show localization of filamentous actin in neurites, and the membrane surrounding the cell soma. With Ca2+ imaging we found that in dissociated neurons, depolymerization of filamentous actin by latrunculin A, or cytochalasin D significantly reduced glutamate-induced intracellular Ca2+ accumulation to 53±7% of control value. Jasplakinolide, a stabilizer of filamentous actin, by itself slightly increased the glutamate-induced Ca2+ signal and completely attenuated the inhibitory effect when applied in combination with actin depolymerizing agents. These results indicate that in salamander retinal neurons the actin cytoskeleton regulates Ca2+ influx through ionotropic glutamate receptor-activated channels, suggesting regulatory roles for filamentous actin in a number of Ca2+-dependent physiological and pathological processes. PMID:16359816
NASA Astrophysics Data System (ADS)
Mani, Bhupeshwaran; Jawahar, A.; Sivasubramanian, A.; Chitra, K.
2015-07-01
Here, we demonstrate the combined influence of Intrapulse Raman Scattering (IRS), Self-Steepening (SS) and negative Third Order Dispersion (n-TOD) on soliton interaction. The peculiar particle nature of soliton results in interaction of in-phase adjacent pulses while helps in deviation of out-of phase pulses. We show how the interaction of the soliton can be avoided due to combined effect of IRS, SS and negative TOD as these effects apart from various nonlinear dynamics results in shifting of pulses. The interaction point of solitons in 160 Gbps system is found to be at 24.22Km for an initial relative spacing of qo=5.28 using Perturbation theory. This in-phase soliton pair tracing inside the fiber in noted using Split-Step Fourier Transform. Further, impact of interaction is realized in 160 Gbps telecommunication model which yielded Q=0 at Ip depicting perfect interaction resulting in bit error without influence while yielded fair Quality facto of 112.375, 124.59, 93.57, 75.12, 63.23 and 46.97 with influence for various TOD values of -0.03, -0.04, -0.05, -0.06, -0.07 and -0.09 ps3/Km and TR=4fs demonstrating no interaction.
NASA Astrophysics Data System (ADS)
Fantino, E.; Casotto, S.
2009-07-01
Four widely used algorithms for the computation of the Earth’s gravitational potential and its first-, second- and third-order gradients are examined: the traditional increasing degree recursion in associated Legendre functions and its variant based on the Clenshaw summation, plus the methods of Pines and Cunningham-Metris, which are free from the singularities that distinguish the first two methods at the geographic poles. All four methods are reorganized with the lumped coefficients approach, which in the cases of Pines and Cunningham-Metris requires a complete revision of the algorithms. The characteristics of the four methods are studied and described, and numerical tests are performed to assess and compare their precision, accuracy, and efficiency. In general the performance levels of all four codes exhibit large improvements over previously published versions. From the point of view of numerical precision, away from the geographic poles Clenshaw and Legendre offer an overall better quality. Furthermore, Pines and Cunningham-Metris are affected by an intrinsic loss of precision at the equator and suffer from additional deterioration when the gravity gradients components are rotated into the East-North-Up topocentric reference system.
NASA Astrophysics Data System (ADS)
Sabry-Rizk, Madiha; Zgallai, Walid; El-Khafif, Sahar; Carson, Ewart; Grattan, Kenneth T. V.
1998-10-01
The objective of this paper is to demonstrate how, in a few seconds, a relatively simple ECG monitor, PC and advanced signal processing algorithms could pinpoint microvolts - late potentials - result from an infarct zone in the heart and is used as an indicator in identifying patients prone to ventricular tachycardia which, if left untreated, leads to ventricular fibrillation. We will characterize recorded ECG data obtained from the standard three vector electrodes during exercise in terms of their higher-order statistical features. Essentially we use adaptive LMS- and Kalman-based second- and third-order Volterra filters to model the non- linear low-frequency P and T waves and motion artifacts which might overlap with the QRS complex and lead to false positive QRS detection. We will illustrate the effectiveness of this new approach by mapping out bispectral regions with a strong bicoherence manifestation and showing their corresponding temporal/spatial origins. Furthermore, we will present a few examples of our own application of these non-invasive techniques to illustrate what we see as their promise for analysis of heart abnormality.
Santa-Cruz, Pablo; García-Reiriz, Alejandro
2014-10-01
In the present work a new application of third-order multivariate calibration algorithms is presented, in order to quantify carbaryl, naphthol and propoxur using kinetic spectroscopic data. The time evolution of fluorescence data matrices was measured, in order to follow the alkaline hydrolysis of the pesticides mentioned above. This experimental system has the additional complexity that one of the analytes is the reaction product of another analyte, and this fact generates linear dependency problems between concentration profiles. The data were analyzed by three different methods: parallel factor analysis (PARAFAC), unfolded partial least-squares (U-PLS) and multi-dimensional partial least-squares (N-PLS); these last two methods were assisted with residual trilinearization (RTL) to model the presence of unexpected signals not included in the calibration step. The ability of the different algorithms to predict analyte concentrations was checked with validation samples. Samples with unexpected components, tiabendazole and carbendazim, were prepared and spiked water samples of a natural stream were used to check the recovered concentrations. The best results were obtained with U-PLS/RTL and N-PLS/RTL with an average of the limits of detection of 0.035 for carbaryl, 0.025 for naphthol and 0.090 for propoxur (mg L(-1)), because these two methods are more flexible regarding the structure of the data. PMID:25059185
NASA Astrophysics Data System (ADS)
Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin
2015-09-01
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)-based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SPN). Coupling the SPN and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.
NASA Astrophysics Data System (ADS)
Mao, L.; Andreoli, A.; Comiti, F.; Lenzi, M. A.; Iturraspe, R.; Burns, S.; Novillo, M. G.
2007-05-01
Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase of stream morphological diversity and complexity also exerts also an important ecological role. This work reports on geomorphic role of large wood pieces and jams in a third order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old-growth nothofagus forested basin not influenced by the beavers damming activity. Even if the in-stream number of wood pieces (length > 1m; diameter > 0.1 m) is comparable to what observed in other climatic areas, the slow growth of the nothofagus forest causes a lower wood abundance in terms of volumetric load. Since the relatively small dimensions of the surveyed large wood pieces, almost the 70% of them demonstrated to have been fluvial transported and the also wood jams reflect the apparent dynamic of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost the half of the drop caused by steps and being responsible for the creation of 30% of the pools. The LW-forced pool volume is strongly and positively correlated to the height of the LW jam, and a significant inverse relationship between pool spacing and wood density within is evident if only the LW-forced pools are considered. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity.
Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity.
Wang, Zinan; Wu, Han; Fan, Mengqiu; Rao, Yunjiang; Jia, Xinhong; Zhang, Weili
2013-08-26
Third-order random lasing operating in 1670 nm spectral band is experimentally demonstrated for the first time to the best of our knowledge, with only 2.45 W pump threshold. The lasing cavity is formed by G.652 fiber and fiber loop mirrors (FLMs), while the former acts as the distributed reflector and the latter acts as the point reflector. The G.652 fiber and the FLMs are connected via a multi-band wavelength-division-multiplexer, which ensures each of the three Raman Stokes components generated in the long fiber is routed to one FLM and then reflected back with minimum loss. Unlike existing half-open random lasing cavities using fiber Bragg gratings, the reflection bandwidth of FLMs is wide enough to preserve the intrinsic spectral features of each lasing bands, providing a valuable platform to study the mechanism of high-order random lasing in fibers. Also, the reflection efficiency can be treated as an invariant as the pump power grows, significantly reducing the threshold of high-order random lasing. The stationary model is used to calculate the output power, and the results fit the experimental data well. PMID:24105555
NASA Astrophysics Data System (ADS)
Kengne, J.; Njitacke Tabekoueng, Z.; Fotsin, H. B.
2016-07-01
We perform a systematic analysis of a system consisting of an autonomous third order Duffing-Holmes type chaotic oscillator recently introduced by Tamasevicius et al. (2009). In this type of oscillators, the symmetrical characteristics of the nonlinear component necessary for generating chaotic oscillations is synthesized by using a pair of semiconductor diodes connected in anti-parallel. Based on the Shockley diode equation and a judicious choice of state variables, we derive a smooth mathematical model (involving hyperbolic sine and cosine functions) for a better description of both the regular and chaotic dynamics of the oscillator. The bifurcation analysis shows that chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. More interestingly, some regions of the parameter space corresponding to the coexistence of multiple attractors (e.g. coexistence of four different attractors for the same values of system parameters) are discovered. This striking phenomenon is unique and has not yet been reported previously in an electrical circuit (the universal Chua's circuit included, in spite the immense amount of related research work), and thus represents a meaningful contribution to the understanding of the behavior of nonlinear dynamical systems in general. Some PSpice simulations of the nonlinear dynamics of the oscillator are carried out to verify the theoretical analysis.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin
2015-01-01
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)–based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SP(N)). Coupling the SP(N) and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals. PMID:26385654
Chella, F.; Marzetti, L.; Pizzella, V.; Zappasodi, F.; Nolte, G.
2014-01-01
We present a novel approach to the third order spectral analysis, commonly called bispectral analysis, of electroencephalographic (EEG) and magnetoencephalographic (MEG) data for studying cross-frequency functional brain connectivity. The main obstacle in estimating functional connectivity from EEG and MEG measurements lies in the signals being a largely unknown mixture of the activities of the underlying brain sources. This often constitutes a severe confounder and heavily affects the detection of brain source interactions. To overcome this problem, we previously developed metrics based on the properties of the imaginary part of coherency. Here, we generalize these properties from the linear to the nonlinear case. Specifically, we propose a metric based on an antisymmetric combination of cross-bispectra, which we demonstrate to be robust to mixing artifacts. Moreover, our metric provides complex-valued quantities that give the opportunity to study phase relationships between brain sources. The effectiveness of the method is first demonstrated on simulated EEG data. The proposed approach shows a reduced sensitivity to mixing artifacts when compared with a traditional bispectral metric. It also exhibits a better performance in extracting phase relationships between sources than the imaginary part of cross-spectrum for delayed interactions. The method is then applied to real EEG data recorded during resting state. A cross-frequency interaction is observed between brain sources at 10 Hz and 20 Hz, i.e., for alpha and beta rhythms. This interaction is then projected from signal to source level by using a fit-based procedure. This approach highlights a 10–20 Hz dominant interaction localized in an occipito-parieto-central network. PMID:24418509
Yan, Ling; Zhao, Ying; Han, Cui-xiang; Tong, Xiao-li
2007-11-01
By placing 5 mm- and 0.1 mm mesh bags with Dracontomelon duperreanum (Anacardiaceae) and Syzygium jambos (Myrtaceae) litters in the Hengshishui Stream, a third-order stream in northern Guangdong of China, this paper studied the decomposition of the litters and the colonization of macro-invertebrates over a 101-day period. The results showed that the decomposition rate of D. duperreanum litter in 5 mm- and 0.1 mm mesh bags was 0.0247 d(-1) and 0.0151 d(-1), while that of S. jambos litter was 0.0108 d(-1) and 0.0095 d(-1), respectively, indicating that D. duperreanum litter decomposed faster than S. jambos litter, and the decomposition rates of these two kinds of litters were higher in coarse mesh bag than in fine mesh bag. Among the colonized macro-invertebrate functional feeding groups, scraper occupied the highest proportion (36%), followed by collector (33%), predator (25%), and shredder (6%). At the middle and late stages of the experiment, the total number of individuals and the numbers and densities of dominant groups of macroinvertebrates on D. duperreanum litter were significantly higher than those on S. jambos litter. It was suggested that in the subtropical medium-size streams where shredders are few or absent, scrapers play an important role in the breakdown of litter. The low decomposition rate of S. jambos litter was mainly due to its high content of polyphenols which inhibits microbial activity and makes the litter less eatable to the macro-invertebrates. PMID:18260466
Liu, Yang; Li, Wenxue; Luo, Daping; Bai, Dongbi; Wang, Chao; Zeng, Heping
2016-05-16
We report on a high-power third-order dispersion managed amplification system that delivers 33-fs pulses of 93.5 W at a repetition rate of 55 MHz. A pair of grisms are used as the pre-chirper for optimizing the third order dispersion (TOD) to group velocity dispersion (GVD) ratio. Detail experiments show that the use of a grsim pre-chirper significantly enhances the quality of the compressed pulses. We demonstrate that the third order dispersion of both the amplifier and the compressor can be compensated for by the grisms. Furthermore, the nonlinear phase shift introduced by spectral asymmetry during amplification can be restrained. This type of scheme, applied in our experiment, can be used for further development of a high power laser with ultrashort pulse and wide spectrum. PMID:27409915
Wenzel, Jan Holzer, Andre; Wormit, Michael; Dreuw, Andreas
2015-06-07
The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of −0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level.
NASA Astrophysics Data System (ADS)
Wenzel, Jan; Holzer, Andre; Wormit, Michael; Dreuw, Andreas
2015-06-01
The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of -0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level.
Wenzel, Jan; Holzer, Andre; Wormit, Michael; Dreuw, Andreas
2015-06-01
The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of -0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level. PMID:26049476
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur
2011-12-01
In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O4 +, O3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O4 +, the OMP3 prediction, 1343 cm-1, for ω6 (b3u) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm-1, and OD, 1193 cm-1, methods (the experimental value is 1320 cm-1). For O3, the predictions of SCS-OMP3 (1143 cm-1) and SOS-OMP3 (1165 cm-1) are remarkably better than the more robust OD method (1282 cm-1); the experimental value is 1089 cm-1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |Δωe| = 44 and |Δωe| = 35 cm-1, respectively, while for OD, |Δωe| = 161 cm-1and CCSD |Δωe| = 106 cm-1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on
ERIC Educational Resources Information Center
Rijmen, Frank; Jeon, Minjeong; von Davier, Matthias; Rabe-Hesketh, Sophia
2014-01-01
Second-order item response theory models have been used for assessments consisting of several domains, such as content areas. We extend the second-order model to a third-order model for assessments that include subdomains nested in domains. Using a graphical model framework, it is shown how the model does not suffer from the curse of…
Goldhammer, R.K.; Lehmann, P.J.; Dunn, P.A. )
1991-03-01
The Lower Ordovician passive margin succession of the Franklin Mountains is represented by the second-order Sauk C supersequence set consisting of the Bliss Sandstone and the overlying El Paso Group. The Bliss marks the second order basal lowstand-transgressive phase and the El Paso Group records the second-order highstand. The El Paso Group contains several third-order depositional sequences, which in this updip, shelfal position lack internal stratal geometries along dip. Thus, sequences and systems tracts are identified solely on the basis of the vertical stacking patterns of depositional subfacies and high frequency, fifth-order parasequences. 'Fischer plots' of high-frequency parasequences gauge systematic shifts in third-order accommodation of two complete third-order sequences within the Arenigian portion of the El Paso Group. This is expressed in the vertical succession of parasequence types, systematic changes in parasequence thicknesses, plus variations in subfacies as revealed by histograms of subfacies types tied to 'Fischer plots.' A complete El Paso shelfal sequence contains a thin lowstand (LST) of quartzarenite, a thick transgressive systems tract (TST) dominated by upward-thickening, thrombolitic subtidal parasequences, and a highstand systems tract (HST) marked by dolomitic, thinning-upward peritidal parasequences containing admixed quartz sand. The authors have investigated the mechanics of third-order sequence formation and contrasted allocyclic models with autocyclic models for high-frequency parasequence formation through 1-D and 2-D forward modeling.
NASA Astrophysics Data System (ADS)
Siji Narendran, N. K.; Soman, Rahul; Arunkumar, Chellaiah; Chandrasekharan, K.
2015-02-01
We report here the experimental investigation on third-order nonlinear optical parameters of 5,10,15,20-tetrakis(2,3,5,6-tetrafluoro-N,N-dimethyl-4-anilinyl)porphyrin and its various metal complexes, using Z-scan technique at 532 nm. The third-order nonlinear optical susceptibilities (χ(3)) were of the order 10-12 esu and are compared through degenerate four wave mixing (DFWM). The operating mechanism is reverse saturable absorption (RSA) as the effective excited-state absorption cross-section was found higher than ground state absorption cross-section as well as the magnitude of nonlinear absorption coefficient was found decreasing with on-axis input intensity. The compounds found to exhibit good optical limiting at 532 nm, 7 ns excitation steering applications in laser safety.
NASA Astrophysics Data System (ADS)
Zhou, Tao-Yu; Song, Ying-Lin; Hong, Jian-Ming; Xin, Xin-Quan
2005-04-01
The room-temperature solid-state reactions occurring in the preparation of nanotubes of zinc sulfide are further investigated by x-ray powder diffractometry (XRD) and infra-red (IR) spectrometry measurements, and the nanotube ZnS product obtained is measured by Z-scan technology to investigate the third-order nonlinear optical (NLO) properties. The XRD result suggests that the reactions leading to the formation of the nanotubules have occurred through reaction-controlled to growth-controlled procedures, and the IR result indicates that the procedures involve a coordination effect of the additive DABCO as ligand on the reactant. The result of NLO measurements shows that the nanotube ZnS products obtained have the behaviours of the third-order nonlinear optical properties of both NLO absorption and NLO refraction with self-focusing effects.
Gu, X.; Luo, Y.; Fischer, W.
2010-08-01
In the preparation for the 2011 RHIC 250 GeV polarized proton (pp) run, both experiment and simulation were carried out to investigate the possibility to accelerate the proton beam with a vertical tune near 2/3. It had been found experimentally in Run-9 that accelerating the proton beam with a vertical tune close to 2/3 will greatly benefit the transmission of the proton polarization. In this note, we report the calculated dynamic apertures with the 100 GeV Au run and 250 GeV proton run lattices with vertical tunes close to the third order resonance. We will compare the third order resonance band width between the beam experiment and the simulation with the 100 GeV Au lattices. And we also will compare the calculated resonance band width between the 100 GeV Au and 250 GeV proton run lattices.
NASA Astrophysics Data System (ADS)
Felmy, Andrew R.; Rustad, James R.
1998-01-01
Molecular statics calculations of proton binding at the hydroxylated faces of goethite are used to guide the development of a thermodynamic model which describes the surface charging properties of goethite in electrolyte solutions. The molecular statics calculations combined with a linear free energy relation between the energies of the hydroxylated surface and the aqueous solvated surface predict that the acidity constants for most singly (aqua or hydroxo), doubly (μ-hydroxo), and triply (μ 3-hydroxo or μ 3-oxo) coordinated surface sites all have similar values. This model which binds protons to the goethite 110 and 021 faces satisfactorily describes the surface charging behavior of goethite, if pair formation between bulk electrolyte species, i.e., Na +, Cl -, and NO 3-, is included in the model. Inclusion of minor species of quite different charging behavior (designed to describe the possible presence of defect species) did not improve our predictions of surface charge since the protonation of the major surface sites changed when these minor species were introduced into the calculations thereby negating the effect of small amounts of defect species on the overall charging behavior. The final thermodynamic model is shown to be consistent with the surface charging properties of goethite over a range of pH values, NaNO 3, and NaCl concentrations.
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya
2016-03-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
NASA Astrophysics Data System (ADS)
Fu, Gang; Yoda, Takefumi; Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke
2005-06-01
Third-order optical nonlinearities of several polymer films doped with naphthalocyanine derivatives have been measured under resonant conditions by femtosecond degenerate four-wave mixing (DFWM). The metal substitution and the peripheral groups influence both the magnitude and the response of the third-order optical nonlinearities. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps and were found to consist of at least two components, the coherent instantaneous nonlinear response and the slow response. The latter for the films decayed much faster than that for the solutions due to effects of aggregation or intermolecular interactions. The electronic component of the effective third-order nonlinear optical suscepitibilities, χe(3), of the polymer films was evaluated and a film of poly(methyl methacrylate) doped with 20 wt% octabutoxy-substituted zinc 2,3-naphthalocyanine showed the largest χe(3) value of 8.9× 10-9 esu. The results were compared with those in the literature.
NASA Astrophysics Data System (ADS)
Xie, Wenfang
2014-09-01
The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
NASA Astrophysics Data System (ADS)
Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert
2016-04-01
Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.
NASA Astrophysics Data System (ADS)
Novak, P.; Pitonak, M.; Sprlak, M.
2015-12-01
Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of a third-order gravitational tensor are currently under investigation, e.g. the gravity-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite observations of first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008. Finally, this contribution also discusses merging a regional solution into a global field as a patchwork.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
NASA Astrophysics Data System (ADS)
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-06-01
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.
Đorđević, L; Marangoni, T; De Leo, F; Papagiannouli, I; Aloukos, P; Couris, S; Pavoni, E; Monti, F; Armaroli, N; Prato, M; Bonifazi, D
2016-04-28
By means of different spectroscopic techniques, we investigate a novel series of porphyrin derivatives (H2TPP), connected to dibenzo-24-crown-8 (DB24C8) moieties, which undergo self-assembly with different methano[60]fullerene units bearing dibenzylammonium (DBA) cations. The formation of both [2] and [3]pseudorotaxanes was proved by means of NMR, UV-Vis-NIR absorption and emission spectroscopies. With the support of molecular modelling studies, spectroscopic investigations showed the presence of a secondary interaction between the porphyrin and the C60 chromophores leading to the formation of different types of "face-to-face" assemblies. Remarkably, investigations of the non-linear optical response of these supramolecular systems showed that individual porphyrin and fullerene derivatives exhibit significantly lower second hyperpolarizability values when compared to their pseudorotaxanes functionalised counterparts. This proves that this class of supramolecular materials possesses relevant NLO response, which strongly depends on the structural arrangement of the chromophores in solution. PMID:26890806
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-01-01
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-01-01
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957
Teran, Natasha B; He, Guang S; Baev, Alexander; Shi, Yanrong; Swihart, Mark T; Prasad, Paras N; Marks, Tobin J; Reynolds, John R
2016-06-01
Exploiting synergistic cooperation between multiple sources of optical nonlinearity, we report the design, synthesis, and nonlinear optical properties of a series of electron-rich thiophene-containing donor-acceptor chromophores with condensed π-systems and sterically regulated inter-aryl twist angles. These structures couple two key mechanisms underlying optical nonlinearity, namely, (i) intramolecular charge transfer, greatly enhanced by increased electron density and reduced aromaticity at chromophore thiophene rings and (ii) a twisted chromophore geometry, producing a manifold of close-lying excited states and dipole moment changes between ground and excited states that are nearly twice that of untwisted systems. Spectroscopic, electrochemical, and nonlinear Z-scan measurements, combined with quantum chemical calculations, illuminate relationships between molecular structure and mechanisms of enhancement of the nonlinear refractive index. Experiment and calculations together reveal ground-state structures that are strongly responsive to the solvent polarity, leading to substantial negative solvatochromism (Δλ ≈ 10(2) nm) and prevailing zwitterionic/aromatic structures in the solid state and in polar solvents. Ground-to-excited-state energy gaps below 2.0 eV are obtained in condensed π-systems, with lower energy gaps for twisted versus untwisted systems. The real part of the second hyperpolarizability in the twisted structures is much greater than the imaginary part, with the highest twist angle chromophore giving |Re(γ)/Im(γ)| ≈ 100, making such chromophores very promising for all-optical-switching applications. PMID:27232098
Han, Xiuyou; Chen, Xiang; Yao, Jianping
2016-06-27
A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f_{1} = 10 GHz and f_{2} = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f_{1}), and 29.1 and 27.6 dB for the second intermodulation (f_{2}-f_{1} and f_{1} + f_{2}), as compared with a conventional MPL. For a two-tone RF signal of f_{1} = 9.95 GHz and f_{2} = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL. PMID:27410633
Stamm, Thomas; Hohoff, Ariane; Wiechmann, Dirk; Sütfeld, Jan; Helm, Dirk
2004-10-01
This study evaluated the accuracy of third-order bends of nickel-titanium wires and determined the effect of high and low pressure for maintaining the wire shape during memorizing heat treatment. A computer-aided bending machine was used to incorporate 200 randomly determined torsional angles between 0 degrees and 60 degrees into 30 linear 0.016 x 0.022-in NeoSentalloy F80 (GAC International, Central Islip, NY) wires. The torsional bendings were randomized into 2 groups. Bends assigned to group 1 (n = 100) received heat treatment of 1.6 MPa (16 bar) pressure, and bends assigned to group 2 (n = 100) received heat treatment of 50 MPa (500 bar) pressure. Cross-sectional cuts from the bent wires were prepared by using standard metallurgical techniques, and the torsional angles were analyzed under computer control. The results of our study show that third-order bends 30 degrees but 40 degrees , the bending error with both methods is clinically unacceptable. In addition to the variability in the dimension and composition of nickel-titanium wires, the scale of the incorporated plastic deformations makes a substantial contribution to the bending error. As far as permitted by the clinical situation, then, the bend should be distributed over the maximum possible wire length. Third-order bends in the first rectangular pseudoelastic nickel-titanium wires represent an efficient means of effecting torque at an early stage. This individualization allows the full therapeutic potential of these archwires to be exploited right from the initial phase of treatment. PMID:15470351
NASA Astrophysics Data System (ADS)
Saha, Surajit; Pal, Suvajit; Ganguly, Jayanta; Ghosh, Manas
2016-03-01
We inspect the influence of position-dependent effective mass (PDEM) on the third-order nonlinear optical susceptibility (TONOS) of impurity doped quantum dots (QDs) in the presence and absence of noise. The TONOS profiles have been followed as a function of incident photon energy for different values of PDEM. Using PDEM the said profile considerably deviates from that of fixed effective mass (FEM). However, a switch from one mode of application of noise to another primarily alters the TONOS peak intensity. The observations highlight the possibility of tuning the TONOS profiles of doped QD systems exploiting noise and PDEM.
Li, Jian; Zhang, Yi-Chen; Yu, Song; Jiang, Tianwei; Xie, Qian; Gu, Wanyi
2013-11-01
A method to realize a highly linear microwave photonics link is proposed based on the dual-drive dual-parallel Mach-Zehnder modulator (MZM). The scheme theoretically eliminates third-order intermodulation distortion (IMD3) completely by taking all the sidebands in the optical spectrum that cause IMD3 into consideration. Without digital linearization and other optical processors, the method utilizes simple electrical signal phase control. Microwave signals are symmetrically single sideband modulated in the two MZMs. IMD3 suppression of approximately 30 dB is experimentally demonstrated, and the spurious-free dynamic range is improved by 12 dB·Hz2/3. PMID:24177074
NASA Astrophysics Data System (ADS)
Dehghani, Z.; Saievar Iranizad, E.; Nadafan, M.
2015-01-01
Third order nonlinearity of Fe3O4 nanoparticles (NPs) doped in nematic liquid crystals (NLCs) was evaluated due to laser induced self-phase modulation. The influence of electric field on the nonlinear optical responses of the NLCs doped with Fe3O4 NPs was considered in different voltages. The measurements were performed for two commonly initial alignments (homogeneous and homeotropic) with different small compositional percentages of magnetic NPs. The experimental results show that the homogenous- aligned cell was considerably affected on the applied electric field while the nonlinearity of homeotropic-aligned NLCs with the Fe3O4 NPs did not approximately change in the presence of electric field.
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2014-04-01
Quantum probabilities differ from classical ones in many ways, e.g. by violating the well-known Bell and Clauser-Horne-Shimony-Holt inequalities or another simple inequality due to R Wright. The latter has recently regained attention because of its equivalence to a novel noncontextual inequality by Klyachko et al. On the other hand, quantum probabilities still obey many limitations which need not hold in more general probabilistic theories (super quantum probabilities). Wright, Popescu and Rohrlich identified states which are included in such theories, but impossible in quantum mechanics, and they showed this using the Hilbert space formalism. Recently, Fritz et al and Cabello detected that the impossibility of these states can be derived from very general principles (local orthogonality and global exclusive disjunction, respectively) without using Hilbert space techniques. In the paper, an alternative derivation from rather different physical principles will be presented. These are a reasonable calculus of conditional probability (i.e. a model for the quantum measurement process) and the absence of third-order interference. The concept of third-order interference was introduced by Sorkin, who also recognized its impossibility in quantum mechanics.
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
Kishi, Ryohei; Ochi, Shoki; Izumi, Shioh; Makino, Akihiro; Nagami, Takanori; Fujiyoshi, Jun-ya; Matsushita, Naoyuki; Saito, Michika; Nakano, Masayoshi
2016-01-22
To create a design guideline for efficient third-order nonlinear optical (NLO) molecules, the chain-length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene-S,S-dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character. Such intermediate diradical oligomers are shown to exhibit enhanced γ values as compared to the pristine QTs with the same value for n. From the calculation results, the introduction of the optimal number of thiophene-S,S-dioxide rings is predicted to be an efficient chemical modification for optimizing the third-order NLO properties of open-shell QTs through tuning the diradical characters. PMID:26670676
NASA Astrophysics Data System (ADS)
Reale, Riccardo; English, Niall J.; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca
2013-11-01
Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and
NASA Astrophysics Data System (ADS)
Ulz, Manfred H.
2015-01-01
Multiscale models are designed to handle problems with different length scales and time scales in a suitable and efficient manner. Such problems include inelastic deformation or failure of materials. In particular, hierarchical multiscale methods are computationally powerful as no direct coupling between the scales is given. This paper proposes a hierarchical two-scale setting appropriate for isothermal quasi-static problems: a macroscale treated by continuum mechanics and the finite element method and a microscale modelled by a canonical ensemble of statistical mechanics solved with molecular dynamics. This model will be implemented into the framework of the heterogeneous multiscale method. The focus is laid on an efficient coupling of the macro- and micro-solvers. An iterative solution algorithm presents the macroscopic solver, which invokes for each iteration an atomistic computation. As the microscopic computation is considered to be very time consuming, two optimisation strategies are proposed. Firstly, the macroscopic solver is chosen to reduce the number of required iterations to a minimum. Secondly, the number of time steps used for the time average on the microscale will be increased with each iteration. As a result, the molecular dynamics cell will be allowed to reach its state of thermodynamic equilibrium only in the last macroscopic iteration step. In the preceding iteration steps, the molecular dynamics cell will reach a state close to equilibrium by using considerably fewer microscopic time steps. This adapted number of microsteps will result in an accelerated algorithm (aFE-MD-HMM) obtaining the same accuracy of results at significantly reduced computational cost. Numerical examples demonstrate the performance of the proposed scheme.
NASA Technical Reports Server (NTRS)
Cheng, Anning; Xu, Kuan-Man
2006-01-01
The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools
NASA Astrophysics Data System (ADS)
Sivasubramani, V.; Pandian, Muthu Senthil; Ramasamy, P.
2016-05-01
2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photon absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.
Lefrancois, Daniel; Rehn, Dirk R; Dreuw, Andreas
2016-08-28
For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references. PMID:27586899
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke
2003-11-01
Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.
NASA Astrophysics Data System (ADS)
Orczyk, M. E.; Samoc, M.; Swiatkiewicz, J.; Manickam, N.; Tomoaia-Cotisel, M.; Prasad, P. N.
1992-06-01
It is shown that ultrafast optically stimulated birefringence and dichroism may be conveniently investigated by combining polarization sensitive optically heterodyned detection with phase tune-up between the optical Kerr gate signal and the local oscillator. The real and the imaginary parts of complex third-order optical nonlinearity can be effectively separated and their values and signs determined. 60 fs pulses at 620 nm were used in experiments carried on tetrahydrofuran solutions of canthaxanthin, a carotenoid important for photobiology. The values of both parts of the complex second hyperpolarizability gamma as well as the sign of its real part determined by this method compare well with that obtained from the concentration dependence method employing the homodyne-detection optical Kerr gate technique.
On the Trellis structure of a (64,40,8) subcode of the (64,42,8) third-order Reed-Muller code
NASA Technical Reports Server (NTRS)
Moorthy, Hari T.; Lin, Shu; Uehara, Gregory
1995-01-01
A (64,40,8) subcode of the (64,42,8) third-order Reed-Muller code is proposed to NASA for high-speed satellite communications. This code can be either used alone or used as an inner-code in a concatenated coding system with the NASA standard (255,223,33) Reed-Solomon code as the outer code to achieve high performance with reduced decoding complexity. This Reed-Muller subcode has a relatively simple and parallel trellis structure and consequently can be decoded with a group of identical and relatively simple Viterbi decoders in parallel to achieve high-speed decoding. In this report, the complexities of various sectionalized trellis diagrams are analyzed. Based on this analysis, the trellis diagram with the smallest overall complexity will be used for the implementation of a high-speed decoder.
Okcan, Burak; Gielen, Georges; Van Hoof, Chris
2012-02-01
This paper presents a third-order switched-capacitor sigma-delta modulator implemented in a standard 0.35-μm CMOS process. It operates from 300 K down to 4.2 K, achieving 70.8 dB signal-to-noise-plus-distortion ratio (SNDR) in a signal bandwidth of 5 kHz with a sampling frequency of 500 kHz at 300 K. The modulator utilizes an operational transconductance amplifier in its loop filter, whose architecture has been optimized in order to eliminate the cryogenic anomalies below the freeze-out temperature. At 4.2 K, the modulator achieves 67.7 dB SNDR consuming 21.17 μA current from a 3.3 V supply. PMID:22380114
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Dehghani, A.
2015-03-01
In this paper, we obtain topological black hole solutions of third-order Lovelock gravity coupled with two classes of Born-Infeld-type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of the Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider the extended phase space thermodynamics to obtain a generalized first law of thermodynamics as well as the extended Smarr formula.
NASA Astrophysics Data System (ADS)
Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng
2015-01-01
Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.
NASA Astrophysics Data System (ADS)
Lazur, V. Yu; Reity, O. K.; Pavlyk, O. F.
2010-04-01
The problem of the interaction of two quasimolecular electrons located at an arbitrary distance from each other and near different atoms (nuclei) is solved. Effects of the third order of quantum electrodynamics, which include the exchange of a virtual photon between the electrons and emission (absorption) of a real photon, are considered. The general expression for the matrix elements of the operator of the effective interaction energy of the two quasimolecular electrons with the external radiation field, which allows us to calculate the probabilities of inelastic processes with rearrangement in slow collisions of multiply-charged ions with relativistic atoms, is obtained. Carrying out consistently the procedure of symmetrization of the retardation factor with respect to both the electrons results in the appearance of additional terms in the relativistic operator of the interaction of two quasimolecular electrons in comparison with both the standard and generalized Breit operators known previously.
NASA Astrophysics Data System (ADS)
Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Li, Han-Yang; Yuan, Ping
2016-02-01
We report the investigation of third order nonlinear optical properties of undoped zinc oxide and indium doped zinc oxide thin films using nanosecond (6 ns, 18 μJ at 532 nm) Z-scan technique. Undoped (ZnO) and indium doped zinc oxide (InZnO) thin films were synthesized on quart silica substrate by using radio frequency (RF) magnetron sputtering technique. The structural and characterization of deposited thin films were analyzed by X-ray diffraction (XRD). In XRD results show different behaviors as amorphous oxide semiconductor and polycrystalline oxide semiconductor for ZnO and InZnO thin films respectively. Elemental compositions of thin films were analyzed by energy dispersive spectrometer (EDS). Surface morphology of ZnO and InZnO films were measured by using scanning electron microscopy (SEM), which show uniform and regular surface with small grain size distribution. Linear optical transmission and reflection thin films were analyzed by UV-VIS spectrometer. The UV-VIS results reveal that the optical transmittances of deposited thin films were increased after doping indium. The third order nonlinear optical properties of ZnO and InZnO thin films were carried out using nanosecond (6 ns) laser Z-scan technique at 532 nm wavelength. In open aperture case, both ZnO and InZnO thin films are show reverse saturable absorption (RSA) behaviors. For close-aperture Z-scan, the transmittance curve of ZnO thin film occurs as valley-peak (positive nonlinear refraction) characteristic, which indicates self-focusing behavior.
Tabrizi, Shadan Ghassemi; Arbuznikov, Alexei V; Kaupp, Martin
2016-05-10
A general giant-spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange-coupled metal cluster with dominant Heisenberg interactions was derived from a many-spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second-order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high-field EPR spectra of a number of single-molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high-rank axial and transverse terms to be necessary to account for experimental data in terms of giant-spin models. While mixing of spin multiplets by local zero-field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third-order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an S=6 trigonal Fe3 Cr complex that was recently investigated by high-field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic-field space. The results question the ability of present high-field EPR techniques to determine high-rank zero-field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3 Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs. PMID:27062248
Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang
2013-01-01
The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material. PMID:23883310
NASA Astrophysics Data System (ADS)
Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.
1996-05-01
A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K- Δ E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO 2-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log Kint between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces.
Rustad, J.R.; Felmy, A.R.; Hay, B.P.
1996-05-01
A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K-{Delta}E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO{sub 2}-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log K{sup int} between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces. 39 refs., 8 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Senthil, K.; Kalainathan, S.; Hamada, F.; Yamada, M.; Aravindan, P. G.
2015-08-01
the grown crystals. Its third-order nonlinear optical properties were investigated by Z-scan technique and proved that the 4MSTB crystal possesses two-photon absorptions (TPA) and the self-defocusing effect. The second-order molecular hyperpolarizability (γ) value at 632.8 nm is calculated to be 3.555 × 10-34 esu. The photoconductivity study of 4MSTB reveals that the negative photoconducting nature. The obtained all the results in the present work are making a 4MSTB promising candidate for the possible applications in optical switches, optical power limiter, and non-linear optical applications.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L
2014-06-01
Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow. PMID:24949761
Pei, Lang; Xiang, Weidong; Zhao, Xiuli; Liang, Xiaojuan; Yang, Xinyu; Liu, Haitao; Chen, Zhaoping; Xie, Cuiping; Ma, Xin; Zhang, Chenglong; Ma, Li; Zhao, Jialong
2014-11-15
Highlights: • We prepared Ag-doped sodium borosilicate monolithic glass. • The influence of temperature on the SPR absorption peak intensity was studied. • Nonlinear optical properties of the glass were investigated. • A mechanism for the formation of Ag quantum dots glass was proposed. - Abstract: We report the preparation of uniform spherical shape silver nanocrystals doped sodium borosilicate monolithic transparent glass by sol–gel method. The characterization of the resulting Ag nanocrystals was accomplished by using X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectrum. Surface plasma resonance absorption peaks of the silver nanocrystals glass at about 406 nm have been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different heat treatment temperatures. We have investigated the nonlinear optical properties of silver quantum dots doped glass using Z-scan technique. Third-order nonlinear optical susceptibility χ{sup (3)} of the glass was estimated to be 1.01 × 10{sup −11} esu. In particular, a mechanism for the formation of Ag quantum dots glass is proposed. This work will significantly promote the obtained material applications in optical devices.
NASA Astrophysics Data System (ADS)
Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Md Zahid, I.; Mohan Kumar, R.; Umarani, P. R.
2015-05-01
Organic Uronium 3-carboxy-4-hydroxybenzenesulfonate (UCHBS) nonlinear optical single crystal was grown by solution growth technique. The solubility and nucleation studies were performed for UCHBS at different temperatures 30, 35, 40, 45, 50 and 55 °C. The crystal structure of UCHBS was elucidated from single crystal X-ray diffraction study. High resolution X-ray diffraction technique was employed to study the perfection and internal defects of UCHBS crystal. Infrared and Raman spectra were recorded to analyze the vibrational behavior of chemical bonds and its functional groups. The physico-chemical changes, stability and decomposition stages of the UCHBS compound were established by TG-DTA studies. The dielectric phenomenon of UCHBS crystal was studied at different temperatures with respect to frequency. Linear optical properties of transmittance, cut-off wavelength, band gap of UCHBS were found from UV-visible spectral studies. Third-order nonlinear optical susceptibility, nonlinear refractive index, nonlinear optical absorption coefficient values were measured by Z-scan technique. The mechanical properties of UCHBS crystal was studied by using Vicker's microhardness test. The growth features of UCHBS crystal were analyzed from etching studies.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2010-01-01
This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.
NASA Astrophysics Data System (ADS)
Okamoto, Koichi; Saijou, Shin; Kawakami, Yoichi; Fujita, Shigeo; Terazima, Mashahide; Shimomiya, Genichi; Mukai, Takashi
2001-05-01
Nonradiative dynamics of the carriers and/or excitons created by the photoexcitation in InGaN-based light emitting diodes (LEDs) with blue (460 nm, 470 nm), green (510 nm, 540 nm), and amber (600 nm) emissions were observed by using the transient grating (TG) method which is one of the third-order nonlinear spectroscopy. The dynamics of carries and/or exciton diffusion and dynamics of heat energy released by the nonradiative recombination were observed by the time profile of the TG signals in picosecond and nanosecond time region, respectively. The diffusion coefficients and the temperature change by the heat generation were detected for several LEDs and potted against the peak wavelengths of emission (In composition in active layers). Those results were compared with the results of the time-resolved photoluminescence (PL) spectroscopy. Dependence of In composition on the radiative and nonradiative recombination lifetimes, the luminescence intensities, the internal quantum efficiencies, the heat generation and conduction processes, and the diffusion coefficients of excitons and/or careers were interpreted by the model in terms of the fluctuation and phase separation of In composition.
NASA Astrophysics Data System (ADS)
Li, Yong; Zhang, Zhaoxia; Cui, Xiaobing; Li, Teng; Li, Kechang
2010-05-01
Two-dimensional (2-D) metal-organic polymer [Zn 3(μ 2-4,4'-bipy) 2(μ 2-be) 2(be) 2(μ 2-N 3) 2] n1 (4,4'-bipy = 4,4'-bipyridine, be = benzoate, N 3- = azide anion) has been synthesized by low-hot reaction and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and UV-visible spectra. The 2-D structure is built from the linkage of secondary building units of trinuclear [Zn 3(μ 2-4,4'-bipy) 2(μ 2-be) 2(be) 2(μ 2-N 3) 2] clusters by a mixed connector of 4,4'-bipyridine, benzoate and azide. The third-order non-linear optical (NLO) properties of the 1 were also investigated with modulus of the hyperpolarizability ( γ) 8.51 × 10 -30 esu for 1 in a 3.17 × 10 -4 mol dm -3 DMF solution.
NASA Astrophysics Data System (ADS)
Tatton, Andrew S.; Frantsuzov, Ilya; Brown, Steven P.; Hodgkinson, Paul
2012-02-01
We recently noted [R. K. Harris, P. Hodgkinson, V. Zorin, J.-N. Dumez, B. Elena, L. Emsley, E. Salager, and R. Stein, Magn. Reson. Chem. 48, S103 (2010), 10.1002/mrc.2636] anomalous shifts in apparent 1H chemical shifts in experiments using 1H homonuclear decoupling sequences to acquire high-resolution 1H NMR spectra for organic solids under magic-angle spinning (MAS). Analogous effects were also observed in numerical simulations of model 13C,1H spin systems under homonuclear decoupling and involving large 13C,1H dipolar couplings. While the heteronuclear coupling is generally assumed to be efficiently suppressed by sample spinning at the magic angle, we show that under conditions typically used in solid-state NMR, there is a significant third-order cross-term from this coupling under the conditions of simultaneous MAS and homonuclear decoupling for spins directly bonded to 1H. This term, which is of the order of 100 Hz under typical conditions, explains the anomalous behaviour observed on both 1H and 13C spins, including the fast dephasing observed in 13C{1H} heteronuclear spin-echo experiments under 1H homonuclear decoupling. Strategies for minimising the impact of this effect are also discussed.
Miao, Hao; Dong, Yayu; Chen, Ziwang; He, Xingxiang; Hu, Gonghao; Xu, Yan
2016-08-01
Two new monosubstituted Keggin structural polyoxometalates [H5PMo11O39Zn(C5H5N)]·(C5H5N)5·H2O (1) and [H5PW11O39Co(C5H5N)]·(C5H5N)2·(C6H8N)2·1.5CH3OH (2) have been successfully synthesized under hydrothermal conditions. Structural analysis indicates that the polyoxoanion of compound 1 is a solvent molecule-bonded zinc-monosubstituted Keggin structural cluster, [PMo11O39Zn(C5H5N)](5-), while the polyoxoanion of compound 2 is a cobalt-monosubstituted phosphotungstate polyanion bonded with one pendant pyridine molecule. Both 1 and 2 show 3D supramolecular interpenetrating structures constructed of inorganic polyanion layers and organic layers. Very interestingly, compounds 1 and 2 exhibit excellent third-order NLO properties, and the TPA cross section σ of 1 and 2 is 2571.3 GM and 2876.3 GM, respectively. PMID:27453327
NASA Astrophysics Data System (ADS)
Izsák, Róbert; Neese, Frank
2013-07-01
The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.
NASA Technical Reports Server (NTRS)
Wang, Shouping; Wang, Qing
1994-01-01
This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.
NASA Astrophysics Data System (ADS)
Janardhana, K.; Ravindrachary, V.; Rajesh Kumar, P. C.; Yogisha; Ismayil
2013-04-01
A chalcone, 1-(4-chloro phenyl)-3-(4-dimethylamino phenyl) prop-2-en-1-one, abbreviated as CDAC was synthesized by the Claisen-Schmidt condensation method and single crystals were grown by the slow evaporation technique at ambient temperature. The structural confirmation was done using 1H-NMR, FT-IR, powder XRD and single crystal XRD studies. The crystal crystallizes in the monoclinic space group P21/c with a=33.082(3) Å, b=14.4722(13) Å, c=6.0799(5) Å, α=90°, β=92.030(4)°, γ=90° and Z=8. The high temperature DSC shows a phase transition at temperature 141.53 °C that corresponds to the melting point of the crystal. This is confirmed in DTA study which shows an endothermic dip corresponding to this melting point. The optical studies were made with UV-visible and Z-scan techniques. The nonlinear absorption and nonlinear refraction coefficients of the sample were obtained by performing the Z-scan experimental measurements. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. The coefficient of nonlinear refraction (γ) of the compound is found to be negative as revealed by the signature of closed aperture data.
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Pahurkar, V. G.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.
2015-08-01
We report synthesis, linear and third-order nonlinear optical properties of Cd-doped CuO-PVA nanocomposite thin films. Cd-doped CuO nanoparticles (NPs) were obtained by chemical synthesis method, and spin coating technique was used to obtain thin films in polyvinyl alcohol matrix. X-ray diffraction (XRD) shows formation of crystalline CuO having monoclinic phase with average particle size of 10 nm. Ultraviolet-visible (UV-Vis) spectroscopy attests formation of NPs by witnessing strong blue shift in the excitonic absorption. Absorption wavelength of CuO NPs shifts from 365 to 342 nm for Cd doping of 1-5 wt%. Both XRD and UV-Vis data confirm decrease in particle size with increase in Cd-doping concentration. Thin films have been characterized by Z-scan technique under continuous-wave He-Ne laser, and enhanced values of nonlinear refractive index n 2 and nonlinear absorption coefficient β have been obtained. Enhancements in the nonlinear optical properties have been attributed to the thermal effect due to strong linear absorption coefficient combined with increased thermo-optic coefficient. Contributing mechanisms such as photoacoustic effect, surface states effect and dielectric effect due to dopant and thin film structure have been discussed.
Thukral, Kanika; Vijayan, N; Haranath, D; Jayaramakrishnan, V; Philip, J; Sreekanth, P; Bhagavannaryana, G
2015-12-01
Single crystal of l-Asparagine Monohydrate, an organic material has been successfully grown by slow evaporation solution growth technique at ambient condition. The lattice parameters and its strain of the grown crystal have been evaluated from powder X-ray diffraction and found that it belongs to orthorhombic crystal system. The polarizability has been measured by using the Clausius-Mossotti relation. The crystalline perfection of grown single crystal has been examined by high resolution X-ray diffraction and its imperfection in the diffraction plane was clearly visible by recording topographical image of the plane. From the high resolution XRD, it confirms that the crystal contained high crystalline perfection. The optical behavior was analyzed by photoluminescence and birefringence methods. In the photoluminescence, a broad peak has been observed at 475 nm which suggest that it emits blue light. The decay tendency of the material has also been observed by calculating decay constant. The optical homogeneity has been determined by the dispersion pattern of the material. The two photon absorption coefficient was further calculated by Z-scan, which gives the information about the third order non linear optical behavior of the material. The value of two-photon absorption coefficient is 4.25 × 10(-12)m/W. The thermal parameters like thermal effusivity, thermal diffusivity, specific heat and thermal conductivity was obtained by using photopyroelectric technique. The ferroelectric behavior of the grown specimen was analyzed from PE (polarization VS electric field) loop. The loop suggests that the material was a nearly equivalent to ideal capacitor. PMID:26148830
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2007-01-01
The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.
Hirata, So; Yanai, Takeshi; De Jong, Wibe A.; Nakajima, Takahito; Hirao, Kimihiko
2004-02-15
Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms, rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.
Ju, Seongmin; Watekar, Pramod R; Jeong, Seongmook; Kim, Youngwoong; Han, Won-Taek
2012-01-01
Cu/Zn-codoped germano-silicate optical glass fiber was manufactured by using the modified chemical vapor deposition (MCVD) process and solution doping process. To investigate the reduction effect of Zn addition on Cu metal formation in the core of the Cu/Zn-codoped germano-silicate optical glass fiber, the optical absorption property and the non-resonant third-order optical nonlinearity were measured. Absorption peaks at 435 nm and 469 nm in the Cu/Zn-codoped germano-silicate optical glass fiber were contributed to Cu metal particles and ZnO semiconductor particles, respectively. The effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber was measured to be 1.5097 W(-1) x km(-1) by using the continuous-wave self-phase modulation method. The gamma of the Cu/Zn-codoped germano-silicate optical glass fiber was about four times larger than that of the reference germano-silicate optical glass fiber without any dopants. The increase of the effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber, can be attributed to the enhanced nonlinear polarization due to incorporated ZnO semiconductor particles and Cu metal ions in the glass network. The Cu/Zn-codoped germano-silicate optical glass fiber showed high nonlinearity and low transmission loss at the optical communication wavelength, which makes it suitable for high-speed-high-capacity optical communication systems. PMID:22524031
NASA Astrophysics Data System (ADS)
Wojcik, E. A.; Ni, D.; Lam, T. M.; Le Coz, Y. L.
2015-07-01
We have created the first stochastic SoP (Sum-over-Paths) algorithm to extract third-order impulse-response (IR) moment within RC IC interconnects. It employs a newly discovered Feynman SoP Postulate. Importantly, our algorithm maintains computational efficiency and full parallelism. Our approach begins with generation of s-domain nodal-voltage equations. We then perform a Taylor-series expansion of the circuit transfer function. These expansions yield transition diagrams involving mathematical coupling constants, or weight factors, in integral powers of complex frequency s. Our SoP Postulate enables stochastic evaluation of path sums within the circuit transition diagram to order s3-corresponding to the order of IR moment (m3) we seek here. We furnish, for the first time, an informal algebraic proof independently validating our SoP Postulate and algorithm. We list, as well, detailed procedural steps, suitable for coding, that define an efficient stochastic algorithm for m3 IR extraction. Origins of the algorithm's statistical "capacitor-number cubed" correction and "double-counting" weight factors are explained, for completeness. Our algorithm was coded and successfully tested against exact analytical solutions for 3-, 5-, and 10-stage RC lines. We achieved better than 0.65% 1-σ error convergence, after only 10K statistical samples, in less than 1 s of 2-GHz Pentium® execution time. These results continue to suggest that stochastic SoP algorithms may find useful application in circuit analysis of massively coupled networks, such as those encountered in high-end digital IC-interconnect CAD.
NASA Astrophysics Data System (ADS)
Hirata, So; Yanai, Takeshi; de Jong, Wibe A.; Nakajima, Takahito; Hirao, Kimihiko
2004-02-01
Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions have been derived and implemented automatically for sequential and parallel executions by an algebraic and symbolic manipulation program TCE (TENSOR CONTRACTION ENGINE) for use in conjunction with a one-component third-order Douglas-Kroll approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths (re or r0) within 0.002 Å, rotational constants (Be or B0) within 0.02 cm-1, vibration-rotation constants (αe) within 0.01 cm-1, centrifugal distortion constants (De) within 2%, harmonic vibration frequencies (ωe) within 8 cm-1 (0.4%), anharmonic vibrational constants (xωe) within 2 cm-1, and dissociation energies (D00) within 0.02 eV (0.4 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth rows of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated in two ways to verify the robustness of the results: One assuming Gaussian-exponential dependence of total energies on double through quadruple ζ basis sets and the other assuming n-3 dependence of correlation energies on double through quintuple ζ basis sets.
NASA Astrophysics Data System (ADS)
Zacharioudaki, Maria; Kouris, Charalampos; Dimakopoulos, Yannis; Tsamopoulos, John
2007-12-01
A Volume Tracking (VT) and a Front Tracking (FT) algorithm are implemented and compared for locating the interface between two immiscible, incompressible, Newtonian fluids in a tube with a periodically varying, circular cross-section. Initially, the fluids are stationary and stratified in an axisymmetric arrangement so that one is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). A constant pressure gradient sets them in motion. With both VT and FT, a boundary-fitted coordinate transformation is applied and appropriate modifications are made to adopt either method in this geometry. The surface tension force is approximated using the continuous surface force method. All terms appearing in the continuity and momentum equations are approximated using centered finite differences in space and one-sided forward finite differences in time. In each time step, the incompressibility condition is enforced by a transformed Poisson equation, which is linear in pressure. This equation is solved by either direct LU decomposition or a Multigrid iterative solver. When the two fluids have the same density, the former method is about 3.5 times faster, but when they do not, the Multigrid solver is as much as 10 times faster than the LU decomposition. When the interface does not break and the Reynolds number remains small, the accuracy and rates of convergence of VT and FT are comparable. The well-known failure of centered finite differences arises as the Reynolds number increases and leads to non-physical oscillations in the interface and failure of both methods to converge with mesh refinement. These problems are resolved and computations with Reynolds as large as 500 converged by approximating the convective terms in the momentum equations by third-order upwind differences using Lagrangian Polynomials. When the volume of the core fluid or the Weber number decrease, increasing the importance of interfacial tension and leading to breakup of the
NASA Astrophysics Data System (ADS)
Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.
2014-11-01
-, third-, and forth-order moments, we found the largest values of all moments in the IL around the mean top of the CBL which was located at 1230 m a.g.l. The maximum of the variance profile in the IL was 0.40 K2 with 0.06 and 0.08 K2 for the sampling error and noise error, respectively. The third-order moment was not significantly different from zero inside the CBL but showed a negative peak in the IL with a minimum of -0.72 K3 and values of 0.06 and 0.14 K3 for the sampling and noise errors, respectively. The forth-order moment and kurtosis values throughout the CBL were quasi-normal.
Zhao, Huajian; Simpson, Peter V; Barlow, Adam; Moxey, Graeme J; Morshedi, Mahbod; Roy, Nivya; Philip, Reji; Zhang, Chi; Cifuentes, Marie P; Humphrey, Mark G
2015-08-10
The synthesis of fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡CH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡C-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1′](μ-dichloro)diiridium 5, 6, fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6–10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′-NC5H4-2-C6H4-2)3. Ligand-centered π–π* transitions characteristic of the Ir(N,C′-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6–10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532
NASA Astrophysics Data System (ADS)
Giraldo-Tobón, Eugenio; Ospina, Walter; Miranda-Pedraza, Guillermo L.; Mora-Ramos, Miguel E.
2015-07-01
The coefficients of the second-order nonlinear optical rectification and the generation of second and third harmonics, related to electron energy transitions in a two-dimensional elliptical quantum dot are calculated. The conduction band states are obtained using the finite element method to numerically solve the effective mass Schrödinger differential equation in the parabolic approximation, including the influence of an externally applied static electric field. It comes about that the geometry of the ellipse has a strong influence on the optical response, being the large eccentricity case the more favorable one. Furthermore, it is shown that the application of an electric field is of most importance for achieving well-resolved higher harmonics signals.
Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun
2016-05-01
π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP. PMID:27146576
Grenier, P. ); Houde, D. ); Jandl, S. ); Boatner, L.A. )
1993-01-01
Determinations of the third-order optical susceptibility have been used to investigate the dynamical properties of the [ital A][sub 1](TO) soft-polariton mode in KTa[sub 0.93]Nb[sub 0.07]O[sub 3] as a function of temperature. Saturation of the soft-polariton frequency as [ital T][r arrow][ital T][sub [ital c
NASA Astrophysics Data System (ADS)
de la Garza-Rubí, R. M. A.; Güizado-Rodríguez, M.; Mayorga-Cruz, D.; Basurto-Pensado, M. A.; Guerrero-Álvarez, J. A.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J. L.
2015-08-01
A copolymer of 3-hexylthiophene and thiophene functionalized with disperse red 1, poly(3-HT-co-TDR1), was synthesized. Chemical structure, molecular weight distribution, optical and thermal properties of this copolymer were characterized by NMR, FT-IR, UV-vis, GPC and DSC-TGA. An optical nonlinear analysis by Z-scan method was also performed for both continuous wave (CW) and pulsed laser pumping. In the CW regime the nonlinearities were evaluated in solid films, and a negative nonlinear refractive index in the range 2.7-4.1 × 10-4 cm2/W was obtained. These values are notoriously high and allowed to observe self-defocusing effects at very low laser intensities: below 1 mW. Further, nonlinear self-phase modulation patterns, during laser irradiation, were also observed. In the pulsed excitation the nonlinear response was evaluated in solution resulting in large two-photon absorption cross section of 5725 GM for the whole copolymer chain and with a value of 232 GM per repeated monomeric unit.
Size Scaling of Static Friction
NASA Astrophysics Data System (ADS)
Braun, O. M.; Manini, Nicola; Tosatti, Erio
2013-02-01
Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as fm+Δf/Aγ for increasing contact area A, with γ>0. Our main finding is that the value of fm, controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.
NASA Astrophysics Data System (ADS)
Elavarasu, N.; Karuppusamy, S.; Muralidharan, S.; Anantharaja, M.; Gopalakrishnan, R.
2015-08-01
The results of electro-optical modulator and third order nonlinearity of an organic single crystal of Imidazolium L-tartrate (IMLT) <0 1 0> grown by unidirectional growth method of Sankaranarayanan-Ramasamy (SR) are discussed for the first time in literature. The grown IMLT seed crystals were characterized by single crystal XRD and the lattice parameters were confirmed. The UV-Visible transmittance analysis shows that SR method grown IMLT single crystal possesses good transmittance in the entire visible region with a low cut-off wavelength at 240 nm. The mechanical study on the (0 1 0) plane of the IMLT single crystal analyzed by Vickers microhardness tester reveals the moderate hardness of the material. Photoconductivity studies on pure IMLT single crystal enumerated the positive photoconducting nature. Refractive index of the IMLT single crystal was determined by Brewster angle method. Second Harmonic Generation (SHG) efficiency of IMLT is 4.3 times greater than the standard Potassium Dihydrogen Phosphate (KDP) crystal. Nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third-order nonlinear optical susceptibility χ(3) were evaluated using Z-scan method. The half wave voltage and electro-optical coefficient of IMLT crystal were determined using polarimetric technique. The electro-optical coefficient (r12) of IMLT is found to be greater than that of KDP crystal which represents the suitability of IMLT crystal to design the electro-optical modulator with low half wave voltage for nonlinear optical applications.
NASA Astrophysics Data System (ADS)
Chidan Kumar, C. S.; Raghavendra, S.; Chia, Tze Shyang; Chandraju, Siddegowda; Dharmaprakash, S. M.; Fun, Hoong-Kun; Quah, Ching Kheng
2015-11-01
A new third order centrosymmetric organic crystal: 1-(3,4-dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one (2FRDP) belonging to chalcone family has been synthesized and characterized by FTIR, CHNS and UV-Visible spectroscopy. Single crystal X-ray diffraction reveals that compound crystallizes in C2/c monoclinic space group. The X-ray powder diffraction of the crystal was carried out and hkl values are indexed for the diffraction pattern using mercury software. UV-Visible spectrum showed that 2FRDP is transparent in the entire visible region. The thermal stability of the grown 2FRDP crystal was analyzed by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric study revealed that, 2FRDP possesses low dielectric constant and dielectric loss at high frequency. The third order nonlinear optical absorption and the optical limiting experiment were carried out using open aperture Z-scan data using an Nd:YAG laser operating at the wavelength 532 nm.
Third-order optical nonlinearity of chlorophenols
NASA Astrophysics Data System (ADS)
Maloney, C.; Blau, W.
1988-02-01
Degenerate four-wave mixing of infrared (1.064 μm) pulses with 130 ps duration was studied in o-, p- and m- chlorophenols. Nonlinear susceptibilities χ (3) of (5.5-6.0) × 10 -20 m 2/V 2 were measured. By temporally delaying the incidence of the second pump pulse contributions from an optical Kerr effect and an electrostrictive effect are observed.
Salam, A.
2014-01-28
Molecular quantum electrodynamics is used to obtain an expression for the retarded dispersion energy shift between three arbitrarily electrically polarizable atoms or molecules. A generalized Craig-Power Hamiltonian that depends quadratically on the electric displacement field is employed together with third-order diagrammatic perturbation theory. This approach simplifies the calculation relative to the use of the usual multipolar coupling Hamiltonian that is linear in the displacement field. Specific higher multipole non-additive contributions are then extracted. These include dipole-dipole-quadrupole, dipole-quadrupole-quadrupole, and dipole-dipole-octupole potentials valid for oriented and isotropic species with arbitrary separation distances between particles, extending recent work in which these energy shifts were given for equilateral triangle and collinear geometries. Near-zone limiting forms are found to agree with earlier works in which static inter-particle couplings were used.
Cooper, Peter D; Rajapaksha, K Harinda; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai
2015-03-01
Semi-crystalline microparticles of inulin (MPI) have clinical utility as potent human vaccine adjuvants but their relevant surface structure and crystal assembly remain undefined. We show inulin crystal surfaces to resemble multi-layered, discoid radial spherulites resulting from very rapid formation of complex tertiary structures, implying directed crystal initiation. Physical and in silico molecular modelling of unit cells confirm steric feasibility of initiation by hydrogen-bonded cross-linking of terminal glucose to a fructose of another chain, mimicking bonding in sucrose crystals. A strong, chelate-like dual H-bond is proposed to compel the known antiparallel alignment of inulin chains. Such cross-linking would require one extra fructose per chain in the native inulin crystal, as observed. Completion of five H-bonded internal ring-domains would 'lock in' each new 6-fructose structural unit of each antiparallel helix pair to create a new isoform. All known properties of inulin isoforms follow readily from these concepts. PMID:25498723
Magnetized static black Saturn
Yazadjiev, Stoytcho S.
2008-06-15
We present a new static solution to the 5D Einstein-Maxwell equations describing a static black hole surrounded by a nonrotating dipole black ring. The configuration is kept in equilibrium by an external magnetic field interacting with the dipole charge of the black ring. The properties of the black Saturn-like configuration are studied and the basic physical quantities are calculated. The solution demonstrates 2-fold continuous nonuniqueness of the 5D magnetized static neutral black objects for fixed total mass and Melvin background.
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
Rectifier cabinet static breaker
Costantino, R.A. Jr; Gliebe, R.J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs.
NASA Astrophysics Data System (ADS)
Makarov, Sergey
2013-11-01
This article described the opening of a new law in fundamental physics, namely the law of the formation of an endless series of suspension (cable-stayed) networks coatings. Opening relates to the mechanics, section of statics.
Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu
2010-01-01
Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132
Fisher, Gregory L.; Szakal, Christopher; Wetteland, Christopher J.; Winograd, Nicholas
2006-07-15
The structural degradation of polytetrafluoroethylene (PTFE) upon irradiation with MeV alpha ({alpha}) particles is accompanied by the proliferation of hydrogenated and oxygen-functionalized fluorocarbon species. In this article, we explore the origin of monoxide- and dioxide-functionalized fluorocarbon species that emerge upon {alpha} particle irradiation of PTFE. Samples of neat PTFE were irradiated to {alpha} doses in the range of 10{sup 7}-5x10{sup 10} rad using 5.5 MeV {sup 4}He{sup 2+} ions produced in a tandem accelerator. Static time-of-flight secondary-ion-mass spectrometry (TOF-SIMS), using a 20 keV C{sub 60}{sup +} source, was employed to probe chemical changes as a function of {alpha} particle irradiation. Chemical images and high-resolution mass spectra were collected in both the positive and negative polarities. Residual gas analysis, utilized to monitor the liberation of molecular gases during {alpha} particle irradiation of the PTFE in vacuum, is discussed in relationship to the TOF-SIMS data.
Observing the Forces Involved in Static Friction under Static Situations
ERIC Educational Resources Information Center
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
Traction boundary conditions for molecular static simulations
NASA Astrophysics Data System (ADS)
Li, Xiantao; Lu, Jianfeng
2016-08-01
This paper presents a consistent approach to prescribe traction boundary conditions in atomistic models. Due to the typical multiple-neighbor interactions, finding an appropriate boundary condition that models a desired traction is a non-trivial task. We first present a one-dimensional example, which demonstrates how such boundary conditions can be formulated. We further analyze the stability, and derive its continuum limit. We also show how the boundary conditions can be extended to higher dimensions with an application to a dislocation dipole problem under shear stress.
NASA Astrophysics Data System (ADS)
Gets, Artem V.; Tolstikhin, Oleg I.
2013-01-01
Considering an electron interacting with an atomic or molecular potential and an external static electric field, one usually focuses on narrow resonances at negative energies originating from the bound states in the absence of the field; we call them tunneling states (TSs). Meanwhile, there also exist relatively broad resonances at positive energies having no counterparts in the absence of the field; we call them static-field-induced states (SFISs). In this paper, the recently developed weak-field asymptotic theory of TSs [O. I. Tolstikhin , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.053423 84, 053423 (2011)] is extended to SFISs. An asymptotic quantization condition defining the energies of SFISs in an arbitrary potential in the three-dimensional case is derived. The parabolic scattering amplitudes appearing in this quantization condition are defined. The theory is illustrated by calculations for the zero-range and Coulomb potentials. The SFISs in these potentials are found and their energies are shown to be in good agreement with the asymptotic results over a wide interval of the values of the field.
ERIC Educational Resources Information Center
Naab, Laurie; Henry, David
2009-01-01
Using Wiggins and McTighe's (1998) concept of Big Ideas, the authors planned and designed an electricity investigation to address common student misconceptions about static electricity. With Styrofoam plates and transparent tape, elementary students investigated many properties of electrically charged and uncharged objects in a 5E learning cycle…
Verkerke, Gijsbertus J; Lee, T Clive
2010-01-01
The forces that act on an object determine its dynamic behaviour and defromation. Analysis of all forces and moments is essential. A free-body diagram summarizes all forces and moments that act on an object. To calculate the magnitude of the forces we can use the static equilibrium of forces and moments. PMID:20407182
NASA Astrophysics Data System (ADS)
Zhang, Jun; Dolg, Michael
2014-01-01
The third-order incremental dual-basis set zero-buffer approach was combined with CCSD(T)-F12x (x = a, b) theory to develop a new approach, i.e., the inc3-db-B0-CCSD(T)-F12 method, which can be applied as a black-box procedure to efficiently obtain the near complete basis set (CBS) limit of the CCSD(T) energies also for large systems. We tested this method for several cases of different chemical nature: four complexes taken from the standard benchmark sets S66 and X40, the energy difference between isomers of water hexamer and the rotation barrier of biphenyl. The results show that our method has an error relative to the best estimation of CBS energy of only 0.2 kcal/mol or less. By parallelization, our method can accomplish the CCSD(T)-F12 calculations of about 60 correlated electrons and 800 basis functions in only several days, which by standard implementation are impossible for ordinary hardware. We conclude that the inc3-db-B0-CCSD(T)-F12a/AVTZ method, which is of CCSD(T)/AV5Z quality, is close to the limit of accuracy that one can achieve for large systems currently.
Bharath, D; Kalainathan, S
2014-01-01
A new polyene like organic molecule (E)-2-{3-[2-(4-chlorophenyl) vinyl]-5,5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (Cl1) was synthesized by knoevenagel condensation method. The Cl1 Single crystals were successfully grown by the slow evaporation method at a constant temperature 35°C. Single crystal XRD confirms the Cl1 molecule belongs to monoclinic crystal system and space group P21/C with a=10.114, b=11.127, c=14.929 and V=1668.9 and Z=4. The grown Cl1 crystals were subjected to FTIR and 13C NMR studies to confirm the synthesized compound. The linear optical property of Cl1 crystal has been studied using UV-Vis-NIR spectroscopy in the wavelength range 190 nm-1100 nm. The thermal properties of Cl1 crystal were studied by using TG and DTA analysis. The refractive index of Cl1 crystal has measured using Abbe's refractometer and found to be 1.648. The third order nonlinear optical property of Cl1 crystal has been investigated using Z-scan technique with HeNe laser. Photoluminescence (PL) spectrum of Cl1 crystal was carried out using xenon lamp, which shows high intense emission peak at wavelength 614 nm. Laser optical damage threshold (LDT) of Cl1 crystal has studied using Nd-YAG laser (10 Hz, 420 mJ, 1064 nm). PMID:24177866
Li, S.; Zhong, X. L. E-mail: jbwang@xtu.edu.cn; Wang, J. B. E-mail: jbwang@xtu.edu.cn; Huang, J.; Song, H. J.; Tan, C. B.; Li, B.; Zhou, Y. C.; Cheng, G. H.; Liu, X.
2014-11-10
Both the linear and nonlinear optical properties of Bi{sub 3.15}Nd{sub 0.85}Ti{sub 3}O{sub 12} (BNT{sub 0.85}) ferroelectric thin films deposited on quartz substrates were investigated. The fundamental optical constants were determined as a function of light wavelength by optical transmittance measurements. By performing single-beam Z-scan experiments with femtosecond laser pulses at a wavelength of 800 nm, the two-photon absorption (TPA) coefficient β and third-order nonlinear refraction index γ were measured to be 1.15 × 10{sup 2 }cm/GW and −8.15 × 10{sup −3} cm{sup 2}/GW, respectively. The large TPA is attributed to an indirect transition process via the intermediate energy levels and the large refractive nonlinearity is the result of the electronic polarization and ferroelectric polarization arisen from the femtosecond midinfrared radiation. The results indicate that the BNT{sub 0.85} thin film is a promising candidate for applications in nonlinear photonic devices.
NASA Astrophysics Data System (ADS)
Zhang, Zhao-Xia; Pan, Wei-Cheng; Hong, Peng-Zhi; Li, Ke-Chang; Li, Yong
2015-02-01
A novel two-dimensional (2-D) Cd(II) coordination network [Cd(AcO)2(L)2(H2O)] 1 (AcO = acetate, L = 4-(1,2,4-triazol-1-yl) benzoic acid ethyl ester) has been synthesized by low-temperature solid-state reaction and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and UV-visible spectra. The molecules of the complex are interconnected into layers by O-H⋯O and C-H⋯O hydrogen bonds in which participate AcO-, L and H2O ligands. The intermolecular hydrogen-bonds interactions are the most significant factors controlling the novel supramolecular sheet fashion packing of the title compound in the crystal state. The third-order non-linear optical (NLO) properties of the title compound 1 were also investigated and they exhibit the reverse saturable absorption and self-defocusing performance with modulus of the hyperpolarizability (γ) 2.30 × 10-30 esu for 1 in a 2.15 × 10-4 mol dm-3 DMF solution.
Zhang, Jun Dolg, Michael
2014-01-28
The third-order incremental dual-basis set zero-buffer approach was combined with CCSD(T)-F12x (x = a, b) theory to develop a new approach, i.e., the inc3-db-B0-CCSD(T)-F12 method, which can be applied as a black-box procedure to efficiently obtain the near complete basis set (CBS) limit of the CCSD(T) energies also for large systems. We tested this method for several cases of different chemical nature: four complexes taken from the standard benchmark sets S66 and X40, the energy difference between isomers of water hexamer and the rotation barrier of biphenyl. The results show that our method has an error relative to the best estimation of CBS energy of only 0.2 kcal/mol or less. By parallelization, our method can accomplish the CCSD(T)-F12 calculations of about 60 correlated electrons and 800 basis functions in only several days, which by standard implementation are impossible for ordinary hardware. We conclude that the inc3-db-B0-CCSD(T)-F12a/AVTZ method, which is of CCSD(T)/AV5Z quality, is close to the limit of accuracy that one can achieve for large systems currently.
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
PEBBLES Simulation of Static Friction and New Static Friction Benchmark
Joshua J. Cogliati; Abderrafi M. Ougouag
2010-05-01
Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.
2007-01-19
The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle in motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide ÃÂ¢ÃÂÃÂactualÃÂ¢ÃÂÃÂ weight and measurement information for planning, deployment, and in-transit visibility.
2007-01-19
The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle inmore » motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide ÃÂ¢ÃÂÃÂactualÃÂ¢ÃÂÃÂ weight and measurement information for planning, deployment, and in-transit visibility.« less
Properties of Broezel static probe
NASA Astrophysics Data System (ADS)
Gašparovič, Peter; Semrád, Karol; Cúttová, Miroslava
2016-03-01
The properties of flat static probe designed by Broezel and used in sailplanes are investigated for its planned use in low speed tunnel. Both the numerical CFD model and experiment in low speed wind tunnel confirm yaw insensitivity of the static pressure measured by the probe. The results indicate that the probe is sufficiently accurate for its planned use in wind tunnel measurements.
Semiconductor ac static power switch
NASA Technical Reports Server (NTRS)
Vrancik, J.
1968-01-01
Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.
Rigorous theory of molecular orientational nonlinear optics
NASA Astrophysics Data System (ADS)
Kwak, Chong Hoon; Kim, Gun Yeup
2015-01-01
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.
Rigorous theory of molecular orientational nonlinear optics
Kwak, Chong Hoon Kim, Gun Yeup
2015-01-15
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.
NASA Technical Reports Server (NTRS)
Venet, Arnaud; Brat, Guillaume
2003-01-01
Contents include the following: Motivation. Cost of losing missions. Introduction to Static Analysis:definition, defect classes, applicability issues, specialization, analysis of MPF. C Global Surveyor (CGS): fact sheet, CGS phases, example. Conclusions.
Economics of static VAR compensation
Alvarado, F.L.; DeMarco, C.; Jung, T.H. . Dept. of Electrical and Computer Engineering)
1992-09-01
This project was initiated in anticipation of widened use of static VAR (volt-ampere-reactive) compensation on US bulk-power transmission systems to increase levels of secure power transfer. Project objectives were to deten-nine power system cost savings and reliability benefits resulting from such use. System operating cost and stability probabilities were compared with and without static VAR compensation, applying simulation techniques. For the particular system model studied, there was a 21.4 percent reduction in operating costs taking into account losses added by the static VAR compensator. A procedure was developed to compare instability probabilities for various loadings and static VAR compensator sizes on a power system. For the particular system model studied, the static VAR compensator provided a significant increase in stability but over a narrow range of loading. Static VAR compensation is one of a number of promising FACTS (Flexible AC Transmission System) technologies for handling the demands of increased power transfers on power systems where transmission lines cannot be built or as a short-term altemative to building additional lines.
Static heterogeneities in liquid water
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas
2004-10-01
The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.
Quasi-Static Hydrodynamic Limits
NASA Astrophysics Data System (ADS)
De Masi, Anna; Olla, Stefano
2015-12-01
We consider hydrodynamic limits of interacting particles systems with open boundaries, where the exterior parameters change in a time scale slower than the typical relaxation time scale. The limit deterministic profiles evolve quasi-statically. These limits define rigorously the thermodynamic quasi static transformations also for transitions between non-equilibrium stationary states. We study first the case of the symmetric simple exclusion, where duality can be used, and then we use relative entropy methods to extend to other models like zero range systems. Finally we consider a chain of anharmonic oscillators in contact with a thermal Langevin bath with a temperature gradient and a slowly varying tension applied to one end.
Static Fourier transform infrared spectrometer.
Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W
2016-04-01
Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared. PMID:27137061
Voltage Sensors Monitor Harmful Static
NASA Technical Reports Server (NTRS)
2009-01-01
A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.
[Static disorders in hereditary ataxias].
Badalian, L O; Lebedeva, N N; Sidorova, O P
1987-01-01
Static disorders elicited by the adequate methods of the assessment of equilibrium (stabilography) and gait (plantography) in hereditary ataxias have been analyzed. These techniques of examination make it possible to quantitatively estimate motor disorders, supplement clinical findings and provide an opportunity for objective evaluation of the efficacy of the conducted therapy. PMID:3115017
FORTRAN Static Source Code Analyzer
NASA Technical Reports Server (NTRS)
Merwarth, P.
1984-01-01
FORTRAN Static Source Code Analyzer program, SAP (DEC VAX version), automatically gathers statistics on occurrences of statements and structures within FORTRAN program and provides reports of those statistics. Provisions made for weighting each statistic and provide an overall figure of complexity.
FORTRAN Static Source Code Analyzer
NASA Technical Reports Server (NTRS)
Merwarth, P.
1982-01-01
FORTRAN Static Source Code Analyzer program (SAP) automatically gathers and reports statistics on occurrences of statements and structures within FORTRAN program. Provisions are made for weighting each statistic, providing user with overall figure of complexity. Statistics, as well as figures of complexity, are gathered on module-by-module basis. Overall summed statistics are accumulated for complete input source file.
Static behaviour of induced seismicity
NASA Astrophysics Data System (ADS)
Mignan, A.
2015-12-01
The standard paradigm to describe seismicity induced by fluid injection is to apply nonlinear diffusion dynamics in a poroelastic medium. I show that the spatiotemporal behaviour and rate evolution of induced seismicity can, instead, be expressed by geometric operations on a static stress field produced by volume change at depth. I obtain laws similar in form to the ones derived from poroelasticity while requiring a lower description length. Although fluid flow is known to occur in the ground, it is not pertinent to the behaviour of induced seismicity. The proposed model is equivalent to the static stress model for tectonic foreshocks generated by the Non-Critical Precursory Accelerating Seismicity Theory. This study hence verifies the explanatory power of this theory outside of its original scope.
Static Detection of Disassembly Errors
Krishnamoorthy, Nithya; Debray, Saumya; Fligg, Alan K
2009-10-13
Static disassembly is a crucial first step in reverse engineering executable files, and there is a consider- able body of work in reverse-engineering of binaries, as well as areas such as semantics-based security anal- ysis, that assumes that the input executable has been correctly disassembled. However, disassembly errors, e.g., arising from binary obfuscations, can render this assumption invalid. This work describes a machine- learning-based approach, using decision trees, for stat- ically identifying possible errors in a static disassem- bly; such potential errors may then be examined more closely, e.g., using dynamic analyses. Experimental re- sults using a variety of input executables indicate that our approach performs well, correctly identifying most disassembly errors with relatively few false positives.
Water cooled static pressure probe
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)
1991-01-01
An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.
Static penetration resistance of soils
NASA Technical Reports Server (NTRS)
Durgunoglu, H. T.; Mitchell, J. K.
1973-01-01
Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.
Architectures for statically scheduled dataflow
Lee, E.A.; Bier, J.C. )
1990-12-01
When dataflow program graphs can be statically scheduled, little run-time overhead (software or hardware) is necessary. This paper describes a class of parallel architectures consisting of von Neumann processors and one or more shared memories, where the order of shared- memory access is determined at compile time and enforced at run time. The architecture is extremely lean in hardware, yet for a set of important applications it can perform as well as any shared-memory architecture. Dataflow graphs can be mapped onto it statically. Furthermore, it supports shared data structures without the run-time overhead of I-structures. A software environment has been constructed that automatically maps signal processing applications onto a simulation of such an architecture, where the architecture is implemented using Motorola DSP96002 microcomputers. Static (compile-time) scheduling is possible for a subclass of dataflow program graphs where the firing pattern of actors is data independent. This model is suitable for digital signal processing and some other scientific computation. It supports recurrences, manifest iteration, and conditional assignment. However, it does not support true recursion, data-dependent iteration, or conditional evaluation. An effort is under way to weaken the constraints of the model to determine the implications for hardware design.
Three Inexpensive Static-Electricity Demonstrations.
ERIC Educational Resources Information Center
Gore, Gordon R.; Gregg, William R.
1992-01-01
Describes demonstrations to (1) construct an inexpensive static electricity detector; (2) obtain an abundant supply of either negative or positive charge using household items; and (3) create static electricity using a Tesla coil or Van de Graaff generator. (MDH)
Liquid methanol under a static electric field
NASA Astrophysics Data System (ADS)
Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco
2015-02-01
We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.
Liquid methanol under a static electric field
Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco
2015-02-07
We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.
Comparative Tests of Pitot-static Tubes
NASA Technical Reports Server (NTRS)
Merriam, Kenneth G; Spaulding, Ellis R
1935-01-01
Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.
Optical phase conjugation in third-order nonlinear photonic crystals
Xie Ping; Zhang Zhaoqing
2004-05-01
We predict that the efficiency of the optical phase conjugation generation can be enhanced by more than four orders of magnitude in a {chi}{sup (3)} nonlinear superlattice, as compared with that in a homogeneous nonlinear medium of the same sample thickness and {chi}{sup (3)} nonlinearity. Such an effective enhancement utilizes the localized properties of the fields inside the sample at the band-edge state, gap-soliton state, or defect state. Due to the presence of feedback mechanism at each interface of a superlattice, we also predict that the phase conjugation can still be effectively generated when only one pump wave is used.
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
30 CFR 18.26 - Static electricity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
14 CFR 31.61 - Static discharge.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static discharge. 31.61 Section 31.61... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.61 Static discharge. Unless shown not to be... gas as a lifting means to ensure that the effects of static discharges will not create a hazard....
In-Flight Pitot-Static Calibration
NASA Technical Reports Server (NTRS)
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Static second-order polarizabilities of aminobenzophenones and nitrobenzophenones
NASA Technical Reports Server (NTRS)
Moore, Craig E.; Cardelino, Beatriz H.
1991-01-01
Static-field theoretical studies on molecular second-order polarizabilities (beta) of benzophenone derivatives were performed. Calculations were based on the use of shaped electric fields and semiempirical Hamiltonians. Either an electron-donating (amine) or an electron-withdrawing (nitro) substituent was incorporated into a phenyl ring of benzophenone; the phenyl rings of benzophenone were oriented either coplanar or perpendicular to the carbonyl. The change in charge transfer with respect to the electrophilic character of the carbonyl group was monitored to determine its effect on the molecular second-order polarizability. Calculations were performed for all constitutional isomers of the two benzophenone derivatives.
Static feed water electrolysis module
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Jensen, F. C.
1974-01-01
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.
Measurement of static pressure on aircraft
NASA Technical Reports Server (NTRS)
Gracey, William
1958-01-01
Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.
First arrival time surface, estimation of statics
Chun, J.H.; Jacewitz, C.A.
1983-09-05
The problem of obtaining surface consistent statics using first arrival refractions has several phases. To begin with, the first arrivals must be picked in some reasonable, consistent fashion. Next, appropriate techniques must be used to solve for surface-consistent statics. Finally, the interpreter must be provided with an evaluation of the quality of the estimated statics. First arrival refractions are part of reflection seismic data. Early seismic reflection work used first arrival refractions for weathering static corrections. With the advent of the common midpoint (CMP) method, first arrivals lost their predominance in statics to correlation techniques within CMP gathers. However, the increasing use of a large number of receivers and a small group interval has made first arrival statics more reliable. In addition, recent work has helped to revitalize interest in the use of first arrival refractions for surface-consistent static corrections.
Static behaviour of induced seismicity
NASA Astrophysics Data System (ADS)
Mignan, Arnaud
2016-04-01
The standard paradigm to describe seismicity induced by fluid injection is to apply non-linear diffusion dynamics in a poroelastic medium. I show that the spatio-temporal behaviour and rate evolution of induced seismicity can, instead, be expressed by geometric operations on a static stress field produced by volume change at depth. I obtain laws similar in form to the ones derived from poroelasticity while requiring a lower description length. Although fluid flow is known to occur in the ground, it is not pertinent to the geometrical description of the spatio-temporal patterns of induced seismicity. The proposed model is equivalent to the static stress model for tectonic foreshocks generated by the Non-Critical Precursory Accelerating Seismicity Theory. This study hence verifies the explanatory power of this theory outside of its original scope and provides an alternative physical approach to poroelasticity for the modelling of induced seismicity. The applicability of the proposed geometrical approach is illustrated for the case of the 2006, Basel enhanced geothermal system stimulation experiment. Applicability to more problematic cases where the stress field may be spatially heterogeneous is also discussed.
Electrowetting -- from statics to dynamics.
Chen, Longquan; Bonaccurso, Elmar
2014-08-01
More than one century ago, Lippmann found that capillary forces can be effectively controlled by external electrostatic forces. As a simple example, by applying a voltage between a conducting liquid droplet and the surface it is sitting on we are able to adjust the wetting angle of the drop. Since Lippmann's findings, electrocapillary phenomena - or electrowetting - have developed into a series of tools for manipulating microdroplets on solid surfaces, or small amounts of liquids in capillaries for microfluidic applications. In this article, we briefly review some recent progress of fundamental understanding of electrowetting and address some still unsolved issues. Specifically, we focus on static and dynamic electrowetting. In static electrowetting, we discuss some basic phenomena found in DC and AC electrowetting, and some theories about the origin of contact angle saturation. In dynamic electrowetting, we introduce some studies about this rather recent area. At last, we address some other capillary phenomena governed by electrostatics and we give an outlook that might stimulate further investigations on electrowetting. PMID:24268972
Static Response of Neutron Matter.
Buraczynski, Mateusz; Gezerlis, Alexandros
2016-04-15
We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems. PMID:27127963
Static Response of Neutron Matter
NASA Astrophysics Data System (ADS)
Buraczynski, Mateusz; Gezerlis, Alexandros
2016-04-01
We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.
Static mixer improves desalting efficiency
Not Available
1983-10-01
An in-line static mixer has increased salt removal from crude oil at a large West Coast refinery, says the mixer supplier, Komax Systems Inc. The mixer was installed at a 150,000 b/d crude distillation unit's desalter. Crude at this refinery is a mixture of local production and imports from Indonesia and Alaska. In the past, the refiner used a typical globe-type mix valve to mix fresh water with crude at the desalters. The crude is heated to 300/sup 0/F., mixed with 5% fresh water, and then fed to the desalters. Chemical and electrostatic treatment is used in the desalters to remove salt and water from the crude.
Static latching arrangement and method
Morrison, Larry
1988-01-01
A latching assembly for use in latching a cable to and unlatching it from a given object in order to move an object from one location to another is disclosed herein. This assembly includes a weighted sphere mounted to one end of a cable so as to rotate about a specific diameter of the sphere. The assembly also includes a static latch adapted for connection with the object to be moved. This latch includes an internal latching cavity for containing the sphere in a latching condition and a series of surfaces and openings which cooperate with the sphere in order to move the sphere into and out of the latching cavity and thereby connect the cable to and disconnect it from the latch without using any moving parts on the latch itself.
NASA Technical Reports Server (NTRS)
Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.
2009-01-01
Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.
Uranium transformations in static microcosms.
Kelly, S. D.; Wu, W.; Yang, F.; Criddle, C.; Marsh, T. L.; O'Loughlin, E. J.; Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M.; Stanford Univ.; Michigan State Univ.; ORNL; BNL; EXAFS Analysis
2010-01-01
Elucidation of complex biogeochemical processes and their effects on speciation of U in the subsurface is critical for developing remediation strategies with an understanding of stability. We have developed static microcosms that are similar to bioreduction process studies in situ under laminar flow conditions or in sediment pores. Uranium L{sub 3}-edge X-ray absorption near-edge spectroscopy analysis with depth in the microcosms indicated that transformation of U{sup VI} to U{sup IV} occurred by at least two distinct processes. Extended X-ray absorption fine structure (EXAFS) analysis indicated that initial U{sup VI} species associated with C- and P-containing ligands were transformed to U{sup IV} in the form of uraninite and U associated with Fe-bound ligands. Microbial community analysis identified putative Fe{sup III} and sulfate reducers at two different depths in the microcosms. The slow reduction of U{sup VI} to U{sup IV} may contribute the stability of U{sup IV} within microcosms at 11 months after a decrease in bioreducing conditions due to limited electron donors.
The Neglect of Monotone Comparative Statics Methods
ERIC Educational Resources Information Center
Tremblay, Carol Horton; Tremblay, Victor J.
2010-01-01
Monotone methods enable comparative static analysis without the restrictive assumptions of the implicit-function theorem. Ease of use and flexibility in solving comparative static and game-theory problems have made monotone methods popular in the economics literature and in graduate courses, but they are still absent from undergraduate…
Static Material Strength Determined Using a DAC
Cynn, H; Evans, W; Klepeis, J P; Lipp, M; Liermann, P; Yang, W
2009-06-04
By measuring sample thickness and pressure gradient using x-ray absorption and x-ray diffraction, respectively, the accurate static yield strengths of Ta and Fe were determined at high pressure. This improved method has several advantages over other similar methods to quantitatively determine static material strength.
Comparing Techniques for Certified Static Analysis
NASA Technical Reports Server (NTRS)
Cachera, David; Pichardie, David
2009-01-01
A certified static analysis is an analysis whose semantic validity has been formally proved correct with a proof assistant. The recent increasing interest in using proof assistants for mechanizing programming language metatheory has given rise to several approaches for certification of static analysis. We propose a panorama of these techniques and compare their respective strengths and weaknesses.
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Static Noise Test Protocols-In-Cab Static H Appendix H to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. H Appendix H to Part 229—Static Noise...
Static properties of equilibrium polymers confined in ultrathin films
NASA Astrophysics Data System (ADS)
Cavallo, Anna; Wittmer, Joachim P.; Johner, Albert; Baschnagel, Joerg
2008-03-01
The static properties of equilibrium polymer melts confined in ultrathin films are studied by means of Monte Carlo simulations of a lattice model: the bond fluctuation model. In this work we focus on the effects of ultrathin film confinement between two parallel and neutral walls on chain size and molecular weight distribution. We compare our numerical results to analytical calculations by Semenov and Johner [Eur. Phy. J. E, 12, 469 (2003)] who predicted for ultrathin films, logarithmic corrections to the leading mean-field behavior. Our simulation data are compatible with the theoretical results.
New findings in static high-pressure science
Hemley, R.J.; Mao, H.-k.
2010-11-16
Recent static high P-T experiments using diamond anvil cell techniques reveal an array of phenomena and provide new links to dynamic compression experiments. Selected recent developments are reviewed, including new findings in hot dense hydrogen, the creation of new metals and superconductors, new transitions in molecular and other low-Z systems, the behavior of iron and transition metals, chemical changes of importance in geoscience and planetary science, and the creation of new classes of high-pressure devices based on CVD diamond. These advances have set the stage for the next set of developments in this rapidly growing area.
DEM modeling of penetration test in static and dynamic conditions
NASA Astrophysics Data System (ADS)
Tran, Quoc Anh; Chevalier, Bastien; Breul, Pierre
2013-06-01
Recent developments in dynamic penetration testing made it possible to measure a force-displacement response of the soil during each single blow. Mechanical properties other than the classical tip resistance could be deduced and possibly linked to properties usually measured from model tests. However, the loading process implied in penetration test is highly non homogeneous and very different from those of laboratory model tests. It is then important to find out how to link the properties obtained from both kinds of tests. As a preliminary step in this process, a numerical model was built to reproduce penetration tests conducted in static and dynamic conditions. Two-dimensional Discrete Element Method, based on molecular dynamics was used. A rod was driven in a confined sample either with a constant velocity (static conditions) or by applying a blow on it (dynamic conditions). The magnitudes of rod velocity used in both static and dynamic conditions tests were similar. The model was validated based on the qualitative comparison between classical experimental results and numerical results. The repeatability of numerical tests was also checked in terms of tip resistance and volume deformations.
Interpretational conflicts between the static and non-static forms of the de Sitter metric.
Mitra, Abhas
2012-01-01
The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the "Principle of Energy Conservation" is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = -density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359
Xu, Tiefeng; Chen, Feifei; Shen, Xiang; Dai, Shixun; Nie, Qiuhua; Wang, Xunsi
2010-10-15
Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} ternary glasses embedded with Ag nanoparticles were prepared by introducing AgCl into the bismuthate glasses using conventional melt quenching method and characterized by several experimental techniques. Scanning electron microscopic studies indicated the formation of Ag contained nanoclusters which crack and become regular with increase of AgCl content in these composites. Optical absorption spectra of the nanocomposites showed the presence of absorption band of surface plasmon resonance (SPR) due to Ag nanoparticles at {approx}600 nm. Z-scan measurement with femtosecond laser was used to investigate third-order optical nonlinearities of the nanocomposites. The results show that the nonlinear refraction {gamma} was dramatically increased up to 30 times by the appearance of Ag nanoparticles when excited within its SPR region, while nonlinear absorption due to two-photon absorption exhibited opposite tendency or even saturated behavior. The calculation of figure of merit suggests that the Ag particle embedded Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} glass composites are promising candidates for optoelectronic devices.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...
14 CFR 23.1325 - Static pressure system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure...
Static conversion systems. [for space power reactors
NASA Technical Reports Server (NTRS)
Ewell, R.; Mondt, J.
1985-01-01
Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.
Teaching Comparative Statics with Microsoft Excel.
ERIC Educational Resources Information Center
Barreto, Humberto
2001-01-01
Describes a Web site that makes use of the Comparative Statics Wizard add-in feature for Microsoft Excel. Enables students to focus on economic problems involving optimality, rate of change, and equilibrium solutions. (JEH)
Static and dynamic properties of large polymer melts in equilibrium
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Kremer, Kurt
2016-04-01
We present a detailed study of the static and dynamic behaviors of long semiflexible polymer chains in a melt. Starting from previously obtained fully equilibrated high molecular weight polymer melts [G. Zhang et al., ACS Macro Lett. 3, 198 (2014)], we investigate their static and dynamic scaling behaviors as predicted by theory. We find that for semiflexible chains in a melt, results of the mean square internal distance, the probability distributions of the end-to-end distance, and the chain structure factor are well described by theoretical predictions for ideal chains. We examine the motion of monomers and chains by molecular dynamics simulations using the ESPResSo++ package. The scaling predictions of the mean squared displacement of inner monomers, center of mass, and relations between them based on the Rouse and the reptation theory are verified, and related characteristic relaxation times are determined. Finally, we give evidence that the entanglement length Ne,PPA as determined by a primitive path analysis (PPA) predicts a plateau modulus, GN 0 = /4 5 ( ρ k B T / N e ) , consistent with stresses obtained from the Green-Kubo relation. These comprehensively characterized equilibrium structures, which offer a good compromise between flexibility, small Ne, computational efficiency, and small deviations from ideality, provide ideal starting states for future non-equilibrium studies.
Static solutions for fourth order gravity
Nelson, William
2010-11-15
The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.
Economics of static VAR compensation. Final report
Alvarado, F.L.; DeMarco, C.; Jung, T.H.
1992-09-01
This project was initiated in anticipation of widened use of static VAR (volt-ampere-reactive) compensation on US bulk-power transmission systems to increase levels of secure power transfer. Project objectives were to deten-nine power system cost savings and reliability benefits resulting from such use. System operating cost and stability probabilities were compared with and without static VAR compensation, applying simulation techniques. For the particular system model studied, there was a 21.4 percent reduction in operating costs taking into account losses added by the static VAR compensator. A procedure was developed to compare instability probabilities for various loadings and static VAR compensator sizes on a power system. For the particular system model studied, the static VAR compensator provided a significant increase in stability but over a narrow range of loading. Static VAR compensation is one of a number of promising FACTS (Flexible AC Transmission System) technologies for handling the demands of increased power transfers on power systems where transmission lines cannot be built or as a short-term altemative to building additional lines.
Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.
ERIC Educational Resources Information Center
Doughty, Noel A.
1981-01-01
Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... (Reaffirmed 2001) in this section in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain a copy... 49 Transportation 4 2011-10-01 2011-10-01 false Static Noise Test Protocols-In-Cab Static H Appendix H to Part 229 Transportation Other Regulations Relating to Transportation (Continued)...
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Sawja: Static Analysis Workshop for Java
NASA Astrophysics Data System (ADS)
Hubert, Laurent; Barré, Nicolas; Besson, Frédéric; Demange, Delphine; Jensen, Thomas; Monfort, Vincent; Pichardie, David; Turpin, Tiphaine
Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. Efficiency and precision of such a tool rely partly on low level components which only depend on the syntactic structure of the language and therefore should not be redesigned for each implementation of a new static analysis. This paper describes the Sawja library: a static analysis workshop fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including i) efficient functional data-structures for representing a program with implicit sharing and lazy parsing, ii) an intermediate stack-less representation, and iii) fast computation and manipulation of complete programs. We provide experimental evaluations of the different features with respect to time, memory and precision.
Thermal static bending of deployable interlocked booms
NASA Technical Reports Server (NTRS)
Staugaitis, C. L.; Predmore, R. E.
1973-01-01
Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall...
30 CFR 57.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall...
Comments on Static vs Kinetic Friction
NASA Astrophysics Data System (ADS)
Kessler, Gabriel
2009-09-01
I'm writing to comment on the article published in the March edition of The Physics Teacher titled "Choose Wisely: Static or Kinetic Friction—The Power of Dimensionless Plots." As I was reading the article, something caught my eye that I couldn't reconcile with. It was the phrase on page 160 in the first column near the bottom. The statement was that the experimental value for the coefficient of kinetic friction was "unexpectedly greater than the coefficient of static friction!"
Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch
Yang, Huaxiao; Schmidt, Lucas P.; Wang, Zhonghai; Yang, Xiaoqi; Shao, Yonghong; Borg, Thomas K.; Markwald, Roger; Runyan, Raymond; Gao, Bruce Z.
2016-01-01
An increase in mechanical load in the heart causes cardiac hypertrophy, either physiologically (heart development, exercise and pregnancy) or pathologically (high blood pressure and heart-valve regurgitation). Understanding cardiac hypertrophy is critical to comprehending the mechanisms of heart development and treatment of heart disease. However, the major molecular event that occurs during physiological or pathological hypertrophy is the dynamic process of sarcomeric addition, and it has not been observed. In this study, a custom-built second harmonic generation (SHG) confocal microscope was used to study dynamic sarcomeric addition in single neonatal CMs in a 3D culture system under acute, uniaxial, static, sustained stretch. Here we report, for the first time, live-cell observations of various modes of dynamic sarcomeric addition (and how these real-time images compare to static images from hypertrophic hearts reported in the literature): 1) Insertion in the mid-region or addition at the end of a myofibril; 2) Sequential addition with an existing myofibril as a template; and 3) Longitudinal splitting of an existing myofibril. The 3D cell culture system developed on a deformable substrate affixed to a stretcher and the SHG live-cell imaging technique are unique tools for real-time analysis of cultured models of hypertrophy. PMID:26861590
Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch.
Yang, Huaxiao; Schmidt, Lucas P; Wang, Zhonghai; Yang, Xiaoqi; Shao, Yonghong; Borg, Thomas K; Markwald, Roger; Runyan, Raymond; Gao, Bruce Z
2016-01-01
An increase in mechanical load in the heart causes cardiac hypertrophy, either physiologically (heart development, exercise and pregnancy) or pathologically (high blood pressure and heart-valve regurgitation). Understanding cardiac hypertrophy is critical to comprehending the mechanisms of heart development and treatment of heart disease. However, the major molecular event that occurs during physiological or pathological hypertrophy is the dynamic process of sarcomeric addition, and it has not been observed. In this study, a custom-built second harmonic generation (SHG) confocal microscope was used to study dynamic sarcomeric addition in single neonatal CMs in a 3D culture system under acute, uniaxial, static, sustained stretch. Here we report, for the first time, live-cell observations of various modes of dynamic sarcomeric addition (and how these real-time images compare to static images from hypertrophic hearts reported in the literature): 1) Insertion in the mid-region or addition at the end of a myofibril; 2) Sequential addition with an existing myofibril as a template; and 3) Longitudinal splitting of an existing myofibril. The 3D cell culture system developed on a deformable substrate affixed to a stretcher and the SHG live-cell imaging technique are unique tools for real-time analysis of cultured models of hypertrophy. PMID:26861590
Interpretational conflicts between the static and non-static forms of the de Sitter metric
Mitra, Abhas
2012-01-01
The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the “Principle of Energy Conservation” is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = –density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359
INTRODUCTION AND STATIC ELECTRICITY, VOLUME 1.
ERIC Educational Resources Information Center
KLAUS, DAVID J.; AND OTHERS
THIS VOLUME, PART OF A TWO-VOLUME SET, PROVIDES AUTOINSTRUCTION IN PHYSICS. THE MATERIAL COVERS UNITS ON (1) STATIC ELECTRICITY AND ELECTRICAL CHARGES, (2) COULOMB'S LAW, (3) DISTRIBUTION OF CHARGE AND FLOW OF CURRENT, (4) DIFFERENCE OF POTENTIAL, (5) BATTERIES AND CIRCUITS, (6) RESISTANCE AND RESISTORS, (7) POTENTIAL DIVIDER AND WHEATSTONE…
Static and evolutionary quantum public goods games
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Qin, Gan; Hu, Lingzhi; Li, Songjian; Xu, Nanyang; Du, Jiangfeng
2008-05-01
We apply the continuous-variable quantization scheme to quantize public goods game and find that new pure strategy Nash equilibria emerge in the static case. Furthermore, in the evolutionary public goods game, entanglement can also contribute to the persistence of cooperation under various population structures without altruism, voluntary participation, and punishment.
Onthe static and spherically symmetric gravitational field
NASA Astrophysics Data System (ADS)
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
A Progression of Static Equilibrium Laboratory Exercises
ERIC Educational Resources Information Center
Kutzner, Mickey; Kutzner, Andrew
2013-01-01
Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics…
Effects of insoles contact on static balance
Shin, Ju Yong; Ryu, Young Uk; Yi, Chae Woo
2016-01-01
[Purpose] This study examined the effect of the degree of the contact area between the insoles and soles on static balance. [Subjects and Methods] Thirteen healthy male and female adults voluntarily participated. All of the subjects wore three different types of insoles (no orthotic insole, partial contact, full contact) in the present experiment. The subjects were instructed to place both feet parallel to each other and maintain static balance for 30 seconds. Center of pressure parameters (range, total distance, and mean velocity) were analyzed. [Results] The results show that the anteroposterior range and mediolateral (ML) total distance and velocity decreased when orthotic insoles with partial contact or full contact were used in comparison to when a flat insole (no orthotic insole) was used. Also, the ML range and total distance were lower with full contact than in the other two conditions. These results indicate that static balance improves as the degree of contact between the soles and insoles increases. [Conclusion] The results of this study suggests that using insoles with increased sole contact area would improve static balance ability. PMID:27190460
Model of the static universe within GR
Karbanovski, V. V. Tarasova, A. S.; Salimova, A. S.; Bilinskaya, G. V.; Sumbulov, A. N.
2011-01-15
Within GR, the problems of the Robertson-Walker universe are discussed. The approach based on transition to a nondiagonal line element is suggested. Within the considered approach, the static universe model is investigated. The possibility of constructing scenarios without an initial singularity and 'exotic' matter is discussed. Accordance of the given model to the properties of the observable universe is discussed.
Static Abstractions and the Teaching of Writing.
ERIC Educational Resources Information Center
Connors, Robert J.
The element of static abstractions (SAs)--any pseudoheuristic listing of derived nominals whose purpose is to define good structure in prose writing--is one of the important historical components of the current traditional rhetoric inherited from the nineteenth century. SAs, of which unity, coherence, and emphasis are the best known examples, have…
Static var compensators stabilize power voltages
Burch, R.
1996-06-01
This article discusses the operation of a static var compensator as installed by Alabama Power near a steel mill with a large arc furnace load. This is expected to result in a number of benefits, including flicker reduction, dynamic power factor correction, harmonics filtering and a reduction in system losses.
Static black hole uniqueness and Penrose inequality
Mizuno, Ryosuke; Shiromizu, Tetsuya; Ohashi, Seiju
2010-02-15
Under certain conditions, we offer a new way to prove the uniqueness of the static black hole in higher dimensional asymptotically flat spacetimes. In the proof, the Penrose inequality plays a key role in higher dimensions as well as four dimensions.
Device measures static friction of magnetic tape
NASA Technical Reports Server (NTRS)
Cole, P. T.
1967-01-01
Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.
Hard thermal loops in static external fields
Frenkel, J.; Takahashi, N.; Pereira, S. H.
2009-04-15
We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.
Static & Dynamic Response of 3D Solids
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1993-01-01
The wavelength dependence of extinction in the diffuse interstellar medium implies that it is produced by particles of dominant size of approximately 10(exp -5) cm. There is some indication that in the cores of dense molecular clouds, sub-micron grains can coagulate to form larger particles; this process is probably driven by turbulence. The most primitive meteorites (carbonaceous chondrites) are composed of particles with a bimodal size distribution with peaks near 1 micron (matrix) and 1 mm (chondrules). Models for chondrule formation that involve processing of presolar material by chemical reactions or through an accretion shock during infall assume that aggregates of the requisite mass could form before or during collapse. The effectiveness of coagulation during collapse has been disputed; it appears to depend on specific assumptions. The first results of detailed numerical modeling of spatial and temporal variations of particle sizes in presolar clouds, both static and collapsing, is reported in this article.
Static and dynamic properties of supercooled water in small nanotubes.
Khademi, Mahdi; Sahimi, Muhammad
2016-07-14
The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ∼ exp[ - (t/τ)(β)], where τ is a relaxation time and β is a topological exponent. PMID:27421415
Static and dynamic properties of supercooled water in small nanotubes
NASA Astrophysics Data System (ADS)
Khademi, Mahdi; Sahimi, Muhammad
2016-07-01
The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ˜ exp[ - (t/τ)β], where τ is a relaxation time and β is a topological exponent.
Static spin correlations in alternant quantum cell models
NASA Astrophysics Data System (ADS)
Ramasesha, S.; Soos, Z. G.
1985-10-01
Static-spin-correlation functions 4
NAMING DYNAMIC AND STATIC ACTIONS: NEUROPSYCHOLOGICAL EVIDENCE
Tranel, Daniel; Manzel, Kenneth; Asp, Erik; Kemmerer, David
2008-01-01
There has been considerable interest in identifying the neural correlates of action naming, but the bulk of previous work on this topic has utilized static stimuli. Recent research comparing the visual processing of dynamic versus static actions suggests that these two types of stimuli engage largely overlapping neural systems, raising the possibility that the higher-order processing requirements for naming dynamic and static actions might not be very different. To explore this issue in greater depth, we developed the Dynamic Action Naming Test (DANT), which consists of 158 video clips 3–5 sec in length, for each of which the participant is asked to produce the most appropriate verb. We administered the DANT to 78 brain-damaged patients drawn from our Patient Registry, and to a demographically matched group of 50 normal participants. Out of the 16 patients who performed defectively on the DANT, nearly all (15/16) had damage in the left hemisphere. Lesion analysis indicated that the frontal operculum was the most frequent area of damage in the 15 patients; also, damage to the posterolateral temporal-occipital sector (in and near MT) was specifically related to defective dynamic action naming. Most of the brain-damaged participants (n = 71) also received our Static Action Naming Test (SANT), and we found that performances on verb items that were common across the DANT and SANT were highly correlated (R = .91). Moreover, patients who failed the DANT almost invariably also failed the SANT. These findings lend further support to the hypothesis that there is considerable commonality in the neural systems underlying the use of verbs to orally name dynamic and static actions, a conclusion that is in turn compatible with the concept of “representational momentum.” Our results also contribute more generally to the rapidly growing field of research on embodied cognition. PMID:18486456
Extended Møller-Plesset perturbation theory for dynamical and static correlations.
Tsuchimochi, Takashi; Van Voorhis, Troy
2014-10-28
We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter. PMID:25362282
Extended Møller-Plesset perturbation theory for dynamical and static correlations
Tsuchimochi, Takashi Van Voorhis, Troy
2014-10-28
We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter.
NASA Astrophysics Data System (ADS)
Durand, O.; Soulard, L.; Bourasseau, E.; Filippini, G.
2016-07-01
We perform molecular dynamics simulations to investigate the static and dynamic fragmentation of metallic liquid sheets of tin induced by random surface fluctuations. The static regime is analyzed by simulating sheets of different thicknesses, and the dynamic fragmentation is ensured by applying along the longitudinal direction of a sheet an instantaneous expansion velocity per initial unit length (expansion rate) with values ranging from 1 × 109 to 3 × 1010 s-1. The simulations show that the static/dynamic fragmentation becomes possible when the fluctuations of the upper and lower surfaces of the sheets can either overlap or make the local volume density of the system go down below a critical value. These two mechanisms cause locally in the sheet the random nucleation of pores of void, on a timescale that exponentially increases with the sheet thickness. Afterwards, the pores develop following distinct stages of growth, coalescence, and percolation, and later in time aggregates of liquid metal are formed. The simulations also show that the fragmentation of static sheets is characterized by relatively mono-dispersed surface and volume distributions of the pores and aggregates, respectively, whereas in extreme conditions of dynamic fragmentation (expansion rate typically in the range of 1 × 1010 s-1), the distributions are rather poly-dispersed and obey a power law decay with surface (volume). A model derived from the simulations suggests that both dynamic and static regimes of fragmentation are similar for expansion rates below typically 1 × 107 s-1.
Static shape control for flexible structures
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.
Static Thrust Analysis of the Lifting Airscrew
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Hefner, Ralph A
1937-01-01
This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.
Shock and Static Compression of Nitrobenzene
NASA Astrophysics Data System (ADS)
Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake
2000-08-01
The Hugoniot and static compression curve (isotherm) were investigated using explosive plane wave generators and diamond anvil cells, respectively. The obtained Hugoniot from the shock experiments is represented by two linear lines: Us=2.52+1.23 up (0.8
Variational approach for static mirror structures
Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.
2015-04-15
Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.
Static spherically symmetric wormholes with isotropic pressure
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2016-06-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Automated static perimetry to evaluate diabetic retinopathy.
Federman, J L; Lloyd, J
1984-01-01
The Octopus automated static perimeter was used to evaluate patients with early diabetic retinopathy. It showed islands of threshold sensitivity depression that were equal to areas of nonperfusion seen on fluorescein angiography. The geographic area of the fundus at risk of developing these field defects was found to be between 20 and 45 degrees, representing the central area of the midperiphery. This procedure has potential as an excellent screening test for early diabetic retinopathy. Images FIGURE 1 (Cont'd) C PMID:6549516
Analyzing Static Loading of Complex Structures
NASA Technical Reports Server (NTRS)
Gallear, D. C.
1986-01-01
Critical loading conditions determined from analysis of each structural element. Automated Thrust Structures Loads and Stresses (ATLAS) system is series of programs developed to analyze elements of complex structure under static-loading conditions. ATLAS calculates internal loads, beam-bending loads, column- and web-buckling loads, beam and panel stresses, and beam-corner stresses. Programs written in FORTRAN IV and Assembler for batch execution.
Static magnetic properties of Maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Zulfiqar; Rahman, Muneeb Ur; Usman, M.; Hasanain, Syed Khurshid; Zia-ur-Rahman; Ullah, Amir; Kim, Ill Won
2014-12-01
We report the static magnetic properties of Maghemite (γ-Fe2O3) nanoparticles with an average crystallite size of 14 ± 1.8 nm synthesized via a co-precipitation method. The zero-field-cooled (ZFC) and the field-cooled (FC) magnetization measurements were performed using a physical properties measurements system (PPMS) at temperatures from 5 K to 300 K. The ZFC/FC measurements showed a typical superparamagnetic behavior with a narrow size distribution.
Generating static fluid spheres by conformal transformations
Loranger, Jonathan; Lake, Kayll
2008-12-15
We generate an explicit four-fold infinity of physically acceptable exact perfect fluid solutions of Einstein's equations by way of conformal transformations of physically unacceptable solutions (one way to view the use of isotropic coordinates). Special cases include the Schwarzschild interior solution and the Einstein static universe. The process we consider involves solving two equations of the Riccati type coupled by a single generating function rather than a specification of one of the two metric functions.
Manipulating Cells with Static Magnetic Fields
NASA Astrophysics Data System (ADS)
Valles, J. M.; Guevorkian, K.
2005-07-01
We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.
Geodesics in the static Mallett spacetime
Olum, Ken D.
2010-06-15
Mallett has exhibited a cylindrically symmetric spacetime containing closed timelike curves produced by a light beam circulating around a line singularity. I analyze the static version of this spacetime obtained by setting the intensity of the light to zero. Some null geodesics can escape to infinity, but all timelike geodesics in this spacetime originate and terminate at the singularity. Freely falling matter originally at rest quickly attains relativistic velocity inward and is destroyed at the singularity.
Calibration of a pitot-static rake
NASA Technical Reports Server (NTRS)
Stump, H. P.
1977-01-01
A five-element pitot-static rake was tested to confirm its accuracy and determine its suitability for use at Langley during low-speed tunnel calibration primarily at full-scale tunnel. The rake was tested at one airspeed of 74 miles per hour (33 meters per second) and at pitch and yaw angles of 0 to + or - 20 degrees in 4 deg increments.
Recent studies using static simulation techniques
NASA Astrophysics Data System (ADS)
Catlow, C. R. A.; Freeman, C. M.; Royle, R. L.
1985-08-01
We review contemporary applications of static simulation methods based on energy minimisation techniques. The scope and limitations of the techniques are described. Particular attention is paid to the nature of the interatomic potentials used in such calculations. Applications are described to (i) modelling of SiO 2; (ii) prediction of conformations of the polypeptide enkephalin; (iii) the properties of impurities in TiO 2.
Static forces in a superconducting magnet bearing
Stoye, P.; Fuchs, G.; Gawalek, W.; Goernert, P.; Gladun, A.
1995-11-01
Static levitation forces and stiffnesses in a superconducting bearing consisting of concentric ring magnets and a superconducting YBaCuO ring are investigated. In the field-cooled mode a levitation force of 20 N has been achieved. The axial and radial stiffnesses have values of 15 N/mm and 10 N/mm, respectively. An arrangement with two bearings supporting a high speed shaft is now under development. A possible application of superconducting magnetic bearings is flywheels for energy storage.
Slinky Mechanics: Static Shapes and Unstable States
NASA Astrophysics Data System (ADS)
Holmes, Douglas; Borum, Andy; Moore, Billy; Plaut, Raymond; Dillard, David
2014-03-01
The floppy nature of a tumbling Slinky has captivated children and adults alike for over half a century. Highly flexible, the spring will walk down stairs, turn over in your hands, and-much to the chagrin of children everywhere-become easily entangled. The Slinky is an educational tool for demonstrating standing waves, and a structural inspiration due to its ability to extend to many times beyond its initial length without imparting plastic strain on the material. In this work, we provide a mechanical model that captures the static equilibrium configurations of the Slinky in terms of its geometric and material properties. We present both continuous and discrete models to capture a Slinky's static equilibria and unstable transitions. We compare these with experimental results obtained for the Slinky's static equilibrium shapes. We emphasize the importance of modeling coil contact, and determine the critical criteria for the Slinky to topple over in terms of a tilt angle, and the vertical displacement of one bale of coils. Finally, we provide a general description of highly flexible helical springs by considering the nondimensional potential energy of the spring, which characterizes the ``Slinkiness'' of a spring.
Dielectric properties of SPC/E and TIP4P under the static electric field and microwave field
NASA Astrophysics Data System (ADS)
Li, Di; Jia, Guo-zhu
2016-05-01
Nonequilibrium molecular dynamics simulations of the SPC/E and TIP4P models have been performed both in the absence and presence of the static electric field (0-3×109 V/m) and the microwave field (2.45 G, 0-3×109 V/m). The radial distribution function, dielectric constant, polarizability, dielectric relaxation time, hydrogen bonding and diffusion coefficient were investigated. Significant alteration in the static electric field has effect on the tetrahedral structure of water; the interaction between microwave and water depends on the hydrogen bonding. The 3×107 V/m is threshold intensity, as the intensity of the static electric field increases the decline of the dielectric constant becomes more pronounced, and the polarizability obviously increased with the increase of microwave field. And the life of hydrogen bonding is oscillatory under the high static electric field strength.
What Sexual Recidivism Rates Are Associated With Static-99R and Static-2002R Scores?
Hanson, R Karl; Thornton, David; Helmus, Leslie-Maaike; Babchishin, Kelly M
2016-04-01
Empirical actuarial risk tools are routinely used to assess the recidivism risk of adult sexual offenders. Compared with other forms of risk assessment, one advantage of actuarial risk tools is that they provide recidivism rate estimates. Previous research, however, suggests that there is considerable variability in the recidivism rates associated with the most commonly used sexual offender risk assessment tools (Static-99/R, Static-2002/R). The current study examined the extent to which the variability in the recidivism rates across 21 Static-99R studies (N = 8,805) corresponded to the normative groups proposed by the STATIC development group (routine, treatment, high risk/high need). We found strong evidence that routine (i.e., complete) samples were, on average, less likely to reoffend with a sexual offense than offenders in the high-risk/high-need samples (i.e., those explicitly preselected on risk-relevant variables external to STATIC scales). The differences between routine/complete and high-risk/high-need samples, however, were only consistently observed for offenders with low or moderate scores; for offenders with high STATIC scores, the 5-year sexual recidivism rates for these two groups were not meaningfully different. There was only limited evidence to support treatment samples as a distinct sample type; consequently, the use of separate normative tables for treatment samples is not recommended. The current results reinforce the value of regularly updating the norms for empirical actuarial risk tools. Options are discussed on how STATIC scores could be used to inform recidivism rates estimates in applied assessments. PMID:25810478
WINDROW AND STATIC PILE COMPOSTING OF MUNICIPAL SEWAGE SLUDGES
Research was conducted on composting anaerobically digested and centrifuge dewatered sewage sludge from 1975 through 1980. Windrow and static pile composting processes were evaluated; new methods were employed using deeper windrows and aerated static piles were constructed withou...
Statics and dynamics of colloidal particles on optical tray arrays
Reichardt, Charles; Reichhardt, Cynthia J
2009-01-01
We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.
Static and dynamic correlations in water at hydrophobic interfaces
Mittal, Jeetain; Hummer, Gerhard
2008-01-01
We study the static and dynamic properties of the water-density fluctuations in the interface of large nonpolar solutes. With the help of extensive molecular dynamics simulations of TIP4P water near smooth spherical solutes, we show that for large solutes, the interfacial density profile is broadened by capillary waves. For purely repulsive solutes, the squared width of the interface increases linearly with the logarithm of the solute size, as predicted by capillary-wave theory. The apparent interfacial tension extracted from the slope agrees with that of a free liquid–vapor interface. The characteristic length of local density fluctuations is ≈0.5 nm, measured along the arc, again consistent with that of a free liquid–vapor interface. Probed locally, the interfacial density fluctuations exhibit large variances that exceed those expected for an ideal gas. Qualitatively consistent with theories of the free liquid–vapor interface, we find that the water interface near large and strongly nonpolar solutes is flickering, broadened by capillary-wave fluctuations. These fluctuations result in transitions between locally wet and dry regions that are slow on a molecular time scale. PMID:19074279
NASA Astrophysics Data System (ADS)
Hasegawa, Taisuke; Tanimura, Yoshitaka
2008-02-01
A full molecular dynamics (MD) simulation approach to calculate multidimensional third-order infrared (IR) signals of molecular vibrational modes is proposed. Third-order IR spectroscopy involves three-time intervals between three excitation and one probe pulses. The nonequilibrium MD (NEMD) simulation allows us to calculate molecular dipoles from nonequilibrium MD trajectories for different pulse configurations and sequences. While the conventional NEMD approach utilizes MD trajectories started from the initial equilibrium state, our approach does from the intermediate state of the third-order optical process, which leads to the doorway-window decomposition of nonlinear response functions. The decomposition is made before the second pump excitation for a two-dimensional case of IR photon echo measurement, while it is made after the second pump excitation for a three-dimensional case of three-pulse IR photon echo measurement. We show that the three-dimensional IR signals are efficiently calculated by using the MD trajectories backward and forward in time for the doorway and window functions, respectively. We examined the capability of the present approach by evaluating the signals of two- and three-dimensional IR vibrational spectroscopies for liquid hydrogen fluoride. The calculated signals might be explained by anharmonic Brownian model with the linear-linear and square-linear system-bath couplings which was used to discuss the inhomogeneous broadening and dephasing mechanism of vibrational motions. The predicted intermolecular librational spectra clearly reveal the unusually narrow inhomogeneous linewidth due to the one-dimensional character of HF molecule and the strong hydrogen bond network.
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...
14 CFR 27.1325 - Static pressure systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...
14 CFR 25.1325 - Static pressure systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and true ambient atmospheric static pressure is not changed when the airplane is exposed to the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 25.1325 Section 25... pressure systems. (a) Each instrument with static air case connections must be vented to the...