Sample records for molecular static third-order

  1. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerenes and their Correlation with Three Geometric Parameters: Group Order, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, Craig E.; Cardelino, Beatriz H.; Frazier, Donald O.; Niles, Julian; Wang, Xian-Qiang

    1997-01-01

    Calculations were performed on the valence contribution to the static molecular third-order polarizabilities (gamma) of thirty carbon-cage fullerenes (C60, C70, five isomers of C78, and twenty-three isomers of C84). The molecular structures were obtained from B3LYP/STO-3G calculations. The values of the tensor elements and an associated numerical uncertainty were obtained using the finite-field approach and polynomial expansions of orders four to eighteen of polarization versus static electric field data. The latter information was obtained from semiempirical calculations using the AM1 hamiltonian.

  2. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  3. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  4. Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity.

    PubMed

    Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N

    2010-04-12

    Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

  5. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant

    PubMed Central

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-01-01

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938

  6. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant.

    PubMed

    Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang

    2015-04-27

    Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.

  7. Theoretical study on the spectroscopic and third-order nonlinear optical properties of two-dimensional charge-transfer pyrazine derivatives

    NASA Astrophysics Data System (ADS)

    Li, Haipeng; Zhang, Yi; Bi, Zetong; Xu, Runfeng; Li, Mingxue; Shen, Xiaopeng; Tang, Gang; Han, Kui

    2017-12-01

    In this paper, density functional theory method was employed to study the electronic absorption spectrum and electronic static second hyperpolarisability of X-shaped pyrazine derivatives with two-dimensional charge-transfer structures. Computational results show that the push-pull electron abilities of the substituent groups and the length of the conjugated chains affect the electronic spectrum and static second hyperpolarisability of the pyrazine derivatives. As the push-pull electron abilities of the substituent groups or the length of the conjugated chains increases, the frontier molecular orbital energy gap decreases, resulting in increased second hyperpolarisability and redshift of the electronic absorption bands. The electronic absorption spectra of the pyrazine derivatives maintain good transparency in the blue light band. The electronic static second hyperpolarisability exhibits a linear relationship to the frontier molecular orbital energy gap. Particularly, increasing/decreasing the push-pull electron abilities of the substituent groups considerably affect the static second hyperpolarisability in long conjugated systems, which is important to the modulation of molecular organic nonlinear optical (NLO) properties. The studied pyrazine derivatives show large third-order NLO response and good transparency in the blue light band and are thus promising candidates as NLO materials for photonics applications.

  8. [Zn(C 7H 3O 5N)] n · nH 2O: A third-order NLO Zn coordination polymer with spiroconjugated structure

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Wei; Lan, You-Zhao; Zheng, Fa-Kun; Zhang, Xin; Lin, Meng-Hai; Guo, Guo-Cong; Huang, Jin-Shun

    2006-08-01

    [Zn(C 7H 3O 5N)] n · nH 2O ( 1) possesses an anticlockwise windmill-like framework structure and formats spiroconjugation over the infinite molecular layer that is predicted to have large static third-order polarizability and the convergence value of γxxxx reaches 6.86 × 10 -33 esu in the case of zero input photon energy. The third-order NLO properties of 1 were investigated via Z-scan techniques at wavelength of 532 nm. It showed strong third-order NLO absorptive properties, and its n2 value was calculated to be 4.15 × 10 -11 esu. The relationship between the spiroconjugated structure and the NLO property has been discussed, which supposed to be more valuable for the NLO research.

  9. Static solutions for fourth order gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William

    2010-11-15

    The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.

  10. A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur

    2016-11-01

    A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.

  11. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  12. The second– and third– order nonlinear optical properties and electronic transition of a NLO chromophore: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altürk, Sümeyye, E-mail: sumeyye-alturk@hotmail.com; Avci, Davut, E-mail: davci@sakarya.edu.tr; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr

    2016-03-25

    It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first–order static hyperpolarizability (β{sub 0}), the second–order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1′-(4’’’-Methoxyphenyl)-5′-(thien-2″-yl)pyrrol-2′-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6–311G(d,p) level of density functional theory. The UV–vis spectra were simulated using TD/HSEh1PBE/6– 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η)more » and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.« less

  13. Experimental study of the third-order nonlinearity of atomic and molecular gases using 10-μm laser pulses

    NASA Astrophysics Data System (ADS)

    Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.

    2018-04-01

    We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.

  14. Maxwell's second- and third-order equations of transfer for non-Maxwellian gases

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1992-01-01

    Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.

  15. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  16. Stable static structures in models with higher-order derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB; Lobão, A.S.

    2015-09-15

    We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that themore » zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.« less

  17. Molecular ion yield enhancement induced by gold deposition in static secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wehbe, Nimer; Delcorte, Arnaud; Heile, Andreas; Arlinghaus, Heinrich F.; Bertrand, Patrick

    2008-12-01

    Static ToF-SIMS was used to evaluate the effect of gold condensation as a sample treatment prior to analysis. The experiments were carried out with a model molecular layer (Triacontane M = 422.4 Da), upon atomic (In +) and polyatomic (Bi 3+) projectile bombardment. The results indicate that the effect of molecular ion yield improvement using gold metallization exists only under atomic projectile impact. While the quasi-molecular ion (M+Au) + signal can become two orders of magnitude larger than that of the deprotonated molecular ion from the pristine sample under In + bombardment, it barely reaches the initial intensity of (M-H) + when Bi 3+ projectiles are used. The differences observed for mono- and polyatomic primary ion bombardment might be explained by differences in near-surface energy deposition, which influences the sputtering and ionization processes.

  18. Third-order dissipative hydrodynamics from the entropy principle

    NASA Astrophysics Data System (ADS)

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2010-06-01

    We review the entropy based derivation of third-order hydrodynamic equations and compare their solutions in one-dimensional boost-invariant geometry with calculations by the partonic cascade BAMPS. We demonstrate that Grad's approximation, which underlies the derivation of both Israel-Stewart and third-order equations, describes the transverse spectra from BAMPS with high accuracy. At the same time solutions of third-order equations are much closer to BAMPS results than solutions of Israel-Stewart equations. Introducing a resummation scheme for all higher-oder corrections to one-dimensional hydrodynamic equation we demonstrate the importance of higher-order terms if the Knudsen number is large.

  19. Influence of damped propagation of dopant on the static and frequency-dependent third nonlinear polarizability of quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-07-01

    We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.

  20. MPDATA: Third-order accuracy for variable flows

    NASA Astrophysics Data System (ADS)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  1. Structure Effect of Squarylium Cyanine Dyes on Third-Order Optical Nonlinearities in Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Liu, Xu-chun; Xu, Gang; Si, Jin-hai; Ye, Pei-xian; Lin, Tong; Peng, Bi-xian

    1999-08-01

    A series of squarylium cyanine dyes with different substituents were synthesized and the third-order optical nonlinearities of their ground and excited states were investigated by backward degenerate four-wave-mixing. For the ground state, the molecular hyperpolarizability γg increases with the red-shift of the absorption peak λmaxab of the squaraine with different substituents, whereas for the excited-state molecular hyperpolarizability γe, the nonlinear enhancement γe/γg decreases, which may indicate that in the excited state the electron accepting-donating ability of different substituents changes in the reverse order compared with the order in the ground state.

  2. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  3. Static and dynamic half-life and lifetime molecular turnover of enzymes.

    PubMed

    Miyawaki, Osato; Kanazawa, Tsukasa; Maruyama, Chika; Dozen, Michiko

    2017-01-01

    The static half-life of an enzyme is the half-life of a free enzyme not working without substrate and the dynamic half-life is that of an active enzyme working with plenty amount of substrate. These two half-lives were measured and compared for glucoamylase (GA) and β-galactosidase (BG). The dynamic half-life was much longer than the static half-life by one to three orders of magnitude for both enzymes. For BG, the half-life of the enzyme physically entrapped in a membrane reactor was also measured. In this case also, the half-life of BG in the membrane reactor was much longer than the free enzyme without substrate. These results suggest the large difference in stabilities between the free enzyme and the enzyme-substrate complex. This may be related to the natural enzyme metabolism. According to the difference in half-life, the lifetime molecular turnover (LMT), which is the number of product molecules produced by a single molecule of enzyme until it loses its activity completely, was much higher by one to four orders of magnitude for the active enzyme than the free enzyme. The concept of LMT, proposed here, will be important in bioreactor operations with or without immobilization. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2017-02-01

    New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

  5. Extension of relativistic dissipative hydrodynamics to third order

    NASA Astrophysics Data System (ADS)

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2010-04-01

    Following the procedure introduced by Israel and Stewart, we expand the entropy current up to the third order in the shear stress tensor παβ and derive a novel third-order evolution equation for παβ. This equation is solved for the one-dimensional Bjorken boost-invariant expansion. The scaling solutions for various values of the shear viscosity to the entropy density ratio η/s are shown to be in very good agreement with those obtained from kinetic transport calculations. For the pressure isotropy starting with 1 at τ0=0.4 fm/c, the third-order corrections to Israel-Stewart theory are approximately 10% for η/s=0.2 and more than a factor of 2 for η/s=3. We also estimate all higher-order corrections to Israel-Stewart theory and demonstrate their importance in describing highly viscous matters.

  6. Third-Order Memristive Morris-Lecar Model of Barnacle Muscle Fiber

    NASA Astrophysics Data System (ADS)

    Rajamani, Vetriveeran; Sah, Maheshwar Pd.; Mannan, Zubaer Ibna; Kim, Hyongsuk; Chua, Leon

    This paper presents a detailed analysis of various oscillatory behaviors observed in relation to the calcium and potassium ions in the third-order Morris-Lecar model of giant barnacle muscle fiber. Since, both the calcium and potassium ions exhibit all of the characteristics of memristor fingerprints, we claim that the time-varying calcium and potassium ions in the third-order Morris-Lecar model are actually time-invariant calcium and potassium memristors in the third-order memristive Morris-Lecar model. We confirmed the existence of a small unstable limit cycle oscillation in both the second-order and the third-order Morris-Lecar model by numerically calculating the basin of attraction of the asymptotically stable equilibrium point associated with two subcritical Hopf bifurcation points. We also describe a comprehensive analysis of the generation of oscillations in third-order memristive Morris-Lecar model via small-signal circuit analysis and a subcritical Hopf bifurcation phenomenon.

  7. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.

    PubMed

    Gandman, Andrey; Mackin, Robert T; Cohn, Bar; Rubtsov, Igor V; Chuntonov, Lev

    2018-05-22

    Infrared gold antennas localize enhanced near fields close to the metal surface, when excited at the frequency of their plasmon resonance, and amplify vibrational signals from the nearby molecules. We study the dependence of the signal enhancement on the thickness of a polymer film containing vibrational chromophores, deposited on the antenna array, using linear (FTIR) and third-order femtosecond vibrational spectroscopy (transient absorption and 2DIR). Our results show that for a film thickness beyond only a few nanometers the near-field interaction is not sufficient to account for the magnitude of the observed signal, which nevertheless has a clear Fano line shape, suggesting a radiative origin of the molecule-plasmon interaction. The mutual radiative damping of plasmonic and molecular transitions leads to the spectroscopic signal of a molecular vibrational excitation to be enhanced by up to a factor of 50 in the case of linear spectroscopy and over 2000 in the case of third-order spectroscopy. A qualitative explanation for the observed effect is given by the extended coupled oscillators model, which takes into account both near-field and radiative interactions between the plasmonic and molecular transitions.

  8. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  9. Extension of relativistic dissipative hydrodynamics to third order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El, Andrej; Xu Zhe; Greiner, Carsten

    2010-04-15

    Following the procedure introduced by Israel and Stewart, we expand the entropy current up to the third order in the shear stress tensor pi{sup a}lpha{sup b}eta and derive a novel third-order evolution equation for pi{sup a}lpha{sup b}eta. This equation is solved for the one-dimensional Bjorken boost-invariant expansion. The scaling solutions for various values of the shear viscosity to the entropy density ratio eta/s are shown to be in very good agreement with those obtained from kinetic transport calculations. For the pressure isotropy starting with 1 at tau{sub 0}=0.4 fm/c, the third-order corrections to Israel-Stewart theory are approximately 10% for eta/s=0.2more » and more than a factor of 2 for eta/s=3. We also estimate all higher-order corrections to Israel-Stewart theory and demonstrate their importance in describing highly viscous matters.« less

  10. Constraints on operator ordering from third quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkuwa, Yoshiaki; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  11. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives

    NASA Astrophysics Data System (ADS)

    Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.

    2014-03-01

    A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).

  12. Third-order optical conductivity of an electron fluid

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, D. N.; Fogler, M. M.

    2018-02-01

    We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to a uniform field is dominated by the third-order conductivity tensor σ(3 ) whose magnitude and temperature dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain explicit formulas for σ(3 ) for Dirac materials such as graphene and Weyl semimetals. We make predictions for the third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic birefringence experiments.

  13. The actual scaling of a nominally third-order Reynolds stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J. A., E-mail: krommes@princeton.edu; Hammett, G. W., E-mail: hammett@princeton.edu

    2014-05-15

    It is shown that a particular higher-order Reynolds stress arising from a term in the third-order gyrokinetic Hamiltonian is smaller than it nominally appears to be. However, it does not follow that all third-order terms are unimportant. The discussion is relevant to the ongoing debate about the importance of higher-order terms in the gyrokinetic theory of momentum transport.

  14. Second-order closure PBL model with new third-order moments: Comparison with LES data

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Minotti, F.; Ronchi, C.; Ypma, R. M.; Zeman, O.

    1994-01-01

    This paper contains two parts. In the first part, a new set of diagnostic equations is derived for the third-order moments for a buoyancy-driven flow, by exact inversion of the prognostic equations for the third-order moment equations in the stationary case. The third-order moments exhibit a universal structure: they all are a linear combination of the derivatives of all the second-order moments, bar-w(exp 2), bar-w theta, bar-theta(exp 2), and bar-q(exp 2). Each term of the sum contains a turbulent diffusivity D(sub t), which also exhibits a universal structure of the form D(sub t) = a nu(sub t) + b bar-w theta. Since the sign of the convective flux changes depending on stable or unstable stratification, D(sub t) varies according to the type of stratification. Here nu(sub t) approximately equal to wl (l is a mixing length and w is an rms velocity) represents the 'mechanical' part, while the 'buoyancy' part is represented by the convective flux bar-w theta. The quantities a and b are functions of the variable N(sub tau)(exp 2), where N(exp 2) = g alpha derivative of Theta with respect to z and tau is the turbulence time scale. The new expressions for the third-order moments generalize those of Zeman and Lumley, which were subsequently adopted by Sun and Ogura, Chen and Cotton, and Finger and Schmidt in their treatments of the convective boundary layer. In the second part, the new expressions for the third-order moments are used to solve the ensemble average equations describing a purely convective boundary laye r heated from below at a constant rate. The computed second- and third-order moments are then compared with the corresponding Large Eddy Simulation (LES) results, most of which are obtained by running a new LES code, and part of which are taken from published results. The ensemble average results compare favorably with the LES data.

  15. The determination of third order linear models from a seventh order nonlinear jet engine model

    NASA Technical Reports Server (NTRS)

    Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex

    1989-01-01

    Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.

  16. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  17. Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host

    NASA Astrophysics Data System (ADS)

    Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.

    2008-04-01

    In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.

  18. The static hard-loop gluon propagator to all orders in anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopoush, Mohammad; Guo, Yun; Strickland, Michael

    We calculate the (semi-)static hard-loop self-energy and propagator using the Keldysh formalism in a momentum-space anisotropic quark-gluon plasma. The static retarded, advanced, and Feynman (symmetric) self-energies and propagators are calculated to all orders in the momentum-space anisotropy parameter ξ. For the retarded and advanced self-energies/propagators, we present a concise derivation and comparison with previouslyobtained results and extend the calculation of the self-energies to next-to-leading order in the gluon energy, ω. For the Feynman self-energy/propagator, we present new results which are accurate to all orders in ξ. We compare our exact results with prior expressions for the Feynman self-energy/propagator which weremore » obtained using Taylor-expansions around an isotropic state. Here, we show that, unlike the Taylor-expanded results, the all-orders expression for the Feynman propagator is free from infrared singularities. Finally, we discuss the application of our results to the calculation of the imaginary-part of the heavy-quark potential in an anisotropic quark-gluon plasma.« less

  19. The static hard-loop gluon propagator to all orders in anisotropy

    DOE PAGES

    Nopoush, Mohammad; Guo, Yun; Strickland, Michael

    2017-09-15

    We calculate the (semi-)static hard-loop self-energy and propagator using the Keldysh formalism in a momentum-space anisotropic quark-gluon plasma. The static retarded, advanced, and Feynman (symmetric) self-energies and propagators are calculated to all orders in the momentum-space anisotropy parameter ξ. For the retarded and advanced self-energies/propagators, we present a concise derivation and comparison with previouslyobtained results and extend the calculation of the self-energies to next-to-leading order in the gluon energy, ω. For the Feynman self-energy/propagator, we present new results which are accurate to all orders in ξ. We compare our exact results with prior expressions for the Feynman self-energy/propagator which weremore » obtained using Taylor-expansions around an isotropic state. Here, we show that, unlike the Taylor-expanded results, the all-orders expression for the Feynman propagator is free from infrared singularities. Finally, we discuss the application of our results to the calculation of the imaginary-part of the heavy-quark potential in an anisotropic quark-gluon plasma.« less

  20. Third-order-harmonic generation in coherently spinning molecules

    NASA Astrophysics Data System (ADS)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  1. Third-order Zeeman effect in highly charged ions

    NASA Astrophysics Data System (ADS)

    Varentsova, A. S.; Agababaev, V. A.; Volchkova, A. M.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.

    2017-10-01

    The contribution of the third order in magnetic field to the Zeeman splitting of the ground state of hydrogenlike, lithiumlike, and boronlike ions in the range Z = 6 - 82 is investigated within the relativistic approach. Both perturbative and non-perturbative methods of calculation are employed and found to be in agreement. For lithiumlike and boronlike ions the interelectronic-interaction effects are taken into account within the approximation of the local screening potential. The contribution of the third-order effect in low- and medium-Z boronlike ions is found to be important for anticipated high-precision measurements.

  2. Third-order nonlinear optical properties of thin sputtered gold films

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  3. Influence of second-order bracket-archwire misalignments on loads generated during third-order archwire rotation in orthodontic treatment.

    PubMed

    Romanyk, Dan L; George, Andrew; Li, Yin; Heo, Giseon; Carey, Jason P; Major, Paul W

    2016-05-01

    To investigate the influence of a rotational second-order bracket-archwire misalignment on the loads generated during third-order torque procedures. Specifically, torque in the second- and third-order directions was considered. An orthodontic torque simulator (OTS) was used to simulate the third-order torque between Damon Q brackets and 0.019 × 0.025-inch stainless steel archwires. Second-order misalignments were introduced in 0.5° increments from a neutral position, 0.0°, up to 3.0° of misalignment. A sample size of 30 brackets was used for each misalignment. The archwire was then rotated in the OTS from its neutral position up to 30° in 3° increments and then unloaded in the same increments. At each position, all forces and torques were recorded. Repeated-measures analysis of variance was used to determine if the second-order misalignments significantly affected torque values in the second- and third-order directions. From statistical analysis of the experimental data, it was found that the only statistically significant differences in third-order torque between a misaligned state and the neutral position occurred for 2.5° and 3.0° of misalignment, with mean differences of 2.54 Nmm and 2.33 Nmm, respectively. In addition, in pairwise comparisons of second-order torque for each misalignment increment, statistical differences were observed in all comparisons except for 0.0° vs 0.5° and 1.5° vs 2.0°. The introduction of a second-order misalignment during third-order torque simulation resulted in statistically significant differences in both second- and third-order torque response; however, the former is arguably clinically insignificant.

  4. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  5. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    PubMed

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  6. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  7. Novel third-order Lovelock wormhole solutions

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.

    2016-06-01

    In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.

  8. Complementary Response of Static Spin-Stripe Order and Superconductivity to Nonmagnetic Impurities in Cuprates

    DOE PAGES

    Guguchia, Z.; Roessli, B.; Khasanov, R.; ...

    2017-08-22

    Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less

  9. Complementary Response of Static Spin-Stripe Order and Superconductivity to Nonmagnetic Impurities in Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guguchia, Z.; Roessli, B.; Khasanov, R.

    Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less

  10. Phase-dependent ultrafast third-order optical nonlinearities in metallophthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Anil Kumar, K. V.; Dharmaprakash, S. M.; Das, Ritwick

    2016-09-01

    We present a comprehensive study on the impact of phase transformations of metallophthalocyanine thin films on their third-order nonlinear optical (NLO) properties. The metallophthalocyanine thin films are prepared by thermally evaporating the commercially available Copper(II)2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) and Zinc(II) 2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (ZnPc) powder on glass substrate. Thermal annealing causes a phase transformation which has a distinct signature in powder X-ray diffraction and UV-Vis-NIR spectroscopy. The NLO characteristics which include nonlinear refractive index n2, as well as nonlinear absorption coefficient (βeff), were measured by using a single beam Z-scan technique. An ultrashort pulsed fiber laser emitting femtosecond pulses (Δτ ≈ 250 fs) at 1064 nm central wavelength is used as a source for the Z-scan experiment. The βeff values in as prepared thin films were ascertained to be smaller as compared to the annealed one due to the smaller value of saturation intensity (Is) which, in turn, is a consequence of ground-state bleaching in the thermally unstable amorphous state of the molecule. Interestingly, the nonlinear refractive indices bear opposite sign for CuPc and ZnPc. The variations in the third-order nonlinearity in CuPc and ZnPc are discussed in terms of molecular packing and geometries of metallophthalocyanine molecules.

  11. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  12. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  13. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  14. Instability of black strings in the third-order Lovelock theory

    NASA Astrophysics Data System (ADS)

    Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo

    2016-05-01

    We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.

  15. Z-scan: A simple technique for determination of third-order optical nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com; Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to bemore » 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.« less

  16. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  17. Multi-octave analog photonic link with improved second- and third-order SFDRs

    NASA Astrophysics Data System (ADS)

    Tan, Qinggui; Gao, Yongsheng; Fan, Yangyu; He, You

    2018-03-01

    The second- and third-order spurious free dynamic ranges (SFDRs) are two key performance indicators for a multi-octave analogy photonic link (APL). The linearization methods for either second- or third-order intermodulation distortion (IMD2 or IMD3) have been intensively studied, but the simultaneous suppression for the both were merely reported. In this paper, we propose an APL with improved second- and third-order SFDRs for multi-octave applications based on two parallel DPMZM-based sub-APLs. The IMD3 in each sub-APL is suppressed by properly biasing the DPMZM, and the IMD2 is suppressed by balanced detecting the two sub-APLs. The experiment demonstrates significant suppression ratios for both the IMD2 and IMD3 after linearization in the proposed link, and the measured second- and third-order SFDRs with the operating frequency from 6 to 40 GHz are above 91 dB ṡHz 1 / 2 and 116 dB ṡHz 2 / 3, respectively.

  18. Ghost-Free Theory with Third-Order Time Derivatives

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Suyama, Teruaki; Yamaguchi, Masahide

    2018-06-01

    As the first step to extend our understanding of higher-derivative theories, within the framework of analytic mechanics of point particles, we construct a ghost-free theory involving third-order time derivatives in Lagrangian. While eliminating linear momentum terms in the Hamiltonian is necessary and sufficient to kill the ghosts associated with higher derivatives for Lagrangian with at most second-order derivatives, we find that this is necessary but not sufficient for the Lagrangian with higher than second-order derivatives. We clarify a set of ghost-free conditions under which we show that the Hamiltonian is bounded, and that equations of motion are reducible into a second-order system.

  19. Theory of third-order spectroscopic methods to extract detailed molecular orientational dynamics for planar surfaces and other uniaxial systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Jun; Fayer, Michael D., E-mail: fayer@stanford.edu

    Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary tomore » completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less

  20. Third-order nonlinear optical properties of methylammonium lead halide perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C.; Li, Zhen; Ndione, Paul F.

    2016-01-01

    We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due tomore » the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.« less

  1. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  2. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  3. Effect of third-order aberrations on dynamic accommodation.

    PubMed

    López-Gil, Norberto; Rucker, Frances J; Stark, Lawrence R; Badar, Mustanser; Borgovan, Theodore; Burke, Sean; Kruger, Philip B

    2007-03-01

    We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1-3D, 0.2Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 microm) and coma (0.34, 0.94 microm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

  4. Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives

    NASA Astrophysics Data System (ADS)

    Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-08-01

    The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.

  5. Criticality in third order lovelock gravity and butterfly effect

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  6. Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan

    2016-10-01

    An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.

  7. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  8. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    PubMed

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  9. Third-order nonlinear optical property of a polyphenylene oligomer: poly(2,5-dialkozyphenylene)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyao; Yan, Jun; Sun, Diechi; Li, Fuming; Zhou, Luwei; Sun, Meng

    1997-02-01

    The third-order nonlinear optical (NLO) property of a soluble, π-backbone conjugated polymer poly(2,5-dialkozyphenylene) (for abbreviation called dialkozy-PP) is studied at the picosecond time region. The near resonance third-order hyperpolarizability γxxxx at 532 nm is 8.2×10 -30 esu, and the corresponding macroscopic third-order susceptibility χ(3)(- ω, ω, ω, - ω) and nonlinear refractive index n2 are estimated to be 6.3×10 -10 esu and 1.4×10 -8 esu, respectively. The half-width of the laser pulse is 35 ps.

  10. Spectral gap optimization of order parameters for sampling complex molecular systems

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365

  11. Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones

    NASA Astrophysics Data System (ADS)

    Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.

    2016-03-01

    This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.

  12. Spectra of turbulent static pressure fluctuations in jet mixing layers

    NASA Technical Reports Server (NTRS)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  13. Divertor with a third-order null of the poloidal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Umansky, M. V.

    2013-09-15

    A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, themore » configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.« less

  14. Mechanisms of the Third-Order Nonlinear Optical Response in Dye-Doped Polymers.

    NASA Astrophysics Data System (ADS)

    Poga, Constantina

    Quadratic Electroabsorption is applied to thin -film solid solutions of squarylium dye molecules in poly(methyl methacrylate) polymer to study the mechanisms in the third order nonlinear optical susceptibility. The data are interpreted with the help of a generalized quadratic electrooptic response theory that includes both electronic and hindered molecular motion mechanisms. This theory predicts the tensor ratio of two independent third order susceptibility tensor components, chi_sp{3333}{(3)}/ chi_sp{1133}{(3)}, whose value distinctly characterizes the relative contribution of each mechanism. Although thickness change mechanisms have not been included in this theory, their effect on the tensor ratio chi_sp{3333 }{(3)}/chi_sp{1133} {(3)} has been taken into account for both electrostriction and electrode attraction mechanisms. We measure the tensor ratio with quadratic electroabsorption spectroscopy as a function of temperature and wavelength and find that the response is predominantly electronic at temperatures below the glass transition temperature, but at temperatures higher than the glass transition temperature both reorientational and thickness changes effects play a dominant role. In particular, the contribution of each mechanism has been found for all wavelengths in the visible and the dominant thickness change mechanism has been identified to be electrode attraction. Additionally, the real part of the third-order nonlinear susceptibility can be found through a Kramers-Kronig transformation of the experimentally measured imaginary part. The knowledge of both the real and imaginary part in the visible allows the calculation of the two-photon figure of merit (defined as the real over the imaginary part of chi^{(3) }) which is necessary for determining a material's suitability for all-optical devices. Furthermore, quadratic electroabsorption can be used to characterize the nature of the excited states which in turn can be used to understand the source of the

  15. Third-Order Optical Nonlinearities of Squarylium Dyes with Benzothiazole Donor Groups Measured Using the Picosecond Z-Scan Technique

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yu; Xu, Song; Chen, Zi-Hui; Zhang, Fu-Shi; Kasatani, Kazuo

    2011-08-01

    Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2) in chloroform solution are measured by a picosecond Z-scan technique at 532 nm. It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect. The molecular second hyperpolarizabilities are calculated to be 7.46 × 10-31 esu and 5.01 × 10-30 esu for BSQ1 and BSQ2, respectively. The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure. The difference in γ values is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect. It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of χ(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.

  16. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng

    2017-09-01

    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01 M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532 nm. The title chalcone exhibited significant two-photon absorption (β = 35.8 × 10- 5 cm W- 1), negative nonlinear refraction (n2 = - 0.18 × 10- 8 cm2 W- 1) and optical limiting (OL threshold = 2.73 kJ cm- 2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31 + G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(- 2ω;ω,ω) at input frequency ω = 0.04282 a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good

  17. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one.

    PubMed

    Maidur, Shivaraj R; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng

    2017-09-05

    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P2 1 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1 H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532nm. The title chalcone exhibited significant two-photon absorption (β=35.8×10 -5 cmW -1 ), negative nonlinear refraction (n 2 =-0.18×10 -8 cm 2 W -1 ) and optical limiting (OL threshold=2.73kJcm -2 ) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31+G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1 H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(-2ω;ω,ω) at input frequency ω=0.04282a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement

  18. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  19. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  20. Third-order 2N-storage Runge-Kutta schemes with error control

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Kennedy, Christopher A.

    1994-01-01

    A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  1. Large electronic third-order optical nonlinearities of cyanine dyes measured by resonant femtosecond degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo

    2003-01-01

    Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.

  2. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths

    DOE PAGES

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng; ...

    2017-08-29

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here in this paper we report the observation of ultrahigh third-order nonlinearity about 0.45 cm 2/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantlymore » advance the performance of alloptical switches.« less

  3. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here in this paper we report the observation of ultrahigh third-order nonlinearity about 0.45 cm 2/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantlymore » advance the performance of alloptical switches.« less

  4. Characterization of second and third order optical nonlinearities of ZnO sputtered films

    NASA Astrophysics Data System (ADS)

    Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.

    2006-03-01

    We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.

  5. Regenerator performance in a Vuilleumier refrigerator compared with a third-order numerical model

    NASA Technical Reports Server (NTRS)

    Bradley, P. E.; Radebaugh, Ray; Gary, John

    1991-01-01

    A three-stage Vuilleumier refrigerator was used to measure the performance of various third stage regenerators. The refrigerator operates between 2.5 and 5.0 Hz and, depending on the material used in the third stage regenerator, achieves temperatures of 8 to 20 K at the cold end of the third stage. This paper presents a comparison of regenerator performance for four regenerator materials: 229 micron diameter spheres of Pb(+)5 pct Sb, 229 micron diameter spheres of brass, 216 micron irregularly-shaped GdRh powder, and a mixture of 229 microns and 762 microns diameter spheres of Pb(+5) pct Sb. The experimental results are compared with a first-order model that neglects the void volume within the regenerator and with a third-order model that considers the effect of pressure oscillations in the regenerator void volume. Experimental results indicate that regenerator losses are dominated by the pressure oscillation in the void volume rather than the mass flow through the temperature gradient in the regenerator. These results are consistent with the third-order numerical model. This model shows that the heat capacity of the gas in the void space as well as the heat capacity of the matrix influences the regenerator performance.

  6. Off-resonant third-order optical nonlinearities of squarylium and croconium dyes

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Xu, Song; Niu, Lihong; Zhang, Zhi; Chen, Zihui; Zhang, Fushi

    2008-01-01

    The magnitude and dynamic response of the third-order optical nonlinearities of squarylium and croconium dyes in methanol solution were measured by femtosecond degenerate four-wave mixing (DFWM) technique at 800 nm. Ultrafast nonlinear optical responses have been observed, and the magnitude of the second-order hyperpolarizabilities was evaluated to be 5.80 × 10 -31 esu for the squarylium dye and 8.69 × 10 -31 esu for the croconium dye, respectively. The large optical nonlinearities of the dyes can be attributed to their rigid and intramolecular charge transfer structure, and the instantaneous NLO responses of dyes are shorter than the experimental time resolution (50 fs), which is mainly contributed from the electron delocalization. The fast nonlinear response and large third-order optical nonlinearities show that the studied squarylium and croconium dyes might a kind of promising materials for the applications in all-optical switching and modulator.

  7. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  8. Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique.

    PubMed

    Tokarz, Danielle; Cisek, Richard; Prent, Nicole; Fekl, Ulrich; Barzda, Virginijus

    2012-11-28

    Measurement of the second hyperpolarizability (γ) values of compounds can provide insight into the molecular structural requirements for enhancement of third harmonic generation (THG) signal. A convenient method for measuring the γ of compounds in solutions was developed by implementing the THG ratio method which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope while accounting for the refractive index of solutions at the fundamental and third harmonic wavelengths. We demonstrated that the difference in refractive index at both wavelengths strongly influenced the calculation of γ values when compounds have absorption near the third harmonic or fundamental wavelength. To this end, a refractometer with the wavelength tuning range from UV to near IR was constructed, and the measured refractive indices were used to extract the γ values. The γ values of carotenoids and chlorophylls found in photosynthetic pigment-protein complexes were explored. Large differences in the refractive index at third harmonic and fundamental wavelengths for chlorophylls result in γ values that are more than two orders of magnitude larger than γ values for carotenoids as well as the sign of chlorophylls'γ values is negative while carotenoids have positive γ values. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Driven similarity renormalization group: Third-order multireference perturbation theory.

    PubMed

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  10. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE PAGES

    Li, Chenyang; Evangelista, Francesco A.

    2017-03-28

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  11. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenyang; Evangelista, Francesco A.

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  12. Einstein-Weyl spaces and third-order differential equations

    NASA Astrophysics Data System (ADS)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  13. Detection of Fatty Acids from Intact Microorganisms by Molecular Beam Static Secondary Ion Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis

    We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less

  14. Static charge-density-wave order in the superconducting state of La 2 - x Ba x CuO 4

    DOE PAGES

    Thampy, V.; Chen, X. M.; Cao, Y.; ...

    2017-06-15

    Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less

  15. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    PubMed

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  16. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...

  17. Modeling and simulation of continuous wave velocity radar based on third-order DPLL

    NASA Astrophysics Data System (ADS)

    Di, Yan; Zhu, Chen; Hong, Ma

    2015-02-01

    Second-order digital phase-locked-loop (DPLL) is widely used in traditional Continuous wave (CW) velocity radar with poor performance in high dynamic conditions. Using the third-order DPLL can improve the performance. Firstly, the echo signal model of CW radar is given. Secondly, theoretical derivations of the tracking performance in different velocity conditions are given. Finally, simulation model of CW radar is established based on Simulink tool. Tracking performance of the two kinds of DPLL in different acceleration and jerk conditions is studied by this model. The results show that third-order PLL has better performance in high dynamic conditions. This model provides a platform for further research of CW radar.

  18. Third-order nonlinear optical properties of ADP crystal

    NASA Astrophysics Data System (ADS)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  19. Third-order elastic constants of diamond determined from experimental data

    DOE PAGES

    Winey, J. M.; Hmiel, A.; Gupta, Y. M.

    2016-06-01

    The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys. 43, 294 (1972)]. Furthermore, our analysis corrects an error in the previously reported results.We present a complete and corrected set of third-order elastic constants (TOECs) using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock compressed diamond [Lang and Gupta, Phys. Rev. Lett. 106, 125502 (2011)] and it differs significantly from TOECs published previously.

  20. Perception of second- and third-order orientation signals and their interactions

    PubMed Central

    Victor, Jonathan D.; Thengone, Daniel J.; Conte, Mary M.

    2013-01-01

    Orientation signals, which are crucial to many aspects of visual function, are more complex and varied in the natural world than in the stimuli typically used for laboratory investigation. Gratings and lines have a single orientation, but in natural stimuli, local features have multiple orientations, and multiple orientations can occur even at the same location. Moreover, orientation cues can arise not only from pairwise spatial correlations, but from higher-order ones as well. To investigate these orientation cues and how they interact, we examined segmentation performance for visual textures in which the strengths of different kinds of orientation cues were varied independently, while controlling potential confounds such as differences in luminance statistics. Second-order cues (the kind present in gratings) at different orientations are largely processed independently: There is no cancellation of positive and negative signals at orientations that differ by 45°. Third-order orientation cues are readily detected and interact only minimally with second-order cues. However, they combine across orientations in a different way: Positive and negative signals largely cancel if the orientations differ by 90°. Two additional elements are superimposed on this picture. First, corners play a special role. When second-order orientation cues combine to produce corners, they provide a stronger signal for texture segregation than can be accounted for by their individual effects. Second, while the object versus background distinction does not influence processing of second-order orientation cues, this distinction influences the processing of third-order orientation cues. PMID:23532909

  1. Effects of polarons on static polarizabilities and second order hyperpolarizabilities of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Dong; Meng, Yan; Di, Bing; Wang, Shu-Ling; An, Zhong

    2010-12-01

    According to the one-dimensional tight-binding Su—Schrieffer—Heeger model, we have investigated the effects of charged polarons on the static polarizability, αxx, and the second order hyperpolarizabilities, γxxxx, of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su-Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on αxx and γxxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of αxx and γxxxx increase as the on-site Coulomb interaction U increases for U < Uc and decrease with U for U > Uc, where Uc is a critical value of U at which the static polarizability or the second order hyperpolarizability reaches a maximal value of αmax or γmax. It is found that the effect of the e-e interaction on the value of αxx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γxxxx is sensitive both to the ratio of U to V and to the size of the molecule.

  2. Accuracy-preserving source term quadrature for third-order edge-based discretization

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroaki; Liu, Yi

    2017-09-01

    In this paper, we derive a family of source term quadrature formulas for preserving third-order accuracy of the node-centered edge-based discretization for conservation laws with source terms on arbitrary simplex grids. A three-parameter family of source term quadrature formulas is derived, and as a subset, a one-parameter family of economical formulas is identified that does not require second derivatives of the source term. Among the economical formulas, a unique formula is then derived that does not require gradients of the source term at neighbor nodes, thus leading to a significantly smaller discretization stencil for source terms. All the formulas derived in this paper do not require a boundary closure, and therefore can be directly applied at boundary nodes. Numerical results are presented to demonstrate third-order accuracy at interior and boundary nodes for one-dimensional grids and linear triangular/tetrahedral grids over straight and curved geometries.

  3. Interconnections between various analytic approaches applicable to third-order nonlinear differential equations

    PubMed Central

    Mohanasubha, R.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-01-01

    We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle–Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples. PMID:27547076

  4. Interconnections between various analytic approaches applicable to third-order nonlinear differential equations.

    PubMed

    Mohanasubha, R; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2015-04-08

    We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle-Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples.

  5. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  6. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  7. Experimental determination of third-order elastic constants of diamond.

    PubMed

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  8. A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.

    PubMed

    Popescu, Dan M; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise.

  9. A Kramers-Moyal Approach to the Analysis of Third-Order Noise with Applications in Option Valuation

    PubMed Central

    Popescu, Dan M.; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula’s theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option’s and its underlier’s price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a “delta-hedged” portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856

  10. Rigorous theory of molecular orientational nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less

  11. Time-dependent density-functional tight-binding method with the third-order expansion of electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimoto, Yoshio, E-mail: nishimoto.yoshio@fukui.kyoto-u.ac.jp

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of themore » third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.« less

  12. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    PubMed

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  13. Molecular theory of smectic ordering in liquid crystals with nanoscale segregation of different molecular fragments

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Osipov, M. A.; Kapernaum, N.; Nonnenmacher, D.; Giesselmann, F.

    2011-11-01

    A molecular statistical theory of the smectic A phase is developed taking into account specific interactions between different molecular fragments which enables one to describe different microscopic scenario of the transition into the smectic phase. The effects of nanoscale segregation are described using molecular models with different combinations of attractive and repulsive sites. These models have been used to calculate numerically coefficients in the mean filed potential as functions of molecular model parameters and the period of the smectic structure. The same coefficients are calculated also for a conventional smectic with standard Gay-Berne interaction potential which does not promote the segregation. The free energy is minimized numerically to calculate the order parameters of the smectic A phases and to study the nature of the smectic transition in both systems. It has been found that in conventional materials the smectic order can be stabilized only when the orientational order is sufficiently high, In contrast, in materials with nanosegregation the smectic order develops mainly in the form of the orientational-translational wave while the nematic order parameter remains relatively small. Microscopic mechanisms of smectic ordering in both systems are discussed in detail, and the results for smectic order parameters are compared with experimental data for materials of various molecular structure.

  14. Topology and static response of interaction networks in molecular biology

    PubMed Central

    Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel

    2005-01-01

    We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230

  15. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    NASA Astrophysics Data System (ADS)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  16. Ultrafast Spectroscopic Studies of Two-Photon States in Third Order Optical Processes of Dye Chromophores.

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Zhong

    1995-01-01

    Conjugated organic and polymeric materials usually have large, nonresonant third order optical nonlinearity due to correlations of their delocalized pi -electrons. Most materials studied so far show positive values of third order nonlinear susceptibility when all frequencies that generate the third order effect are below any optical transition. A new class of organic molecules, namely indole squarylium (ISQ) and anilinium squarylium (BSQ), exhibit negative < gamma(-omega_4;omega_1, omega_2,omega_3)> when all three frequencies, omega_1, omega_2 and omega_3, lie below the first electronic transition. Although quantum many-electron calculations based on multiple-excitation configuration interaction have shown that the negative third order coefficient is essentially due to the contribution from high-lying two-photon states, the field of experimental studies exploring the microscopic origins of the negative squaraines remains uncultivated. The work presented in this thesis involves extensive experimental investigation of squaraines using techniques such as time-resolved transit absorption spectroscopy and saturable absorption. Theoretical simulations studying nonlinear absorption behavior of a simplified two-level system with ultrashort pulses are also presented. Part of the thesis is dedicated to the development, fabrication and characterization of our ultrafast laser system which offers tunable femtosecond pulses at wavelengths from UV to IR and served as a major tool in the experimental measurements. The dynamics of the population inversion between the ground state and the first excited state was also investigated through time-resolved experiments. The experiment results agree well with the theoretical predictions. Strong couplings between the gateway state and high-lying two-photon states were observed in BSQ squarylium molecules, which suggested a complete quantum calculation with multiple energy levels is required to

  17. Systems of conservation laws with third-order Hamiltonian structures

    NASA Astrophysics Data System (ADS)

    Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.

    2018-06-01

    We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2, classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.

  18. Third order nonlinear optical response exhibited by mono- and few-layers of WS 2

    DOE PAGES

    Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...

    2016-04-13

    In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.

  19. DSHEA's third-party literature exemption; mail order sales, direct marketing, and Internet use.

    PubMed

    Raubicheck, C J

    1999-01-01

    This article examines ways in which marketers of dietary supplements can make use of the "third-party literature" section of the Dietary Supplement Health and Education Act of 1994 (DSHEA). This provision permits persons or entities, other than manufacturers or distributors, to distribute to consumers certain publications in connection with the sale of particular supplements. These publications may include statements about the therapeutic benefits of such products without subjecting the products to regulation by the Food and Drug Administration (FDA) as unapproved new drugs. Specifically, this article addresses the following: Can a dietary supplement manufacturer or distributor send third-party literature about a dietary supplement to a customer in a mail order sales transaction? Can third-party literature be disseminated by mail with dietary supplement catalogues only? Can third-party literature be disseminated by sales representatives engaged in direct marketing of dietary supplements? Can third-party literature appear on the Internet? The answer appears to be affirmative in each of these situations.

  20. Third order LPF type compensator for flexible rotor suspension

    NASA Technical Reports Server (NTRS)

    Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki

    1994-01-01

    The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.

  1. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  2. Static and dynamic dielectric properties of strongly polar liquids in the vicinity of first order and weakly first order phase transitions

    NASA Astrophysics Data System (ADS)

    Jadżyn, Jan; Czechowski, Grzegorz; Legrand, Christian; Douali, Redouane

    2003-04-01

    The paper presents the results of measurements of the linear dielectric properties of the compounds from the homologous series of alkylcyanobiphenyls (CnH2n+1PhPhCN, nCB) in the vicinity of the first order transition (from the isotropic liquid to the crystalline phase) of nonmesogenic nCB’s (n=2 4) and the weakly first order transition (from the isotropic liquid to the nematic phase) of 5CB. The experimental method for the separation of the critical part of the static permittivity derivative and the activation energy for rotation of the mesogenic molecules, in the vicinity of weakly first order phase transition, is proposed. It is shown that the critical temperature dependence of the permittivity and the activation energy can be described with a function of (T-T*)-α type, with the same values of the temperature of virtual transition of the second order (T*) and the critical exponent (α).

  3. Significance of third-order elasticity for determination of the pressure coefficient of the light emission in strained quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.

    2008-10-01

    We investigate the contribution arising from third-order elasticity to the pressure coefficient of the light emission (dEE/dP) in strained zinc-blende InGaAs/GaAs and InGaN/GaN quantum wells (QWs) grown in a (001) direction. In the framework of the third-order elasticity theory, we develop a model of pressure tuning of strains in these structures, which is then used to determine the coefficient dEE/dP . In the calculations of dEE/dP , we use a consistent set of the second- and third-order elastic constants which has been obtained from ab initio calculations. Our results indicate that the usage of third-order elasticity leads to significant reduction in dEE/dP in strained (001)-oriented InGaAs/GaAs and InGaN/GaN QWs, in comparison to the values of dEE/dP obtained by using the linear theory of elasticity. In the case of InGaAs/GaAs QWs, the values of dEE/dP calculated using third-order elasticity are in reasonable agreement with experimental data. For InGaN/GaN QWs, better agreement between theoretical and experimental values of dEE/dP is obtained when instead of third-order elasticity, pressure dependence of the second-order elastic constants is taken into account.

  4. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  5. Third order nonlinear optical properties of bismuth zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in; Kuladeep, R.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due tomore » dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.« less

  6. Studies of third-order optical nonlinearities and optical limiting properties of azo dyes.

    PubMed

    Gayathri, C; Ramalingam, A

    2008-03-01

    In order to protect optical sensors and human eyes from debilitating laser effects, the intensity of the incoming laser light has to be opportunely reduced. Here, we report our results on the third-order optical nonlinearity and optical limiting properties of three azo dyes exposed to a 532nm continuous wave laser. We have observed low power optical limiting based on nonlinear refraction in our samples.

  7. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...

  8. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...

  9. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...

  10. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.307 Static...) Permanent deformation exceeding 0.040 inches per linear foot; or (iii) Clearances, in excess of those...

  11. β-Octakis(methylthio)porphycenes: synthesis, characterisation and third order nonlinear optical studies.

    PubMed

    Rana, Anup; Lee, Sangsu; Kim, Dongho; Panda, Pradeepta K

    2015-05-04

    A novel electron deficient β-octakis(methylthio)porphycene, along with its Zn(ii) and Ni(ii) derivatives, was synthesized for the first time. The macrocyclic structure exhibits core ruffling with a largely red shifted absorption band (∼750 nm) and also a large enhancement in the third order nonlinear optical response.

  12. Transmission Measurement of the Third-Order Susceptibility of Gold

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael

    1999-01-01

    Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.

  13. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Qiu, Jianxian

    2017-11-01

    In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.

  14. Computation of turbulent pipe and duct flow using third order upwind scheme

    NASA Technical Reports Server (NTRS)

    Kawamura, T.

    1986-01-01

    The fully developed turbulence in a circular pipe and in a square duct is simulated directly without using turbulence models in the Navier-Stokes equations. The utilized method employs a third-order upwind scheme for the approximation to the nonlinear term and the second-order Adams-Bashforth method for the time derivative in the Navier-Stokes equation. The computational results appear to capture the large-scale turbulent structures at least qualitatively. The significance of the artificial viscosity inherent in the present scheme is discussed.

  15. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  16. Low-order modelling of a drop on a highly-hydrophobic substrate: statics and dynamics

    NASA Astrophysics Data System (ADS)

    Wray, Alexander W.; Matar, Omar K.; Davis, Stephen H.

    2017-11-01

    We analyse the behaviour of droplets resting on highly-hydrophobic substrates. This problem is of practical interest due to its appearance in many physical contexts involving the spreading, wetting, and dewetting of fluids on solid substrates. In mathematical terms, it exhibits an interesting challenge as the interface is multi-valued as a function of the natural Cartesian co-ordinates, presenting a stumbling block to typical low-order modelling techniques. Nonetheless, we show that in the static case, the interfacial shape is governed by the Young-Laplace equation, which may be solved explicitly in terms of elliptic functions. We present simple low-order expressions that faithfully reproduce the shapes. We then consider the dynamic case, showing that the predictions of our low-order model compare favourably with those obtained from direct numerical simulations. We also examine the characteristic flow regimes of interest. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  17. Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu

    1994-12-31

    Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less

  18. On a third-order shear deformation theory for laminated composite shells

    NASA Technical Reports Server (NTRS)

    Liu, C. F.; Reddy, J. N.

    1986-01-01

    A higher-order theory based on an assumed displacement field in which the surface displacements are expanded in powers of the thickness coordinate up to the third order is presented. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for small strains but moderately large displacements (i.e., von Karman strains). A finite-element model based on independent approximations of the displacements and bending moments (i.e., mixed formulation) is developed. The element is used to analyze cross-ply and angle-ply laminated shells for bending.

  19. Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal

    2009-10-01

    A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.

  20. Ferroelectric molecular field-switch based on double proton transfer process: Static and dynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, Michał F.; Sobolewski, Andrzej L.; Jankowska, Joanna

    2016-04-07

    In this work, we present a reversible ferroelectric molecular switch controlled by an external electric field. The studied (2Z)-1-(6-((Z)-2-hydroxy-2-phenylvinyl)pyridin-3-yl)-2-(pyridin-2(1H) -ylidene)ethanone (DSA) molecule is polarized by two uniaxial intramolecular hydrogen bonds. Two protons can be transferred along hydrogen bonds upon an electric field applied along the main molecular axis. The process results in reversion of the dipole moment of the system. Static ab initio and on-the-fly dynamical simulations of the DSA molecule placed in an external electric field give insight into the mechanism of the double proton transfer (DPT) in the system and allow for estimation of the time scale ofmore » this process. The results indicate that with increasing strength of the electric field, the step-wise mechanism of DPT changes into the downhill barrierless process in which the synchronous and asynchronous DPTs compete with each other.« less

  1. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro, E-mail: radu.tanasa@uaic.ro

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates.more » Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.« less

  2. Towards a unifying theory for the first-, second-, and third-order molecular (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-05-01

    We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.

  3. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  4. Molecular ordering and molecular dynamics in isotactic-polypropylene characterized by solid state NMR.

    PubMed

    Miyoshi, Toshikazu; Mamun, Al; Hu, Wei

    2010-01-14

    The order-disorder phenomenon of local packing structures, space heterogeneity, and molecular dynamics and average lamellar thickness, , of the alpha form of isotactic polypropylene (iPP) crystallized at various supercooling temperatures, DeltaT, are investigated by solid-state (SS) NMR and SAXS, respectively. increases with lowering DeltaT, and extrapolations of (-1) versus averaged melting point, , gives an equilibrium melting temperature, T(m)(0) = 457 +/- 4 K. High-power TPPM decoupling with a field strength of 110 kHz extremely improves (13)C high-resolution SS-NMR spectral resolution of the ordered crystalline signals at various DeltaT. A high-resolution (13)C SS-NMR spectrum combined with a conventional spin-lattice relaxation time in the rotating frame (T(1rhoH)) filter easily accesses an order-disorder phenomenon for upward and downward orientations of stems and their packing in the crystalline region. It is found that ordered packing fraction, f(order), increases with lowering DeltaT and reaches a maximum value of 62% at DeltaT = 34 K. The ordering phenomenon of stem packing indicates that chain-folding direction changes from random in the disordered packing to order in the ordered packing along the a sin theta axis under a hypothesis of adjacent re-entry structures. It is also found that f(order) significantly increases prior to enhancement of lamellar thickness. Additionally, annealing experiments indicate that is significantly enhanced after a simultaneous process of partial melting and recrystallization/reorganization into the ordered packing at annealing temperature >/=423 K. Furthermore, the center-bands only detection of exchange (CODEX) NMR method demonstrates that time-kinetic parameters of helical jump motions are highly influenced by DeltaT. These dynamic constraints are interpreted in terms of increment of and packing ordering. Through these new results related to molecular structures and dynamics, roles of polymer

  5. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  6. Light bending, static dark energy, and related uniqueness of Schwarzschild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Bhattacharya, Sourav

    2018-01-01

    Since the Schwarzschild-de Sitter spacetime is static inside the cosmological event horizon, if the dark energy state parameter is sufficiently close to -1 , apparently one could still expect an effectively static geometry, in the attraction dominated region inside the maximum turnaround radius, RTA ,max, of a cosmic structure. We take the first order metric derived recently assuming a static and ideal dark energy fluid with equation of state P (r )=α ρ (r ) as a source in Bhattacharya and Tomaras [Eur. Phys. J. C 77, 526 (2017), 10.1140/epjc/s10052-017-5102-4], which reproduced the expression for RTA ,max found earlier in the cosmological McVittie spacetime. Here we show that the equality originates from the equivalence of geodesic motion in these two backgrounds, in the nonrelativistic regime. We extend this metric up to the third order and compute the bending of light using the Rindler-Ishak method. For α ≠-1 , a dark energy dependent term appears in the bending equation, unlike the case of the cosmological constant, α =-1 . Because of this new term in particular, existing data for the light bending at galactic scales yields (1 +α )≲O (10-14), thereby practically ruling out any such static and inhomogeneous dark energy fluid we started with. Implication of this result pertaining to the uniqueness of the Schwarzschild-de Sitter spacetime in such an inhomogeneous dark energy background is discussed.

  7. The influence of aggregation on the third-order nonlinear optical property of π-conjugated chromophores: the case of cyanine dyes.

    PubMed

    Wang, Chao; Yuan, Yizhong

    2018-06-20

    The external molecular environment like the aggregation of molecules can significantly change the intrinsic third-order nonlinear optical (NLO) property of π-conjugated chromophores. A combined experimental and theoretical study was performed to understand the influence of the aggregation of cyanines on the third-order NLO property in spin-coated thin films. Our result indicates that the H and J type cyanine dimers prefer the polyene-like structures and the P type dimer displays a comparatively smaller bond length alternation (BLA). The polarizable continuum model (PCM)-tuned, range-separated (RSE) density functional approach was used to describe the screening effect of the cyanine aggregation. In the thin film, the P aggregate has very small positive isotropic averaged second hyperpolarizability γ, while the J aggregate has the largest positive γ due to the most polarized face-to-tail cyanine-cyanine interaction. Hence, the γ of the isolated cyanines (negative γ) may get cancelled against that of the cyanine aggregates (positive γ) in the thin film. The forward degenerate four-wave mixing technique also confirms a decrease in the magnitude of γ with an increase in the aggregation degree of cyanines. Since the large positive γ of the cyanine also implies strong two-photon absorption (TPA), the J aggregation of cyanines can be used as a potential fabrication method for applications involving TPA.

  8. Static Electricity-Responsive Supramolecular Assembly.

    PubMed

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nuclear relaxation and vibrational contributions to the static electrical properties of polyatomic molecules: beyond the Hartree-Fock approximation

    NASA Astrophysics Data System (ADS)

    Luis, Josep M.; Martí, Josep; Duran, Miquel; Andrés, JoséL.

    1997-04-01

    Electronic and nuclear contributions to the static molecular electrical properties, along with the Stark tuning rate ( δνE ) and the infrared cross section changes ( δSE) have been calculated at the SCF level and at different correlated levels of theory, using a TZ2P basis set and finite field techniques. Nuclear contributions to these molecular properties have also been calculated using a recent analytical approach that allow both to check the accuracy of the finite field values, and to evaluate the importance of higher-order derivatives. The HF, CO, H 2O, H 2CO, and CH 4 molecules have been studied and the results compared to experimental date when available. The paper shows that nuclear relaxation and vibrational contributions must be included in order to obtain accurate values of the static electrical properties. Two different, combined approaches are proposed to predict experimental values of the electrical properties to an error smaller than 5%.

  10. Third order nonlinear optical properties of a paratellurite single crystal

    NASA Astrophysics Data System (ADS)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  11. Third-order accurate conservative method on unstructured meshes for gasdynamic simulations

    NASA Astrophysics Data System (ADS)

    Shirobokov, D. A.

    2017-04-01

    A third-order accurate finite-volume method on unstructured meshes is proposed for solving viscous gasdynamic problems. The method is described as applied to the advection equation. The accuracy of the method is verified by computing the evolution of a vortex on meshes of various degrees of detail with variously shaped cells. Additionally, unsteady flows around a cylinder and a symmetric airfoil are computed. The numerical results are presented in the form of plots and tables.

  12. Hopf bifurcation and chaos in a third-order phase-locked loop

    NASA Astrophysics Data System (ADS)

    Piqueira, José Roberto C.

    2017-01-01

    Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.

  13. 37 CFR 1.948 - Limitations on submission of prior art by third party requester following the order for inter...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prior art by third party requester following the order for inter partes reexamination. 1.948 Section 1... Responses (before the Examiner) in Inter Partes Reexamination § 1.948 Limitations on submission of prior art... partes reexamination order, the third party requester may only cite additional prior art as defined under...

  14. 37 CFR 1.948 - Limitations on submission of prior art by third party requester following the order for inter...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prior art by third party requester following the order for inter partes reexamination. 1.948 Section 1... Responses (before the Examiner) in Inter Partes Reexamination § 1.948 Limitations on submission of prior art... partes reexamination order, the third party requester may only cite additional prior art as defined under...

  15. Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein

    2015-12-01

    In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.

  16. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  17. Subpiosecond Third Order Nonlinear Response in Polythiophene and Thiopene Based Thin Films

    NASA Technical Reports Server (NTRS)

    Harris, D.; Royer, E.; Dorsinville, R.

    1995-01-01

    Ultrafast relaxation kinetics of the third order nonlinear susceptibility of polythiophene and polycondensed thiophene-based polymer was determined by the forward degenerate four-wave mixing technique. Deep into the absorption band the nonlinear response shows only a fast component (less than 900 fs at 587 nm) while at the edge of the absorption band at 642 nm a much slower and complex decay was measured.

  18. Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: an alternative to static strain.

    PubMed

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2014-03-01

    The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.

  19. Liquid methanol under a static electric field

    NASA Astrophysics Data System (ADS)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  20. Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    NASA Astrophysics Data System (ADS)

    Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.

    2002-05-01

    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.

  1. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  2. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Martínez, Todd J.

    2012-07-01

    Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.

  3. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  4. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung, E-mail: hr@kasi.re.kr, E-mail: jchan@knu.ac.kr, E-mail: park.chan.gyung@gmail.com

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as thatmore » of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.« less

  5. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    NASA Astrophysics Data System (ADS)

    Yan, Hao-Peng; Liu, Wen-Biao

    2016-08-01

    Using Parikh-Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein-Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  6. Synthesis, Hirshfeld surface analysis, laser damage threshold, third-order nonlinear optical property and DFT computation studies of Dichlorobis(DL-valine)zinc(II): A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Chitrambalam, S.; Manimaran, D.; Hubert Joe, I.; Rastogi, V. K.; Ul Hassan, Israr

    2018-01-01

    The organometallic crystal of Dichlorobis(DL-valine)zinc(II) was grown by solution growth method. The computed structural geometry, vibrational wavenumbers and UV-visible spectra were compared with experimental results. Hirshfeld surface map was used to locate electron density and the fingerprint plots percentages are responsible for the stabilization of intermolecular interactions in molecular crystal. The second-order hyperpolarizability value of the molecule was also calculated at density functional theory method. The surface resistance and third-order nonlinear optical property of the crystal were studied by laser induced surface damage threshold and Z-scan techniques, respectively using Nd:YAG laser with wavelength 532 nm. The open aperture result exhibits the reverse saturation absorption, which indicate that this material has potential candidate for optical limiting and optoelectronic applications.

  7. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genson, Kirsten Larson

    2005-01-01

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less

  8. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    PubMed Central

    2010-01-01

    Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons. PMID:20804625

  9. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  10. Molecular Origins of Mesoscale Ordering in a Metalloamphiphile Phase

    PubMed Central

    2015-01-01

    Controlling the assembly of soft and deformable molecular aggregates into mesoscale structures is essential for understanding and developing a broad range of processes including rare earth extraction and cleaning of water, as well as for developing materials with unique properties. By combined synchrotron small- and wide-angle X-ray scattering with large-scale atomistic molecular dynamics simulations we analyze here a metalloamphiphile–oil solution that organizes on multiple length scales. The molecules associate into aggregates, and aggregates flocculate into meso-ordered phases. Our study demonstrates that dipolar interactions, centered on the amphiphile headgroup, bridge ionic aggregate cores and drive aggregate flocculation. By identifying specific intermolecular interactions that drive mesoscale ordering in solution, we bridge two different length scales that are classically addressed separately. Our results highlight the importance of individual intermolecular interactions in driving mesoscale ordering. PMID:27163014

  11. Comparing nutrient export from first, second and third order watersheds in the South Carolina Atlantic coastal plain

    Treesearch

    Augustine Muwamba; Devendra M. Amatya; Carl C. Trettin; James B. Glover

    2016-01-01

    Monitoring of stream water chemistry in forested watersheds provides information to environmental scientists that relate management operations to hydrologic and biogeochemical processes. We used data for the first order watershed, WS80, and second order watershed, WS79, at Santee Experimental Forest. We also used data from a third order watershed, WS78, to...

  12. Correlating Structural Order with Structural Rearrangement in Dusty Plasma Liquids: Can Structural Rearrangement be Predicted by Static Structural Information?

    NASA Astrophysics Data System (ADS)

    Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin

    2012-11-01

    Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.

  13. Research on third-order susceptibility tensor of silicon at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Hong; Liu, Hang; Chen, Zhan-Guo; Jia, Gang; Ren, Ce

    2010-10-01

    In this paper, the electro-induced birefringence based on Kerr effect and Franz-Keldysh effect in bulk silicon crystal at 1.3μm wavelengths has been measured. By using Kerr effect, the third-order susceptibility tensor of bulk crystalline silicon has been calculated.The two independent tensor of silicon X (3) susceptibility can be obtained by calculation (3) 6.22 (1 2.2%) 10 -20 m2 V2 and Xxyxy(3) = and xxxx(3) 9.13 (1 +/-2.2%) 10-20 m2 V 2 = m2/V2. The research can drive the silicon utility in the photo-electricity field.

  14. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  15. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  16. Molecular dynamics simulations on the local order of liquid and amorphous ZnTe

    NASA Astrophysics Data System (ADS)

    Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.

    2008-05-01

    Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.

  17. Ultrafast third-order nonlinear optical response of pyrene derivatives

    NASA Astrophysics Data System (ADS)

    Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin

    2017-05-01

    Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.

  18. Synthesis and characterization of d10 metal complexes of 3-Me-5-FcPz: Structural, theoretical and third order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kabali; Thirumoorthy, Krishnan; Vinitha, G.; Soni, Kiran; Bhuvanesh, Nattamai S. P.; Palanisami, Nallasamy

    2017-01-01

    The d10 metal complexes based on 3-methyl-5-ferrocenyl-1H-pyrazole (L = 3-Me-5-FcPz) ligand [M(L)4(NO3)2] Zn=(1) and Cd=(2), [Hg(L)4(NO3)2].dmf (3) have been synthesized and characterized by FT-IR, NMR, UV-Vis and elemental analysis. The molecular structure of compound 2 and its crystal packing were determined by single crystal X-ray diffraction. The nitrate anions are also involved in intermolecular hydrogen bonding with adjacent ferrocene units and it forms zig-zag one-dimensional polymeric structure. UV-Vis investigations on the positive solvatochromic behavior of 1-3 revealed that the solvation of the push-pull character increases with increasing polarity. The third-order nonlinear optical (NLO) properties of 1-3 have been determined by Z-scan technique and the results indicate that compounds 1-3 exhibits the strong self-defocusing effect. The nonlinear susceptibility χ(3) values are calculated in the order of 10-6 esu.

  19. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  20. Combining Static Analysis and Model Checking for Software Analysis

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2003-01-01

    We present an iterative technique in which model checking and static analysis are combined to verify large software systems. The role of the static analysis is to compute partial order information which the model checker uses to reduce the state space. During exploration, the model checker also computes aliasing information that it gives to the static analyzer which can then refine its analysis. The result of this refined analysis is then fed back to the model checker which updates its partial order reduction. At each step of this iterative process, the static analysis computes optimistic information which results in an unsafe reduction of the state space. However we show that the process converges to a fired point at which time the partial order information is safe and the whole state space is explored.

  1. Single-trial extraction of cognitive evoked potentials by combination of third-order correlation and wavelet denoising.

    PubMed

    Zhang, Z; Tian, X

    2005-01-01

    The application of a recently proposed denoising implementation for obtaining cognitive evoked potentials (CEPs) at the single-trial level is shown. The aim of this investigation is to develop the technique of extracting CEPs by combining both the third-order correlation and the wavelet denoising methods. First, the noisy CEPs was passed through a finite impulse response filter whose impulse response is matched with the shape of the noise-free signal. It was shown that it is possible to estimate the filter impulse response on basis of a select third-order correlation slice (TOCS) of the input noisy CEPs. Second, the output from the third-order correlation filter is decomposed with bi-orthogonal splines at 5 levels. The CEPs is reconstructed by wavelet final approximation a5. We study its performance in simulated data as well as in cognitive evoked potentials of normal rat and Alzheimer's disease (AD) model rat. For the simulated data, the method gives a significantly better reconstruction of the single-trial cognitive evoked potentials responses in comparison with the simulated data. Moreover, with this approach we obtain a significantly better estimation of the amplitudes and latencies of the simulated CEPs. For the real data, the method clearly improves the visualization of single-trial CEPs. This allows the calculation of better averages as well as the study of systematic or unsystematic variations between trials.

  2. Short-Range Order and Collective Dynamics of DMPC Bilayers: A Comparison between Molecular Dynamics Simulations, X-Ray, and Neutron Scattering Experiments

    PubMed Central

    Hub, Jochen S.; Salditt, Tim; Rheinstädter, Maikel C.; de Groot, Bert L.

    2007-01-01

    We present an extensive comparison of short-range order and short wavelength dynamics of a hydrated phospholipid bilayer derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments. The quantities that are compared between simulation and experiment include static and dynamic structure factors, reciprocal space mappings, and electron density profiles. We show that the simultaneous use of molecular dynamics and diffraction data can help to extract real space properties like the area per lipid and the lipid chain ordering from experimental data. In addition, we assert that the interchain distance can be computed to high accuracy from the interchain correlation peak of the structure factor. Moreover, it is found that the position of the interchain correlation peak is not affected by the area per lipid, while its correlation length decreases linearly with the area per lipid. This finding allows us to relate a property of the structure factor quantitatively to the area per lipid. Finally, the short wavelength dynamics obtained from the simulations and from inelastic neutron scattering are analyzed and compared. The conventional interpretation in terms of the three-effective-eigenmode model is found to be only partly suitable to describe the complex fluid dynamics of lipid chains. PMID:17631531

  3. Transfer function of radio over fiber multimode fiber optic links considering third-order dispersion.

    PubMed

    Capmany, J; Gasulla, Ivana

    2007-08-20

    Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.

  4. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  5. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  6. Optical nonclassicality test based on third-order intensity correlations

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.

    2018-03-01

    We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.

  7. Static electric polarizabilities and first hyperpolarizabilities of molecular ions RgH + (Rg = He, Ne, Ar, Kr, Xe): ab initio study

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna

    2009-06-01

    Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.

  8. Stereomotion is processed by the third-order motion system: reply to comment on Three-systems theory of human visual motion perception: review and update

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Sperling, George

    2002-10-01

    Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the LuSperling three-motion-systems theory J. Opt. Soc. Am. A 18 , 2331 (2001), stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment J. Opt. Soc. Am. A 19 , 2142 (2002), Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figureground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to Is it third-order alone or third-order plus dedicated depth-motion processing? Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm Lu and Sperling, Vision Res. 35 , 2697 (1995) ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three

  9. Very Efficient High-order Hyperbolic Schemes for Time-dependent Advection Diffusion Problems: Third-, Fourth-, and Sixth-order

    DTIC Science & Technology

    2014-07-07

    boundary condition (x ¼ 7p =2; j ¼ 2p; U ¼ 1; m ¼ 1) on N ¼ 10 uniform nodes (Dt ¼ 0:01.) Table 10 Unsteady linear advection–diffusion problem with periodic...500 3rd 55 2 4th 55 2 6th 55 2 1000 3rd 116 2 4th 116 2 6th 116 2 Table 11 Unsteady linear advection–diffusion problem with oscillatory BC (x ¼ 7p =2; a...dependent problem with oscillatory BC (x ¼ 7p =2; a ¼ 1.) using the third-order RD-GT scheme with the BDF3 time discretization. Number of nodes Dt (BDF3

  10. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0059: Molecular Dynamics Modeling Support

    DTIC Science & Technology

    2008-03-01

    Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms

  11. Third-Order Elliptic Lowpass Filter for Multi-Standard Baseband Chain Using Highly Linear Digitally Programmable OTA

    NASA Astrophysics Data System (ADS)

    Elamien, Mohamed B.; Mahmoud, Soliman A.

    2018-03-01

    In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.

  12. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    PubMed

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity

    NASA Astrophysics Data System (ADS)

    Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong

    We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.

  14. Characterization of the third-order optical nonlinearity spectrum of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, S. N. C.; Almeida, J. M. P.; Paula, K. T.; Tomazio, N. B.; Mastelaro, V. R.; Mendonça, C. R.

    2017-11-01

    Borate glasses have proven to be an important material for applications ranging from radiation dosimetry to nonlinear optics. In particular, B2O3-BaO based glasses are attractive to frequency generation since their barium metaborate phase (β-BaB2O4 or β-BBO) may be crystallized under proper heat treatment. Despite the vast literature covering their linear and second-order optical nonlinear properties, their third-order nonlinearities remain overlooked. This paper thus reports a study on the nonlinear refraction (n2) of BBO and BBS-DyEu glasses through femtosecond Z-scan technique. The results were modeled using the BGO approach, which showed that oxygen ions are playing a role in the nonlinear optical properties of the glasses studied here. In addition, the barium borate glasses containing rare-earths ions were found to exhibit larger nonlinearities, which is in agreement with previous studies.

  15. Dynamic and static fluctuations in polymer gels studied by neutron spin-echo

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.

    2006-11-01

    We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.

  16. First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.

    2017-05-01

    A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.

  17. Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)

    2015-01-01

    A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.

  18. Differences in the molecular biology of adenocarcinoma of the esophagus, gastric cardia, and upper gastric third.

    PubMed

    Lehmann, Kuno; Schneider, Paul M

    2010-01-01

    Adenocarcinoma of the distal esophagus, gastric cardia, and upper gastric third are grouped in type I-III by the Siewert classification. This classification is based on the endoscopic localisation of the tumor center, and is the most important diagnostic tool to group these tumors. On a molecular level, there is currently no marker that would allow to differentiate the three different types. Furthermore, the Siewert classification was not uniformly used in the recent literature, making interpretation and generalization of these results difficult. However, several potential targets have been identified that may help to separate these tumors by molecular markers, and are summarized in this chapter.

  19. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  20. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  1. Analyzing the Molecular Kinetics of Water Spreading on Hydrophobic Surfaces via Molecular Dynamics Simulation.

    PubMed

    Zhao, Lei; Cheng, Jiangtao

    2017-09-07

    In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.

  2. Towards a formal definition of static and dynamic electronic correlations.

    PubMed

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  3. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Kofane, T. C.; Fokou, M.; Mohamadou, A.; Yomba, E.

    2017-11-01

    In this work, the lump solution and the kink solitary wave solution from the (2 + 1) -dimensional third-order evolution equation, using the Hirota bilinear method are obtained through symbolic computation with Maple. We have assumed that the lump solution is centered at the origin, when t = 0 . By considering a mixing positive quadratic function with exponential function, as well as a mixing positive quadratic function with hyperbolic cosine function, interaction solutions like lump-exponential and lump-hyperbolic cosine are presented. A completely non-elastic interaction between a lump and kink soliton is observed, showing that a lump solution can be swallowed by a kink soliton.

  4. Tritiated Water on Molecular Sieve without Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, R.T.

    2001-09-10

    Several molecular sieve beds loaded with tritiated water failed to generate hydrogen gas from tritium self-radiolysis at the expected rate. Preliminary gamma-ray irradiation experiments of 4A molecular sieve with varying amounts of oxygen in the over-gas evoke a quenching mechanism. The data suggest that the gas phase rate constant for the production of hydrogen gas is several orders of magnitude smaller than the third order rate constant for scavenging of radical fragments by oxygen.

  5. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    PubMed Central

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  6. Third Law of Thermodynamics and The Shape of the Phase Diagram for Systems With a First-Order Quantum Phase Transition.

    PubMed

    Kirkpatrick, T R; Belitz, D

    2015-07-10

    The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.

  7. Pure perceptual-based learning of second-, third-, and fourth-order sequential probabilities.

    PubMed

    Remillard, Gilbert

    2011-07-01

    There is evidence that sequence learning in the traditional serial reaction time task (SRTT), where target location is the response dimension, and sequence learning in the perceptual SRTT, where target location is not the response dimension, are handled by different mechanisms. The ability of the latter mechanism to learn sequential contingencies that can be learned by the former mechanism was examined. Prior research has established that people can learn second-, third-, and fourth-order probabilities in the traditional SRTT. The present study reveals that people can learn such probabilities in the perceptual SRTT. This suggests that the two mechanisms may have similar architectures. A possible neural basis of the two mechanisms is discussed.

  8. Effects of Static Stretching on Squat Performance in Division I Female Athletes

    PubMed Central

    HEISEY, CLARE F.; KINGSLEY, J. DEREK

    2016-01-01

    Static stretching was once recognized as a method of preparation for physical activity that would inhibit performance and increase risk of injury. However, a growing body of research suggests that static stretching may not have an inhibitory effect. Regardless, the data have not examined gender differences or the fatigue index (FI) and flexibility effects of static stretching on the back squat over multiple sets. Therefore, the purpose of this study was to examine the relationship between a static-stretch condition (SC) and control condition (CC) on flexibility and the FI of Division I female athletes during 4 sets of the back squat. Eighteen subjects (mean ± SD; age 20 ± 1 yrs; height 164.5 ± 14.6 cm; mass 74.1 ± 26.8 kg; waist circumference 73.2 ± 5.4 cm) participated in 3 testing days over the course of 3 weeks. Each subject’s 1RM back squat was assessed during the first day of testing and verified during the second. On the third testing day, subjects assigned to the SC held 3 lower-body stretches twice for 30 second intervals and those assigned to the CC rested during the corresponding 7 minutes and 50 second time period. The subjects also performed a fatiguing squat protocol consisting of 4 sets of maximum repetitions on the third day of testing. A significant (p=0.04) interaction was noted for flexibility. No significant interaction (p=0.41) was observed between the FI of the CC (41.8 ± 24.1%) or the SC (27.6 ± 45.2%). These results indicate that static stretching does not have a significant effect on multiple sets of the back squat. Therefore, coaches may allow their athletes to engage in static stretching prior to resistance exercise ad libitum. PMID:27766127

  9. X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balyan, M. K., E-mail: mbalyan@ysu.am

    The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.

  10. Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia

    2016-03-01

    We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.

  11. A third-order implicit discontinuous Galerkin method based on a Hermite WENO reconstruction for time-accurate solution of the compressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong; Liu, Xiaodong; Luo, Hong

    2015-06-01

    Here, a space and time third-order discontinuous Galerkin method based on a Hermite weighted essentially non-oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower-upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third-order accuracy of convergence in both space and time,more » while requiring remarkably less storage than the standard third-order discontinous Galerkin methods, and less computing time than the lower-order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems.« less

  12. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  13. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Qualitative models of seat discomfort including static and dynamic factors.

    PubMed

    Ebe, K; Griffin, M J

    2000-06-01

    Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated

  15. Orchestration of Molecular Information through Higher Order Chemical Recognition

    NASA Astrophysics Data System (ADS)

    Frezza, Brian M.

    Broadly defined, higher order chemical recognition is the process whereby discrete chemical building blocks capable of specifically binding to cognate moieties are covalently linked into oligomeric chains. These chains, or sequences, are then able to recognize and bind to their cognate sequences with a high degree of cooperativity. Principally speaking, DNA and RNA are the most readily obtained examples of this chemical phenomenon, and function via Watson-Crick cognate pairing: guanine pairs with cytosine and adenine with thymine (DNA) or uracil (RNA), in an anti-parallel manner. While the theoretical principles, techniques, and equations derived herein apply generally to any higher-order chemical recognition system, in practice we utilize DNA oligomers as a model-building material to experimentally investigate and validate our hypotheses. Historically, general purpose information processing has been a task limited to semiconductor electronics. Molecular computing on the other hand has been limited to ad hoc approaches designed to solve highly specific and unique computation problems, often involving components or techniques that cannot be applied generally in a manner suitable for precise and predictable engineering. Herein, we provide a fundamental framework for harnessing high-order recognition in a modular and programmable fashion to synthesize molecular information process networks of arbitrary construction and complexity. This document provides a solid foundation for routinely embedding computational capability into chemical and biological systems where semiconductor electronics are unsuitable for practical application.

  16. A higher-order theory for geometrically nonlinear analysis of composite laminates

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.; Liu, C. F.

    1987-01-01

    A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials.

  17. A Comparison of Quasi-Static Indentation to Low-Velocity Impact

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Douglas, M. J.

    2000-01-01

    A static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low-velocity impact tests were carried out and compared. Square specimens of many sizes and thicknesses were utilized to cover the array of types of low velocity impact events. Laminates with a pi/4 stacking sequence were employed since this is by far the most common type of engineering laminate. Three distinct flexural rigidities -under two different boundary conditions were tested in order to obtain damage ranging from that due to large deflection to contact stresses and levels in-between to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low-velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area, and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low-velocity impact tests, indicating that static indentation can be used to represent a low-velocity impact event.

  18. Validation of Potential Models for Li2O in Classical Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Takuji; Oya, Yasuhisa; Tanaka, Satoru

    2007-08-01

    Four Buckingham-type pairwise potential models for Li2O were assessed by molecular static and dynamics simulations. In the static simulation, all models afforded acceptable agreement with experimental values and ab initio calculation results for the crystalline properties. Moreover, the superionic phase transition was realized in the dynamics simulation. However, the Li diffusivity and the lattice expansion were not adequately reproduced at the same time by any model. When using these models in future radiation simulation, these features should be taken into account, in order to reduce the model dependency of the results.

  19. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    PubMed

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  20. A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples.

    PubMed

    Alcaráz, Mirta R; Bortolato, Santiago A; Goicoechea, Héctor C; Olivieri, Alejandro C

    2015-03-01

    Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.

  1. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  2. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Wormit, M.; Dreuw, A.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less

  3. A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys

    ERIC Educational Resources Information Center

    Rijmen, Frank; Jeon, Minjeong; von Davier, Matthias; Rabe-Hesketh, Sophia

    2014-01-01

    Second-order item response theory models have been used for assessments consisting of several domains, such as content areas. We extend the second-order model to a third-order model for assessments that include subdomains nested in domains. Using a graphical model framework, it is shown how the model does not suffer from the curse of…

  4. Axial static mixer

    DOEpatents

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  5. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  6. Growth and characterization of a third order nonlinear optical single crystal: Ethylenediamine-4-nitrophenolate monohydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanalakshmi, B.; Ponnusamy, S., E-mail: suruponnus@gmail.com; Muthamizhchelvan, C.

    2015-10-15

    Highlights: • EDA4NPH crystal possesses negative nonlinear refractive index. • The crystal exhibits high third-order NLO susceptibility. • Wide transparency of the crystal makes it suitable for NLO applications. • Dielectric studies substantiate the suitability for electro-optic applications. • The crystal possesses suitable mechanical strength for device fabrication. - Abstract: Bulk crystals of the charge-transfer complex, ethylenediamine-4-nitrophenolate monohydrate, were grown by slow solvent evaporation method from aqueous solution at room temperature. The X-ray diffraction measurements showed that the crystal belongs to centrosymmetric space group C2/c of monoclinic system. The functional groups in the complex were identified using FTIR, FTRaman andmore » FTNMR analyses. The Z-scan measurements revealed the negative nonlinear refractive index of the crystal. The nonlinear absorption coefficient and third order nonlinear optical susceptibility calculated from the measurements were −3.5823 × 10{sup −3} cm/W and 2.3762 × 10{sup −6} esu respectively. The crystal was shown to be highly transparent above 366 nm by UV–vis spectroscopy and a yellow fluorescence was observed from PL spectrum. The TG–DTA and DSC analyses showed that the crystal is thermally stable up to 117.4 °C. The crystals were characterized by dielectric, etching and microhardness studies.« less

  7. Application of a Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings

    NASA Technical Reports Server (NTRS)

    Bangalore, A.; Phaengsook, N.; Sankar, L. N.

    1994-01-01

    A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given.

  8. New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.

    2013-03-01

    This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.

  9. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    PubMed

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  10. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials

    PubMed Central

    Chen, Yong; Yan, Zhenya

    2016-01-01

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543

  11. Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yu-ya; Ten-no, Seiichiro

    2013-09-01

    The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.

  12. Examination of the four-fifths law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box.

    PubMed

    Yoshimatsu, Katsunori

    2012-06-01

    The four-fifths law for third-order longitudinal moments is examined, using direct numerical simulation (DNS) data on three-dimensional (3D) forced incompressible magnetohydrodynamic (MHD) turbulence without a uniformly imposed magnetic field in a periodic box. The magnetic Prandtl number is set to one, and the number of grid points is 512(3). A generalized Kármán-Howarth-Kolmogorov equation for second-order velocity moments in isotropic MHD turbulence is extended to anisotropic MHD turbulence by means of a spherical average over the direction of r. Here, r is a separation vector. The viscous, forcing, anisotropic and nonstationary terms in the generalized equation are quantified. It is found that the influence of the anisotropic terms on the four-fifths law is negligible at small scales, compared to that of the viscous term. However, the influence of the directional anisotropy, which is measured by the departure of the third-order moments in a particular direction of r from the spherically averaged ones, on the four-fifths law is suggested to be substantial, at least in the case studied here.

  13. (13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T

    2015-12-03

    Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.

  14. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  15. Observing the Forces Involved in Static Friction under Static Situations

    ERIC Educational Resources Information Center

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  16. Cardiovascular responses to static exercise in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  17. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2013-09-01

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)], 10.1063/1.3665134 are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ _{ab}^{ij(1)} = t_{ij}^{ab(1)} and λ _{ab}^{ij(2)} = t_{ij}^{ab(2)}. Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ˜4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical

  18. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.

    PubMed

    Bozkaya, Uğur

    2013-09-14

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ(ab)(ij(1))=t(ij)(ab(1)) and λ(ab)(ij(2))=t(ij)(ab(2)). Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ~4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical systems.

  19. Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan

    2017-03-01

    With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is

  20. Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to second- and third-order event planes in Au+Au collisions at √[S(NN)]=200  GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2014-06-06

    Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200  GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.

  1. Regional Recovery of the Disturbing Gravitational Potential from Satellite Observations of First-, Second- and Third-order Radial Derivatives of the Disturbing Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Novak, P.; Pitonak, M.; Sprlak, M.

    2015-12-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of a third-order gravitational tensor are currently under investigation, e.g. the gravity-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite observations of first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008. Finally, this contribution also discusses merging a regional solution into a global field as a patchwork.

  2. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda).

    PubMed

    Khodami, Sahar; McArthur, J Vaun; Blanco-Bercial, Leocadio; Martinez Arbizu, Pedro

    2017-08-22

    For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.

  3. Resonant third-order optical nonlinearities of thin films containing J-aggregates of a cyanine dye or a squarylium dye

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo

    2005-01-01

    The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.

  4. The third-order structure function in two dimensions: The Rashomon effect

    NASA Astrophysics Data System (ADS)

    Cerbus, Rory T.; Chakraborty, Pinaki

    2017-11-01

    We study the third-order longitudinal structure function, S3(r), in two-dimensional turbulence. In three dimensions, there is considerable theoretical, experimental, and numerical consensus regarding the validity of Kolmogorov's arch-famous " /4 5 th law" for S3(r). By contrast, in two dimensions, two disparate cascades, changed dissipation anomalies, a large-scale drag, and other factors conspire to create several versions of the S3(r) "law." This single quantity can vary considerably when viewed from different perspectives, reminiscent of the "Rashomon effect" in anthropology. After reviewing the history and usage of S3(r) in two-dimensional turbulence, we show that S3(r) generically embodies a mixture of energy and enstrophy fluxes. Building on this result, we derive S3(r) laws for freely decaying and forced two-dimensional turbulent flows, where we also account for the effects of a large-scale drag, an inextricable feature of quasi two-dimensional turbulence in experimental and atmospheric flows. We draw attention to the caution needed in interpreting S3(r) in two-dimensional turbulence.

  5. Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in

    2016-05-06

    Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.

  6. Compensated second-order recoupling: application to third spin assisted recoupling†

    PubMed Central

    Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël

    2015-01-01

    We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727

  7. Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

    DOE PAGES

    Hmiel, A.; Winey, J. M.; Gupta, Y. M.; ...

    2016-05-23

    Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elasticmore » constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.« less

  8. A third-order computational method for numerical fluxes to guarantee nonnegative difference coefficients for advection-diffusion equations in a semi-conservative form

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.

    2012-10-01

    According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.

  9. A method to obtain static potential for electron-molecule scattering

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan

    2014-05-01

    Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.

  10. Dimensions of subcortical infarcts associated with first- to third-order branches of the basal ganglia arteries.

    PubMed

    Phan, Thanh G; van der Voort, Sanne; Beare, Richard; Ma, Henry; Clissold, Benjamin; Holt, Michael; Ly, John; Foster, Emma; Thong, Eleanor; Stuckey, Stephen; Cassell, Martin D; Srikanth, Velandai

    2013-01-01

    It has been described that lacunar infarct is characterized by its smallish size (15-20 mm) in the axial plane. However, the size of the basal ganglia artery responsible for this type of infarct is uncertain. Detection of small arterial occlusion is not possible with current angiography, hindering correlation of arterial occlusion with subcortical infarct size. Recently, investigators have published microangiographic templates of arteries supplying the basal ganglia. These templates display first-order (proximal) to third-order (distal) branching of these arteries and can help with estimating the likely site of arterial disease in subcortical infarcts. We correlated the dimensions of subcortical infarcts with the order of arterial branching described in a microangiographic template. Such data may provide further clues about the type of arteries associated with subcortical infarcts and assist in refining the concept of lacunar infarction. Patients with subcortical infarcts on MR imaging (MRI) admitted to our institution between 2009 and 2011 were included in the study. Infarcts were manually segmented and registered to a standard brain template. These segmented infarcts were scaled and overlapped with published microangiographic templates, and used by 6 raters who independently estimated the branching order of arterial disease that might result in these infarcts. We used regression analysis to relate these ratings to infarct dimensions. Among 777 patients, there were 33 (58% male) patients with subcortical infarcts. The mean age was 63.1 ± 15.1 years. Infarct dimensions for the groups were as follows: group 1 (first-order branch): height 37.6 ± 7.4 mm, horizontal width 21.2 ± 11.6 mm, anterior-posterior length 36.8 ± 20.1 mm; group 2 (second-order branch): height 25.2 ± 7.9 mm, horizontal width 16.6 ± 22.8 mm, anterior-posterior length 16.1 ± 8.0 mm; group 3 (third-order branch): height 11.6 ± 5.7 mm, axial width 5.3 ± 3.1 mm, anterior-posterior length 5

  11. Third-order nonlinear optical properties of phthalocyanines in solution and in polystyrene films

    NASA Astrophysics Data System (ADS)

    Reeves, Roger J.; Powell, Richard C.; Chang, Young H.; Ford, Warren T.; Zhu, Weiming

    1996-01-01

    Degenerate four-wave mixing (DFWM) measurements of third-order nonlinear optical (NLO) coefficients of metal-free, Cu, Pt, Pb and Bi octa(2-ethylhexyloxy) phthalocyanines (MPc's) were done with 20 ps duration laser pulses under resonant conditions at 532 nm in polystyrene films and under nonresonant conditions at 1064 nm in chloroform solutions. The NLO coefficients ξxxxx(3) show saturation with increasing incident intensity and no strong dependence on the central metal atom of the MPc below the saturation intensity. Optical delays of the probe-pulse up to 3 ns show an acoustic phonon response in both the polystyrene films and the chloroform solutions. An intensity-dependent absorption coefficient was measured by a pump/probe experiment and used in a simple model to qualitatively account for the saturation of ξ(3) measured by DFWM.

  12. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics

    NASA Astrophysics Data System (ADS)

    Cohn, Bar; Prasad, Amit K.; Chuntonov, Lev

    2018-04-01

    Narrowband vibrational molecular transitions interacting with the broadband resonance of infrared plasmonic antennas lead to Fano lineshapes observed in linear (FTIR) and third-order (transient absorption and 2DIR) spectroscopic experiments. Both molecular and plasmonic components are inherently dissipative, and the effects associated with their coupling can be observed, in principle, when measuring the corresponding ultrafast quantum dynamics. We used 2DIR spectroscopy to study the waiting time evolution of quantum coherence excited in the carbonyl stretching modes of rhodium (acetylacetonato) dicarbonyl molecules, which were embedded in an 80 nm-thick polymer film spin-coated on an array of infrared half-wavelength gold antennas. Despite the pronounced Fano lineshapes obtained for the molecular transitions, and up to a four order of magnitude enhancement of the third-order signals, which taken together, indicate the coupling between the plasmonic and molecular transitions, the dynamics of the quantum coherence were identical to that obtained with 3 μm-thick film without the interaction with the plamson mode. This suggests that the coupling rate between the molecular and plasmonic excitations is significantly smaller than the relaxation rates of the molecular excitations monitored in the experiment. Here, the Fano lineshape, observed at the frequency of the molecular transition, can result from the mutual radiation damping of the molecular and plasmon modes.

  13. Carbohydrate-protein interactions investigated on plastic chips statically coated with hydrophobically modified hydroxyethylcellulose.

    PubMed

    Dang, Fuquan; Maeda, Eiki; Osafune, Tomo; Nakajima, Kazuki; Kakehi, Kazuaki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2009-12-15

    We developed a novel method for rapid screening of carbohydrate-protein interactions using poly(methyl methacrylate) (PMMA) channels statically coated with hydrophobically modified hydroxyethylcellulose (HM-HEC). We found that a self-assembled monolayer (SAM) of HM-HEC on a PMMA surface intact by water allows rapid and reproducible separations of glycan samples using a 20 mM phosphate without HM-HEC. The underlying mechanism for dynamic and static coatings on the PMMA surface is discussed. Simultaneous analysis of the molecular interaction between a complex mixture of carbohydrates from alpha1-acid glycoprotein and proteins has been successfully achieved in PMMA channels statically coated with a SAM of HM-HEC.

  14. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  15. Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams

    NASA Astrophysics Data System (ADS)

    Willow, Soohaeng Yoo; Hirata, So

    2014-01-01

    A new, alternative set of interpretation rules of Feynman-Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mEh after 106 Monte Carlo steps.

  16. Possibilities of the regional gravity field recovery from first-, second- and third-order radial derivatives of the disturbing gravitational potential measured on moving platforms

    NASA Astrophysics Data System (ADS)

    Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert

    2016-04-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.

  17. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de

    2016-01-14

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phasemore » using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.« less

  18. Rotor-stator molecular crystals of fullerenes with cubane.

    PubMed

    Pekker, Sándor; Kováts, Eva; Oszlányi, Gábor; Bényei, Gyula; Klupp, Gyöngyi; Bortel, Gábor; Jalsovszky, István; Jakab, Emma; Borondics, Ferenc; Kamarás, Katalin; Bokor, Mónika; Kriza, György; Tompa, Kálmán; Faigel, Gyula

    2005-10-01

    Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.

  19. Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide.

    PubMed

    Pathak, Anshuma; Bora, Achyut; Braunschweig, Björn; Meltzer, Christian; Yan, Hongdan; Lemmens, Peter; Daum, Winfried; Schwartz, Jeffrey; Tornow, Marc

    2017-05-18

    We report the impact of geometrical constraint on intramolecular interactions in self-assembled monolayers (SAMs) of alkylphosphonates grown on anodically oxidized aluminum (AAO). Molecular order in these films was determined by sum frequency generation (SFG) spectroscopy, a more sensitive measure of order than infrared absorption spectroscopy. Using SFG we show that films grown on AAO are, within detection limits, nearly perfectly ordered in an all-trans alkyl chain configuration. In marked contrast, films formed on planar, plasma-oxidized aluminum oxide or α-Al 2 O 3 (0001) are replete with gauche defects. We attribute these differences to the nanocylindrical structure of AAO, which enforces molecular confinement.

  20. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    NASA Astrophysics Data System (ADS)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  1. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation.

    PubMed

    Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca

    2013-11-28

    Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and

  2. Dipole and nondipole photoionization of molecular hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, B.; McKoy, V.; Southworth, S. H.

    2015-05-01

    We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less

  3. Third-order optical nonlinearity studies of bilayer Au/Ag metallic films

    NASA Astrophysics Data System (ADS)

    Mezher, M. H.; Chong, W. Y.; Zakaria, R.

    2016-05-01

    This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and  -1.61)  ×  10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at  -1.24  ×  10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.

  4. Thermal characterization of static and dynamical properties of the confined molecular systems interacting through dispersion force.

    PubMed

    Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu

    2015-01-28

    We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.

  5. 29 CFR 531.39 - Payments to third persons pursuant to court order.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the benefit or credit of the employee to a creditor of the employee, trustee, or other third party... his behalf or interest derives any profit or benefit from the transaction. In such case, payment to the third person for the benefit and credit of the employee will be considered equivalent, for the...

  6. Reverse saturable absorption studies in polymerized indole - Effect of polymerization in the phenomenal enhancement of third order optical nonlinearity

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.

    2016-04-01

    We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.

  7. Ab initio study of several static and dynamic properties of bulk liquid Ni near melting

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; González, L. E.; González, D. J.

    2017-01-01

    Several static and dynamic properties of bulk liquid Ni at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the static structure factor, which underlines a marked local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, and the calculated dynamic structure factors, S (q ,ω ) , show a good agreement with the inelastic x-ray scattering measurements. The obtained dispersion relation closely follows that obtained from the inelastic x-ray scattering measurements; moreover we analyze the possible reasons behind its discrepancy with respect to the dispersion relation derived from the inelastic neutron scattering data. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. We have found that the transverse current spectral functions exhibit some features which, so far, had previously been shown by high pressure liquid metals only. Furthermore, the calculated S (q ,ω ) show, within some q-range, the appearance of transverse-like excitation modes, similar to those recently found in other liquid metals. Finally, results are also reported for several transport coefficients.

  8. Calculated third order rate constants for interpreting the mechanisms of hydrolyses of chloroformates, carboxylic Acid halides, sulfonyl chlorides and phosphorochloridates.

    PubMed

    Bentley, T William

    2015-05-08

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels-an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride).

  9. Enhancement of sedimentation and coagulation with static magnetic field

    NASA Astrophysics Data System (ADS)

    Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina

    2017-11-01

    The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.

  10. Search for ferromagnetic order in overdoped copper-oxide superconductors

    DOE PAGES

    Wu, J.; Lauter, V.; Ambaye, H.; ...

    2017-04-05

    In copper-oxides that show high-temperature superconductivity (HTS), the critical temperature (Tc) has a dome-shaped doping dependence. The cause of demise of both Tc and superfluid density ns on the overdoped side is a major puzzle. A recent study of transport and diamagnetism in a large number of overdoped La2-xSrxCuO4 (LSCO) films shows that this cannot be accounted for by disorder within the conventional Bardeen-Cooper-Schrieffer theory. This brings to focus an alternative explanation — competition of HTS with ferromagnetic order, fluctuating in superconducting samples and static beyond the superconductor-to-metal transition. Here, we examine this proposal by growing single-crystal LSCO thin filmsmore » with doping on both sides of the transition by molecular beam epitaxy, and using polarized neutron reflectometry to measure their magnetic moments. In a heavily overdoped, metallic but non-superconducting LSCO (x = 0.35) film, the spin asymmetry of reflectivity shows a very small static magnetic moment (~2 emu/cm3). Less-doped, superconducting LSCO films show no magnetic moment in neutron reflectivity, both above and below Tc. Therefore, the collapse of HTS with overdoping is not caused by competing ferromagnetic order.« less

  11. Search for ferromagnetic order in overdoped copper-oxide superconductors

    PubMed Central

    Wu, J.; Lauter, V.; Ambaye, H.; He, X.; Božović, I.

    2017-01-01

    In copper-oxides that show high-temperature superconductivity (HTS), the critical temperature (Tc) has a dome-shaped doping dependence. The cause of demise of both Tc and superfluid density ns on the overdoped side is a major puzzle. A recent study of transport and diamagnetism in a large number of overdoped La2−xSrxCuO4 (LSCO) films shows that this cannot be accounted for by disorder within the conventional Bardeen-Cooper-Schrieffer theory. This brings to focus an alternative explanation — competition of HTS with ferromagnetic order, fluctuating in superconducting samples and static beyond the superconductor-to-metal transition. Here, we examine this proposal by growing single-crystal LSCO thin films with doping on both sides of the transition by molecular beam epitaxy, and using polarized neutron reflectometry to measure their magnetic moments. In a heavily overdoped, metallic but non-superconducting LSCO (x = 0.35) film, the spin asymmetry of reflectivity shows a very small static magnetic moment (~2 emu/cm3). Less-doped, superconducting LSCO films show no magnetic moment in neutron reflectivity, both above and below Tc. Therefore, the collapse of HTS with overdoping is not caused by competing ferromagnetic order. PMID:28378795

  12. Investigations on structural, optical, electrical, mechanical and third-order nonlinear behaviour of 3-aminopyridinium 2,4-dinitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Mohanbabu, B.; Bharathikannan, R.; Siva, G.

    2017-10-01

    The single crystals of 3-aminopyridinium 2,4-dinitrophenolate (APDP) have been synthesized and grown by slow evaporation technique at room temperature. The crystal system was identified and lattice dimensions were measured from the single-crystal X-ray diffraction (SXRD) analysis. UV-visible absorption and transmittance spectra have been recorded in the region between 250 and 1100 nm. The different vibrational modes of the molecule were studied by Fourier transform infrared (FTIR) spectroscopic analysis. The decreasing tendency of dielectric constant with increasing frequency was analysed in dielectric study. The polarizability value calculated using Penn analysis well agrees with the value calculated using Clausius-Mossotti equation. The photoconductivity and photoluminescence behaviour were also studied on grown APDP crystal. The mechanical strength of the crystal has been studied using a Vickers' microhardness test. The stiffness constant and yield strength of the crystal were also calculated from the microhardness test. The third-order nonlinear optical parameters such as refractive index, absorption coefficient and third-order susceptibility were estimated by Z-scan studies.

  13. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  14. Bulk strain solitons as a tool for determination of the third order elastic moduli of composite materials

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.

    2017-06-01

    We demonstrate an alternative approach to determination of the third order elastic moduli of materials based on registration of nonlinear bulk strain waves in three basic structural waveguides (rod, plate and shell) and further calculation of the Murnaghan moduli from the recorded wave parameters via simple algebra. These elastic moduli are available in literature for a limited number of materials and are measured with considerable errors, that evidences a demand in novel approaches to their determination.

  15. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  16. Retention and transport of nutrients in a third-order stream in northwestern California; hyporheic processes

    USGS Publications Warehouse

    Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E.

    1989-01-01

    Chloride and nitrate were coinjected into the surface waters of a third-order stream for 20 d to exmaine solute retention, and the fate of nitrate during subsurface transport. A series of wells (shallow pits) 0.5-10 m from the adjacent channel were sampled to estimate the lateral interflow of water. Two subsurface return flows beneath the wetted channel were also examined. Results indicated that the capacity of the hyporheic zone for transient solute storage and as potential biological habitat varies with channel morphology, bed roughness, and permeability. A conceptual model that considers the groundwater-stream water interface as the fluvial boundary is proposed. -from Authors

  17. Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory.

    PubMed

    Friedrich, Joachim; Coriani, Sonia; Helgaker, Trygve; Dolg, Michael

    2009-10-21

    A fully automated parallelized implementation of the incremental scheme for coupled-cluster singles-and-doubles (CCSD) energies has been extended to treat molecular (unrelaxed) first-order one-electron properties such as the electric dipole and quadrupole moments. The convergence and accuracy of the incremental approach for the dipole and quadrupole moments have been studied for a variety of chemically interesting systems. It is found that the electric dipole moment can be obtained to within 5% and 0.5% accuracy with respect to the exact CCSD value at the third and fourth orders of the expansion, respectively. Furthermore, we find that the incremental expansion of the quadrupole moment converges to the exact result with increasing order of the expansion: the convergence of nonaromatic compounds is fast with errors less than 16 mau and less than 1 mau at third and fourth orders, respectively (1 mau=10(-3)ea(0)(2)); the aromatic compounds converge slowly with maximum absolute deviations of 174 and 72 mau at third and fourth orders, respectively.

  18. Quadratic electroabsorption studies of molecular motion in dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Kuzyk, Mark G.; Dirk, Carl W.

    1993-02-01

    This paper reports on quadratic electroabsorption studies of thin-film solid solutions of squarylium dye molecules in poly(methylmethacrylate) polymer with the aim of understanding the role of electronic and reorientational mechanisms in the third-order nonlinear-optical susceptibility. We present a generalized theory of the quadratic electrooptic response that includes both electronic mechanisms and molecular reorientation and show that the ratio of two independent third-order susceptibility tensor components, namely (chi) (3)3333/(chi) (3)1133, determines the relative contribution of each mechanism. Based on these theoretical results, we have designed and built an experiment that determines this ratio as a function of temperature and wavelength. Results show that at room temperature and near the first electronic transition wavelength, the response is dominated by the electronic mechanism, and that the reorientational contribution dominates when the sample is heated above its glass transition temperature. Furthermore, results show that, off-resonance, the sign of the imaginary part of the third-order susceptibility is positive. Quadratic electroabsorption is thus shown to be a versatile tool for measuring the imaginary part of the third-order nonlinear-optical susceptibility which yields information about the interaction of polymer and dopant molecule.

  19. Static shape control for flexible structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.

  20. Evaluation of the Linear and Second-Order NLO Properties of Molecular Crystals within the Local Field Theory: Electron Correlation Effects, Choice of XC Functional, ZPVA Contributions, and Impact of the Geometry in the Case of 2-Methyl-4-nitroaniline.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2014-05-13

    The linear [χ((1))] and second-order nonlinear [χ((2))] optical susceptibilities of the 2-methyl-4-nitroaniline (MNA) crystal are calculated within the local field theory, which consists of first computing the molecular properties, accounting for the dressing effects of the surroundings, and then taking into account the local field effects. Several aspects of these calculations are tackled with the aim of monitoring the convergence of the χ((1)) and χ((2)) predictions with respect to experiment by accounting for the effects of (i) the dressing field within successive approximations, of (ii) the first-order ZPVA corrections, and of (iii) the geometry. With respect to the reference CCSD-based results, besides double hybrid functionals, the most reliable exchange-correlation functionals are LC-BLYP for the static χ((1)) and CAM-B3LYP (and M05-2X, to a lesser extent) for the dynamic χ((1)) but they strongly underestimate χ((2)). Double hybrids perform better for χ((2)) but not necessarily for χ((1)), and, moreover, their performances are much similar to MP2, which is known to slightly overestimate β, with respect to high-level coupled-clusters calculations and, therefore, χ((2)). Other XC functionals with less HF exchange perform poorly with overestimations/underestimations of χ((1))/χ((2)), whereas the HF method leads to underestimations of both. The first-order ZPVA corrections, estimated at the B3LYP level, are usually small but not negligible. Indeed, after ZPVA corrections, the molecular polarizabilities and first hyperpolarizabilities increase by 2% and 5%, respectively, whereas their impact is magnified on the macroscopic responses with enhancements of χ((1)) by up to 5% and of χ((2)) by as much as 10%-12% at λ = 1064 nm. The geometry plays also a key role in view of predicting accurate susceptibilities, particularly for push-pull π-conjugated compounds such as MNA. So, the geometry optimized using periodic boundary conditions is characterized

  1. Self-organized molecular films with long-range quasiperiodic order.

    PubMed

    Fournée, Vincent; Gaudry, Émilie; Ledieu, Julian; de Weerd, Marie-Cécile; Wu, Dongmei; Lograsso, Thomas

    2014-04-22

    Self-organized molecular films with long-range quasiperiodic order have been grown by using the complex potential energy landscape of quasicrystalline surfaces as templates. The long-range order arises from a specific subset of quasilattice sites acting as preferred adsorption sites for the molecules, thus enforcing a quasiperiodic structure in the film. These adsorption sites exhibit a local 5-fold symmetry resulting from the cut by the surface plane through the cluster units identified in the bulk solid. Symmetry matching between the C60 fullerene and the substrate leads to a preferred adsorption configuration of the molecules with a pentagonal face down, a feature unique to quasicrystalline surfaces, enabling efficient chemical bonding at the molecule-substrate interface. This finding offers opportunities to investigate the physical properties of model 2D quasiperiodic systems, as the molecules can be functionalized to yield architectures with tailor-made properties.

  2. Third-order interelectronic-interaction correction to the 2 p1/2-2 s transition energy in lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Zherebtsov, O. M.; Shabaev, V. M.; Yerokhin, V. A.

    2000-12-01

    Third-order interelectronic-interaction correction to the energies of (1 s) 22 s and (1 s) 22 p1/2 states of high- Z lithiumlike ions is evaluated within the Breit approximation in the range 20⩽ Z⩽100. The calculation is carried out using both the relativistic configuration-interaction method and perturbation theory. The correction is shown to be important for the comparison of theory and experiment.

  3. Precise and absolute measurements of complex third-order optical susceptibility

    NASA Astrophysics Data System (ADS)

    Santran, Stephane; Canioni, Lionel; Cardinal, Thierry; Fargin, Evelyne; Le Flem, Gilles; Rouyer, Claude; Sarger, Laurent

    2000-11-01

    We present precise and absolute measurements of full complex third order optical susceptibility on different fused silica and original glasses composed of tellurium, titanium, niobium erbium. These materials are designed to be the key point for applications ranging form high power laser systems to optoelectronics, their nonlinear index of refraction is a major property and thus must be accurately known. Due to the accuracy and sensitivity of our technique, we have been able to find a large dispersion (more than 30%) of the non linear index of fused silica glasses as a function of their processing mode. On the other hand, measurements on tellurium glasses have shown very strong nonlinearities (40 times higher than fused silica), to be linked to the configurations of their cations and anions. Although the titanium and niobium glasses are less nonlinear, they can be promising matrices for addition of luminescent entities like erbium leading to very interesting laser amplification materials. The experimental set-up is a collinear pump-probe (orthogonally polarized) experiment using transient absorption technique. It is built with around a 100 femtosecond laser oscillator. A fast oscillating delay between the pump and the probe allows us to measure the electronic nonlinearity in quasi real-time. This experiment has the following specifications: an absolute measurement accuracy below 10% mainly due to the laser parameters characterization, a relative measurement accuracy of 1% and a resolution less than 5.10-24m2/V2(50 times less than fused silica).

  4. Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Motiei, H.; Jafari, A.; Naderali, R.

    2017-02-01

    In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.

  5. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.

    PubMed

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B

    2018-05-18

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19}  m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  6. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients

    NASA Astrophysics Data System (ADS)

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.

    2018-05-01

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  7. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  8. Influence of third-body particles originating from bone void fillers on the wear of ultra-high-molecular-weight polyethylene

    PubMed Central

    Cowie, Raelene M; Carbone, Silvia; Aiken, Sean; Cooper, John J; Jennings, Louise M

    2016-01-01

    Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan® (Biocomposites Ltd., Keele, UK) and Osteoset® (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan® was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset® led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches

  9. Ordering Molecular Genetic Tests and Reporting Results

    PubMed Central

    Lubin, Ira M.; Caggana, Michele; Constantin, Carolyn; Gross, Susan J.; Lyon, Elaine; Pagon, Roberta A.; Trotter, Tracy L.; Wilson, Jean Amos; McGovern, Margaret M.

    2008-01-01

    Previous studies have suggested that patient care may be compromised as a consequence of poor communication between clinicians and laboratory professionals in cases in which molecular genetic test results are reported. To understand better the contributing factors to such compromised care, we investigated both pre- and postanalytical processes using cystic fibrosis mutation analysis as our model. We found that although the majority of test requisition forms requested patient/family information that was necessary for the proper interpretation of test results, in many cases, these data were not provided by the individuals filling out the forms. We found instances in which result reports for simulated diagnostic testing described individuals as carriers where only a single mutation was found with no comment pertaining to a diagnosis of cystic fibrosis. Similarly, reports based on simulated scenarios for carrier testing were problematic when no mutations were identified, and the patient's race/ethnicity and family history were not discussed in reference to residual risk of disease. Remarkably, a pilot survey of obstetrician-gynecologists revealed that office staff, including secretaries, often helped order genetic tests and reported test results to patients, raising questions about what efforts are undertaken to ensure personnel competency. These findings are reviewed in light of what efforts should be taken to improve the quality of test-ordering and result-reporting practices. PMID:18669879

  10. Seed rain and seed bank of third- and fifth-order streams on the western slope of the Cascade Range.

    Treesearch

    Janice M. Harmon; Jerry F. Franklin

    1991-01-01

    We compared the composition and density of the on-site vegetation, seed bank, and seed rain of three geomorphic and successional surfaces along third- and fifth-order streams on the western slope of the central Cascade Range in Oregon.The on-site vegetation generally was dominated by tree species, the seed bank by herb species, and the seed rain by tree and...

  11. Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams

    NASA Astrophysics Data System (ADS)

    Xiang, S.; Kang, G. W.

    2018-03-01

    For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.

  12. Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Tenzer, Robert

    2017-05-01

    We investigate a numerical performance of four different schemes applied to a regional recovery of the gravity anomalies from the third-order gravitational tensor components (assumed to be observable in the future) synthetized at the satellite altitude of 200 km above the mean sphere. The first approach is based on applying a regional inversion without modelling the far-zone contribution or long-wavelength support. In the second approach we separate integral formulas into two parts, that is, the effects of the third-order disturbing tensor data within near and far zones. Whereas the far-zone contribution is evaluated by using existing global geopotential model (GGM) with spectral weights given by truncation error coefficients, the near-zone contribution is solved by applying a regional inversion. We then extend this approach for a smoothing procedure, in which we remove the gravitational contributions of the topographic-isostatic and atmospheric masses. Finally, we apply the remove-compute-restore (r-c-r) scheme in order to reduce the far-zone contribution by subtracting the reference (long-wavelength) gravity field, which is computed for maximum degree 80. We apply these four numerical schemes to a regional recovery of the gravity anomalies from individual components of the third-order gravitational tensor as well as from their combinations, while applying two different levels of a white noise. We validated our results with respect to gravity anomalies evaluated at the mean sphere from EGM2008 up to the degree 250. Not surprisingly, better fit in terms of standard deviation (STD) was attained using lower level of noise. The worst results were gained applying classical approach, STD values of our solution from Tzzz are 1.705 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 2.005 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2), while the superior from r-c-r up to the degree 80, STD fit of gravity anomalies from Tzzz

  13. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    PubMed

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.

    2018-04-01

    A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.

  15. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    NASA Astrophysics Data System (ADS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  16. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  17. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    NASA Astrophysics Data System (ADS)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  18. Proceedings of the Third International Molecular Pathological Epidemiology (MPE) Meeting

    PubMed Central

    Campbell, Peter T.; Rebbeck, Timothy R.; Nishihara, Reiko; Beck, Andrew H.; Begg, Colin B.; Bogdanov, Alexei A.; Cao, Yin; Coleman, Helen G.; Freeman, Gordon J.; Heng, Yujing J.; Huttenhower, Curtis; Irizarry, Rafael A.; Kip, N. Sertac; Michor, Franziska; Nevo, Daniel; Peters, Ulrike; Phipps, Amanda I.; Poole, Elizabeth M.; Qian, Zhi Rong; Quackenbush, John; Robins, Harlan; Rogan, Peter K.; Slattery, Martha L.; Smith-Warner, Stephanie A.; Song, Mingyang; VanderWeele, Tyler J.; Xia, Daniel; Zabor, Emily C.; Zhang, Xuehong; Wang, Molin; Ogino, Shuji

    2016-01-01

    Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods and resources from epidemiology, pathology, biostatistics, bioinformatics and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: 1) the development of new statistical methods to address etiologic heterogeneity; 2) the enhancement of causal inference; 3) the identification of previously unknown exposure-subtype disease associations; and 4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields. PMID:28097472

  19. Proceedings of the third international molecular pathological epidemiology (MPE) meeting.

    PubMed

    Campbell, Peter T; Rebbeck, Timothy R; Nishihara, Reiko; Beck, Andrew H; Begg, Colin B; Bogdanov, Alexei A; Cao, Yin; Coleman, Helen G; Freeman, Gordon J; Heng, Yujing J; Huttenhower, Curtis; Irizarry, Rafael A; Kip, N Sertac; Michor, Franziska; Nevo, Daniel; Peters, Ulrike; Phipps, Amanda I; Poole, Elizabeth M; Qian, Zhi Rong; Quackenbush, John; Robins, Harlan; Rogan, Peter K; Slattery, Martha L; Smith-Warner, Stephanie A; Song, Mingyang; VanderWeele, Tyler J; Xia, Daniel; Zabor, Emily C; Zhang, Xuehong; Wang, Molin; Ogino, Shuji

    2017-02-01

    Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods, and resources from epidemiology, pathology, biostatistics, bioinformatics, and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: (1) the development of new statistical methods to address etiologic heterogeneity; (2) the enhancement of causal inference; (3) the identification of previously unknown exposure-subtype disease associations; and (4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields.

  20. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  1. Utility and validation of day and night snorkel counts for estimating bull trout abundance in first-to-third order streams

    Treesearch

    Russell F. Thurow; James T. Peterson; John W. Guzevich

    2006-01-01

    Despite the widespread use of underwater observation to census stream-dwelling fishes, the accuracy of snorkeling methods has rarely been validated. We evaluated the efficiency of day and night snorkel counts for estimating the abundance of bull trout Salvelinus confluentus in 215 sites within first- to third-order streams. We used a dual-gear...

  2. Soliton structure versus singularity analysis: Third-order completely intergrable nonlinear differential equations in 1 + 1-dimensions

    NASA Astrophysics Data System (ADS)

    Fuchssteiner, Benno; Carillo, Sandra

    1989-01-01

    Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform

  3. Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Daniel L., E-mail: dlsilva.physics@gmail.com, E-mail: deboni@ifsc.usp.br; Instituto de Física, Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP; Fonseca, Ruben D.

    2015-02-14

    This paper reports on the static and dynamic first-order hyperpolarizabilities of a class of push-pull octupolar triarylamine derivatives dissolved in toluene. We have combined hyper-Rayleigh scattering experiment and the coupled perturbed Hartree-Fock method implemented at the Density Functional Theory (DFT) level of theory to determine the static and dynamic (at 1064 nm) first-order hyperpolarizability (β{sub HRS}) of nine triarylamine derivatives with distinct electron-withdrawing groups. In four of these derivatives, an azoaromatic unit is inserted and a pronounceable increase of the first-order hyperpolarizability is reported. Based on the theoretical results, the dipolar/octupolar character of the derivatives is determined. By using amore » polarizable continuum model in combination with the DFT calculations, it was found that although solvated in an aprotic and low dielectric constant solvent, due to solvent-induced polarization and the frequency dispersion effect, the environment substantially affects the first-order hyperpolarizability of all derivatives investigated. This statement is supported due to the solvent effects to be essential for the better agreement between theoretical results and experimental data concerning the dynamic first-order hyperpolarizability of the derivatives. The first-order hyperpolarizability of the derivatives was also modeled using the two- and three-level models, where the relationship between static and dynamic first hyperpolarizabilities is given by a frequency dispersion model. Using this approach, it was verified that the dynamic first hyperpolarizability of the derivatives is satisfactorily reproduced by the two-level model and that, in the case of the derivatives with an azoaromatic unit, the use of a damped few-level model is essential for, considering also the molecular size of such derivatives, a good quantitative agreement between theoretical results and experimental data to be observed.« less

  4. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.

    PubMed

    Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E

    1976-12-01

    Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.

  5. Unequal density effect on static structure factor of coupled electron layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, L. K., E-mail: lks@ashd.svnit.ac.in; Nayak, Mukesh G., E-mail: lks@ashd.svnit.ac.in

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found atmore » critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.« less

  6. AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED MOLECULAR ELECTROSTATICS

    PubMed Central

    Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander

    2011-01-01

    In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123

  7. Developmental model of static allometry in holometabolous insects.

    PubMed

    Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W

    2008-08-22

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

  8. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    PubMed

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  9. Frustrated spin- 1 2 molecular magnetism in the mixed-valence antiferromagnets Ba 3 M Ru 2 O 9 ( M = In , Y, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziat, D.; Aczel, Adam A.; Sinclair, R.

    We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less

  10. Frustrated spin- 1 2 molecular magnetism in the mixed-valence antiferromagnets Ba 3 M Ru 2 O 9 ( M = In , Y, Lu)

    DOE PAGES

    Ziat, D.; Aczel, Adam A.; Sinclair, R.; ...

    2017-05-22

    We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less

  11. Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    NASA Astrophysics Data System (ADS)

    González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.

    2017-08-01

    We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.

  12. Third-order nonlinear optical properties of soluble Cr(III)-dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Noro, Shin-ichiro; Sassa, Takafumi; Aoyama, Tetsuya; Chang, Ho-Chol; Kitagawa, Susumu; Wada, Tatsuo

    2004-10-01

    We synthesized novel ligand-based mixed valence (LBMV) CrIII-dioxolene complexes, [Cr(X4SQ)(X4Cat)(4,4'-di-tert-butyl-2,2'-bpy)] (SQ = semiquinone, Cat = catecohol, 2,2'-bpy = 2,2'-bipyridine; X = Cl (2a) and Br (2b)) and [Cr(X4SQ)(X4Cat)(4,4'-dinonyl-2,2'-bpy)] (X = Cl (3a) and Br (3b)), and prepared thin films for investigating their third-order nonlinear optical (NLO) properties in terms of the mixed valence states. Electronic absorption spectra of these complexes in solution and solid states showed an intervalence charge-transfer (IVCT) band from Cat2- to SQ"- at the IR region, indicating of a coexistence of SQ and Cat ligands, namely, LBMV state of the complexes. These complexes were well soluble in nonpolar organic solvent, which allowed us to prepare thin films by spin coating. The obtained films showed the electronic absorption spectra similar to those in solution and were amorphous because of steric hindrance of halogen and alkyl substituents in o-dioxolene and 2,2'-bpy moieties, respectively. The x(3) values of the films of 3a and 3b with a thickness of 30 ~ 40 nm were determined for 1.0 × 10-12 esu at 1.907 μm.

  13. A Third Revolution in Linguistics: The Interplay between the Verbal and Non-Verbal

    ERIC Educational Resources Information Center

    Liu, Jun

    2009-01-01

    This article regards Saussure's social, static and structural perspective and Chomsky's individual, generative and formal perspective as two revolutions in linguistics in the 20th century. A third revolution is already on the way. This is characterised by considering the individual's mental mechanisms in relation to the interplay between verbal…

  14. Effect of Intracranial Stenosis Revascularization on Dynamic and Static Cerebral Autoregulation.

    PubMed

    Ortega-Gutierrez, Santiago; Samaniego, Edgar A; Huang, Amy; Masurkar, Arjun; Zheng-Lin, Binbin; Derdeyn, Colin P; Hasan, David; Marshall, Randolph; Petersen, Nils

    2018-06-01

    Severe intracranial stenosis might lead to acute cerebral ischemia. It is imperative to better assess patients who may benefit from immediate reperfusion and blood pressure management to prevent injury to peri-infarct tissue. We assessed cerebral autoregulation using static and dynamic methods in an 81-year-old woman suffering acute cerebral ischemia from severe intracranial stenosis in the petrous segment of the left internal carotid artery (LICA). Static cerebral autoregulation, which is evaluated by magnetic resonance imaging and magnetic resonance perfusion studies showed a progression of infarcts and a large perfusion-diffusion mismatch in the entire LICA territory between the second and third days after onset despite maximized medical therapy. Dynamic methods, including transfer function analysis and mean velocity index, demonstrated an increasingly impaired dynamic cerebral autoregulation (DCA) on the affected side between these days. Revascularization through acute intracranial stenting resulted in improved perfusion in the LICA territory and normalization of both dynamic and static cerebral autoregulation. Thus, DCA, a noninvasive bedside method, may be useful in helping to identify and select patients with large-vessel flow-failure syndromes that would benefit from immediate revascularization of intracranial atherosclerotic disease.

  15. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  16. Molecular Dynamics Simulation of the Three-Dimensional Ordered State in Laser-Cooled Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke

    A molecular dynamics simulation is performed to study the formation of three-dimensional ordered beams by laser cooling in a cooler storage ring. Ultralow-temperature heavy-ion beams are generated by transverse cooling with displaced Gaussian lasers and resonant coupling. A three-dimensional ordered state of the ion beam is attained at a high line density. The ordered beam exhibits several unique characteristics different from those of an ideal crystalline beam.

  17. Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto

    2013-07-01

    The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.

  18. A cumulant functional for static and dynamic correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollett, Joshua W., E-mail: j.hollett@uwinnipeg.ca; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2; Hosseini, Hessam

    A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H{sub 2}, LiH, and N{sub 2} with equilibrium bond lengths and dissociationmore » energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F{sub 2}, mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.« less

  19. Simulation of Shallow Cumuli and Their Transition to Deep Convective Clouds by Cloud-resolving Models with Different Third-order Turbulence Closures

    NASA Technical Reports Server (NTRS)

    Cheng, Anning; Xu, Kuan-Man

    2006-01-01

    The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools

  20. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems

    NASA Astrophysics Data System (ADS)

    Kamibayashi, Yuki; Miura, Shinichi

    2016-08-01

    In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.

  1. Weak ferromagnetism along the third-order axis of the FeBO3 crystals caused by Fe2+ impurity ions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Rudenko, V. V.; Vorotynov, A. M.

    2018-05-01

    Using the single-ion approximation, the weak ferromagnetic moment σZ(Fe2+) along the third-order axis of FeBO3 crystals, which is caused by the contribution of Fe2+ ions, has been investigated in the framework of the model Fe2+ impurity ion -BO3 vacancy. The extreme low-temperature behavior of the total magnetic moment due to the strong dependence of the Fe2+ion contribution is predicted.

  2. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  3. A third-order silicon racetrack add-drop filter with a moderate feature size

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhou, Xin; Chen, Qian; Shao, Yue; Chen, Xiangning; Huang, Qingzhong; Jiang, Wei

    2018-01-01

    In this work, we design and fabricate a highly compact third-order racetrack add-drop filter consisting of silicon waveguides with modified widths on a silicon-on-insulator (SOI) wafer. Compared to the previous approach that requires an exceedingly narrow coupling gap less than 100nm, we propose a new approach that enlarges the minimum feature size of the whole device to be 300 nm to reduce the process requirement. The three-dimensional finite-difference time-domain (3D-FDTD) method is used for simulation. Experiment results show good agreement with simulation results in property. In the experiment, the filter shows a nearly box-like channel dropping response, which has a large flat 3-dB bandwidth ({3 nm), relatively large FSR ({13.3 nm) and out-of-band rejection larger than 14 dB at the drop port with a footprint of 0.0006 mm2 . The device is small and simple enough to have a wide range of applications in large scale on-chip photonic integration circuits.

  4. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Skryabin, Dmitry V.; Malomed, Boris A.

    2018-06-01

    We consider the model of fiber-laser cavities near the zero-dispersion point, based on the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, including the third-order dispersion (TOD) term. It is well known that this model supports stable dissipative solitons. We demonstrate that the same model gives rise to several families of robust bound states of the solitons, which exists only in the presence of the TOD. There are both stationary and dynamical bound states, with oscillating separation between the bound solitons. Stationary states are multistable, corresponding to different values of the separation. With the increase of the TOD coefficient, the bound state with the smallest separation gives rise the oscillatory state through the Hopf bifurcation. Further growth of TOD leads to a bifurcation transforming the oscillatory limit cycle into a strange attractor, which represents a chaotically oscillating dynamical bound state. Families of multistable three- and four-soliton complexes are found too, the ones with the smallest separation between the solitons again ending by a transition to oscillatory states through the Hopf bifurcation.

  5. Field localization and enhancement of phase-locked second- and third-order harmonic generation in absorbing semiconductor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, V.; Charles M. Bowden Research Facility, US Army RDECOM, Redstone Arsenal, Alabama 35803; Cojocaru, C.

    We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650 and 433 nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics resonate inside the cavity and become amplified leading to relatively large conversion efficiencies. Field localization thus plays a pivotal role despite the presence of absorption, and ushers in a new class of semiconductor-based devices in the visible and uv ranges.

  6. Demonstrating an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems.

    PubMed

    Pan, Albert C; Weinreich, Thomas M; Piana, Stefano; Shaw, David E

    2016-03-08

    Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 μs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.

  7. Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes

    NASA Astrophysics Data System (ADS)

    Uyanık, Osman; Sabbaǧ, Nevbahar

    2016-04-01

    In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules

  8. Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry

    NASA Astrophysics Data System (ADS)

    Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.

    2004-10-01

    Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.

  9. Prediction of flyover jet noise spectra from static tests

    NASA Technical Reports Server (NTRS)

    Michel, U.; Michalke, A.

    1981-01-01

    A scaling law is derived for predicting the flyover noise spectra of a single-stream shock-free circular jet from static experiments. The theory is based on the Lighthill approach to jet noise. Density terms are retained to include the effects of jet heating. The influence of flight on the turbulent flow field is considered by an experimentally supported similarity assumption. The resulting scaling laws for the difference between one-third-octave spectra and the overall sound pressure level compare very well with flyover experiments with a jet engine and with wind tunnel experiments with a heated model jet.

  10. A third-order class-D amplifier with and without ripple compensation

    NASA Astrophysics Data System (ADS)

    Cox, Stephen M.; du Toit Mouton, H.

    2018-06-01

    We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.

  11. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    NASA Astrophysics Data System (ADS)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  12. Coupled cluster calculations for static and dynamic polarizabilities of C60

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.

    2008-12-01

    New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.

  13. Measurement of third-order nonlinear susceptibility tensor in InP using extended Z-scan technique with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-05-01

    The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.

  14. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  15. Molecular structure of hybrid imino-chalcone in the solid state: X-ray diffraction, spectroscopy study and third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Custodio, J. M. F.; Santos, F. G.; Vaz, W. F.; Cunha, C. E. P.; Silveira, R. G.; Anjos, M. M.; Campos, C. E. M.; Oliveira, G. R.; Martins, F. T.; da Silva, C. C.; Valverde, C.; Baseia, B.; Napolitano, H. B.

    2018-04-01

    A comprehensive structural study of the compound (2E)-1-((E)-4-(4-methoxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one was carried out in this work. Single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), NMR, Raman and Infrared spectroscopies, and DFT calculations were performed for characterization of this iminochalcone hybrid. Intermolecular interactions were described by Hirshfeld surface analysis derived from crystal structure. Reactivity and intramolecular charge transfer were investigated using the frontier molecular orbitals and molecular electrostatic potential. In addition, we have calculated the Nonlinear Optical Properties at the CAM-B3LYP/6-311+g(d) level of theory in the presence of different solvents (gas-phase, acetone, chloroform, dichloromethane, dimethyl sulfoxide, ethanol, methanol, and water), being found meaningful NLO parameters for our compound. At last, there is a good agreement between calculated and experimental IR spectrum, allowing the assignment of some of normal vibrational modes of the iminochalcone hybrid.

  16. Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil.

    PubMed

    Olivero, J; Gracia, T; Payares, P; Vivas, R; Díaz, D; Daza, E; Geerlings, P

    1997-05-01

    Using quantitative structure-retention relationships (QSRR) methodologies the Kovats gas chromatographic retention indices for both apolar (DB-1) and polar (DB-Wax) columns for 48 compounds from Ylang-Ylang essential oil were empirically predicted from calculated and experimental data on molecular structure. Topological, geometric, and electronic descriptors were obtained for model generation. Relationships between descriptors and the retention data reported were established by linear multiple regression, giving equations that can be used to predict the Kovats indices for compounds present in essential oils, both in DB-1 and DB-Wax columns. Factor analysis was performed to interpret the meaning of the descriptors included in the models. The prediction model for the DB-1 column includes descriptors such as Randic's first-order connectivity index (1X), the molecular surface (MSA), the sum of the atomic charge on all the hydrogens (QH), Randic's third-order connectivity index (3X) and the molecular electronegativity (chi). The prediction model for the DB-Wax column includes the first three descriptors mentioned for the DB-1 column (1X, MSA and QH) and the most negative charge (MNC), the global softness (S), and the difference between Randic's and Kier and Hall's third-order connectivity indexes (3X-3XV).

  17. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    NASA Astrophysics Data System (ADS)

    Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.

  18. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    DOE PAGES

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β 0,β 1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried outmore » to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.« less

  19. Ordering effects of conjugate thermal fields in simulations of molecular liquids: Carbon dioxide and water

    NASA Astrophysics Data System (ADS)

    Dittmar, Harro R.; Kusalik, Peter G.

    2016-10-01

    As shown previously, it is possible to apply configurational and kinetic thermostats simultaneously in order to induce a steady thermal flux in molecular dynamics simulations of many-particle systems. This flux appears to promote motion along potential gradients and can be utilized to enhance the sampling of ordered arrangements, i.e., it can facilitate the formation of a critical nucleus. Here we demonstrate that the same approach can be applied to molecular systems, and report a significant enhancement of the homogeneous crystal nucleation of a carbon dioxide (EPM2 model) system. Quantitative ordering effects and reduction of the particle mobilities were observed in water (TIP4P-2005 model) and carbon dioxide systems. The enhancement of the crystal nucleation of carbon dioxide was achieved with relatively small conjugate thermal fields. The effect is many orders of magnitude bigger at milder supercooling, where the forward flux sampling method was employed, than at a lower temperature that enabled brute force simulations of nucleation events. The behaviour exhibited implies that the effective free energy barrier of nucleation must have been reduced by the conjugate thermal field in line with our interpretation of previous results for atomic systems.

  20. Advances in Time Estimation Methods for Molecular Data.

    PubMed

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  1. Cavity enhanced third harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Beckerleg, Chris; Constant, Thomas J.; Zeimpekis, Ioannis; Hornett, Samuel M.; Craig, Chris; Hewak, Daniel W.; Hendry, Euan

    2018-01-01

    Graphene displays a surprisingly large third order nonlinearity. Here, we report that conversion efficiencies approaching 10-4 are possible for third harmonic generation (THG). Moreover, the atomically thin nature of graphene allows for simple integration in cavity designs to increase this even further. We demonstrate a 117-fold enhancement, of resonant vs non-resonant wavelengths in the THG from graphene due to the integration of a graphene layer with a resonant cavity. This large enhancement occurs as the cavity is resonant for both the fundamental field and the third harmonic. We model this effect using the finite difference time domain approach. By comparing our model with experiment, we are able to deduce the value of a bulk third order susceptibility of graphene of |χ(3)|=4 ×10-17(m/V ) 2 .

  2. Static electricity: A literature review

    NASA Astrophysics Data System (ADS)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  3. Statistical Learning of Origin-Specific Statically Optimal Individualized Treatment Rules

    PubMed Central

    van der Laan, Mark J.; Petersen, Maya L.

    2008-01-01

    Consider a longitudinal observational or controlled study in which one collects chronological data over time on a random sample of subjects. The time-dependent process one observes on each subject contains time-dependent covariates, time-dependent treatment actions, and an outcome process or single final outcome of interest. A statically optimal individualized treatment rule (as introduced in van der Laan et. al. (2005), Petersen et. al. (2007)) is a treatment rule which at any point in time conditions on a user-supplied subset of the past, computes the future static treatment regimen that maximizes a (conditional) mean future outcome of interest, and applies the first treatment action of the latter regimen. In particular, Petersen et. al. (2007) clarified that, in order to be statically optimal, an individualized treatment rule should not depend on the observed treatment mechanism. Petersen et. al. (2007) further developed estimators of statically optimal individualized treatment rules based on a past capturing all confounding of past treatment history on outcome. In practice, however, one typically wishes to find individualized treatment rules responding to a user-supplied subset of the complete observed history, which may not be sufficient to capture all confounding. The current article provides an important advance on Petersen et. al. (2007) by developing locally efficient double robust estimators of statically optimal individualized treatment rules responding to such a user-supplied subset of the past. However, failure to capture all confounding comes at a price; the static optimality of the resulting rules becomes origin-specific. We explain origin-specific static optimality, and discuss the practical importance of the proposed methodology. We further present the results of a data analysis in which we estimate a statically optimal rule for switching antiretroviral therapy among patients infected with resistant HIV virus. PMID:19122792

  4. High-order fractional partial differential equation transform for molecular surface construction.

    PubMed

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  5. High-order fractional partial differential equation transform for molecular surface construction

    PubMed Central

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  6. Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes

    PubMed Central

    2017-01-01

    We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π–π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10–5 cm2 V–1 s–1 in as-spun films to μ = (5.0 ± 0.8) × 10–3 cm2 V–1 s–1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π–π interactions between molecular pairs in the FPPTB film. PMID:28139915

  7. Chiral behaviour of the wave functions for three wave guides in the vicinity of an exceptional point of third order

    NASA Astrophysics Data System (ADS)

    Heiss, Walter Dieter; Wunner, Günter

    2017-12-01

    A matrix model that has been used to describe essential features of a parity-time symmetric set-up of three coupled wave guides is investigated. The emphasis of the study lies on the occurrence of an exceptional point of third order. It is demonstrated that the eigenfunctions in close vicinity of the exceptional point have a distinctive chiral behaviour. Using data describing realistic situations it is argued that such chiral behaviour can be tested experimentally.

  8. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid

    PubMed Central

    Kobayashi, Mika; Tanaka, Hajime

    2016-01-01

    Liquid–liquid transition is an intriguing phenomenon in which a liquid transforms into another liquid via the first-order transition. For molecular liquids, however, it always takes place in a supercooled liquid state metastable against crystallization, which has led to a number of serious debates concerning its origin: liquid–liquid transition versus unusual nano-crystal formation. Thus, there have so far been no single example free from such debates, to the best of our knowledge. Here we show experimental evidence that the transition is truly liquid–liquid transition and not nano-crystallization for a molecular liquid, triphenyl phosphite. We kinetically isolate the reverse liquid-liquid transition from glass transition and crystallization with a high heating rate of flash differential scanning calorimetry, and prove the reversibility and first-order nature of liquid–liquid transition. Our finding not only deepens our physical understanding of liquid–liquid transition but may also initiate a phase of its research from both fundamental and applications viewpoints. PMID:27841349

  9. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    PubMed

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Static latching arrangement and method

    DOEpatents

    Morrison, Larry

    1988-01-01

    A latching assembly for use in latching a cable to and unlatching it from a given object in order to move an object from one location to another is disclosed herein. This assembly includes a weighted sphere mounted to one end of a cable so as to rotate about a specific diameter of the sphere. The assembly also includes a static latch adapted for connection with the object to be moved. This latch includes an internal latching cavity for containing the sphere in a latching condition and a series of surfaces and openings which cooperate with the sphere in order to move the sphere into and out of the latching cavity and thereby connect the cable to and disconnect it from the latch without using any moving parts on the latch itself.

  11. Quantifying hypoxia in human cancers using static PET imaging.

    PubMed

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G; Milosevic, Michael; Hedley, David W; Jaffray, David A

    2016-11-21

    Compared to FDG, the signal of 18 F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties-well-perfused without substantial necrosis or partitioning-for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in 'inter-corporal' transport properties-blood volume and clearance rate-as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3 , a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  12. Quantifying hypoxia in human cancers using static PET imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.

    2016-11-01

    Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  13. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].

    PubMed

    Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun

    2016-05-01

    π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP.

  14. Molecular approaches to third generation photovoltaics: photochemical up-conversion

    NASA Astrophysics Data System (ADS)

    Cheng, Yuen Yap; Fückel, Burkhard; Roberts, Derrick A.; Khoury, Tony; Clady, Rapha"l. G. C. R.; Tayebjee, Murad J. Y.; Piper, Roland; Ekins-Daukes, N. J.; Crossley, Maxwell J.; Schmidt, Timothy W.

    2010-08-01

    We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ~60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ~3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.

  15. Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Wattanasakulpong, Nuttawit; Chaikittiratana, Arisara; Pornpeerakeat, Sacharuck

    2018-06-01

    In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton's principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.

  16. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  17. Utility of the Static-99 and Static-99R With Latino Sex Offenders.

    PubMed

    Leguízamo, Alejandro; Lee, Seung C; Jeglic, Elizabeth L; Calkins, Cynthia

    2017-12-01

    The predictive validity of the Static-99 measures with ethnic minorities in the United States has only recently been assessed with mixed results. We assessed the predictive validity of the Static-99 and Static-99R with a sample of Latino sex offenders ( N = 483) as well as with two subsamples (U.S.-born, including Puerto Rico, and non-U.S.-born). The overall sexual recidivism rate was very low (1.9%). Both the Static-99 measures were able to predict sexual recidivism for offenders born in the United States and Puerto Rico, but neither was effective in doing so for other Latino immigrants. Calibration analyses ( N = 303) of the Static-99R were consistent with the literature and provided support for the potential use of the measure with Latinos born in the United States and Puerto Rico. These findings and their implications are discussed as they pertain to the assessment of Latino sex offenders.

  18. Molecular Order and Mesophase Investigation of Thiophene-Based Forked Mesogens.

    PubMed

    Reddy, K Rajasekhar; Lobo, Nitin P; Narasimhaswamy, T

    2016-07-14

    Thiophene-based rodlike molecules constructed from a three phenyl ring core and terminal dialkoxy chains recognized as forked mesogens are synthesized, and their mesophase properties as well as the molecular order are investigated. The synthesized forked mesogens would serve as model compounds for tetracatenar or biforked mesogens. On the basis of the position of the thiophene link with the rest of the core, 2-substituted and 3-substituted mesogens are realized in which the length of the terminal alkoxy chains is varied. The mesophase properties are evaluated using a hot-stage polarizing microscope and differential scanning calorimetry. For both homologues, the appearance of either nematic phase alone or in conjunction with smectic C phase is noticed depending on the length of the terminal alkoxy chains. The existence of layer ordering characteristic of the smectic C phase is confirmed for a representative mesogen using variable-temperature powder X-ray diffraction. High-resolution solid-state (13)C NMR measurements of C12 homologues of the two series reveal orientational order parameters of all rings of the core as well as terminal chains in the liquid crystalline phase. For both homologues, because of the asymmetry of ring I, the order parameter value is higher in contrast to ring II, ring III, and the thiophene ring. The chemical shifts and (13)C-(1)H dipolar couplings of OCH2 carbons of the terminal dodecyloxy chains provide contrasting conformations, reflecting the orientational constraints. Furthermore, the investigations also reveal that the mesophase range and the tendency for layer ordering are higher for 3-substituted mesogens compared to 2-substituted homologues.

  19. Evaluation of the molecular polarizability using the IPPP-CLOPPA-INDO/S method. Application to molecules of biological interest.

    PubMed

    Botek, Edith; Giribet, Claudia; Ruiz de Azúa, Martín; Martín Negri, Ricardo; Bernik, Delia

    2008-07-31

    The IPPP-CLOPPA-INDO/S method is introduced to investigate the static molecular polarizability in macromolecules. As an example of application, the polarizability of phospholipidic compounds, with and without the presence of water molecules has been estimated. The IPPP technique was employed to calculate the polarizability of the polar head and the hydrocarbon chains separately to analyze the feasibility of evaluating the total polarizability of the molecule by addition of these two projected results. INDO/S dipole moments of different fragments of the complex molecule were obtained by means of localized molecular orbitals in order to evaluate the charge transfer in the system.

  20. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  1. [Surgery in times of crisis: conservative treatment of pectus carinatum by static corset].

    PubMed

    Redondo Sedano, J V; Delgado Muñoz, M D; Martí Carrera, M E; Gómez Fraile, A

    2017-04-20

    Dynamic compression system is the elective treatment for chondrogladiolar pectus carinatum. Nevertheless, its high cost poses a problem for its prescription in places where it is not subsidized. This article analyzes the experience of the Paediatric Plastic Surgery Service at a third grade hospital in the treatment of this deformity with a static compression system. The study presents a descriptive, retrospective analysis of 30 patients with pectus carinatum treated with a static compression system. Furthermore, we describe the protocol of treatment used at our unit, and we analyse the satisfaction with bracing therapy, and its relation to therapeutic compliance. The study includes 28 boys and 2 girls. 93% of the patients presented a chondrogladiolar pectus carinatum. At the moment of finishing the study, 11 patients have completed the treatment, 14 still bracing, and 5 were lost in the follow-up. Satisfaction questionnaires were answered by 19 patients. Bracing therapy with static compression system is the treatment of choice for chondrogladiolar pectus carinatum in our unit, because of its effectiveness and lower price. Quality of life questionnaires show better marks in patients that are in the second phase of treatment.

  2. Layer-Dependent Third-Harmonic Generation in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guan, Honghua; Dadap, Jerry; Osgood, Richard; Richard Osgood Team

    Graphene has become a subject of intense interest and study because of its remarkable 2D electronic properties. Multilayer graphene also offers an array of properties that are also of interest for optical physics and devices. Despite its second-order-nonlinear optical response is intrinsically weak, third-order nonlinear optical effects in graphene are symmetry-allowed thus leading to studies of several third-order process in few-layer graphene. In this work, we report third-harmonic generation in multilayer graphene mounted on fused silica and with thicknesses which approach the bulk continuum. THG signals show cubic power dependence with respect to the intensity of fundamental beam. Third-harmonic generation spectroscopy enables a good fit using linear optical detection, which shows strong contrast for different layer number graphene. The maximum THG efficiency appears at layer number around 30. Two models are used for describing this layer dependent phenomenon and shows absorption plays a key role in THG of multilayer graphene. This work also provides a new imaging technology for graphene detection and identification with better contrast and resolution. U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157.

  3. Mammals' response and adaptation to static magnetic fields as a nonspecific stressor

    NASA Astrophysics Data System (ADS)

    Nakagawa, Masayoshi

    1990-06-01

    Biological effects of static magnetic fields are still unclear and sometimes contradictory, and it has not been possible to connect this situation directly to some explanations of the mechanisms of the effects of static magnetic fields at the molecular level. Some researchers have pointed out that the process through which animals respond at the whole-body level to static magnetic fields follows the same pattern as the GAS (general adaptation syndrome) described by Selye. This biological or behavioral pattern is considered to be a common process followed by animals which are affected by environmental stimulants; they are depressed first, then surpass the deteriorated conditions and recover their normal conditions, or sometimes overshoot it. When this process is observed with mammals subjected to the magnetic fields, it can be concluded that magnetism has affected the organism. In this paper, the author reviews reports in which magnetic field density and minimum exposure time were determined with certain effects produced under certain conditions, and proposes a regression model for estimating the minimum amount of exposure which produces some effect on mammals.

  4. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models.

    PubMed

    Nordez, Antoine; Cornu, Christophe; McNair, Peter

    2006-08-01

    The aim of this study was to assess the effects of static stretching on hamstring passive stiffness calculated using different data reduction methods. Subjects performed a maximal range of motion test, five cyclic stretching repetitions and a static stretching intervention that involved five 30-s static stretches. A computerised dynamometer allowed the measurement of torque and range of motion during passive knee extension. Stiffness was then calculated as the slope of the torque-angle relationship fitted using a second-order polynomial, a fourth-order polynomial, and an exponential model. The second-order polynomial and exponential models allowed the calculation of stiffness indices normalized to knee angle and passive torque, respectively. Prior to static stretching, stiffness levels were significantly different across the models. After stretching, while knee maximal joint range of motion increased, stiffness was shown to decrease. Stiffness decreased more at the extended knee joint angle, and the magnitude of change depended upon the model used. After stretching, the stiffness indices also varied according to the model used to fit data. Thus, the stiffness index normalized to knee angle was found to decrease whereas the stiffness index normalized to passive torque increased after static stretching. Stretching has significant effects on stiffness, but the findings highlight the need to carefully assess the effect of different models when analyzing such data.

  5. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    PubMed

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  6. Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.

    2013-10-01

    The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.

  7. Structural ordering at solid-liquid interfaces in Al-Sm system: A molecular-dynamics study

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; ...

    2016-07-12

    The structural ordering at solid-liquid interfaces far from equilibrium is studied with molecular dynamics simulations for the Al-Sm system. Using the van-Hove self-correlation function as the criterion to identify attachment/detachment events that occur at the interface, we are able to determine the time-dependent interface position, and characterize the detailed interfacial structure ordering surrounding the attached atoms. For the interface between an undercooled Al90Sm10 liquid and a metastable cubic structure, the solid induces the crystalline order of the cubic phase in the liquid layers, promoting the continuous growth of the crystal phase. When the same liquid is put in contact withmore » f.c.c. Al, Sm from the liquid can still attach to the solid interface despite its insolubility in the Al lattice. Non-f.c.c. order is revealed surrounding the attached Sm atoms. Lastly, we show that the local structure ordering at interface is highly correlated to solid packing and liquid ordering.« less

  8. Third-order nonlinear electro-optic measurements in the smectic-? phase

    NASA Astrophysics Data System (ADS)

    Nowicka, Kamila; Bielejewska, Natalia

    2018-02-01

    The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.

  9. Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.

    2017-11-01

    We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  11. Simulations of the stratocumulus-topped boundary layer with a third-order closure model

    NASA Technical Reports Server (NTRS)

    Moeng, C. H.; Randall, D. A.

    1984-01-01

    A third order closure model is proposed by Andre et al. (1982), in which the time rate of change terms, the relaxation and rapid effects for the pressure related terms, and the clipping approximation are included along with the quasi-normal closure, to study turbulence in a cloudy layer which is cooled radiatively from above. A spurious oscillation which is strongest near the inversion occurs. An analysis of the problem shows that the oscillation arises from the mean gradient and buoyancy terms of the triple moment equations; these terms are largest near the cloud top. The oscillation is physical, rather than computational. In nature the oscillation is effectively damped, by a mechanism which apparently is not included in our model. In the stably stratified layer just above the mixed layer top, turbulence can excite gravity waves, whose energy is radiated away. Because the closure assumption for the pressure terms does not take into account the transport of wave energy, the model generates spurious oscillations. Damping of the oscillations is possible by introducing diffusion terms into the triple moment equations. With a large enough choice for the diffusion coefficient, the oscillation is effectively eliminated. The results are quite sensitive to the ad hoc eddy coefficient.

  12. Measurement of static pressure on aircraft

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1958-01-01

    Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.

  13. Static Analysis Using Abstract Interpretation

    NASA Technical Reports Server (NTRS)

    Arthaud, Maxime

    2017-01-01

    Short presentation about static analysis and most particularly abstract interpretation. It starts with a brief explanation on why static analysis is used at NASA. Then, it describes the IKOS (Inference Kernel for Open Static Analyzers) tool chain. Results on NASA projects are shown. Several well known algorithms from the static analysis literature are then explained (such as pointer analyses, memory analyses, weak relational abstract domains, function summarization, etc.). It ends with interesting problems we encountered (such as C++ analysis with exception handling, or the detection of integer overflow).

  14. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  15. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  16. Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.

    2013-01-01

    We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.

  17. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...

  18. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...

  19. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...

  20. 14 CFR 23.1325 - Static pressure system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the correlation between air pressure in the static pressure system and true ambient atmospheric static... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure system. 23.1325 Section 23...: Installation § 23.1325 Static pressure system. (a) Each instrument provided with static pressure case...

  1. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  2. "Third Spaces" Are Interesting Places: Applying "Third Space Theory" to Nursery-Aged Children's Constructions of Themselves as Readers

    ERIC Educational Resources Information Center

    Levy, Rachael

    2008-01-01

    Based on Moje et al.'s (2004) conceptions of "third space theory", this article describes how five nursery-aged children created a "third space" between home and school, in order to find continuity between home and school constructions of reading. This article describes how the children used various aspects of their home…

  3. Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression

    NASA Astrophysics Data System (ADS)

    Wong, Chak

    2005-07-01

    Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.

  4. Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression

    NASA Astrophysics Data System (ADS)

    Wong, Chak P.; Gump, Jared C.

    2006-07-01

    Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.

  5. Dynamics and statics of nonaxisymmetric liquid bridges

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Resnick, Andy; Zhang, Yiqiang; Fedoseyev, A.

    1994-01-01

    We finished the construction of the experimental apparatus and the design and testing of some of the visualization and data acquisition techniques. Experimental work focused on three areas: force measurements, loss of stability to nonaxisymmetric bridges, and vibration behavior. The experimental work is summarized in section 2. Selected results from our force measurement experiments are outlined in section 3. In addition we worked on the theory of the dynamic stability of axisymmetric bridges and undertook numerical simulation of the effects of inclined gravity vectors on the minimum volume stability limit for static bridges. The results and status of our theoretical work and numerical simulation are described in section 4. Papers published and in preparation, conference presentations, etc., are described in section 5. Work planned for the third year is discussed in section 6. References cited in the report are listed in section 7.

  6. Comparative Tests of Pitot-static Tubes

    NASA Technical Reports Server (NTRS)

    Merriam, Kenneth G; Spaulding, Ellis R

    1935-01-01

    Comparative tests were made on seven conventional Pitot-static tubes to determine their static, dynamic, and resultant errors. The effect of varying the dynamic opening, static opening, wall thickness, and inner-tube diameter was investigated. Pressure-distribution measurements showing stem and tip effects were also made. A tentative design for a standard Pitot-static tube for use in measuring air velocity is submitted.

  7. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  8. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  9. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  10. Influence of electrode width of interdigital transducer on third-order nonlinearity of surface acoustic wave devices on 42°YX-LiTaO3 substrate

    NASA Astrophysics Data System (ADS)

    Nakagawa, Ryo; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we discuss the influence of the electrode width of an interdigital transducer on the third-order nonlinearity of surface acoustic wave (SAW) devices. First, an estimation technique of third-order nonlinear signals based on the linear finite element method is proposed, and the variation of nonlinear signal level with electrode width is estimated. Then, several one-port SAW resonators with different electrode widths are fabricated, and measured nonlinear signal levels are compared with simulation. As predicted by the numerical simulation, nonlinear signal levels became large with electrode width. However, harmonics takes a minimum at a certain electrode width. This tendency disagrees with the simulation. The variation of nonlinear coefficients is evaluated by numerical fitting for the measured data using the nonlinear signal simulator proposed by the authors. As the result, it is concluded that the generation mechanism is not limited to the acoustic strain in electrodes.

  11. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2011-12-01

    In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O4 +, O3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O4 +, the OMP3 prediction, 1343 cm-1, for ω6 (b3u) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm-1, and OD, 1193 cm-1, methods (the experimental value is 1320 cm-1). For O3, the predictions of SCS-OMP3 (1143 cm-1) and SOS-OMP3 (1165 cm-1) are remarkably better than the more robust OD method (1282 cm-1); the experimental value is 1089 cm-1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |Δωe| = 44 and |Δωe| = 35 cm-1, respectively, while for OD, |Δωe| = 161 cm-1and CCSD |Δωe| = 106 cm-1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on

  12. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.

    PubMed

    Bozkaya, Uğur

    2011-12-14

    In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O(4)(+), O(3), and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O(4)(+), the OMP3 prediction, 1343 cm(-1), for ω(6) (b(3u)) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm(-1), and OD, 1193 cm(-1), methods (the experimental value is 1320 cm(-1)). For O(3), the predictions of SCS-OMP3 (1143 cm(-1)) and SOS-OMP3 (1165 cm(-1)) are remarkably better than the more robust OD method (1282 cm(-1)); the experimental value is 1089 cm(-1). For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, ∣Δω(e)∣ = 44 and ∣Δω(e)∣ = 35 cm(-1), respectively, while for OD, ∣Δω(e)∣ = 161 cm(-1)and CCSD ∣Δω(e)∣ = 106 cm(-1). Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the

  13. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  14. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  15. Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase

    PubMed Central

    Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun

    2014-01-01

    The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042

  16. Rectifier cabinet static breaker

    DOEpatents

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  17. Thermodynamics of third-order Lovelock-AdS black holes in the presence of Born-Infeld type nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Dehghani, A.

    2015-03-01

    In this paper, we obtain topological black hole solutions of third-order Lovelock gravity coupled with two classes of Born-Infeld-type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of the Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider the extended phase space thermodynamics to obtain a generalized first law of thermodynamics as well as the extended Smarr formula.

  18. Third order nonlinear optical properties of graphene quantum dots under continuous wavelength regime at 532 nm

    NASA Astrophysics Data System (ADS)

    Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Maidur, Shivaraj R.; Dharmaprakash, S. M.

    2018-04-01

    Graphene quantum dots (GQDs) have drawn more attention due to their multifunctional characteristics which can be used for various applications. However, literature on nonlinear optical (NLO) properties of GQDs is scarcely available. Therefore more investigations are required on NLO properties of GQDs. We report preparation of GQDs from pyrolysis method using citric acid as starting material. Third order nonlinear optical (TNLO) properties are studied using Z-scan technique employing continuous wavelength laser. Study reveals that GQD's show self defocusing effect. This is due to thermal heating of solvent which leads to negative nonlinear refractive index of the material. Open aperture (OA) Z-scan reveals reverse saturation absorption (RSA) nature of the material indicating optical limiting (OL) property. A broad UV absorbance spectrum reveals photoluminescence (PL) emission of the material which is independent of excitation wavelength.

  19. Nonlinear evolution of Benjamin-Feir wave group based on third order solution of Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Zahnur; Halfiani, Vera; Salmawaty; Tulus; Ramli, Marwan

    2018-01-01

    This study concerns on the evolution of trichromatic wave group. It has been known that the trichromatic wave group undergoes an instability during its propagation, which results wave deformation and amplification on the waves amplitude. The previous results on the KdV wave group showed that the nonlinear effect will deform the wave and lead to large wave whose amplitude is higher than the initial input. In this study we consider the Benjamin-Bona-Mahony equation and the theory of third order side band approximation to investigate the peaking and splitting phenomena of the wave groups which is initially in trichromatic signal. The wave amplitude amplification and the maximum position will be observed through a quantity called Maximal Temporal Amplitude (MTA) which measures the maximum amplitude of the waves over time.

  20. Reaction Analysis of Shocked Nitromethane using Extended Lagrangian Born-Oppenheimer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Kober, Ed; Mniszewski, Sue; Martinez, Enrique; Niklasson, Anders; Yang, Ping; McGrane, Shawn; Cawkwell, Marc

    2017-06-01

    Characterizing the complex, rapid reactions of energetic materials under conditions of high temperatures and pressures presents strong experimental and computational challenges. The recently developed extended Lagrangian Born-Oppenheimer molecular dynamics formalism enables the long-term conservation of the total energy in microcanonical trajectories, and using a density functional tight binding formulation provides good chemical accuracy. We use this combined approach to study the evolution of temperature, pressure, and chemical species in shock-compressed liquid nitromethane over hundreds of picoseconds. The chemical species seen in nitromethane under shock compression are compared with those seen under static high temperature conditions. A reduced-order representation of the complex sequence of chemical reactions that characterize this system has been developed from the molecular dynamics simulations by focusing on classes of chemical reactions rather than specific molecular species. Time-resolved infra-red vibrational spectra were also computed from the molecular trajectories and compared to the chemical analysis. These spectra provide a time history of the species present in the system that can be compared directly with recent experiments at LANL.

  1. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  2. A method for predicting static-to-flight effects on coaxial jet noise

    NASA Astrophysics Data System (ADS)

    Bryce, William D.; Chinoy, Cyrus B.

    2016-08-01

    Previously-published work has provided a theoretical modelling of the jet noise from coaxial nozzle configurations in the form of component sources which can each be quantified in terms of modified single-stream jets. This modelling has been refined and extended to cover a wide range of the operating conditions of aircraft turbofan engines with separate exhaust flows, encompassing area ratios from 0.8 to 4. The objective has been to establish a basis for predicting the static-to-flight changes in the coaxial jet noise by applying single-stream flight effects to each of the sources comprising the modelling of the coaxial jet noise under static conditions. Relatively few experimental test points are available for validation although these do cover the full extent of the jet conditions and area ratios considered. The experimental results are limited in their frequency range by practical considerations but the static-to-flight changes in the third-octave SPLs are predicted to within a standard deviation of 0.4 dB although the complex effects of jet refraction and convection cause the errors to increase at low flight emission angles to the jet axis. The modelling also provides useful insights into the mechanisms involved in the generation of coaxial jet noise and has facilitated the identification of inadequacies in the experimental simulation of flight effects.

  3. Statistics of Static Stress Earthquake Triggering

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Ouillon, G.; Woessner, J.; Sornette, D.; Wiemer, S.

    2014-12-01

    is suppressed if ΔCFS<0. Our results rather suggest a spatially ubiquitous triggering process compatible with dynamic triggering, modulated by the sign and amplitude of the static stress field. We also conclude that static stress-based forecasts should not be performed over time scales much larger than τ, which is of the order of few hundred days.

  4. Variations of archived static-weight data and WIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.J.; Gillmann, R.; Kent, P.M.

    1998-12-01

    Using seven-card archived, static-weight and weigh-in-motion (WIM), truck data received by FHWA for 1966--1992, the authors examine the fluctuations of four fiducial weight measures reported at weight sites in the 50 states. The reduced 172 MB Class 9 (332000) database was prepared and ordered from 2 CD-ROMS with duplicate records removed. Front-axle weight and gross-vehicle weight (GVW) are combined conceptually by determining the front axle weight in four-quartile GVW categories. The four categories of front axle weight from the four GVW categories are combined in four ways. Three linear combinations are with fixed-coefficient fiducials and one is that optimal linearmore » combination producing the smallest standard deviation to mean value ratio. The best combination gives coefficients of variation of 2--3% for samples of 100 trucks, below the expected accuracy of single-event WIM measurements. Time tracking of data shows some high-variation sites have seasonal variations, or linear variations over the time-ordered samples. Modeling of these effects is very site specific but provides a way to reduce high variations. Some automatic calibration schemes would erroneously remove such seasonal or linear variations were they static effects.« less

  5. Synthesis, crystal structure and third-order non-linear optical property of heterobimetallic cluster compound [MoOICu 3S 3(2,2'-bipy) 2

    NASA Astrophysics Data System (ADS)

    Li, Yong; Lu, Jing; Xu, Jiqing; Cui, Xiaobing; Sun, Yinghua; Yang, Qingxin; Pan, Lingyun

    2004-03-01

    Nest-shaped cluster [MoOICu 3S 3(2,2'-bipy) 2] ( 1) was synthesized by the treatment of (NH 4) 2MoS 4, CuI, ( n-Bu) 4NI, and 2,2'-bipyridine (2,2'-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P2 1/ n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2'-bipy ligand. The non-linear optical (NLO) property of [MoOICu 3S 3(2,2'-bipy) 2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its α2 and n2 values were calculated as 6.2×10 -10 and -3.8×10 -17 m 2 W -1 in a 3.7×10 -4 M DMF solution.

  6. 30 CFR 18.26 - Static electricity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  7. 30 CFR 18.26 - Static electricity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  8. 30 CFR 18.26 - Static electricity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  9. 30 CFR 18.26 - Static electricity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  10. 30 CFR 18.26 - Static electricity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  11. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  12. Effect of revised high-heeled shoes on foot pressure and static balance during standing.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-04-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.

  13. Effect of revised high-heeled shoes on foot pressure and static balance during standing

    PubMed Central

    Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572

  14. Molecular Orientation in Dry and Hydrated Cellulose Fibers: A Coherent Anti-Stokes Raman Scattering Microscopy Study

    PubMed Central

    Zimmerley, Maxwell; Younger, Rebecca; Valenton, Tiffany; Oertel, David C.; Ward, Jimmie L.; Potma, Eric O.

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orientation of the methylene symmetric stretching vibration, the molecular alignment of cellulose microfibrils is found to be conserved on the micrometer scale. Whereas the molecular orientation in cotton shows modest variability along the fiber, the alignment of the cellulose units in rayon is highly consistent throughout the fiber. The ordered alignment is retained upon fiber hydration. Upon hydration of the cellulose fibers, an anisotropic electronic contribution is observed, which indicates an ordered incorporation of water molecules into the fiber structure. The third-order and second-order electronic polarizability of cellulose I are directed along the axis of the polyglucan chain. No second-order optical response is observed in cellulose II, supporting the antiparallel arrangement of the polyglucan chains in regenerated cellulose. PMID:20684644

  15. Anisotropy in Third-Order Nonlinear Optical Susceptibility of a Squarylium Dye in a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki

    2006-03-01

    A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.

  16. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    NASA Astrophysics Data System (ADS)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  17. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts.

    PubMed

    Pawłowska-Góral, Katarzyna; Kimsa-Dudek, Magdalena; Synowiec-Wojtarowicz, Agnieszka; Orchel, Joanna; Glinka, Marek; Gawron, Stanisław

    2016-08-01

    The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.

  18. Solvent effects on static and dynamic polarizability and hyperpolarizabilities of acetonitrile

    NASA Astrophysics Data System (ADS)

    Cammi, Roberto; Cossi, Maurizio; Mennucci, Benedetta; Tomasi, Jacopo

    1997-12-01

    An application of the theory recently developed to calculate SCF static and dynamic (hyper)polarizabilities of molecular solutes within the framework of the polarizable continuum model is presented here. The specific system under analysis is given by the acetonitrile molecule both in vacuo and in two different dilute solutions, water and benzene. The numerical results reported in the present paper are focused on an evaluation of the main changes produced by the presence of a solvent on the static and dynamic polarizability, α, and first and second hyperpolarizabilities, β and ρ, with respect to the corresponding quantities in the gas phase. The limits of the present calculations, and the prospects for their refinement, are discussed with a view to giving a preliminary hint and a first tool for future reliable prediction of the behavior of this kind of response function when the molecule is perturbed by the presence of a surrounding medium.

  19. On the Electromagnetic Momentum of Static Charge and Steady Current Distributions

    ERIC Educational Resources Information Center

    Gsponer, Andre

    2007-01-01

    Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…

  20. Third harmonic generation in air ambient and laser ablated carbon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravi Pratap, E-mail: ravips@iitk.ac.in; Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablatedmore » plume play a vital role in the observed third harmonic signals.« less

  1. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  2. Static stability and thermal wind in an atmosphere of variable composition Applications to Mars

    NASA Technical Reports Server (NTRS)

    Hess, S. L.

    1979-01-01

    Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.

  3. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2018-02-01

    We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.

  4. Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static

    PubMed Central

    Rowe, Fiona J.; Cheyne, Christopher P.; García-Fiñana, Marta; Noonan, Carmel P.; Howard, Claire; Smith, Jayne; Adeoye, Joanne

    2015-01-01

    Abstract Visual field assessment is an important clinical evaluation for eye disease and neurological injury. We evaluated Octopus semi-automated kinetic peripheral perimetry (SKP) and Humphrey static automated central perimetry for detection of neurological visual field loss in patients with pituitary disease. We carried out a prospective cross-sectional diagnostic accuracy study comparing Humphrey central 30-2 SITA threshold programme with a screening protocol for SKP on Octopus perimetry. Humphrey 24-2 data were extracted from 30-2 results. Results were independently graded for presence/absence of field defect plus severity of defect. Fifty patients (100 eyes) were recruited (25 males and 25 females), with mean age of 52.4 years (SD = 15.7). Order of perimeter assessment (Humphrey/Octopus first) and order of eye tested (right/left first) were randomised. The 30-2 programme detected visual field loss in 85%, the 24-2 programme in 80%, and the Octopus combined kinetic/static strategy in 100% of eyes. Peripheral visual field loss was missed by central threshold assessment. Qualitative comparison of type of visual field defect demonstrated a match between Humphrey and Octopus results in 58%, with a match for severity of defect in 50%. Tests duration was 9.34 minutes (SD = 2.02) for Humphrey 30-2 versus 10.79 minutes (SD = 4.06) for Octopus perimetry. Octopus semi-automated kinetic perimetry was found to be superior to central static testing for detection of pituitary disease-related visual field loss. Where reliant on Humphrey central static perimetry, the 30-2 programme is recommended over the 24-2 programme. Where kinetic perimetry is available, this is preferable to central static programmes for increased detection of peripheral visual field loss. PMID:27928344

  5. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  6. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  7. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2016-03-01

    I will present exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, these results are identical in all dimensions. Meaningful point particle limits are quite different, however. I will discuss how such limits are defined and evaluated, resulting in simple ``regularization algorithms'' which can be used in concrete calculations. In them, self-interaction is shown to be progressively less important in higher numbers of dimensions, generically competing in magnitude with increasingly high-order extended-body effects. Conversely, self-interaction effects can be relatively large in 1 + 1 and 2 + 1 dimensions. It will further be shown that there is considerable freedom to use different ``effective fields'' in the laws of motion. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces. However, the particular combinations of these quantities which are observable remain invariant under all possible field redefinitions.

  8. Are fixations in static natural scenes a useful predictor of attention in the real world?

    PubMed

    Foulsham, Tom; Kingstone, Alan

    2017-06-01

    Research investigating scene perception normally involves laboratory experiments using static images. Much has been learned about how observers look at pictures of the real world and the attentional mechanisms underlying this behaviour. However, the use of static, isolated pictures as a proxy for studying everyday attention in real environments has led to the criticism that such experiments are artificial. We report a new study that tests the extent to which the real world can be reduced to simpler laboratory stimuli. We recorded the gaze of participants walking on a university campus with a mobile eye tracker, and then showed static frames from this walk to new participants, in either a random or sequential order. The aim was to compare the gaze of participants walking in the real environment with fixations on pictures of the same scene. The data show that picture order affects interobserver fixation consistency and changes looking patterns. Critically, while fixations on the static images overlapped significantly with the actual real-world eye movements, they did so no more than a model that assumed a general bias to the centre. Remarkably, a model that simply takes into account where the eyes are normally positioned in the head-independent of what is actually in the scene-does far better than any other model. These data reveal that viewing patterns to static scenes are a relatively poor proxy for predicting real world eye movement behaviour, while raising intriguing possibilities for how to best measure attention in everyday life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Highly ordered molecular rotor matrix on a nanopatterned template: titanyl phthalocyanine molecules on FeO/Pt(111).

    PubMed

    Lu, Shuangzan; Huang, Min; Qin, Zhihui; Yu, Yinghui; Guo, Qinmin; Cao, Gengyu

    2018-08-03

    Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C 32 H 16 N 8 OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.

  10. A Multiscale Model for the Quasi-Static Thermo-Plastic Behavior of Highly Cross-Linked Glassy Polymers

    DOE PAGES

    Vu-Bac, N.; Bessa, M. A.; Rabczuk, Timon; ...

    2015-09-10

    In this paper, we present experimentally validated molecular dynamics predictions of the quasi- static yield and post-yield behavior for a highly cross-linked epoxy polymer under gen- eral stress states and for different temperatures. In addition, a hierarchical multiscale model is presented where the nano-scale simulations obtained from molecular dynamics were homogenized to a continuum thermoplastic constitutive model for the epoxy that can be used to describe the macroscopic behavior of the material. Three major conclusions were achieved: (1) the yield surfaces generated from the nano-scale model for different temperatures agree well with the paraboloid yield crite- rion, supporting previous macroscopicmore » experimental observations; (2) rescaling of the entire yield surfaces to the quasi-static case is possible by considering Argon’s theoretical predictions for pure compression of the polymer at absolute zero temperature; (3) nano- scale simulations can be used for an experimentally-free calibration of macroscopic con- tinuum models, opening new avenues for the design of materials and structures through multi-scale simulations that provide structure-property-performance relationships.« less

  11. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  12. Three Inexpensive Static-Electricity Demonstrations.

    ERIC Educational Resources Information Center

    Gore, Gordon R.; Gregg, William R.

    1992-01-01

    Describes demonstrations to (1) construct an inexpensive static electricity detector; (2) obtain an abundant supply of either negative or positive charge using household items; and (3) create static electricity using a Tesla coil or Van de Graaff generator. (MDH)

  13. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  14. Quasi-static evolution of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Longcope, D. W.; Sudan, R. N.

    1992-01-01

    A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.

  15. Development of Benchmark Examples for Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Kruger, Ronald

    2011-01-01

    The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall, the results are encouraging but further assessment for mixed-mode delamination is required.

  16. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE PAGES

    Wiecki, P.; Nandi, M.; Bohmer, Anna; ...

    2017-11-13

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  17. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Nandi, M.; Bohmer, Anna

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  18. Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, G.E.; Sparks, C.J.; Jiang, X.

    1997-09-01

    Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an ordermore » of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.« less

  19. Molecular velocimetry using stimulated Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Hillard, M. E.

    1984-01-01

    Molecular flow velocity of N2 was measured in a supersonic wind tunnel using inverse Raman spectroscopy. This technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counter-propagating (backward scattering). A retrometer system is employed to yield a vibration-free optical configuration which has the additional advantage of obtaining both the forward and backward scattered spectra simultaneously. The linebreadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the concept was performed in a supersonic wind tunnel and included: (1) measurements over the Mach number range 2.50 to 4.63; (2) static pressure measurements (at Mach 2.50) corresponding to a Reynolds number per foot range of 1 to 5 x 10 to the 6th power; and (3) measurements behind the shock wave of a flat plate model.

  20. Results of the recent precipitation static flight test program on the Navy P-3B antisubmarine aircraft

    NASA Technical Reports Server (NTRS)

    Whitaker, Mike

    1991-01-01

    Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.

  1. Should care homes adopt a static-led approach to pressure ulcer prevention?

    PubMed

    Keen, Delia Catherine

    A static-led approach refers to the provision of high-specification foam mattresses for the whole of a population at risk of pressure damage. Such mattresses have been found to reduce the risk of pressure ulceration and cost less overall than standard mattresses, even in populations where only 1 in 100 patients develops a pressure ulcer. Reduced pressure ulcer prevalence and reduced costs resulting from decreased expenditure on dynamic mattresses following the implementation of a static-led approach have been reported. Pressure ulcers cause pain, a reduced quality of life, loss of independence, depression and social isolation for those in whom they develop. Organizations are increasingly having to pay out large sums of money following litigation surrounding pressure ulcers. This article explains why NHS healthcare providers and private care organizations need to work together to consider implementing a static-led approach to pressure ulcer prevention within care homes in order to reduce pressure ulcer incidence cost-effectively within their local populations.

  2. Static and dynamic properties of two-dimensional Coulomb clusters.

    PubMed

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  3. Prediction of flyover jet noise spectra from static tests

    NASA Astrophysics Data System (ADS)

    Michel, U.; Michalke, A.

    A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.

  4. Appraising the risk matrix 2000 static sex offender risk assessment tool.

    PubMed

    Tully, Ruth J; Browne, Kevin D

    2015-02-01

    This critical appraisal explores the reliability and validity of the Risk Matrix 2000 static sex offender risk assessment tool that is widely used in the United Kingdom. The Risk Matrix 2000 has to some extent been empirically validated for use with adult male sex offenders; however, this review highlights that further research into the validity of this static tool with sex offender subgroups or types is necessary in order to improve practical utility. The Risk Matrix 2000 relies on static risk predictors, thus it is limited in scope. This article argues that the addition of dynamic items that have been shown to be predictive of sexual recidivism would further enhance the tool. The paper argues that adding dynamic risk items would fit better with a rehabilitative approach to sex offender risk management and assessment. This would also provide a means by which to effectively plan sex offender treatment and evaluate individual offenders' progress in treatment; however, difficulties remain in identifying and assessing dynamic risk factors of sexual offending and so further research is required. © The Author(s) 2013.

  5. Static anthropometric dimensions in a population of Iranian high school students: considering ethnic differences.

    PubMed

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Hafezi, Rahmatollah; Mostaghaci, Mehrdad; Davari, Mohammad Hossein

    2015-05-01

    Anthropometric dimensions of the end users should be measured in order to create a basis for manufacturing of different products. This study was designed to measure some static anthropometric dimensions in Iranian high school students, considering ethnic differences. Nineteen static anthropometric dimensions of high school students were measured and compared among different Iranian ethnicities (Fars, Turk, Kurd, Lor, Baluch, and Arab) and different genders. In this study, 9,476 subjects (4,703 boys and 4,773 girls) ages 15 to 18 years in six ethnicities were assessed. The difference among ethnicities was statistically significant for all dimensions (p values < .001 for each dimension). This study showed statistically significant differences in 19 static anthropometric dimensions among high school students regarding gender, age, and ethnicity. © 2014, Human Factors and Ergonomics Society.

  6. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE PAGES

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×10 9 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  7. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  8. Ultrafast frequency-selective optical switching based on thin self-assembled organic chromophoric films with a large second-order nonlinear response

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhu, Peiwang; Marks, Tobin J.; Ketterson, J. B.

    2002-09-01

    Thin films consisting of self-assembled chromophoric superlattices exhibit very large second-order nonlinear responses [chi](2). Using such films, a "static" diffraction grating is created by the interference of two coherent infrared beams from a pulsed yttritium-aluminum-garnet laser. This grating is used to switch the second-harmonic and third-harmonic "signal" beams (generated from the fundamental "pump" beam or mixed within the chromophoric superlattice) into different channels (directions). Ultrafast switching response as a function of the time overlap of the pumping beams is demonstrated. It is suggested that such devices can be used to spatially and temporally separate signal trains consisting of pulses having different frequencies and arrival times.

  9. How Does the Addition of a Third Ion Affect the Molecular Interactions and the Thermodynamic Properties of Acetate-Based Ionic Liquids?

    PubMed

    Otero, I; Lepre, L F; Dequidt, A; Husson, P; Costa Gomes, M F

    2017-10-19

    The effect of the addition of a third ion to the ionic liquid 1-butyl-3-methylimidazolium acetate [C 4 C 1 Im][OAc] was studied through the measurement of the enthalpy of mixing and of the excess molar volume of its mixtures with 1-butyl-3-methylimidazolium trifluoroacetate [C 4 C 1 Im][CF 3 CO 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 4 C 1 Im][NTf 2 ], and tetrabutylphosphonium acetate [P 4444 ][OAc]. Negative enthalpies of mixing (Δ mix H < 0) and positive excess molar volumes (V E > 0) were observed in all cases. The infrared and NMR studies of the pure ionic liquids and their mixtures show that the presence of a third ion with a weaker affinity with the common counterion contributes to prevailing the more favorable hydrogen-bond, herein always between the imidazolium cation and the acetate anion. Both radial and spatial distribution functions calculated by molecular simulation confirm this behavior. The remarkable enhancement of the viscosities of the [C 4 C 1 Im][OAc] + [P 4444 ][OAc] mixtures could be discussed in light of the calculated friction coefficients.

  10. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.

  11. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  12. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.

    PubMed

    Li, Shujuan; Schmidt, Burkhard

    2015-03-21

    The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE

  13. Static sign language recognition using 1D descriptors and neural networks

    NASA Astrophysics Data System (ADS)

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  14. Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets.

    PubMed

    Zhu, Dianwen; Li, Changqing

    2014-12-01

    Fluorescence molecular tomography (FMT) is a promising imaging modality and has been actively studied in the past two decades since it can locate the specific tumor position three-dimensionally in small animals. However, it remains a challenging task to obtain fast, robust and accurate reconstruction of fluorescent probe distribution in small animals due to the large computational burden, the noisy measurement and the ill-posed nature of the inverse problem. In this paper we propose a nonuniform preconditioning method in combination with L (1) regularization and ordered subsets technique (NUMOS) to take care of the different updating needs at different pixels, to enhance sparsity and suppress noise, and to further boost convergence of approximate solutions for fluorescence molecular tomography. Using both simulated data and phantom experiment, we found that the proposed nonuniform updating method outperforms its popular uniform counterpart by obtaining a more localized, less noisy, more accurate image. The computational cost was greatly reduced as well. The ordered subset (OS) technique provided additional 5 times and 3 times speed enhancements for simulation and phantom experiments, respectively, without degrading image qualities. When compared with the popular L (1) algorithms such as iterative soft-thresholding algorithm (ISTA) and Fast iterative soft-thresholding algorithm (FISTA) algorithms, NUMOS also outperforms them by obtaining a better image in much shorter period of time.

  15. Third-harmonic generation of a laser-driven quantum dot with impurity

    NASA Astrophysics Data System (ADS)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  16. Results of application of automatic computation of static corrections on data from the South Banat Terrain

    NASA Astrophysics Data System (ADS)

    Milojević, Slavka; Stojanovic, Vojislav

    2017-04-01

    Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface

  17. A clock steering method: using a third-order type 3 DPLL equivalent to a Kalman filter with a delay

    NASA Astrophysics Data System (ADS)

    Wu, Yiwei; Gong, Hang; Zhu, Xiangwei; Ou, Gang

    2015-12-01

    In this paper we propose a new clock steering method, which uses a third-order type 3 digital phase locked loop (DPLL) which is equivalent to a Kalman filter with a delay. A general overview of the theoretical framework is described in detail including the transfer functions, the structure and control values, the specifications, and the approach to choosing a parameter. Simulations show that the performance of the time and frequency steering errors and the frequency stability are quite desirable. Comparing with traditional clock steering methods, it is easier to work with just one parameter. The DPLL method satisfies the requirements of generating a local representation of universal time coordinated and the system time of a global navigation satellite system.

  18. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation

    PubMed Central

    Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin

    2016-01-01

    Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425

  19. An Efficient Location Verification Scheme for Static Wireless Sensor Networks.

    PubMed

    Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok

    2017-01-24

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

  20. An Efficient Location Verification Scheme for Static Wireless Sensor Networks

    PubMed Central

    Kim, In-hwan; Kim, Bo-sung; Song, JooSeok

    2017-01-01

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors. PMID:28125007

  1. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  2. Application of Benchmark Examples to Assess the Single and Mixed-Mode Static Delamination Propagation Capabilities in ANSYS

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.

  3. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ambient atmospheric static pressure is not altered when the rotorcraft encounters icing conditions. An... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static pressure systems. 27.1325 Section 27... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence...

  4. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 25.1325 Section 25...

  5. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 25.1325 Section 25...

  6. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 25.1325 Section 25...

  7. 14 CFR 25.1325 - Static pressure systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented to the outside... or other foreign matter, and that the correlation between air pressure in the static pressure system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 25.1325 Section 25...

  8. Static Holes in Geometrically Frustrated Bow Tie Ladder

    NASA Astrophysics Data System (ADS)

    Martins, George; Brenig, Wolfram

    2007-03-01

    Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).

  9. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    PubMed

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  10. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  11. Development of Benchmark Examples for Quasi-Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  12. Aftershocks halted by static stress shadows

    USGS Publications Warehouse

    Toda, Shinji; Stein, Ross S.; Beroza, Gregory C.; Marsan, David

    2012-01-01

    Earthquakes impart static and dynamic stress changes to the surrounding crust. Sudden fault slip causes small but permanent—static—stress changes, and passing seismic waves cause large, but brief and oscillatory—dynamic—stress changes. Because both static and dynamic stresses can trigger earthquakes within several rupture dimensions of a mainshock, it has proven difficult to disentangle their contributions to the triggering process1–3. However, only dynamic stress can trigger earthquakes far from the source4,5, and only static stress can create stress shadows, where the stress and thus the seismicity rate in the shadow area drops following an earthquake6–9 . Here we calculate the stress imparted by the magnitude 6.1 Joshua Tree and nearby magnitude 7.3 Landers earthquakes that occurred in California in April and June 1992, respectively, and measure seismicity through time. We show that, where the aftershock zone of the first earthquake was subjected to a static stress increase from the second, the seismicity rate jumped. In contrast, where the aftershock zone of the first earthquake fell under the stress shadow of the second and static stress dropped, seismicity shut down. The arrest of seismicity implies that static stress is a requisite element of spatial clustering of large earthquakes and should be a constituent of hazard assessment.

  13. Short-term predictive validity of the static-99 and static-99-R for indigenous and nonindigenous Australian sexual offenders.

    PubMed

    Smallbone, Stephen; Rallings, Mark

    2013-06-01

    Actuarial risk assessment (Static-99 and Static-99-R) scores were obtained for 399 Australian adult sexual offenders who were subsequently released from prison and followed up with searches of police arrest records (mean follow-up period = 29 months; range = 15-53 months). Indigenous offenders (n = 67; 16.8%) scored significantly higher on both the Static-99 (M = 4.04 vs. 2.89, p < .001) and Static-99-R (M = 3.72 vs. 2.22, p < .001), were more than twice as likely to be arrested for sexual offenses (9.0% vs. 4.1%, ns), and were significantly more likely to be arrested for nonsexual violent (28.4% vs. 1.9%, p < .001), any violent (including sexual; 37% vs. 5.9%, p < .001), and any offenses (58.2% vs. 21.6%, p < .001). For the combined groups, predictive accuracy of both instruments was comparable to results reported elsewhere. Predictive accuracy of the Static-99 was similar for indigenous and nonindigenous offenders. The Static-99-R was only marginally predictive of any violent recidivism (AUC = .65, 95% CI = [.52, .79]), and did not predict sexual (AUC = .61, 95% CI = [.45, .77]) or nonsexual violent recidivism (AUC = .65, 95% CI = [.48, .78]), for indigenous offenders. Higher risk scores, indigenous race, and unsupervised release all contributed unique variance to any violent recidivism. Results suggest that the Static-99 may be appropriate for assessing Australian indigenous sexual offenders, but more research is needed to test the validity of the Static-99-R for this population. We conclude that practitioners should consider the potential effects of racial differences and postrelease factors, as well as static risk factors, in their assessments.

  14. Nitro stretch probing of a single molecular layer to monitor shock compression with picosecond time resolution

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2012-03-01

    Ultrafast shock compression vibrational spectroscopy experiments with molecular monolayers provide atomic-scale time and space resolution, which enables critical testing of reactive molecular simulations. Since the origination of this project, we have greatly improved the ability to detect shocked monolayers by nonlinear coherent vibrational spectroscopy with nonresonant suppression. In this study, we show new results on a nitroaromatic monolayer, where the nitro symmetric stretch is probed. A small frequency blue-shift under shock conditions compared to measurements with static high pressure shows the shock is ~1 GPa. The ability to flash-preheat the monolayer by several hundred K is demonstrated. In order to observe shock monolayer chemistry in real time, along with pre-heating, the shock pressure needs to be increased and methods to do so are described.

  15. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  16. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static pressure systems. 27.1325 Section 27...

  17. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static pressure systems. 27.1325 Section 27...

  18. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static pressure systems. 27.1325 Section 27...

  19. 14 CFR 27.1325 - Static pressure systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure systems. (a) Each instrument with static air case connections must be vented so that the influence... located in such manner that the correlation between air pressure in the static pressure system and true... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static pressure systems. 27.1325 Section 27...

  20. Production against static electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shteiner, A.L.; Minaev, G.S.; Shatkov, O.P.

    1978-01-01

    Coke industry shops process electrifiable, highly inflammable and explosive substances (benzene, toluene, xylenes, sulfur, coal dust, and coke-oven gas). The electrification of those materials creates a danger of buildup of static electricity charges in them and on the surface of objects interacting with them, followed by an electrical discharge which may cause explosion, fire, or disruption of the technological process. Some of the regulations for protection against static electricity do not reflect modern methods of static electricity control. The regulations are not always observed by workers in the plant services. The main means of protection used to remove static electricitymore » charges in grounding. In many cases it completely drains the charge from the surface of the electrifiable bodies. However, in the processing of compounds with a high specific volumetric electrical resistence grounding is insufficient, since it does not drain the charge from the interior of the substance. Gigh adsorption capacity) are generally met by brown coal low-temperature ompared with predictions using the hourly computer program. The concept of a lumped thermal network for predicting heat losses from in-ground heat storage tanks, developed earlier in the project, has beethe cased-hole log data from various companies and additional comparison factors were calculated for the cased-hole log data. These comparison factors allow for some quantification of these uncalibrated log data.« less

  1. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  2. How Static is the Statics Classroom? An investigation into how innovations, specifically Research-Based Instructional Strategies, are adopted into the Statics Classroom

    NASA Astrophysics Data System (ADS)

    Cutler, Stephanie Leigh

    The purpose of this dissertation is to investigate how educational research, specifically Research-Based Instructional Strategies (RBIS), is adopted by education practice, specifically within the engineering Statics classroom. Using a systematic approach, changes in classroom teaching practices were investigated from the instructors' perspective. Both researchers and practitioners are included in the process, combining efforts to improve student learning, which is a critical goal for engineering education. The study is divided into 3 stages and each is discussed in an individual manuscript. Manuscript 1 provides an assessment of current teaching practices; Manuscript 2 explores RBIS use by Statics instructors and perceived barriers of adoption; and Manuscript 3 evaluates adoption using Fidelity of Implementation. A common set of concurrent mixed methods was used for each stage of this study. A quantitative national survey of Statics instructors (n =166) and 18 qualitative interviews were conducted to examine activities used in the Statics classroom and familiarity with nine RBIS. The results of this study show that lecturing is the most common activity throughout Statics classrooms, but is not the only activity. Other common activities included working examples and students working on problems individually and in groups. As discussed by the interview participants, each of Rogers' characteristics influenced adoption for different reasons. For example, Complexity (level of difficulty with implementation of an RBIS) was most commonly identified as a barrier. His study also evaluated the Fidelity of Implementation for each RBIS and found it to be higher for RBIS that were less complex (in terms of the number of critical components). Many of the critical components (i.e. activities required for implementation, as described in the literature) were found to statistically distinguish RBIS users and non-users. This dissertation offers four contributions: (1) an

  3. Analysis of muscle activation in lower extremity for static balance.

    PubMed

    Chakravarty, Kingshuk; Chatterjee, Debatri; Das, Rajat Kumar; Tripathy, Soumya Ranjan; Sinha, Aniruddha

    2017-07-01

    Balance plays an important role for human bipedal locomotion. Degeneration of balance control is prominent in stroke patients, elderly adults and even for majority of obese people. Design of personalized balance training program, in order to strengthen muscles, requires the analysis of muscle activation during an activity. In this paper we have proposed an affordable and portable approach to analyze the relationship between the static balance strategy and activation of various lower extremity muscles. To do that we have considered Microsoft Kinect XBox 360 as a motion sensing device and Wii balance board for measuring external force information. For analyzing the muscle activation pattern related to static balance, participants are asked to do the single limb stance (SLS) exercise on the balance board and in front of the Kinect. Static optimization to minimize the overall muscle activation pattern is carried out using OpenSim, which is an open-source musculoskeletal simulation software. The study is done on ten normal and ten obese people, grouped according to body mass index (BMI). Results suggest that the lower extremity muscles like biceps femoris, psoas major, sartorius, iliacus play the major role for both maintaining the balance using one limb as well as maintaining the flexion of the other limb during SLS. Further investigations reveal that the higher muscle activations of the flexed leg for normal group demonstrate higher strength. Moreover, the lower muscle activation of the standing leg for normal group demonstrate more headroom for the biceps femoris-short-head and psoas major to withstand the load and hence have better static balance control.

  4. Programed dynamical ordering in self-organization processes of a nanocube: a molecular dynamics study.

    PubMed

    Harada, Ryuhei; Mashiko, Takako; Tachikawa, Masanori; Hiraoka, Shuichi; Shigeta, Yasuteru

    2018-04-04

    Self-organization processes of a gear-shaped amphiphile molecule (1) to form a hexameric structure (nanocube, 16) were inferred from sequential dissociation processes by using molecular dynamics (MD) simulations. Our MD study unveiled that programed dynamic ordering exists in the dissociation processes of 16. According to the dissociation processes, it is proposed that triple π-stacking among three 3-pyridyl groups and other weak molecular interactions such as CH-π and van der Waals interactions, some of which arise from the solvophobic effect, were sequentially formed in stable and transient oligomeric states in the self-organization processes, i.e.12, 13, 14, and 15. By subsequent analyses on structural stabilities, it was found that 13 and 14 are stable intermediate oligomers, whereas 12 and 15 are transient ones. Thus, the formation of 13 from three monomers and of 16 from 14 and two monomers via corresponding transients is time consuming in the self-assembly process.

  5. Mass Communications in the Third World: Some Ethical Considerations.

    ERIC Educational Resources Information Center

    Lent, John A.

    In the past five years, unprecedented discussion and analysis have been focused on mass media in the third world. Common topics include development journalism, the New Information Order, cultural invasion and exchange, and ruralization of media. Ethical considerations for first world involvement in third world media have arisen in several areas.…

  6. Static Orbits in Rotating Spacetimes

    NASA Astrophysics Data System (ADS)

    Collodel, Lucas G.; Kleihaus, Burkhard; Kunz, Jutta

    2018-05-01

    We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes, hairy black holes, and Kerr-Newman solutions.

  7. On the relationship between ontogenetic and static allometry.

    PubMed

    Pélabon, Christophe; Bolstad, Geir H; Egset, Camilla K; Cheverud, James M; Pavlicev, Mihaela; Rosenqvist, Gunilla

    2013-02-01

    Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.

  8. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    NASA Astrophysics Data System (ADS)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  9. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    ERIC Educational Resources Information Center

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  10. Intrinsic rippling enhances static non-reciprocity in a graphene metamaterial.

    PubMed

    Ho, Duc Tam; Park, Harold S; Kim, Sung Youb

    2018-01-18

    In mechanical systems, Maxwell-Betti reciprocity means that the displacement at point B in response to a force at point A is the same as the displacement at point A in response to the same force applied at point B. Because the notion of reciprocity is general, fundamental, and is operant for other physical systems like electromagnetics, acoustics, and optics, there is significant interest in understanding systems that are not reciprocal, or exhibit non-reciprocity. However, most studies on non-reciprocity have occurred in bulk-scale structures for dynamic problems involving time reversal symmetry. As a result, little is known about the mechanisms governing static non-reciprocal responses, particularly in atomically-thin two-dimensional materials like graphene. Here, we use classical atomistic simulations to demonstrate that out-of-plane ripples, which are intrinsic to graphene, enable significant, multiple orders of magnitude enhancements in the statically non-reciprocal response of graphene metamaterials. Specifically, we find that a striking interplay between the ripples and the stress fields that are induced in the metamaterials due to their geometry impacts the displacements that are transmitted by the metamaterial, thus leading to a significantly enhanced static non-reciprocal response. This study thus demonstrates the potential of two-dimensional mechanical metamaterials for symmetry-breaking applications.

  11. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  12. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    PubMed

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  13. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications

    PubMed Central

    Behzadi, Kobra; Baghelani, Masoud

    2013-01-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504

  14. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  15. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    PubMed Central

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  16. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    PubMed

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  17. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  18. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast.

    PubMed

    Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2017-12-29

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  19. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  20. Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Casotto, S.

    2009-07-01

    Four widely used algorithms for the computation of the Earth’s gravitational potential and its first-, second- and third-order gradients are examined: the traditional increasing degree recursion in associated Legendre functions and its variant based on the Clenshaw summation, plus the methods of Pines and Cunningham-Metris, which are free from the singularities that distinguish the first two methods at the geographic poles. All four methods are reorganized with the lumped coefficients approach, which in the cases of Pines and Cunningham-Metris requires a complete revision of the algorithms. The characteristics of the four methods are studied and described, and numerical tests are performed to assess and compare their precision, accuracy, and efficiency. In general the performance levels of all four codes exhibit large improvements over previously published versions. From the point of view of numerical precision, away from the geographic poles Clenshaw and Legendre offer an overall better quality. Furthermore, Pines and Cunningham-Metris are affected by an intrinsic loss of precision at the equator and suffer from additional deterioration when the gravity gradients components are rotated into the East-North-Up topocentric reference system.