Science.gov

Sample records for molecular weight fgf-2

  1. Quantification of a Non-conventional Protein Secretion: The Low-Molecular-Weight FGF-2 Example.

    PubMed

    Arcondéguy, Tania; Touriol, Christian; Lacazette, Eric

    2016-01-01

    Quantification of secreted factors is most often measured with enzyme-linked immunosorbent assay (ELISA), Western Blot, or more recently with antibody arrays. However, some of these, like low-molecular-weight fibroblast growth factor-2 (LMW FGF-2; the 18 kDa form), exemplify a set of secreted but almost non-diffusible molecular actors. It has been proposed that phosphorylated FGF-2 is secreted via a non-vesicular mechanism and that heparan sulfate proteoglycans function as extracellular reservoir but also as actors for its secretion. Heparan sulfate is a linear sulfated polysaccharide present on proteoglycans found in the extracellular matrix or anchored in the plasma membrane (syndecan). Moreover the LMW FGF-2 secretion appears to be activated upon FGF-1 treatment. In order to estimate quantification of such factor export across the plasma membrane, technical approaches are presented (evaluation of LMW FGF-2: (1) secretion, (2) extracellular matrix reservoir, and (3) secretion modulation by surrounding factors) and the importance of such procedures in the comprehension of the biology of these growth factors is underlined.

  2. The influence of FGF2 high molecular weight (HMW) isoforms in the development of cardiac ischemia-reperfusion injury

    PubMed Central

    Liao, Siyun; Bodmer, Janet R.; Azhar, Mohamad; Newman, Gilbert; Coffin, J. Douglas; Doetschman, Thomas; Schultz, Jo El J.

    2010-01-01

    Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low [LMW] and high molecular weight [HMW]), which are localized to different cellular compartments, indicating unique biological activity. We previously showed that the LMW isoform is important in protecting the heart from myocardial dysfunction associated with ischemia-reperfusion (I/R) injury, but the roles of the HMW isoforms remain unknown. To elucidate the role of HMW isoforms in I/R and cardioprotection, hearts from novel mouse models,in which the murine FGF2 HMWs are knocked out (HMWKO) or the human FGF2 24 kDa HMW isoform is overexpressed (HMW Tg) and their wildtype (Wt) or non-transgenic (NTg) cohorts were subjected to an ex vivo work-performing heart model of I/R. There was a significant improvement in post-ischemic recovery of cardiac function in HMWKO hearts (76±5%, p<0.05) compared to Wt hearts (55±5%), with a corresponding decrease in HMW Tg function (line 20: 38±6% and line 28: 33±4%, p<0.05) compared to non-transgenic hearts (68±9%). FGF2 LMW isoform was secreted from Wt and HMWKO hearts during I/R, and a FGF receptor (FGFR) inhibitor, PD173074 caused a decrease in cardiac function when administered in I/R in Wt and FGF2 HMWKO hearts (p<0.05), indicating that FGFR is involved in FGF2 LMW isoform's biological effect in ischemia-reperfusion injury. Moreover, overexpression of HMW isoform reduced FGFR1 phosphorylation/activation with no further decrease in the phosphorylation state in the presence of the FGFR inhibitor. Overall, our data indicate that HMW isoforms have a detrimental role in the development of post-ischemic myocardial dysfunction. PMID:20116383

  3. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    PubMed

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  4. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    SciTech Connect

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas Auguste, Patrick

    2008-12-10

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.

  5. Radiolabeled (111)In-FGF-2 Is Suitable for In Vitro/Ex Vivo Evaluations and In Vivo Imaging.

    PubMed

    Moscaroli, Alessandra; Jones, Gabriel; Lühmann, Tessa; Meinel, Lorenz; Wälti, Stephanie; Blanc, Alain; Fischer, Eliane; Hilbert, Manuel; Schibli, Roger; Béhé, Martin

    2017-03-06

    Fibroblast growth factor-2 (FGF-2) is a potent modulator of cell growth and regulation, with improper FGF-2 signaling being involved in impaired responses to injury or even cancer. Therefore, the exploitation of FGF-2 as a therapeutic drives the prerequisite for effective insight into drug disposition kinetics. In this article, we present an (111)In-radiolabeled FGF-2 derivative for noninvasive imaging in small animals deploying single photon emission tomography (SPECT). (111)In-FGF-2 is equally well suitable for in vitro and ex vivo investigations as (125)I-FGF-2. Furthermore, (111)In-FGF-2 permits the performance of in vivo imaging, for example for the analysis of FGF-2 containing pharmaceutical formulations in developmental or preclinical stages. (111)In-FGF-2 had affinity for the low-molecular-weight heparin enoxaparin identical to that of unlabeled FGF-2 (Kd: 0.6 ± 0.07 μM and 0.33 ± 0.03 μM, respectively) as assessed by isothermal titration calorimetry. The binding of (111)In-FGF-2 to heparan sulfate proteoglycans (HPSGs) and the biological activity were comparable to those of unlabeled FGF-2, with EC50 values of 12 ± 2 pM and 25 ± 6 pM, respectively. In vivo biodistribution in healthy nude mice indicated a predominant accumulation of (111)In-FGF-2 in filtering organs and minor uptake in the retina and the salivary and pituitary glands, which was confirmed by SPECT imaging. Therefore, (111)In-FGF-2 is a valid tracer for future noninvasive animal imaging of FGF-2 in pharmaceutical development.

  6. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    PubMed

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  7. Particle irradiation induces FGF2 expression in normal human lens cells

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.

    2000-01-01

    Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.

  8. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    PubMed

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features.

  9. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies

    PubMed Central

    Akl, Mohamed R.; Nagpal, Poonam; Ayoub, Nehad M.; Tai, Betty; Prabhu, Sathyen A.; Capac, Catherine M.; Gliksman, Matthew; Goy, Andre; Suh, K. Stephen

    2016-01-01

    Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies. PMID:27007053

  10. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2.

    PubMed

    Rumpel, R; Baron, O; Ratzka, A; Schröder, M-L; Hohmann, M; Effenberg, A; Claus, P; Grothe, C

    2016-02-09

    Fibroblast growth factors (FGFs) regulate development and maintenance, and reduce vulnerability of neurons. FGF-2 is essential for survival of midbrain dopaminergic (DA) neurons and is responsible for their dysplasia and disease-related degeneration. We previously reported that FGF-2 is involved in adequate forebrain (FB) target innervation by these neurons in an organotypic co-culture model. It remains unclear, how this ex-vivo phenotype relates to the in vivo situation, and which FGF-related signaling pathway is involved in this process. Here, we demonstrate that lack of FGF-2 results in an increased volume of the striatal target area in mice. We further add evidence that the low molecular weight (LMW) FGF-2 isoform is responsible for this phenotype, as this isoform is predominantly expressed in the embryonic ventral midbrain (VM) as well as in postnatal striatum (STR) and known to act via canonical transmembrane FGF receptor (FGFR) activation. Additionally, we confirm that the phenotype with an enlarged FB-target area by DA neurons can be mimicked in an ex-vivo explant model by inhibiting the canonical FGFR signaling, which resulted in decreased extracellular signal-regulated kinase (ERK) activation, while AKT activation remained unchanged.

  11. LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation.

    PubMed

    Menz, Clementine; Parsi, Mahroo K; Adams, Julian R J; Sideek, Mohamed A; Kopecki, Zlatko; Cowin, Allison J; Gibson, Mark A

    2015-01-01

    Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) belongs to the fibrillin-LTBP superfamily of extracellular matrix proteins. LTBPs and fibrillins are involved in the sequestration and storage of latent growth factors, particularly transforming growth factor β (TGF-β), in tissues. Unlike other LTBPs, LTBP-2 does not covalently bind TGF-β, and its molecular functions remain unclear. We are screening LTBP-2 for binding to other growth factors and have found very strong saturable binding to fibroblast growth factor-2 (FGF-2) (Kd = 1.1 nM). Using a series of recombinant LTBP-2 fragments a single binding site for FGF-2 was identified in a central region of LTBP-2 consisting of six tandem epidermal growth factor-like (EGF-like) motifs (EGFs 9-14). This region was also shown to contain a heparin/heparan sulphate-binding site. FGF-2 stimulation of fibroblast proliferation was completely negated by the addition of 5-fold molar excess of LTBP-2 to the assay. Confocal microscopy showed strong co-localisation of LTBP-2 and FGF-2 in fibrotic keloid tissue suggesting that the two proteins may interact in vivo. Overall the study indicates that LTBP-2 is a potent inhibitor of FGF-2 that may influence FGF-2 bioactivity during wound repair particularly in fibrotic tissues.

  12. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  13. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  14. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    PubMed

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test.

  15. Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite.

    PubMed

    de la Concepción Matesanz, María; Feito, María José; Ramírez-Santillán, Cecilia; Lozano, Rosa María; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María-Teresa

    2012-04-01

    Therapeutic strategies for bone regeneration involve the selection of suitable biomaterials, growth factors, and cell types to mimic the cellular microenvironment where molecular and mechanical signals control the reconstruction of bone tissue. The immobilization of basic fibroblast growth factor (FGF-2) on powdered silicon-substituted hydroxyapatite (Si-HA) allows to prepare a biofunctional biomaterial able to interact with bone cells in a very specific way. The biological activity of FGF-2/Si-HA, evaluated in Saos-2 osteoblasts and MC3T3-E1 preosteoblasts through the PLCγ and MAPK/ERK signal transduction pathways, shows that FGF-2 immobilized on Si-HA provides the right signals to cells stimulating crucial intracellular mechanisms of osteoblast proliferation and differentiation.

  16. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    PubMed

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  17. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia.

    PubMed

    Cerliani, Juan P; Giulianelli, Sebastián; Sahores, Ana; Wargon, Victoria; Gongora, Adrian; Baldi, Alberto; Molinolo, Alfredo; Lamb, Caroline E; Lanari, Claudia

    2010-01-01

    We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2) and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA) on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR)-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  18. PLAP-1/Asporin Positively Regulates FGF-2 Activity.

    PubMed

    Awata, T; Yamada, S; Tsushima, K; Sakashita, H; Yamaba, S; Kajikawa, T; Yamashita, M; Takedachi, M; Yanagita, M; Kitamura, M; Murakami, S

    2015-10-01

    PLAP-1 is an extracellular matrix protein that is predominantly expressed in the periodontal ligament within periodontal tissue. It was previously revealed that PLAP-1 negatively regulates bone morphogenetic protein 2 and transforming growth factor β activity through direct interactions. However, the interaction between PLAP-1 and other growth factors has not been defined. Here, we revealed that PLAP-1 positively regulates the activity of fibroblast growth factor 2 (FGF-2), a critical growth factor in tissue homeostasis and repair. In this study, we isolated mouse embryonic fibroblasts (MEFs) from Plap-1(-/-) mice generated in our laboratory. Interestingly, Plap-1(-/-) MEFs exhibited enhanced responses to bone morphogenetic protein 2 but defective responses to FGF-2, and Plap-1 transfection into Plap-1(-/-) MEFs rescued these defective responses. In addition, binding assays revealed that PLAP-1 promotes FGF-2-FGF receptor 1 (FGFR1) complex formation by direct binding to FGF-2. Immunocytochemistry analyses revealed colocalization of PLAP-1 and FGF-2 in wild-type MEFs and reduced colocalization of FGF-2 and FGFR1 in Plap-1(-/-) MEFs compared with wild-type MEFs. Taken together, PLAP-1 positively regulates FGF-2 activity through a direct interaction. Extracellular matrix-growth factor interactions have considerable effects; thus, this approach may be useful in several regenerative medicine applications.

  19. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  20. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  1. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult

    PubMed Central

    Aimi, Fabio; Georgiopoulou, Stavroula; Kalus, Ina; Lehner, Fabienne; Hegglin, Alica; Limani, Përparim; Gomes de Lima, Vinicius; A. Rüegg, Markus; Hall, Michael N.; Lindenblatt, Nicole; Haas, Elvira; Battegay, Edouard J.; Humar, Rok

    2015-01-01

    To explore the general requirement of endothelial mTORC2 during embryonic and adolescent development, we knocked out the essential mTORC2 component Rictor in the mouse endothelium in the embryo, during adolescence and in endothelial cells in vitro. During embryonic development, Rictor knockout resulted in growth retardation and lethality around embryonic day 12. We detected reduced peripheral vascularization and delayed ossification of developing fingers, toes and vertebrae during this confined midgestational period. Rictor knockout did not affect viability, weight gain, and vascular development during further adolescence. However during this period, Rictor knockout prevented skin capillaries to gain larger and heterogeneously sized diameters and remodeling into tortuous vessels in response to FGF2. Rictor knockout strongly reduced extensive FGF2-induced neovascularization and prevented hemorrhage in FGF2-loaded matrigel plugs. Rictor knockout also disabled the formation of capillary-like networks by FGF2-stimulated mouse aortic endothelial cells in vitro. Low RICTOR expression was detected in quiescent, confluent mouse aortic endothelial cells, whereas high doses of FGF2 induced high RICTOR expression that was associated with strong mTORC2-specific protein kinase Cα and AKT phosphorylation. We demonstrate that the endothelial FGF-RICTOR axis is not required during endothelial quiescence, but crucial for midgestational development and sustained and extensive neovascularization in the adult. PMID:26635098

  2. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  3. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  4. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  5. FGF-2 induces neuronal death through upregulation of system xc-.

    PubMed

    Liu, Xiaoqian; Albano, Rebecca; Lobner, Doug

    2014-02-14

    The cystine/glutamate antiporter (system xc-) transports cystine into cell in exchange for glutamate. Fibroblast growth factor-2 (FGF-2) upregulates system xc- selectively on astrocytes, which leads to increased cystine uptake, the substrate for glutathione production, and increased glutamate release. While increased intracellular glutathione can limit oxidative stress, the increased glutamate release can potentially lead to excitotoxicity to neurons. To test this hypothesis, mixed neuronal and glial cortical cultures were treated with FGF-2. Treatment with FGF-2 for 48 h caused a significant neuronal death in these cultures. Cell death was not observed in neuronal-enriched cultures, or astrocyte-enriched cultures, suggesting the toxicity was the result of neuron-glia interaction. Blocking system xc- eliminated the neuronal death as did the AMPA/kainate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), but not the NMDA receptor antagonist memantine. When cultures were exposed directly to glutamate, both NBQX and memantine blocked the neuronal toxicity. The mechanism of this altered profile of glutamate receptor mediated toxicity by FGF-2 is unclear. The selective calcium permeable AMPA receptor antagonist 1-naphthyl acetyl spermine (NASPM) failed to offer protection. The most likely explanation for the results is that 48 h FGF-2 treatment induces AMPA/kainate receptor toxicity through increased system xc- function resulting in increased release of glutamate. At the same time, FGF-2 alters the sensitivity of the neurons to glutamate toxicity in a manner that promotes selective AMPA/kainate receptor mediated toxicity.

  6. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  7. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  8. PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING

    PubMed Central

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-01-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling. PMID:23880610

  9. PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting.

    PubMed

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-10-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2(-/-) endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling.

  10. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype.

    PubMed

    Zhou, Xiaopeng; Tao, Yiqing; Wang, Jin; Liang, Chengzhen; Wang, Jun; Li, Hao; Chen, Qixin

    2015-02-01

    Human mesenchymal stem cells (MSCs) are reported to have the capability of differentiating towards nucleus pulposus (NP)-like phenotype under specific culture conditions. So far, the effects of fibroblast growth factor (FGF)-2 and the cocktail effects of transforming growth factor (TGF)-beta and FGF-2 on MSCs remain unclear. Therefore, we designed this study to clarify these effects. MSCs were cultured in conditioned medium containing FGF-2 or TGF-beta/FGF-2, and compared with basal or TGF-beta medium. The groups with FGF-2 showed the increase of cell proliferation. Functional gene markers and novel NP markers decreased in FGF-2 group, together with functional protein expression. Pho-ERK1/2 and pho-Smad3 differed significantly in the two conditioned groups. All these results suggest FGF-2 promotes MSCs' proliferation, synergistically with TGF-beta. However, FGF-2 plays a negative role in cartilage homeostasis. We also demonstrate that FGF-2 has no positive effect in differentiating MSCs into NP-like cells, but hinders the acceleration effect of TGF-beta.

  11. Molecular characteristics of some commercial high-molecular-weight hyaluronans.

    PubMed

    Soltés, L; Mendichi, R; Lath, D; Mach, M; Bakos, D

    2002-10-01

    Commercially available hyaluronan (HA) samples were investigated by the method of size exclusion chromatography (SEC). The fractions eluted from the SEC column were on-line molecularly characterized by using a multi-angle laser light scattering (MALLS) photometer. Along with the SEC-MALLS technique, the high-molecular-weight HA biopolymers were (off-line) analyzed by capillary viscometry.

  12. Average molecular weight of surfactants in aerosols

    NASA Astrophysics Data System (ADS)

    Latif, M. T.; Brimblecombe, P.

    2007-09-01

    Surfactants in atmospheric aerosols determined as methylene blue active substances (MBAS) and ethyl violet active substances (EVAS). The MBAS and EVAS concentrations can be correlated with surface tension as determined by pendant drop analysis. The effect of surface tension was more clearly indicated in fine mode aerosol extracts. The concentration of MBAS and EVAS was determined before and after ultrafiltration analysis using AMICON centrifuge tubes that define a 5000 Da (5 K Da) nominal molecular weight fraction. Overall, MBAS and to a greater extent EVAS predominates in fraction with molecular weight below 5 K Da. In case of aerosols collected in Malaysia the higher molecular fractions tended to be a more predominant. The MBAS and EVAS are correlated with yellow to brown colours in aerosol extracts. Further experiments showed possible sources of surfactants (e.g. petrol soot, diesel soot) in atmospheric aerosols to yield material having molecular size below 5 K Da except for humic acid. The concentration of surfactants from these sources increased after ozone exposure and for humic acids it also general included smaller molecular weight surfactants.

  13. API5 confers cancer stem cell-like properties through the FGF2-NANOG axis

    PubMed Central

    Song, K-H; Cho, H; Kim, S; Lee, H-J; Oh, S J; Woo, S R; Hong, S-O; Jang, H S; Noh, K H; Choi, C H; Chung, J-Y; Hewitt, S M; Kim, J-H; Son, M; Kim, S-H; Lee, B I; Park, H-C; Bae, Y-K; Kim, T W

    2017-01-01

    Immune selection drives the evolution of tumor cells toward an immune-resistant and cancer stem cell (CSC)-like phenotype. We reported that apoptosis inhibitor-5 (API5) acts as an immune escape factor, which has a significant role in controlling immune resistance to antigen-specific T cells, but its functional association with CSC-like properties remains largely unknown. In this study, we demonstrated for the first time that API5 confers CSC-like properties, including NANOG expression, the frequency of CD44-positive cells and sphere-forming capacity. Critically, these CSC-like properties mediated by API5 are dependent on FGFR1 signaling, which is triggered by E2F1-dependent FGF2 expression. Furthermore, we uncovered the FGF2-NANOG molecular axis as a downstream component of API5 signaling that is conserved in cervical cancer patients. Finally, we found that the blockade of FGFR signaling is an effective strategy to control API5high human cancer. Thus, our findings reveal a crucial role of API5 in linking immune resistance and CSC-like properties, and provide the rationale for its therapeutic application for the treatment of API5+ refractory tumors. PMID:28092370

  14. Low-molecular-weight dextran derivatives (f-CMDB) enter the nucleus and are better cell-growth inhibitors compared with parent CMDB polymers.

    PubMed

    Bittoun, P; Avramoglou, T; Vassy, J; Crépin, M; Chaubet, F; Fermandjian, S

    1999-12-12

    Carboxymethyldextrans-benzylamide (CMDB) are dextran derivatives that are statistically substituted with carboxymethyl and benzylamide groups. These molecules display a variety of biological effects, one of which is their inhibitory activity against mammary tumor cell growth, both in vitro and in vivo. We and others have previously shown that the effects of CMDB on cell growth are related to their ability to interact with the growth factor FGF-2. The binding modifies the conformation of FGF-2, leading to the suppression of its mitogenic activity. Here, the method previously reported to fragment natural polysaccharide fucans has been applied to CMDB (80,000 g/mol). f-CMDB (fragmented CMDB) of molecular weights from 6000 to 20,000 g/mol were found to be more potent inhibitors of MCF7 mammary tumor cell growth than high-molecular-weight CMDB. Confocal microscopy experiments using CMDB and f-CMDB labeled with the fluorophore DTAF (5-([4,6-dichlorotriazine-2-yl]amino) fluorescein) indicate that only low-molecular-weight f-CMDB penetrate into the nucleus of MCF7 cells. It is thus assumed that the better inhibitory properties demonstrated by f-CMDB, compared with CMDB, are related to their better ability to penetrate the nucleus and interact with nuclear targets, including topoisomerase II. The DNA relaxation properties of the latter are inhibited in vitro by both CMDB and f-CMDB. These findings could help us to develop models of low-molecular-weight oligosaccharide derivatives exhibiting better antiproliferative and antitumor properties.

  15. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  16. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma

    PubMed Central

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S. P.

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP. PMID:26465941

  17. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.

    PubMed

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S P

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

  18. Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas.

    PubMed

    Mukdsi, Jorge H; De Paul, Ana Louis; Petiti, Juan P; Gutiérrez, Silvina; Aoki, Agustín; Torres, Alicia I

    2006-10-01

    Fibroblast growth factor-2 (FGF-2) synthesized in the pituitary is involved in the formation and progression of pituitary tumors. The aim of this study was to analyze the pattern expression of two FGF-2 isoforms at different subcellular levels and to determine its correlation with prolactinoma development. Estrogen administration to male rats for 7, 20, and 60 days generated pituitary tumors, with lactotrophs being the prevalent cell type. Ultrastructural immunolabeling showed FGF-2 in the cytosolic and nuclear compartments of somatotrophs, lactotrophs and gonadotrophs, as well as in folliculo-stellate cells of normal rats. Estrogen stimulation increased FGF-2 immunoreactivity in various tumors and enhanced the expression of two FGF-2 isoforms, 18 and 22 kDa, as quantified by western blot. The 18 kDa isoform observed in cytosol extracts reached the highest levels after 60 days of hormonal stimulation and this was related to lactotroph proliferation. However, the 22 kDa FGF-2 isoform was only detected in the nuclear compartment and achieved the maximum expression at 7 days of estrogen treatment, without any correlation with lactotroph proliferation. These results suggest that the 18 kDa FGF-2 may play a role in the modulation of lactotroph proliferation in prolactinomas induced by estrogen. The overproduction of both FGF-2 isoforms appears to be implicated in autocrine-paracrine-intracrine mitogenic loops; this FGF-2 activity could lead to uncontrolled cell growth, angiogenesis, and tumor formation.

  19. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  20. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  1. The chemokine CXCL13 (BCA-1) inhibits FGF-2 effects on endothelial cells.

    PubMed

    Spinetti, G; Camarda, G; Bernardini, G; Romano Di Peppe, S; Capogrossi, M C; Napolitano, M

    2001-11-23

    Several chemokines, belonging to both the CXC and CC classes, act as positive or negative regulators of angiogenesis. We sought to investigate the role of CXCL13, B cell-attracting chemokine 1 (BCA-1), also known as B-lymphocyte chemoattractant (BLC), on endothelial cell functions. We tested the effect of CXCL13 on HUVEC chemotaxis and proliferation in the presence of fibroblast growth factor (FGF)-2 and found that such chemokine inhibits FGF-2-induced functions, while is not active by itself. To test whether other FGF-2-mediated biological activities may be affected, we evaluated the ability of CXCL13 to rescue HUVEC from starvation-induced apoptosis, as FGF-2 is a survival factor for endothelial cells, and found that CXCL13 partially inhibits such rescue. Multiple mechanisms may be responsible for these biological activities as CXCL13 displaces FGF-2 binding to endothelial cells, inhibits FGF-2 homodimerization, and induces the formation of CXCL13-FGF-2 heterodimers. Our data suggest that CXCL13 may modulate angiogenesis by interfering with FGF-2 activity.

  2. Low molecular weight melanoidins in coffee brew.

    PubMed

    Bekedam, E Koen; Roos, Ellen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-06-11

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are present in LMw coffee brew material. LMw coffee fractions differing in polarity were obtained by reversed-phase solid phase extraction and their melanoidin, sugar, nitrogen, caffeine, trigonelline, 5-caffeoylquinic acid, quinic acid, caffeic acid, and phenolic groups contents were determined. The sugar composition, the charge properties, and the absorbance at various wavelengths were investigated as well. The majority of the LMw melanoidins were found to have an apolar character, whereas most non-melanoidins have a polar character. The three isolated melanoidin-rich fractions represented 56% of the LMw coffee melanoidins and were free from non-melanoidin components. Spectroscopic analysis revealed that the melanoidins isolated showed similar features as high molecular weight coffee melanoidins. All three melanoidin fractions contained approximately 3% nitrogen, indicating the presence of incorporated amino acids or proteins. Surprisingly, glucose was the main sugar present in these melanoidins, and it was reasoned that sucrose is the most likely source for this glucose within the melanoidin structure. It was also found that LMw melanoidins exposed a negative charge, and this negative charge was inversely proportional to the apolar character of the melanoidins. Phenolic group levels as high as 47% were found, which could be explained by the incorporation of chlorogenic acids in these melanoidins.

  3. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  4. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  5. The nucleotide analog cidofovir suppresses basic fibroblast growth factor (FGF2) expression and signaling and induces apoptosis in FGF2-overexpressing endothelial cells.

    PubMed

    Liekens, Sandra; Gijsbers, Sofie; Vanstreels, Els; Daelemans, Dirk; De Clercq, Erik; Hatse, Sigrid

    2007-03-01

    Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine; (S)-HPMPC] is an antiviral drug that has been approved for the treatment of cytomegalovirus retinitis in patients with AIDS. Cidofovir also possesses potent activity against human papillomavirus-induced tumors in animal models and patients. We have recently shown that cidofovir inhibits the development of vascular tumors induced by basic fibroblast growth factor (FGF2)-overexpressing endothelial cells (FGF2-T-MAE) in mice. Here, we demonstrate that the inhibitory activity of cidofovir in FGF2-T-MAE cells may result from the specific induction of apoptosis. Cell cycle analysis revealed that cidofovir induces accumulation of cells in the S phase and, upon prolonged treatment, a significant increase in sub-G1 cells, exhibiting a subdiploid DNA content. Moreover, annexin V binding, an early event in apoptosis induction, was increased in cidofovir-treated FGF2-T-MAE cells. Cidofovir also caused nuclear fragmentation and the activation of caspase-3-like proteases, as evidenced by the cleavage of poly(ADP-ribose)polymerase. In addition, cidofovir treatment of FGF2-T-MAE cells resulted in a pronounced up-regulation of the tumor suppressor protein p53. However, the expression of Bax and Bcl-2 remained unchanged, and cidofovir did not induce the release of cytochrome c from the mitochondria. In addition, cidofovir did not suppress the phosphorylation of protein kinase B/Akt, a transmitter of antiapoptotic survival signals, or its downstream regulator Bad, indicating that the Akt pathway is not affected by cidofovir in FGF2-T-MAE cells. However, the compound inhibited the expression of FGF2 and FGF2 signaling through Erk42/44, as shown by Western blot analysis. Our results indicate that cidofovir inhibits the growth of FGF2-T-MAE cells via inhibition of FGF2 expression and signaling and via the induction of apoptosis. These findings suggest that the clinical use of cidofovir might be expanded to tumors that are

  6. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury.

    PubMed

    Allodi, Ilary; Mecollari, Vasil; González-Pérez, Francisco; Eggers, Ruben; Hoyng, Stefan; Verhaagen, Joost; Navarro, Xavier; Udina, Esther

    2014-10-01

    Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential capability of FGF-2 to promote axon regeneration, we produced a lentiviral vector (LV) to overexpress FGF-2 (LV-FGF2) in the injured rat peripheral nerve. Cultured Schwann cells transduced with FGF-2 and added to collagen matrix embedding spinal cord or DRG explants significantly increased motor but not sensory neurite outgrowth. LV-FGF2 was as effective as direct addition of the trophic factor to promote motor axon growth in vitro. Direct injection of LV-FGF2 into the rat sciatic nerve resulted in increased expression of FGF-2, which was localized in the basal lamina of Schwann cells. To investigate the in vivo effect of FGF-2 overexpression on axonal regeneration after nerve injury, Schwann cells transduced with LV-FGF2 were grafted in a silicone tube used to repair the resected rat sciatic nerve. Electrophysiological tests conducted for up to 2 months after injury revealed accelerated and more marked reinnervation of hindlimb muscles in the animals treated with LV-FGF2, with an increase in the number of motor and sensory neurons that reached the distal tibial nerve at the end of follow-up.

  7. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  8. Unexpected molecular weight effect in polymer nanocomposites

    SciTech Connect

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; Dadmun, Mark D.; Mays, Jimmy W.; Sokolov, Alexei P.

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

  9. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; ...

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  10. Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo.

    PubMed

    Cornish, K; Castillón, J; Scott, D J

    2000-01-01

    In three rubber-producing species, in vitro, the rates of initiation and polymerization and the biopolymer molecular weight produced were affected by the concentration of farnesyl diphosphate (FPP) initiator and isopentenyl diphosphate (IPP) elongation substrate (monomer). Ficus elastica, a low molecular weight-producer in vivo, synthesized rubber polymers approximately twice the molecular weight of those made by Hevea brasiliensis or Parthenium argentatum (which produce high molecular weights in vivo), possibly due to its lower IPP Km. In all species, increasing FPP concentrations increased rubber biosynthetic rate and new molecules initiated but decreased molecular weight by competition with the allylic diphosphate (APP) end of elongating rubber molecules for the APP binding site. Increasing IPP concentrations increased rubber biosynthetic rate and rubber molecular weight, but only when FPP concentrations were below the FPP Km's or where negative cooperativity operated. In conclusion, rubber transferase is not the prime regulator of rubber molecular weight in vivo.

  11. Disruption of the Fgf2 Gene Activates the Adipogenic and Suppresses the Osteogenic Program in Mesenchymal Marrow Stromal Stem Cells

    PubMed Central

    Xiao, Liping; Sobue, Takanori; Eisliger, Alycia; Kronenberg, Mark. S; Coffin, J. Douglas; Doetschman, Thomas; Hurley, Marja M.

    2010-01-01

    Here we determine the Fibroblast Growth Factor-2 (FGF2) dependency of the time course of changes in bone mass in female mice. This study extends our earlier reports that knockout of the FGF2 gene (Fgf2) caused low turnover bone loss in Fgf2−/− male mice by examining bone loss with age in Fgf2−/− female mice, and by assessing whether reduced bone formation is associated with differentiation of bone marrow stromal cells (BMSCs) towards the adipocyte lineage. Bone mineral density (BMD) was similar in 3 month old female Fgf2+/+ and Fgf2−/− mice but was significantly reduced as early as 5 months of age in Fgf2−/− mice. In vivo studies showed that there was a greater accumulation of marrow fat in long bones of 14 and 20 month old Fgf2−/− mice compared with Fgf2+/+ littermates. To study the effect of disruption of FGF2 on osteoblastogenesis and adipogenesis, BMSCs from both genotypes were cultured in osteogenic or adipogenic media. Reduced alkaline phosphatase positive (ALP), mineralized colonies and a marked increase in adipocytes were observed in Fgf2−/− BMSC cultures. These cultures also showed an increase in the mRNA of the adipogenic transcription factor PPARγ2 as well as the downstream target genes aP2 and adiponectin. Treatment with exogenous FGF2 blocked adipocyte formation and increased ALP colony formation and ALP activity in BMSC cultures of both genotypes. These results support an important role for endogenous FGF2 in osteoblast (OB) lineage determination. Alteration in FGF2 signaling may contribute to impaired OB bone formation capacity and to increased bone marrow fat accumulation both of which are characteristics of aged bone. PMID:20510392

  12. The Molecular Weight Distribution of Polymer Samples

    NASA Astrophysics Data System (ADS)

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-07-01

    Introductory polymer courses and textbooks discuss the statistical distribution of chain lengths or molecular weight that exists in polymers and connect the averages and breadth of such distribution with the mechanism of the polymerization, for example, with the degree of advancement or stoichiometry in step-growth polymerization or with the existence of transferences or with the type of termination in chain addition polymerization. To determine averages and breadth of the distribution, the polymer has to be separated from the reaction medium and converted into a "sample". In this process, the shorter chains, which are most soluble, may be lost with the result that the sample is not identical to the original polymer. A student exercise is proposed and developed, in which we calculate the difference between "sample" and original polymer. We use standard material given in the introductory courses or textbooks such that the calculation can be performed easily by the students. The results are discussed to ascertain whether the different distribution of the sample may alter the interpretation of the mechanism by which the original polymer was obtained.

  13. High molecular weight melanoidins from coffee brew.

    PubMed

    Bekedam, E Koen; Schols, Henk A; van Boekel, Martinus A J S; Smit, Gerrit

    2006-10-04

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (K(mix)) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein nitrogen (NPN) content were investigated. Results show that most HMw coffee melanoidins are soluble at high ethanol concentrations. The amino acid composition of the HMw fractions was similar, while 17% (w/w) of the nitrogen was NPN, probably originating from degraded amino acids/proteins and now part of melanoidins. A strong correlation between the melanoidin content, the NPN, and protein content was found. It was concluded that proteins are incorporated into the melanoidins and that the degree of chemical modification, for example, by phenolic groups, determines the solubility of melanoidins in ethanol. Although the existence of covalent interaction between melanoidins and polysaccharides were not proven in this study, the findings suggest that especially arabinogalactan is likely involved in melanoidin formation. Finally, phenolic groups were present in the HMw fraction of coffee, and a correlation was found with the melanoidin concentration.

  14. Low molecular weight heparins and heparinoids.

    PubMed

    Eikelboom, John W; Hankey, Graeme J

    2002-10-07

    Several low molecular weight (LMW) heparin preparations, including dalteparin, enoxaparin and nadroparin, as well as the heparinoid danaparoid sodium, are approved for use in Australia. LMW heparins are replacing unfractionated heparin for the prevention and treatment of venous thromboembolism and the treatment of non-ST-segment-elevation acute coronary syndromes. The advantages of LMW heparins over unfractionated heparin include a longer half-life (allowing once-daily or twice-daily subcutaneous dosing), high bioavailability and predictable anticoagulant response (avoiding the need for dose adjustment or laboratory monitoring in most patients), and a low risk of heparin-induced thrombocytopenia and osteoporosis. Laboratory monitoring of LMW heparin therapy should be considered in newborns and children, patients with renal impairment, those who are pregnant, and those at the extremes of bodyweight (eg, < 40 kg or > 100 kg). LMW heparins should: be avoided or used with caution in patients undergoing neuraxial anaesthesia, owing to the potential for epidural haematoma formation; not be used (ie, are contraindicated) in patients with immune heparin-induced thrombocytopenia, as they may cross-react with anti-heparin antibodies. Conventional unfractionated heparin retains a role in the management of patients at high risk of bleeding, undergoing invasive procedures, and patients with renal failure owing to its shorter half-life, reversibility with protamine sulfate, and extrarenal metabolism. The heparinoid danaparoid sodium is effective for the treatment of heparin-induced thrombocytopenia.

  15. The transcription activity of heat shock factor 4b is regulated by FGF2.

    PubMed

    Hu, Yan-Zhong; Zhang, Jun; Li, Shulian; Wang, Chuan; Chu, Liujie; Zhang, Zhi; Ma, Zengyi; Wang, Mingli; Jiang, Qiying; Liu, Guangchao; Qi, Yijun; Ma, Yuanfang

    2013-02-01

    Heat shock factor 4b has been found to be closely associated with postnatal lens development. It expresses in postnatal lens epithelial and secondary fiber cells and controls the expression of small heat shock proteins which are important for lens homeostasis. However, the signal pathways underlying Hsf4b are still not completely understood. Here we present that Hsf4b transcription activity is regulated by FGF2 a key growth factor that is involved in regulating lens development at multiple stages. FGF2 can promote Hsf4b nuclear-translocation and the expression of Hsp25 and αB-crystallin, the key downstream targets of Hsf4b in the Hsf4b-reconstituted mouse hsf4-/- lens epithelial cells. Further study indicates that FGF2 can induce Hsf4b protein stabilization through ERK1/2-mediated posttranslational phosphorylation or sumoylation. Hsf4b can promote FGF2-induced morphology transition from lens epithelial cell to the fiber cell, and this morphology transition can be inhibited by ERK1/2 inhibitor U0126. Taken together, our data demonstrate that Hsf4b is a novel downstream transcription factor of FGF2, and its transcription activity is associated with FGF2-modulated lens epithelial cell-fiber cell transition.

  16. Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells.

    PubMed

    Yanagita, M; Kojima, Y; Kubota, M; Mori, K; Yamashita, M; Yamada, S; Kitamura, M; Murakami, S

    2014-01-01

    We previously demonstrated that topical application of fibroblast growth factor (FGF)-2 enhanced periodontal tissue regeneration. Although angiogenesis is a crucial event for tissue regeneration, the mechanism(s) by which topically applied FGF-2 induces angiogenesis in periodontal tissues has not been fully clarified. In this study, we investigated whether FGF-2 could induce vascular endothelial growth factor (VEGF)-A expression in periodontal ligament (PDL) cells and whether cell-to-cell interactions between PDL cells and endothelial cells could stimulate angiogenesis. FGF-2 induced VEGF-A secretion from MPDL22 cells (mouse periodontal ligament cell line) in a dose-dependent manner. Transwell and wound-healing assays revealed that co-stimulation with FGF-2 plus VEGF-A synergistically stimulated the migration of MPDL22 cells. Interestingly, co-culture of MPDL22 cells with bEnd5 cells (mouse endothelial cell line) also stimulated VEGF-A production from MPDL22 cells and tube formation by bEnd5 cells. Furthermore, time-lapse analysis revealed that MPDL22 cells migrated close to the tube-forming bEnd5 cells, mimicking pericytes. Thus, FGF-2 induces VEGF-A expression in PDL cells and induces angiogenesis in combination with VEGF-A. Cell-to-cell interactions with PDL cells also facilitate angiogenesis.

  17. Co-localization of LTBP-2 with FGF-2 in fibrotic human keloid and hypertrophic scar.

    PubMed

    Sideek, Mohamed A; Teia, Abdulrahman; Kopecki, Zlatko; Cowin, Allison J; Gibson, Mark A

    2016-02-01

    We have recently shown that Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) has a single high-affinity binding site for fibroblast growth factor-2 (FGF-2) and that LTBP-2 blocks FGF-2 induced cell proliferation. Both proteins showed strong co-localisation within keloid skin from a single patient. In the current study, using confocal microscopy, we have investigated the distribution of the two proteins in normal and fibrotic skin samples including normal scar tissue, hypertrophic scars and keloids from multiple patients. Consistently, little staining for either protein was detected in normal adult skin and normal scar samples but extensive co-localisation of the two proteins was observed in multiple examples of hypertrophic scars and keloids. LTBP-2 and FGF-2 were co-localised to fine fibrous elements within the extracellular matrix identified as elastic fibres by immunostaining with anti-fibrillin-1 and anti-elastin antibodies. Furthermore, qPCR analysis of RNA samples from multiple patients confirmed dramatically increased expression of LTBP-2 and FGF-2, similar TGF-beta 1, in hypertrophic scar compared to normal skin and scar tissue. Overall the results suggest that elevated LTBP-2 may bind and sequester FGF-2 on elastic fibres in fibrotic tissues and modulate FGF-2's influence on the repair and healing processes.

  18. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  19. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  20. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  1. FGF2 antagonizes aberrant TGFβ regulation of tropomyosin: role for posterior capsule opacity.

    PubMed

    Kubo, Eri; Shibata, Shinsuke; Shibata, Teppei; Kiyokawa, Etsuko; Sasaki, Hiroshi; Singh, Dhirendra P

    2016-12-15

    Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial-mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up-regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F-actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up-regulation of α-smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock-down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ-treated LECs perturbed EMT by reactivating the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2-mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs-driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.

  2. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies.

    PubMed

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm(2). The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm(2)) than on surfaces with a higher concentration of FGF-2 (120 ng/cm(2)).

  3. A gradient of matrix-bound FGF-2 and perlecan is available to lens epithelial cells.

    PubMed

    Wu, Weiju; Tholozan, Frederique M; Goldberg, Martin W; Bowen, Leon; Wu, Junjie; Quinlan, Roy A

    2014-03-01

    Fibroblast growth factors play a key role in regulating lens epithelial cell proliferation and differentiation via an anteroposterior gradient that exists between the aqueous and vitreous humours. FGF-2 is the most important for lens epithelial cell proliferation and differentiation. It has been proposed that the presentation of FGF-2 to the lens epithelial cells involves the lens capsule as a source of matrix-bound FGF-2. Here we used immunogold labelling to measure the matrix-bound FGF-2 gradient on the inner surface of the lens capsule in flat-mounted preparations to visualize the FGF-2 available to lens epithelial cells. We also correlated FGF-2 levels with levels of its matrix-binding partner perlecan, a heparan sulphate proteoglycan (HSPG) and found the levels of both to be highest at the lens equator. These also coincided with increased levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2) in lens epithelial cells that localised to condensed chromosomes of epithelial cells that were Ki-67 positive. The gradient of matrix-bound FGF-2 (anterior pole: 3.7 ± 1.3 particles/μm2; equator: 8.2 ± 1.9 particles/μm2; posterior pole: 4 ± 0.9 particles/μm2) and perlecan (anterior pole: 2.1 ± 0.4 particles/μm2; equator: 5 ± 2 particles/μm2; posterior pole: 1.9 ± 0.7 particles/μm2) available at the inner lens capsule surface was measured for the bovine lens. These data support the anteroposterior gradient hypothesis and provide the first measurement of the gradient for an important morphogen and its HSPG partner, perlecan, at the epithelial cell-lens capsule interface.

  4. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs.

    PubMed

    Nagayasu-Tanaka, Toshie; Anzai, Jun; Takaki, Shu; Shiraishi, Noriko; Terashima, Akio; Asano, Taiji; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL.

  5. Evaluation of ultrafiltration for determining molecular weight of fulvic acid

    USGS Publications Warehouse

    Aiken, G.R.

    1984-01-01

    Two commonly used ultrafiltration membranes are evaluated for the determination of molecular weights of humic substances. Polyacrylic acids of Mr 2000 and 5000 and two well-characterized fulvic acids are used as standards. Molecular size characteristics of standards, as determined by small-angle X-ray scattering, are presented. Great care in evaluating molecular weight data obtained by ultrafiltration is needed because of broad nominal cutoffs and membrane-solute interactions.

  6. A Randomized Clinical Trial Evaluating rh-FGF-2/β-TCP in Periodontal Defects.

    PubMed

    Cochran, D L; Oh, T-J; Mills, M P; Clem, D S; McClain, P K; Schallhorn, R A; McGuire, M K; Scheyer, E T; Giannobile, W V; Reddy, M S; Abou-Arraj, R V; Vassilopoulos, P J; Genco, R J; Geurs, N C; Takemura, A

    2016-05-01

    Biological mediators have been used to enhance periodontal regeneration. The aim of this prospective randomized controlled study was to evaluate the safety and effectiveness of 3 doses of fibroblast growth factor 2 (FGF-2) when combined with a β-tricalcium phosphate (β-TCP) scaffold carrier placed in vertical infrabony periodontal defects in adult patients. In this double-blinded, dose-verification, externally monitored clinical study, 88 patients who required surgical intervention to treat a qualifying infrabony periodontal defect were randomized to 1 of 4 treatment groups-β-TCP alone (control) and 0.1% recombinant human FGF-2 (rh-FGF-2), 0.3% rh-FGF-2, and 0.4% rh-FGF-2 with β-TCP-following scaling and root planing of the tooth prior to a surgical appointment. Flap surgery was performed with EDTA conditioning of the root prior to device implantation. There were no statistically significant differences in patient demographics and baseline characteristics among the 4 treatment groups. When a composite outcome of gain in clinical attachment of 1.5 mm was used with a linear bone growth of 2.5 mm, a dose response pattern detected a plateau in the 0.3% and 0.4% rh-FGF-2/β-TCP groups with significant improvements over control and 0.1% rh-FGF-2/β-TCP groups. The success rate at 6 mo was 71% in the 2 higher-concentration groups, as compared with 45% in the control and lowest treatment groups. Percentage bone fill in the 2 higher-concentration groups was 75% and 71%, compared with 63% and 61% in the control and lowest treatment group. No increases in specific antibody to rh-FGF-2 were detected, and no serious adverse events related to the products were reported. The results from this multicenter trial demonstrated that the treatment of infrabony vertical periodontal defects can be enhanced with the addition of rh-FGF-2/β-TCP (ClinicalTrials.gov NCT01728844).

  7. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts

    PubMed Central

    2013-01-01

    Background Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury – by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. Results We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. Conclusions Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential. PMID:24066673

  8. Stage-specific roles of FGF2 signaling in human neural development.

    PubMed

    Grabiec, Marta; Hříbková, Hana; Vařecha, Miroslav; Střítecká, Dana; Hampl, Aleš; Dvořák, Petr; Sun, Yuh-Man

    2016-09-01

    This study elucidated the stage-specific roles of FGF2 signaling during neural development using in-vitro human embryonic stem cell-based developmental modeling. We found that the dysregulation of FGF2 signaling prior to the onset of neural induction resulted in the malformation of neural rosettes (a neural tube-like structure), despite cells having undergone neural induction. The aberrant neural rosette formation may be attributed to the misplacement of ZO-1, which is a polarized tight junction protein and shown co-localized with FGF2/FGFR1 in the apical region of neural rosettes, subsequently led to abnormal neurogenesis. Moreover, the FGF2 signaling inhibition at the stage of neural rosettes caused a reduction in cell proliferation, an increase in numbers of cells with cell-cycle exit, and premature neurogenesis. These effects may be mediated by NUMB, to which expression was observed enriched in the apical region of neural rosettes after FGF2 signaling inhibition coinciding with the disappearance of PAX6(+)/Ki67(+) neural stem cells and the emergence of MAP2(+) neurons. Moreover, our results suggested that the hESC-based developmental system reserved a similar neural stem cell niche in vivo.

  9. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  10. Free volume variation with molecular weight of polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Hinkley, Jeffrey A.; St.clair, Terry L.; Jensen, Brian J.

    1992-01-01

    Free volume measurements were made in several molecular weight fractions of two different geometries of poly(arylene ether ketone)s. Free volumes were measured using positron lifetime spectroscopy. It has been observed that the free volume cell size V(sub f) varies with the molecular weight M of the test samples according to an equation of the form V(sub f) = AM(B), where A and B are constants. The molecular weights computed from the free volume cell sizes are in good agreement with the values measured by gel permeation chromatography.

  11. Free volume model for molecular weights of polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Eftekhari, A.

    1992-01-01

    A free volume model has been developed for determining molecular weights of linear polymers. It is based on the size of free volume cells in two geometries of poly(arylene ether ketone)s. Free volume cell sizes in test samples were measured using positron lifetime spectroscopy. The molecular weights computed from free volume cell sizes are in good agreement with the values measured by gel permeation chromatography, with a low angle laser light scattering photometer as the detector. The model has been further tested on two atactic polystyrene samples, where it predicted the ratio of their molecular weights with reasonable accuracy.

  12. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  13. Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction.

    PubMed

    Plum, Stacy M; Vu, Hong A; Mercer, Bobby; Fogler, William E; Fortier, Anne H

    2004-02-01

    Angiogenesis, the process of new capillary formation from pre-existing vessels, has been established as an important mechanism involved in pathologic processes, such as cancer, as well as in normal physiology (Ribatti, D.; Vacca, A.; Roncali, L.; Dammacco, F. Angiogenesis under normal and pathological conditions. Haematologica 1991, 76 (4), 311-320). Basic fibroblast growth factor (FGF-2) is a critical mediator of angiogenesis that is important for normal reproduction and wound healing. FGF-2 mediates its pro-angiogenic effects by binding to heparin sulfate proteoglycan in addition to a tyrosine kinase receptor (Baird, A.; Schubert, D.; Ling, N.; Guillemin, R. Receptor and heparin-binding domain of basic fibroblast growth factor. Proc. Natl. Acad. Sci. U. S. A. 1998, 5 (7), 2324-2328; Richard, C.; Roghani, M.; Moscatelli, D. Fibroblast growth factor (FGF)-2 mediates cell attachment through interactions with two FGF receptor-1 isoforms and extracellular matrix or cell-associated heparin sulfate proteoglycans. Biochem. Biophys. Res. Commun. 2000, 276 (2), 399-405; Casu, B.; Guerrini, M.; Naggi, A.; Perez, M.; Torri, G.; Ribatti, D.; Carminati, P.; Giannini, G.; Penco, S.; Pisano, C.; Belleri, M.; Rusnati, M.; Presta, M. Short heparin sequences spaced by glycol-split urinate residues are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors. Biochemistry 2002, 41 (33), 10519-10528; Murphy, P.V.; Pitt, N.; O'Brien, A.; Enright, P.M.; Dunne, A.; Wilson, S.J.; Duane, R.M.; O'Boyle, K.M. Identification of novel inhibitors of fibroblast growth factor (FGF-2) binding to heparin and endothelial cell survival from a structurally diverse carbohybrid library. Bioorg. Med. Chem. Lett. 2002, 12 (22), 3287-3290). We developed a liposomal-based peptide vaccine, L(HBD) that targets the heparin binding domain of the FGF-2 molecule. This vaccine, when inoculated into mice, inhibits angiogenesis in response to FGF-2 in a hepatic sponge model as well as tumor progression

  14. The Effect of Covalently Immobilized FGF-2 on Biphasic Calcium Phosphate Bone Substitute on Enhanced Biological Compatibility and Activity.

    PubMed

    Moon, Kyung-Suk; Choi, Eun-Joo; Oh, Seunghan; Kim, Sungtae

    2015-01-01

    The purpose of this research was to covalently graft fibroblast growth factor 2 (FGF-2) onto biphasic calcium phosphate (BCP) via a bifunctional cross-linker technique and to estimate the optimal dose of FGF-2 resulting in the best osteogenic differentiation of human mesenchymal stem cells (hMSCs). SEM observation revealed that the surface of the 100 ng FGF-2 coated BCP was completely covered with the nanoparticles expected to be from the silane coupling agent. XRD, FT-IR, and XPS analysis showed that silane treatment, bifunctional cross-linker coating, and FGF-2 covalent grafts were conducted successfully without deforming the crystalline structure of BCP. An MTT assay demonstrated that FGF-2 coated BCP had good biocompatibility, regardless of the concentration of FGF-2, after 24 or 48 h of incubation. An alkaline phosphatase (ALP) activity assay (14 days of incubation) and the ALP gene expression level of real-time PCR analysis (7 days of incubation) revealed that 50, 100, and 200 ng FGF-2 coated BCP induced the highest activities among all experimental groups and control group (P < 0.05). Thus, low concentrations of FGF-2 facilitated excellent osteogenesis and were effective at enhancing osteogenic potential. Also, the bifunctional cross-linker technique is expected to be a more feasible way to induce osteogenic differentiation while minimizing the risk of FGF-2 overdose.

  15. Effect of FGF-2 on collagen tissue regeneration by human vertebral bone marrow stem cells.

    PubMed

    Park, Dong-Soo; Park, Jung-Chul; Lee, Jung-Seok; Kim, Tae-Wan; Kim, Ki-Joon; Jung, Byung-Joo; Shim, Eun-Kyung; Choi, Eun-Young; Park, So-Yon; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-01-15

    The effects of fibroblast growth factor-2 (FGF-2) on collagen tissue regeneration by human bone marrow stem cells (hBMSCs) were investigated. hBMSCs were isolated from human vertebral body bone marrow during vertebral surgery and a population of hBMSCs with the characteristics of mesenchymal stem cells was observed. The FGF-2 treatment (5 ng/mL) affected on the colony-forming efficiency, proliferation, and in vitro differentiation of hBMSCs. Insoluble/soluble collagen and hydroxyproline synthesis was significantly enhanced in hBMSCs expanded with FGF-2 and the treatment of FGF-2 caused a reduction in the mRNA expression of collagen type I, but an increase of collagen types II and III along with lysyl oxidase family genes. Collagen formation was also examined using an in vivo assay model by transplanting hBMSCs into immunocompromised mice (n=4) and the histologic and immunohistochemical results revealed that significantly more collagen with a well-organized structure was formed by FGF-2-treated hBMSCs at 8 weeks posttransplantation (P<0.05). The DNA microarray assay demonstrated that genes related to extracellular matrix formation were significantly upregulated. To elucidate the underlying mechanism, chemical inhibitors against extracellular-signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) were treated and following downstream expression was observed. Collectively, FGF-2 facilitated the collagen-producing potency of hBMSCs both in vitro and in vivo, rendering them more suitable for use in collagen regeneration in the clinical field.

  16. A simplified electrophoretic system for determining molecular weights of proteins.

    PubMed

    Manwell, C

    1977-09-01

    Electrophoresis of 31 different proteins in commercially prepared polyacrylamide gradient gels, Gradipore, yields a linear relationship between a hypothetical limiting pore size (the reciprocal of a limiting gel concentration, GL) and the cube root of the mol.wt., over the range 13 500-9000 000. A regression analysis of these data reveals that 98.6% of all variability in 1/GL is explained by the molecular weight, and this degree of accuracy compares favourably with existing methods for the determination of molecular weight by retardation of mobility in polyacrylamide. This new procedure has the additional advantages that molecular-weight standards can be obtained from readily available body fluids or tissue extracts by localizing enzymes and other proteins by standard histochemical methods, and that the same electrophoretic system can be used in determining molecular weights as is used in routine surveys of populations for individual and species variation in protein heterogeneity.

  17. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  18. Molecular-Weight-Controlled, End-Capped Polybenzimidazoles

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1993-01-01

    Novel molecular-weight-controlled end-capped poly(arylene ether benzimidazole)s (PAEBI's) prepared by nucleophilic displacement reaction of di(hydroxyl)benzimidazole monomers with activated aromatic dihalides. Polymers prepared at various molecular weights by upsetting stoichiometry of monomers and end-capped with monohydroxybenzimidazole. Exhibit favorable physical and mechanical properties, improved solubility in polar aprotic solvents and better compression moldability. Potential applications as adhesives, coatings, films, fibers, membranes, moldings, and composite matrix resins.

  19. [Periodontal tissue engineering by FGF-2:Its present status and future outlook].

    PubMed

    Murakami, Shinya

    2016-07-01

    Periodontitis remains highly prevalent all over the world and can lead to loss of the affected teeth. Thus, establishing a brand-new treatment that enables the regeneration and rebuilding of periodontal tissue destroyed by periodontitis represents a task of tremendous importance. Our pre-clinical studies and clinical trials suggested that efficacy is expected from basic fibroblast growth factor(FGF-2)in stimulating regeneration of periodontal tissue. Development of the osteoconductive carrier for FGF-2 drug will further extend the indications in the field of dental medicine.

  20. Identification of the high molecular weight isoform of phostensin.

    PubMed

    Lin, Yu-Shan; Huang, Hsien-Lu; Liu, Wei-Ting; Lin, Ta-Hsien; Huang, Hsien-Bin

    2014-01-15

    Phostensin is encoded by KIAA1949. 5'-RACEanalysis has been used to identify the translation start site of phostensin mRNA, indicating that it encodes 165 amino acids with an apparent molecular weight of 26 kDa on SDS-PAGE. This low-molecular-weight phostensin is present in human peripheral blood mononuclear cells and many leukemic cell lines. Phostensin is a protein phosphatase-1(PP1) binding protein. It also contains one actin-binding motif at its C-terminal region and binds to the pointed ends of actin filaments, modulating actin dynamics. In the current study, a high-molecular-weight phostensin is identified by using immunoprecipitationin combination with a proteomic approach. This new species of phostensin is also encoded by KIAA1949 and consists of 613 amino acids with an apparent molecular weight of 110 kDa on SDS-PAGE. The low-molecular-weight and high-molecular-weight phostensins were named as phostensin-α and phostensin-β, respectively. Although phostensin-α is the C-terminal region of phostensin-β, it is not degraded from phostensin-β. Phostensin-β is capable of associating with PP1 and actin filaments, and is present in many cell lines.

  1. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  2. A Heparin-Mimicking Block Copolymer Both Stabilizes and Increases the Activity of Fibroblast Growth Factor 2 (FGF2)

    PubMed Central

    2016-01-01

    Fibroblast growth factor 2 (FGF2) is a protein involved in cellular functions in applications such as wound healing and tissue regeneration. Stabilization of this protein is important for its use as a therapeutic since the native protein is unstable during storage and delivery. Additionally, the ability to increase the activity of FGF2 is important for its application, particularly in chronic wound healing and the treatment of various ischemic conditions. Here we report a heparin mimicking block copolymer, poly(styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate)-b-vinyl sulfonate) (p(SS-co-PEGMA)-b-VS, that contains a segment that enhances the stability of FGF2 and one that binds to the FGF2 receptor. The FGF2 conjugate retained activity after exposure to refrigeration (4 °C) and room temperature (23 °C) for 7 days, while unmodified FGF2 was inactive after these standard storage conditions. A cell study performed with a cell line lacking native heparan sulfate proteoglycans indicated that the conjugated block copolymer facilitated binding of FGF2 to its receptor similar to the addition of heparin to FGF2. A receptor-based enzyme-linked immunosorbant assay (ELISA) confirmed the results. The conjugate also increased the migration of endothelial cells by 80% compared to FGF2 alone. Additionally, the FGF2-p(SS-co-PEGMA)-b-VS stimulated endothelial cell sprouting 250% better than FGF2 at low concentration. These data verify that this rationally designed protein-block copolymer conjugate enhances receptor binding, cellular processes such as migration and tube-like formation, and stability, and suggest that it may be useful for applications in biomaterials, tissue regeneration, and wound healing. PMID:27580376

  3. Circulating Thrombospondin-2 and FGF-2 in Patients with Advanced Non-small Cell Lung Cancer: Correlation with Survival.

    PubMed

    Naumnik, W; Ossolińska, M; Płońska, I; Chyczewska, E; Nikliński, J

    2015-01-01

    Thrombospondin-2 (TSP-2) is an endogenous negative regulator of vascularization in human cancer. TSP-2 regulates angiogenesis through binding and sequestration of the proangiogenic fibroblast growth factor-2 (FGF-2). However, it is unclear whether TSP-2 and FGF-2 are related to prognosis in non-small cell lung cancer (NSCLC). To study this issue, we measured serum (Elisa) levels of TSP-2 and FGF-2 in 40 NSCLC patients (before chemotherapy) and 22 healthy subjects. Both TSP-2 and FGF-2 concentrations were elevated in the NSCLC group compared with control (TSP-2: 26.72±8.00 vs. 18.64±5.50 ng/ml, p=0.002; FGF-2: 11.90±5.80 vs. 7.26±3.90 pg/ml, p=0.01). Receiver-operating characteristic (ROC) curves were applied to find the cut-off serum levels of TSP-2 and FGF-2 (NSCLC vs. healthy: TSP-2=15.09 ng/ml, FGF-2=2.23 pg/ml). Patients before treatment with the TSP-2 level<24.15 ng/ml had a median survival of 23.7 months, but those with TSP-2>24.15 ng/ml had only 9 months' median survival (p=0.007). Patients with FGF-2 level>11.21 pg/ml had significantly shorter survival than patients with FGF-2<11.21 pg/ml (7.5 months vs. 16 months, p=0.034). We conclude that NSCLC patients have higher serum concentrations of TSP-2 and FGF-2 than healthy people. High levels of TSP-2 and FGF-2 may predict worse survival.

  4. Efficient cultivation of neural stem cells with controlled delivery of FGF-2.

    PubMed

    Galderisi, U; Peluso, G; Di Bernardo, G; Calarco, A; D'Apolito, M; Petillo, O; Cipollaro, M; Fusco, F R; Melone, M A B

    2013-01-01

    Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.

  5. Proton Irradiation Alters Expression of FGF-2 In Human Lens Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.

    1999-01-01

    We are investigating a role for proton radiation-induced changes in FGF-2 gene expression as part of the mechanism(s) underlying lens cell injury. Radiation injury to the human lens is associated with the induction of cataract following exposure to protons.

  6. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  7. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues

    PubMed Central

    Li, Sheng-Hsiang; Hwu, Yuh-Ming; Lu, Chung-Hao; Chang, Hsiao-Ho; Hsieh, Cheng-En; Lee, Robert Kuo-Kuang

    2016-01-01

    This study was conducted to investigate the effect of the vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) on revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. Autologous subcutaneous transplantation of vitrified-thawed mouse ovarian tissues treated with (experimental group) or without (control group) VEGF and FGF2 was performed. After transplantation to the inguinal region for two or three weeks, graft survival, angiogenesis, follicle development, and oocyte quality were examined after gonadotropin administration. VEGF coupled with FGF2 (VEGF/FGF2) promoted revascularization and significantly increased the survival rate of subcutaneously-transplanted cryopreserved ovarian tissues compared with untreated controls. The two growth factors did not show long-term effects on the ovarian grafts. In contrast to the untreated ovarian grafts, active folliculogenesis was revealed as the number of follicles at various stages and of mature oocytes in antral follicles after gonadotropin administration were remarkably higher in the VEGF/FGF2-treated groups. Although the fertilization rate was similar between the VEGF/FGF2 and control groups, the oocyte quality was much better in the VEGF/FGF2-treated grafts as demonstrated by the higher ratio of blastocyst development. Introducing angiogenic factors, such as VEGF and FGF2, may be a promising strategy to improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissue. PMID:27483256

  8. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  9. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  10. High molecular weight polyglycerol-based multivalent mannose conjugates.

    PubMed

    Kizhakkedathu, Jayachandran N; Creagh, A Louise; Shenoi, Rajesh A; Rossi, Nicholas A A; Brooks, Donald E; Chan, Timmy; Lam, Jonathan; Dandepally, Srinivasa R; Haynes, Charles A

    2010-10-11

    We report the synthesis and characterization of multivalent mannose conjugates based on high molecular weight hyperbranched polyglycerols (HPG). A range of glycoconjugates were synthesized from high molecular weight HPGs (up to 493 kDa) and varying mannose units (22-303 per HPG). Hemagglutination assays using fresh human red blood cells and concanavalin A (Con A) showed that HPG-mannose conjugates exhibited a large enhancement in the relative potency of conjugates (as high as 40000) along with a significant increment in relative activity per sugar (up to 255). The size of the HPG scaffold and the number of mannose residues per HPG were all shown to influence the enhancement of binding interactions with Con A. Isothermal titration calorimetry (ITC) experiments confirmed the enhanced binding affinity and showed that both molecular size and ligand density play important roles. The enhancement in Con A binding to the high molecular weight HPG-mannose conjugates is due to a combination of inter- and intramolecular mannose binding. A few fold increments in the binding constant were obtained over mannose upon covalent attachment to HPG. The binding enhancement is due to the highly favorable entropic contribution to the multiple interactions of Con A to mannose residues on HPG. The high molecular weight HPG-mannose conjugates showed positive cooperativity in binding to Con A. Although carbohydrate density has less of an effect on functional valency of the conjugate compared to the molecular size, it determines the binding affinity.

  11. [Low molecular weight heparins. Implications in anesthesia and resuscitation].

    PubMed

    Llau, J V; Hoyas, L; Ezpeleta, J; García-Polit, J; Barberá, M; Santes, M J

    1997-02-01

    Low molecular weight heparins are a group of drugs that have only recently been introduced in clinical practice. The are widely used for prophylaxis in thromboembolic disease and are being employed increasingly to treat established venous thrombosis. One way in which these drugs are often used is for prophylaxis in the perioperative period for patients at high risk of developing venous thromboembolism, and the anesthesiologist must therefore be familiar with the main aspects of this application. We review pharmacological characteristics of these drugs as well as the literature on low molecular weight heparins, stressing points of main interest to the anesthesiologist and intensive care recovery unit specialist, namely adverse effects (mainly bleeding) and the implications that use of low molecular weight heparin will have on choice of anesthetic (in particular the dilemma of whether to use local/regional anesthesia).

  12. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols.

    PubMed

    Kainthan, Rajesh Kumar; Hester, Samuel R; Levin, Elena; Devine, Dana V; Brooks, Donald Elliott

    2007-11-01

    Low molecular weight hyperbranched polyglycerols are highly water soluble and biocompatible polyether polyols, which can be synthesized in a controlled manner with narrow polydispersity. Recently we reported the synthesis and characterization of very high molecular weight (Mn up to 700,000) and narrowly polydispersed polyglycerols which could be potentially used as alternatives to high generation dendrimers which are difficult to make. A detailed biocompatibility testing of these polymers conducted in vitro is reported here. The in vitro studies include hemocompatibility testing for effects on coagulation (prothrombin time (PT), activated partial thromboplastin time (APTT), plasma recalcification time (PRT), thrombelastograph parameters (TEG)), complement activation, platelet activation, red blood cell aggregation and cytotoxicity. Results from these studies show that these high molecular weight polyglycerols are highly biocompatible and are potential candidates for various applications in nanobiotechnology and in nanomedicine. Moreover these polymers are thermally and oxidatively stable.

  13. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  14. Synthesis of High Molecular Weight Para-Phenylene PBI

    DTIC Science & Technology

    1974-11-01

    give high molecular weight m-phenylene PBI (Reference 7). The polymer was completely soluble in methanesulfonic acid and 98% formic acid . Polymer with...mono- mer is a white crystalline solid which can be quantitatively hydrolized in an acid medium to give the free TAB. Stoichiometric quantities of IX...WEIGHT "PARA"-PHENYLENE PBI TECHNICAL REPORT AFML-TR-74-199 NOVEMBER 1974 Distribution limited to U.S.Government agencies only, test and evaluation

  15. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-27

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.

  16. Interaction of Fibroblast Growth Factor-2 (FGF-2) with Free Gangliosides: Biochemical Characterization and Biological Consequences in Endothelial Cell Cultures

    PubMed Central

    Rusnati, Marco; Tanghetti, Elena; Urbinati, Chiara; Tulipano, Giovanni; Marchesini, Sergio; Ziche, Marina; Presta, Marco

    1999-01-01

    Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested

  17. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  18. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  19. SOCS-1/3 participation in FGF-2 signaling to modulate RANK ligand expression in paget's disease of bone.

    PubMed

    Sundaram, Kumaran; Senn, Joseph; Reddy, Sakamuri V

    2013-09-01

    Paget's disease of bone (PDB) is a chronic focal skeletal disorder characterized by excessive bone resorption followed by disorganized new bone formation. Measles virus nucleocapsid (MVNP) is implicated in pathogenesis of PDB. RANK ligand (RANKL), a critical osteoclastogenic factor expressed on bone marrow stromal/preosteoblast cells is upregulated in PDB. We recently demonstrated that fibroblast growth factor-2 (FGF-2) which induces RANKL expression is elevated in PDB. In this study, we hypothesized that FGF-2 modulates suppressors of cytokine signaling (SOCS) to induce RANKL expression in PDB. We identified increased levels of SOCS-1/3 mRNA expression in bone marrow mononuclear cells derived from patients with PDB compared to normal subjects. Interestingly, conditioned media obtained from MVNP transduced osteoclast progenitor cells significantly increased SOCS-1/3 mRNA expression in stromal/preosteoblast cells. We next examined if SOCS participates in FGF-2 signaling to modulate RANKL gene expression. We showed that FGF-2 stimulation significantly increased SOCS-1/3 expression in human bone marrow stromal/preosteoblast cells. In addition, co-expression of SOCS-1/3 with hRANKL gene promoter-luciferase reporter plasmid in marrow stromal cells demonstrated a significant increase in promoter activity without FGF-2 stimulation. Furthermore, siRNA inhibition of STAT-1 suppresses FGF-2 increased SOCS-1/3 expression in these cells. Thus, our results suggest that SOCS participates in FGF-2 modulation of RANKL expression in PDB.

  20. Preparation of soybean oil polymers with high molecular weight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cationic polymerization of soybean oils was initiated by boron trifluoride diethyl etherate BF3.O(C2H5)2 in supercritical carbon dioxide (scCO2) medium. The resulting polymers had molecular weight ranging from 21,842 to 118,300 g/mol. Nuclear magnetic resonance spectroscopy (NMR) and gel perme...

  1. Low-molecular-weight heparins in patients with atrial fibrillation.

    PubMed

    Calvo Romero, J M

    2016-10-27

    In clinical practice, low-molecular-weight heparins are used relatively frequently in patients with atrial fibrillation to prevent embolic events. In this article, it is revised the available evidence in the following clinical situations: rapid onset of anticoagulation, bridging therapy (replacing long-term oral anticoagulant therapy around an invasive procedure) and transesophageal echocardiography-guided cardioversion.

  2. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways

    PubMed Central

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention. PMID:25374926

  3. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    PubMed

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  4. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice.

    PubMed

    Charles, Lyndon F; Woodman, Jessica L; Ueno, Daisuke; Gronowicz, Gloria; Hurley, Marja M; Kuhn, Liisa T

    2015-04-01

    There is an age-associated reduction in the bone healing activity of bone morphogenetic protein-2 (BMP-2) that is currently addressed by administering higher doses of BMP-2 in elderly patients. The unwanted medical complications from high dose BMP-2 motivated this investigation to determine whether the addition of a low dose of fibroblast growth factor 2 (FGF-2) could enhance the ability of a lower dose of BMP-2 to heal calvarial bone defects in old mice (18-20 months old). FGF-2 (5 ng) and BMP-2 (2 μg) were administered by a controlled release two-phase biomaterial scaffold placed into the bone defect. FGF-2 released more rapidly and completely in vitro than BMP-2 (40% vs 2%). In vivo, both BMP-2 and FGF-2+BMP-2 groups formed more new bone in calvarial defects than scaffold alone (p < 0.001) or FGF-2 only groups (p < 0.01). The overall total volume of new bone was not statistically increased by the addition of FGF-2 to BMP-2 as measured by microCT, but the pattern of bone deposition was different. In old mice, but not young, there was enhanced bony fill in the central bone defect area when the BMP-2 was supplemented with FGF-2. Histological analysis of the center of the defect revealed an increased bone volume (%BV/TV (p = 0.004)) from the addition of FGF-2. These studies suggest that combining a low dose of FGF-2 with a low dose of BMP-2 has the potential to increase bone healing in old mice relative to BMP-2 alone.

  5. Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model.

    PubMed

    Anzai, Jun; Nagayasu-Tanaka, Toshie; Terashima, Akio; Asano, Taiji; Yamada, Satoru; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT). After FGF-2 (0.3%) or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC) were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological healing process.

  6. Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model

    PubMed Central

    Anzai, Jun; Nagayasu-Tanaka, Toshie; Terashima, Akio; Asano, Taiji; Yamada, Satoru; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT). After FGF-2 (0.3%) or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC) were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological healing process

  7. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    PubMed

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells.

  8. [The influence of fibroblast growth factor (FGF2) on cardiomyocytes differentiation of mesenchymal stem cells of bone marrow ex vivo].

    PubMed

    Lobanok, E S; Kvacheva, Z B; Pinchuk, S V; Volk, M V; Mezhevkina, L M; Fesenko, E E; Volotovski, I D

    2014-01-01

    The influence of FGF2 on the efficiency of cardiomyocytes differentiation of mesenchymal stem cells (MSC) of bone marrow induced by 5-azacetidine (5-aza) was studied. The effect of FGF2 developing by the 14th day after the combined action of a differentiating agent and growth factor was manifested in an increase in Mef2A, Mef2D and gene transcription and a rise of ionized Ca2+ concentration in cytoplasm keeping cell viability and proliferation activity. In the presence of FGF2 this approach provided cardiomyogenesis and the increase in the formation of early precursors of cardiomyocytes.

  9. FGF2, FGF3 and FGF4 expression pattern during molars odontogenesis in Didelphis albiventris.

    PubMed

    Dos Santos, Íria Gabriela Dias; Jorge, Erika Cristina; Copola, Aline Gonçalves Lio; Bertassoli, Bruno Machado; Goes, Alfredo Miranda de; Silva, Gerluza Aparecida Borges

    2017-03-01

    Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.

  10. Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages

    PubMed Central

    Shu, Cindy; Smith, Susan M; Little, Christopher B; Melrose, James

    2016-01-01

    Aim: Intervertebral disc degeneration/low back pain is the number one global musculoskeletal condition in terms of disability and socioeconomic impact. Materials & methods Multipotent mesenchymal stem cells (MSCs) were cultured in micromass pellets ± FGF-2 or -18 up to 41 days, matrix components were immunolocalized and gene expression monitored by quantitative-reverse transcription PCR. Results: Chondrogenesis occurred earlier in FGF-18 than FGF-2 cultures. Lower COL2A1, COL10A1 and ACAN expression by day 41 indicated a downregulation in chondrocyte hypertrophy. MEF2c, ALPL, were upregulated; calcium, decorin and biglycan, and 4C3 and 7D4 chondroitin sulphate sulfation motifs were evident in FGF-18 but not FGF-2 pellets. Conclusion: FGF-2 and -18 preconditioned MSCs produced cell lineages which promoted chondrogenesis and osteogenesis and may be useful in the production of MSC lineages suitable for repair of cartilaginous tissue defects. PMID:28116125

  11. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Eda, Homare; Aoki, Katsuhiko; Marumo, Keishi; Fujii, Katsuyuki; Ohkawa, Kiyoshi

    2008-02-08

    Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

  12. The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects

    PubMed Central

    Mutsuzaki, Hirotaka; Ito, Atsuo; Sogo, Yu; Sakane, Masataka; Oyane, Ayako; Yamazaki, Masashi

    2014-01-01

    The purpose of the present study was to fabricate fibroblast growth factor (FGF)-2-apatite composite layers on titanium (Ti) pins in one step at 25 °C using a supersaturated calcium phosphate (CaP) solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0) or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0). Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55–1.56 ± 0.01–0.02, p = 0.0008–0.0045) than at 37 °C (1.67 ± 0.11). Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45%) was lower than that for 25F1.0 (80%, p = 0.0213), and the rate of osteomyelitis for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0341). The extraction torque for 37F4.0 (0.276 ± 0.117 Nm) was higher than that for 25F0.5 (0.192 ± 0.117 Nm, p = 0.0142) and that for 25F1.0 (0.176 ± 0.133 Nm, p = 0.0079). The invasion rate of S. aureus for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0110). On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength. PMID:24918287

  13. A high molecular weight protease in liver cytosol.

    PubMed

    Rose, I A; Warms, J V; Hershko, A

    1979-09-10

    A high molecular weight (greater than 400,000) protease active with [3H]leucine-labeled globin has been found in the postmicrosomal fraction of mouse kidney, brain, heart, spleen, and tumor cells and is most active in liver. The presence in liver was unexpected because liver cytosol is very ineffective in the breakdown of endogenous, labeled proteins. The enzyme has a number of properties that distinguish it from known cathepsins in addition to its high molecular weight. It is most active at pH approximately 7.5. When purified, it is unstable above 20 degrees C and is stabilized by metal chelating agents such as citrate, creatine-P, and glycerate-3-P. It is an -SH protease, but its thermal instability is not affected by 1 mM dithiothreitol. The enzyme is not lysosomal.

  14. Molecular weight characterization of single globular proteins using optical nanotweezers.

    PubMed

    Wheaton, Skyler; Gordon, Reuven

    2015-07-21

    We trap a set of molecular weight standard globular proteins using a double nanohole optical trap. The root mean squared variation of the trapping laser transmission intensity gives a linear dependence with the molecular weight, showing the potential for analysis of globular proteins. The characteristic time of the autocorrelation of the trapping laser intensity variations scales with a -2/3 power dependence with the volume of the particle. A hydrodynamic laser tweezer model is used to explain these dependencies. Since this is a single particle technique that operates in solution and can be used to isolate an individual particle, we believe that it provides an interesting alternative to existing analysis methods and shows promise to expand the capabilities of protein related studies to the single particle level.

  15. PEGylated rhFGF-2 conveys long-term neuroprotection and improves neuronal function in a rat model of Parkinson's disease.

    PubMed

    Zhu, Guanghui; Chen, Ganping; Shi, Lu; Feng, Jenny; Wang, Yan; Ye, Chaohui; Feng, Wenke; Niu, Jianlou; Huang, Zhifeng

    2015-02-01

    Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson's disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood-brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.

  16. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells.

    PubMed

    Martín, C; Bueno, D; Alonso, M I; Moro, J A; Callejo, S; Parada, C; Martín, P; Carnicero, E; Gato, A

    2006-09-15

    During early stages of brain development, neuroepithelial stem cells undergo intense proliferation as neurogenesis begins. Fibroblast growth factor 2 (FGF2) has been involved in the regulation of these processes, and although it has been suggested that they work in an autocrine-paracrine mode, there is no general agreement on this because the behavior of neuroepithelial cells is not self-sufficient in explants cultured in vitro. In this work, we show that during early stages of development in chick embryos there is another source of FGF2, besides that of the neuroepithelium, which affects the brain primordium, since the cerebrospinal fluid (E-CSF) contains several isoforms of this factor. We also demonstrate, both in vitro and in vivo, that the FGF2 from the E-CSF has an effect on the regulation of neuroepithelial cell behavior, including cell proliferation and neurogenesis. In order to clarify putative sources of FGF2 in embryonic tissues, we detected by in situ hybridization high levels of mRNA expression in notochord, mesonephros and hepatic primordia, and low levels in brain neuroectoderm, corroborated by semiquantitative PCR analysis. Furthermore, we show that the notochord segregates several FGF2 isoforms which modify the behavior of the neuroepithelial cells in vitro. In addition, we show that the FGF2 ligand is present in the embryonic serum; and, by means of labeled FGF2, we prove that this factor passes via the neuroepithelium from the embryonic serum to the E-CSF in vivo. Considering all these results, we propose that, in chick embryos, the behavior of brain neuroepithelial stem cells at the earliest stages of development is influenced by the action of the FGF2 contained within the E-CSF which could have an extraneural origin, thus suggesting a new and complementary way of regulating brain development.

  17. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  18. Ultra-High-Molecular-Weight Silphenylene/Siloxane Elastomers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1989-01-01

    Elastomers enhance thermal and mechancial properties. Capable of performing in extreme thermal/oxidative environments and having molecular weights above 10 to the sixth power prepared and analyzed in laboratory experiments. Made of methylvinylsilphenylene-siloxane terpolymers, new materials amenable to conventional silicone-processing technology. Similarly formulated commercial methyl-vinyl silicones, vulcanized elastomers exhibit enhance thermal/oxidative stability and equivalent or superior mechanical properties.

  19. Dual Therapeutic Action of a Neutralizing Anti-FGF2 Aptamer in Bone Disease and Bone Cancer Pain

    PubMed Central

    Jin, Ling; Nonaka, Yosuke; Miyakawa, Shin; Fujiwara, Masatoshi; Nakamura, Yoshikazu

    2016-01-01

    Fibroblast growth factor 2 (FGF2) plays a crucial role in bone remodeling and disease progression. However, the potential of FGF2 antagonists for treatment of patients with bone diseases has not yet been explored. Therefore, we generated a novel RNA aptamer, APT-F2, specific for human FGF2 and characterized its properties in vitro and in vivo. APT-F2 blocked binding of FGF2 to each of its four cellular receptors, inhibited FGF2-induced downstream signaling and cells proliferation, and restored osteoblast differentiation blocked by FGF2. APT-F2P, a PEGylated form of APT-F2, effectively blocked the bone disruption in mouse and rat models of arthritis and osteoporosis. Treatment with APT-F2P also exerted a strong analgesic effect, equivalent to morphine, in a mouse model of bone cancer pain. These findings demonstrated dual therapeutic action of APT-F2P in bone diseases and pain, providing a promising approach to the treatment of bone diseases. PMID:27506449

  20. FGF-2 modulates expression and distribution of GAP-43 in frog retinal ganglion cells after optic nerve injury.

    PubMed

    Soto, Ileana; Marie, Bruno; Baro, Deborah J; Blanco, Rosa E

    2003-08-15

    Basic fibroblast growth factor (bFGF or FGF-2) has been implicated as a trophic factor that promotes survival and neurite outgrowth of neurons. We found previously that application of FGF-2 to the proximal stump of the injured axon increases retinal ganglion cell (RGC) survival. We determine here the effect of FGF-2 on expression of the axonal growth-associated phosphoprotein (GAP)-43 in retinal ganglion cells and tectum of Rana pipiens during regeneration of the optic nerve. In control retinas, GAP-43 protein was found in the optic fiber layer and in optic nerve; mRNA levels were low. After axotomy, mRNA levels increased sevenfold and GAP-43 protein was significantly increased. GAP-43 was localized in retinal axons and in a subset of RGC cell bodies and dendrites. This upregulation of GAP-43 was sustained through the period in which retinal axons reconnect with their target in the tectum. FGF-2 application to the injured nerve, but not to the eyeball, increased GAP-43 mRNA in the retina but decreased GAP-43 protein levels and decreased the number of immunopositive cell bodies. In the tectum, no treatment affected GAP-43 mRNA but FGF-2 application to the axotomized optic nerve increased GAP-43 protein in regenerating retinal projections. We conclude that FGF-2 upregulates the synthesis and alters the distribution of the axonal growth-promoting protein GAP-43, suggesting that it may enhance axonal regrowth.

  1. A distinct basic fibroblast growth factor (FGF-2)/FGF receptor interaction distinguishes urokinase-type plasminogen activator induction from mitogenicity in endothelial cells.

    PubMed Central

    Rusnati, M; Dell'Era, P; Urbinati, C; Tanghetti, E; Massardi, M L; Nagamine, Y; Monti, E; Presta, M

    1996-01-01

    Basic fibroblast growth factor (FGF-2) induces cell proliferation and urokinase-type plasminogen activator (uPA) production in fetal bovine aortic endothelial GM 7373 cells. In the present paper we investigated the role of the interaction of FGF-2 with tyrosine-kinase (TK) FGF receptors (FGFRs) in mediating uPA up-regulation in these cells. The results show that FGF-2 antagonists suramin, protamine, heparin, the synthetic peptide FGF-2(112-155), and a soluble form of FGFR-1 do not inhibit FGF-2-mediated uPA up-regulation at concentrations that affect growth factor binding to cell surface receptors and mitogenic activity. In contrast, tyrosine phosphorylation inhibitors and overexpression of a dominant negative TK- mutant of FGFR-1 abolish the uPA-inducing activity of FGF-2, indicating that FGFR and its TK activity are essential in mediating uPA induction. Accordingly, FGF-2 induces uPA up-regulation in Chinese hamster ovary cells transfected with wild-type FGFR-1, -2, -3, or -4 but not with TK- FGFR-1 mutant. Small unilamellar phosphatidyl choline:cholesterol vesicles loaded with FGF-2 increased uPA production in GM 7373 cells in the absence of a mitogenic response. Liposome-encapsulated FGF-2 showed a limited but significant capacity, relative to free FGF-2, to interact with FGFR both at 4 degrees C and 37 degrees C and to be internalized within the cell. uPA up-regulation by liposome-encapsulated FGF-2 was quenched by neutralizing anti-FGF-2 antibodies, indicating that the activity of liposome-delivered FGF-2 is mediated by an extracellular action of the growth factor. Taken together, the data indicate that a distinct interaction of FGF-2 with FGFR, quantitatively and/or qualitatively different from the one that leads to mitogenicity, is responsible for the uPA-inducing activity of the growth factor. Images PMID:8868466

  2. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc).

  3. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  4. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior.

  5. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  6. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  7. Effect of weight loss on high-molecular weight adiponectin in obese children.

    PubMed

    Martos-Moreno, Gabriel Á; Barrios, Vicente; Martínez, Guillermo; Hawkins, Federico; Argente, Jesús

    2010-12-01

    Our aim was to determine the influence of weight reduction on total (T-) and high-molecular weight (HMW-) adiponectin in obese (OB) prepubertal children. Seventy OB prepubertal white patients were followed for 18 months and studied after reducing their BMI by 1 (n = 51) and 2 standard deviation scores (SDS) (n = 21) under conservative treatment, and 6 months after achieving weight loss (n = 44). Body composition dual-energy X-ray absorptiometry (DXA) and serum levels of T- and HMW-adiponectin, resistin, leptin, leptin soluble receptor (sOB-R), tumoral necrosis factor-α and interleukin-6 were determined. The control group consisted of 61 healthy prepubertal children. At diagnosis T-adiponectin was higher (P < 0.01; confidence interval (+0.04) - (+0.15)) and HMW-adiponectin lower (P < 0.001; confidence interval (-0.45) - (-0.21)) in OB children than in controls. A reduction in body fat increased T- and HMW-adiponectin and sOB-R (all P < 0.001) and decreased leptin (P < 0.001) and interleukin-6 levels (P < 0.05). After 6 months of sustained weight reduction a decrease in tumoral necrosis factor-α (P < 0.01) occurred, whereas weight recovery increased leptin (P < 0.001) and decreased T-adiponectin (P < 0.05). HMW-adiponectin levels negatively correlated with homeostasis model assessment (HOMA) index and BMI in the whole cohort (both P < 0.001), as did T-adiponectin levels and HOMA index in OB patients (P < 0.01), but neither T- nor HMW-adiponectin correlated with body fat content (BFC) in OB children. We conclude that the impairment of T- and HMW-adiponectin levels in childhood obesity is different to that in elder OB patients, showing closer relationship with carbohydrate metabolism parameters than with BFC, but increasing their levels after weight loss and in association with metabolic improvement.

  8. Conformations of low-molecular-weight lignin polymers in water

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  9. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-08

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  10. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  11. Biliary excretion in dogs: evidence for a molecular weight threshold.

    PubMed

    Yang, Xinning; Gandhi, Yash A; Morris, Marilyn E

    2010-04-16

    Molecular weight (MW) is known as an important factor of biliary excretion in rats, guinea pigs, rabbits and humans. The objective of this study was to evaluate the relationship between the biliary excretion and MW of drugs in dogs. Data on the percentage of dose excreted into bile as parent drug (PD(b)) in dogs were collected from the literature for 134 compounds. Receiver operating characteristic (ROC) curve analysis was utilized to determine whether a MW threshold exists for PD(b). A MW threshold of 375-400 Da was established for anions in dogs, which is similar with the cutoff value observed in rats (400 Da) but lower than the one in humans (475 Da). No MW threshold was found for cations or cations/neutral compounds. A molecular volume threshold of 300A(3) was also determined for anions in dogs, which corresponds to a MW of 394 Da. In conclusion, our analysis suggested the presence of a MW cutoff for anions in dogs, which may be related with the molecular size of a compound. This represents the first report of the influence of MW or molecular volume as a determinant of biliary excretion for a structurally diverse set of compounds in dogs.

  12. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps.

    PubMed

    Mullane, E M; Dong, Z; Sedgley, C M; Hu, J C-C; Botero, T M; Holland, G R; Nör, J E

    2008-12-01

    The long-term outcome of replanted avulsed permanent teeth is frequently compromised by lack of revascularization, resulting in pulp necrosis. The purpose of this study was to evaluate the effects of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) on the revascularization of severed human dental pulps. Tooth slices were prepared from non-carious human molars and treated with 0-50 ng/mL rhVEGF(165) or rhFGF-2 for 7 days in vitro. Both angiogenic factors enhanced pulp microvessel density compared with untreated controls (p < 0.05). Tooth slices were also treated with 0 or 50 ng/mL rhVEGF(165) for one hour prior to implantation into the subcutaneous space of immunodeficient mice. Treatment with rhVEGF(165) increased pulp microvessel density in vivo (p < 0.05). These results demonstrate that rhVEGF(165) enhanced neovascularization of severed human dental pulps and suggest that topical application of an angiogenic factor prior to replantation might be beneficial for the treatment of avulsed teeth.

  13. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway

    PubMed Central

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-01

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies. PMID:28082743

  14. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway.

    PubMed

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-13

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies.

  15. Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2)

    PubMed Central

    Aviles, Ronnier J; Annex, Brian H; Lederman, Robert J

    2003-01-01

    Therapeutic angiogenesis represents an attempt to relieve inadequate blood flow by the directed growth and proliferation of blood vessels. Neovascularization is a complex process involving multiple growth factors, receptors, extracellular matrix glycoproteins, intracellular and extracellular signaling pathways, and local and bone-marrow-derived constituent cells, all responding to a symphonic arrangement of temporal and spatial cues. In cardiovascular disease, patients with refractory angina and lower extremity intermittent claudication seem most amenable to early tests of therapeutic angiogenesis. Monotherapy with the recombinant protein basic fibroblast growth factor (FGF-2) has been tested in six human trials. These have shown provisional safety, and two have provided ‘proof of concept' for the strategy of therapeutic angiogenesis. One large randomized phase II trial failed to show significant efficacy in coronary artery disease. Another showed significant efficacy in peripheral artery disease, although the magnitude of benefit was disappointing at the dose tested. This overview details the suitable clinical trial design and further steps toward the clinical development of FGF-2. PMID:14534147

  16. High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization

    PubMed Central

    Soleyman, Mohammad Reza; Khalili, Mostafa; Khansarinejad, Behzad; Baazm, Maryam

    2016-01-01

    Background: Basic fibroblast growth factor (bFGF) is a member of a highly conserved superfamily of proteins that are involved in cell proliferation, differentiation, and migration. Objectives: The objective of this study was to overexpress and purify the high-level active human bFGF in Escherichia coli (E. coli). Materials and Methods: This experimental study was conducted in the Islamic Republic of Iran. After codon optimization and gene synthesis, the optimized FGF-2 gene was subcloned into plasmid pET-32a. pET32-FGF-2 was transformed into E. coli BL21 for expression. The cultivation parameters were optimized to produce a high yield of FGF-2. Results: The optimal conditions were determined as follows: cultivation at 37°C in TB medium, with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), followed by post-induction expression for 6 h. Under the abovementioned conditions, the expression volumetric productivity of FGF-2 reached 1.48 g/L. Conclusions: A fusion tag from the pET32 expression plasmid permits the recovery of the recombinant fusion FGF-2 from E. coli, without affecting its biological activity. PMID:27175305

  17. A Hibiscus Abelmoschus seed extract as a protective active ingredient to favour FGF-2 activity in skin.

    PubMed

    Rival, D; Bonnet, S; Sohm, B; Perrier, E

    2009-12-01

    In the skin, heparin, heparan sulphate and heparan sulphate proteoglycans control the storage and release of growth factors and protect them from early degradation. We developed a cosmetic active ingredient containing Hibiscus Abelmoschus seed extract (trade name Linefactor) that can maintain the FGF-2 content in the skin by mimicking the protective effect of heparan sulphate proteoglycans. By preventing the natural degradation of FGF-2, Hibiscus Abelmoschus seed extract maintains the bioavailability of this growth factor for its target cells, i.e. skin fibroblasts. Our in vitro evaluations showed that this ingredient exhibited heparan sulphate-like properties and dose-dependently protected FGF-2 from thermal degradation. We could also show that, in turn, the protected FGF-2 could stimulate the synthesis of sulphated GAGs, the natural protective molecules for FGF-2, thus providing a double protection. Finally, the in vitro results were confirmed in vivo thanks to a clinical study in which skin biomechanical properties and reduction in wrinkles were assessed.

  18. Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)–induced proliferation, migration, and neovascularization of ischemic muscle

    PubMed Central

    Jang, Eugene; Albadawi, Hassan; Watkins, Michael T.; Edelman, Elazer R.; Baker, Aaron B.

    2012-01-01

    Ischemia of the myocardium and lower limbs is a common consequence of arterial disease and a major source of morbidity and mortality in modernized countries. Inducing neovascularization for the treatment of ischemia is an appealing therapeutic strategy for patients for whom traditional treatment modalities cannot be performed or are ineffective. In the past, the stimulation of blood vessel growth was pursued using direct delivery of growth factors, angiogenic gene therapy, or cellular therapy. Although therapeutic angiogenesis holds great promise for treating patients with ischemia, current methods have not found success in clinical trials. Fibroblast growth factor-2 (FGF-2) was one of the first growth factors to be tested for use in therapeutic angiogenesis. Here, we present a method for improving the biological activity of FGF-2 by codelivering the growth factor with a liposomally embedded coreceptor, syndecan-4. This technique was shown to increase FGF-2 cellular signaling, uptake, and nuclear localization in comparison with FGF-2 alone. Delivery of syndecan-4 proteoliposomes also increased endothelial proliferation, migration, and angiogenic tube formation in response to FGF-2. Using an animal model of limb ischemia, syndecan-4 proteoliposomes markedly improved the neovascularization following femoral artery ligation and recovery of perfusion of the ischemic limb. Taken together, these results support liposomal delivery of syndecan-4 as an effective means to improving the potential of using growth factors to achieve therapeutic neovascularization of ischemic tissue. PMID:22307630

  19. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion

    PubMed Central

    Coleman, Stacey J; Chioni, Athina-Myrto; Ghallab, Mohammed; Anderson, Rhys K; Lemoine, Nicholas R; Kocher, Hemant M; Grose, Richard P

    2014-01-01

    Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer cells. In vitro, inhibiting FGFR1 and FGF2 in PSCs, using RNAi or chemical inhibition, resulted in significantly reduced cell proliferation, which was not seen in cancer cells. In physiomimetic organotypic co-cultures, FGFR inhibition prevented PSC as well as cancer cell invasion. FGFR inhibition resulted in cytoplasmic localisation of FGFR1 and FGF2, in contrast to vehicle-treated conditions where PSCs with nuclear FGFR1 and FGF2 led cancer cells to invade the underlying extra-cellular matrix. Strikingly, abrogation of nuclear FGFR1 and FGF2 in PSCs abolished cancer cell invasion. These findings suggest a novel therapeutic approach, where preventing nuclear FGF/FGFR mediated proliferation and invasion in PSCs leads to disruption of the tumour microenvironment, preventing pancreatic cancer cell invasion. PMID:24503018

  20. Controlling silk fibroin microspheres via molecular weight distribution.

    PubMed

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4-KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength>0.7 M and pH>7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications.

  1. Determination of molecular weight distributions in native and pretreated wood.

    PubMed

    Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S

    2015-03-30

    The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification.

  2. Impact of molecular weight in four-branched star vectors with narrow molecular weight distribution on gene delivery efficiency.

    PubMed

    Nemoto, Yasushi; Borovkov, Alexey; Zhou, Yue-Min; Takewa, Yoshiaki; Tatsumi, Eisuke; Nakayama, Yasuhide

    2009-12-01

    A series of star-shaped cationic polymers, termed star vectors (SVs), has been developed as effective nonviral gene delivery carriers. In this study, we separated SVs into several fractions having different molecular weights with very narrow molecular weight distributions in order to examine in detail the influence of the molecular weight of the SVs on the gene transfection efficiency. As a model compound for several types of SVs, 4-branched poly(N,N-dimethylaminopropyl acrylamide) having a molecular weight (M(n)) of approximately 35 kDa and polydispersity of 1.6 was prepared by iniferter-based radical polymerization. The SVs were separated using size-exclusion chromatography to obtain seven fractions having M(n) ranging from 27 kDa to 73 kDa with polydispersity ranging from 1.1 to 1.2. All the fractionated SVs have similar pH of 10.2-10.4 and were able to interact with and condense luciferase-encoding plasmid deoxyribonucleic acid (DNA) to yield SV/DNA polyplexes. A water-soluble tetrazolium-1 (WST) assay showed that all SVs had minimal cellular cytotoxicity under an N/P charge ratio of 10. The critical micellar concentration decreased with an increase in the M(n) of the fractionated SVs; however, the particle size of the polyplexes, exclusion activity of ethidium bromide, and zeta-potential of the polyplexes increased. An in vitro evaluation using COS-1 cells at an N/P ratio of 10 showed that transfection activity increased almost linearly with M(n). The highest transfection activity was obtained for SVs with the highest M(n) (73 kDa), which was over 7 times that for the SVs with the lowest M(n) (27 kDa), the nonfractionated original SV, or PEI standard. The transfection efficiency was more correlated with the amphiphilicity or hydrophobicity of the SVs and the surface potential and condensate density of the polyplexes than with the particle size.

  3. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  4. Low molecular weight silicones particularly facilitate human serum albumin denaturation.

    PubMed

    Nayef, Lamees M; Khan, Madiha F; Brook, Michael A

    2015-04-01

    There is a market trend towards the administration of therapeutic proteins using sterilized, pre-filled glass syringes lubricated with silicone oil. It has been widely reported that initially clear solutions of proteins can become turbid during transport and storage, with unclear outcomes with respect to bioefficacy. While the basic processes of interactions of proteins with hydrophobic entities, leading to denaturation and aggregation, are increasingly well understood, the apparently random occurrence of such processes in syringes is not. To better understand the parameters that may be responsible for this change, we report the systematic examination of a series of factors that can affect the behavior of the protein human serum albumin (HSA) when in contact with silicone oil in water. Fluorescence spectroscopy showed that greater mixing times and greater concentrations of silicones (polydimethylsiloxane (PDMS)), especially lower molecular weight hydrophobic silicones like octamethyltetracyclosiloxane (D4), were associated with increased protein denaturation. The turbidity of HSA solutions, due to the formation both of silicone oil-in-water (O/W) emulsions and protein aggregates, was also facilitated by the presence of D4. A series of mixtures of silicone oils, all of which exhibited a viscosity of 1000 cSt but which were comprised of different silicone constituents, clearly showed a correlation between the presence of lower molecular silicones and enhanced solution turbidity. While the addition of a non-ionic silicone-polyether surfactant led to greater turbidity by increasing the number of stabilized oil droplets, it was not accompanied by protein denaturation. These results are consistent with HSA denaturation and subsequent aggregation as a consequence of contact particularly with low molecular weight, hydrophobic silicones that are more mobile, leading to more efficient protein/silicone contact.

  5. The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps.

    PubMed

    Haastert, Kirsten; Ying, Zhe; Grothe, Claudia; Gómez-Pinilla, Fernando

    2008-10-10

    Studies were conducted to determine the possibility that voluntary exercise could enhance regenerative effects of gene therapy via Schwann cells (SC) over-expressing FGF-2. Sedentary or exercise rehabilitation conditions were therefore provided shortly after reconstructing 10mm sciatic nerve gaps in rats with silicone grafts. Exercise for 7 days elevated mRNA levels of regeneration associated proteins (GAP-43 and synapsin I) in lumbar spinal cord and dorsal root ganglia of SC transplanted, in contrast to non-cellular reconstructed rats. FGF-2 gene therapy followed by 25-27 days of exercise did enhance regeneration of myelinated axons in comparison to sedentary animals. Four weeks after surgery mRNA levels of regeneration associated proteins were significantly higher in lumbar spinal cord of running compared to sedentary SC transplanted animals. Our results suggest that voluntary exercise could reinforce the beneficial effects of SC transplantation and FGF-2 gene therapy in peripheral nerve reconstruction approaches.

  6. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application.

  7. Expression of low molecular weight proteins in patients with leukaemia.

    PubMed

    Sheikh, N; Abid, R; Qureshi, A W; Basheer, T

    2012-06-01

    The current study is conducted to observe the differences in the level of low molecular weight proteins in the sera of patients with leukaemia in comparison to healthy subjects (control group). The sera of patients with leukaemia showed 15 peaks in the densitometric curve in comparison to the seven peaks of the controls. The peaks in the experimental samples that coincide with those in the control were of 134.14, 113.15, 76.06, 63.25, 48.07, 22.85 and 16.47 kDa molecular weights, respectively. Most of the new peaks appeared between the proteins of molecular weight 36-29 kDa in the experimental groups. Mean density of the 134.14 kDa protein band showed an increase in the protein in experimental groups I and II only whereas 113.15 and 22.85 kDa protein were increased in all experimental groups of patients with leukaemia. The expression of 76.06 and 63.25 kDa protein fraction was downregulated in the patients with leukaemia. A decline in the level of the protein of 48.07 kDa was observed in patients with leukaemia except in group I. Unlike the other protein fractions, the level of the protein of 16.47 kDa was significantly (p < 0.05) increased with a maximum density in group II. Intergroup experimental) comparison revealed an increasing pattern of 95.44 and 89.21 kDa with maximum level in group III sera. However the protein fractions of 38.07 and 34.94 kDa varied in the serum with maximum density in Group IV Protein fractions of 32.92 and 31.24 kDa were expressed in all age groups of patients with leukaemia with a maximum density in group III whereas the percentage densities of 14.42 and 13.56 kDa protein were quite different. This preliminary study will provide a basis to study the role of different proteins in patients with leukaemia.

  8. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  9. Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis.

    PubMed

    Rahman, Mohammad Zeshaan; Shigeishi, Hideo; Sasaki, Kazuki; Ota, Akira; Ohta, Kouji; Takechi, Masaaki

    2016-04-01

    Objective Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. Material and Methods Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. Results FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. Conclusion These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization.

  10. Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis

    PubMed Central

    RAHMAN, Mohammad Zeshaan; SHIGEISHI, Hideo; SASAKI, Kazuki; OTA, Akira; OHTA, Kouji; TAKECHI, Masaaki

    2016-01-01

    ABSTRACT Objective Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. Material and Methods Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. Results FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. Conclusion These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization. PMID:27119764

  11. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction.

    PubMed

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Azzouna, Rana Ben; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Guludec, Dominique Le; Letourneur, Didier; Chauvierre, Cédric

    2014-09-23

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.

  12. Biological effects of high molecular weight lignin derivatives.

    PubMed

    Pessala, Piia; Schultz, Eija; Kukkola, Jukka; Nakari, Tarja; Knuutinen, Juha; Herve, Sirpa; Paasivirta, Jaakko

    2010-10-01

    A number of high molecular weight (HMW) lignin derivatives possessing varied chemical properties were screened for their biological effects in order to obtain more information on the possible structural features of HMW lignin-related effects. The studied compounds were both commercial and in-house extracted lignin derivatives. Bioassays used include reverse electron transport (RET), Vibrio fischeri, Daphnia magna, and juvenile rainbow trout (Oncorhynchus mykiss) hepatocytes. The studied lignin derivatives inhibited the in vitro systems and luminescence of V. fischeri bacteria to some extent-daphnids were not affected. It seems that, at least in the RET assay, certain pH-dependent functional groups in lignin may be of importance regarding the biological effects.

  13. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  14. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  15. Hydrophobic composition based on mixed-molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  16. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Molecular Weight

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    2011-03-01

    The influence of nanoconfinement on the free radical polymerization of methyl methacrylate is investigated. Nanoporous controlled pore glass (CPG) is used as a nanoconfining matrix for the polymerization. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization using differential scanning calorimetry (DSC). Preliminary results indicate several interesting effects for polymerization in 110 nm diameter pores: the induction time increases under nanoconfinement, the effective reaction rate constant increases, the effective activation energy is unchanged, and the gel effect or autoaccleration occurs at earlier times after induction. The latter result concerning the gel effect is presumably due to the decrease in diffusivity under nanoconfinement which results in a decrease in the termination rate of free radicals. The cause of the longer induction times and accelerated reaction rates just after induction are under investigation. The influence of nanoconfinement on molecular weight will also be examined.

  17. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  18. New cyanopeptide-derived low molecular weight thrombin inhibitors.

    PubMed

    Radau, Gregor; Gebel, Jana; Rauh, Daniel

    2003-08-01

    Thrombosis is the result of defective regulation of the hemostasis system. This cardiovascular disorder may lead to deep vein thrombosis, myocardial infarction, and stroke. The majority of current drug research is focused on finding inhibitors of thrombin - the global player in hemostasis. In our work, we emphasize investigation of the marine environment to yield new lead structures from marine organisms like blue-green algae (cyanobacteria). This article deals with the design, syntheses, and inhibition tests of new low molecular weight thrombin inhibitors utilizing cyanopeptides, the secondary metabolites of cyanobacteria with interesting biological activities, as new lead structures. Starting with aeruginosin 98-B (2) as a lead structure, we have developed and synthesized new, selective acting inhibitors of thrombin (RA-1001 and RA-1002), which are suitable targets for further structure-activity studies.

  19. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  20. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  1. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight.

  2. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  3. Low-molecular-weight heparin in pediatric patients.

    PubMed

    Sutor, Anton Heinz; Chan, Anthony K C; Massicotte, Patricia

    2004-02-01

    The incidence of thromboembolic events (TEs) in childhood is greatly underestimated. Two age groups account for approximately 70% of TEs in childhood: infants and teenagers. There are several predisposing risk factors for newborns such as small vessels, high hematocrit, and a unique neonatal hemostatic system. Central venous lines contribute to 80% of deep vein thrombosis in newborns. Other risk factors for all children are shock syndromes, trauma, surgery, heart and kidney disease, and acquired or hereditary thrombophilias. The best prophylaxis is to recognize, avoid, and remove risk factors if possible. This is particularly relevant in childhood, where risk factors can be found in the majority of TEs. The serious sequelae of TEs (mortality, and short- and long-term morbidity) require therapeutic intervention. Unfractionated heparin (UFH) has the following disadvantages: age-dependent unpredictable pharmacokinetics, the need for intravenous access for therapy and monitoring, delays in achieving therapeutic ranges, bleeding risk, the risk of heparin-induced thrombocytopenia, and osteoporosis with long-term use. Oral anticoagulants, in addition to some of these disadvantages, show considerable variation by diet (especially if there is a change from breast to bottle feeding), medication, and intercurrent illness. Review of case reports and cohort studies on 728 children treated with low-molecular-weight heparin (LMWH) indicate the following advantages over UFH: minimal monitoring, ease of administration (subcutaneous), and possibly equivalent efficacy and safety. Dose recommendations for pediatric patients cannot be directly extrapolated from those for adult patients. If dosages are calculated according to body weight, infants < 3 months (or < 5 kg) need approximately 50% more LMWH than older children or adults to reach prophylactic or therapeutic anti-factor Xa levels. Further studies are necessary to address the following: the importance of risk factors, the

  4. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  5. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo.

    PubMed

    Bai, Yan; Leng, Yue; Yin, Guangfu; Pu, Ximing; Huang, Zhongbing; Liao, Xiaoming; Chen, Xianchun; Yao, Yadong

    2014-04-01

    Angiogenesis, a complex biologic process, is regulated by a large number of angiogenic factors, including vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Whether Bone morphogenetic proteins-2 (BMP-2), the osteoinductive factor, could significantly reinforce the effect of VEGF and FGF-2 on angiogenesis has not been studied in detail. To study the positive effects of multiple growth factors on angiogenesis, HUVECs were treated with BMP-2, VEGF, or FGF-2 singly and in binary and ternary combinations. This study further investigates the optimal timing of the ternary combination of BMP-2, VEGF and FGF-2 for angiogenesis in the chorioallantoic membrane (FGF-2 CAM). Results of single applications of BMP-2, VEGF, or FGF-2 suggested that HUVECs angiogenesis could be promoted in a dose-dependent manner and that the optimal concentration of BMP, VEGF and FGF-2 was 10, 50 and 1 ng/mL, respectively. These results indicated that the angiogenic activity of VEGF and FGF-2 was amplified by combining with BMP-2. The ternary combination of BMP-2, VEGF and FGF-2 exhibited a positive and synergistic effect on HUVECs angiogenesis, with the lower concentrations of each factor (1 ng/mL of BMP-2, 25 ng/mL of VEGF and 0.1 ng/mL of FGF-2) being sufficient to show synergistic promotion. When VEGF and FGF-2 were added in the initial activation stage and BMP-2 was added in the maturation stage, both HUVECs angiogenesis in vitro and CAM angiogenesis in vivo could be enhanced more effectively. These results could provide a basis for the controlled release systems capable of delivering multiple factors sequentially to promote angiogenesis in tissue engineering.

  6. Evaluation of bone formation guided by DNA/protamine complex with FGF-2 in an adult rat calvarial defect model.

    PubMed

    Shinozaki, Yosuke; Toda, Masako; Ohno, Jun; Kawaguchi, Minoru; Kido, Hirofumi; Fukushima, Tadao

    2014-11-01

    DNA/protamine complex paste (D/P) and D/P complex paste with Fibroblast Growth Factor-2 (FGF-2) (D/P-FGF) were prepared to investigate their new bone formation abilities using an ∼40-week-old rat calvarial defect model. It was found that D/P could release FGF-2 proportionally in an in vitro experiment with an enzyme-linked immunosorbent assay. It was also found that aging adversely affected self-bone healing of rats by comparison with the results in a previous study using 10-week-old rats. Microcomputed tomography and histopathological examinations showed that new bone formation abilities of D/P and D/P-FGF were superior to that of the control (sham operation). Control, D/P and D/P-FGF showed newly formed bone areas of 6.7, 58.3, and 67.0%, respectively, 3 months after the operation. Moreover, it was found that FGF-2 could support the osteoanagenesis ability of D/P. It was considered that FGF-2 could play an important role in new bone formation at early stages because it induced the genes such as collagen I, CBFA, OSX, and OPN, which are initiated first in the process of osteogenesis. Therefore, D/P-FGF will be a useful injectable biomaterial with biodegradable properties for the repair of bone defects in the elderly.

  7. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    PubMed Central

    Cartland, Siân P.; Genner, Scott W.; Zahoor, Amna; Kavurma, Mary M.

    2016-01-01

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. PMID:27918462

  8. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    NASA Astrophysics Data System (ADS)

    Hotowy, Anna; Sawosz, Ewa; Pineda, Lane; Sawosz, Filip; Grodzik, Marta; Chwalibog, André

    2012-07-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level ( FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA ( P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.

  9. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  10. Optimization of parameters for coverage of low molecular weight proteins.

    PubMed

    Müller, Stephan A; Kohajda, Tibor; Findeiss, Sven; Stadler, Peter F; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin; Kalkhof, Stefan

    2010-12-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  11. The in vivo regulation of pioneer axon growth by FGF-2 and heparan sulfate proteoglycans in cultured embryos of the cockroach.

    PubMed

    Nyhus, J K; Denburg, J L

    1998-08-01

    Antibody perturbation experiments on cultured cockroach embryos demonstrated that a localized source of an FGF-2-like immunoreactive molecule in the head is required for the proper growth of pioneer axons in the leg. The study of axon growth in various fragments of cultured embryos and in the presence of various conditioned media showed that FGF-2 is needed to counteract the effects of an inhibitor of axon growth produced in the body trunk of the embryo. Endogenous heparan sulfate proteoglycans mediate these effects of FGF-2 on axon growth. The results of experiments with FGF-2 and/or body trunk axon growth inhibitor added to the culture medium indicate that more globally and uniformly distributed molecules may play as important a role in axon guidance as the more spatially restricted guidance cues. The results are interpreted in terms of a model that is consistent with a role for the FGF-2 receptor in axon growth.

  12. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  13. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  14. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    PubMed

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  15. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  16. Composition and molecular weight distribution of carob germ protein fractions.

    PubMed

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  17. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-01-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application.

  18. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  19. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  20. Antiaging activity of low molecular weight peptide from Paphia undulate

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  1. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-07

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods.

  2. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  3. The Effect of Low Molecular Weight Heparins on Fracture Healing

    PubMed Central

    Kapetanakis, Stylianos; Nastoulis, Evangelos; Demesticha, Theano; Demetriou, Thespis

    2015-01-01

    Venous Thromboembolism is a serious complication in the trauma patient. The most commonly studied and used anticoagulant treatment in prophylaxis of thrombosis is heparin. The prolonged use of unfractionated heparin has been connected with increased incidence of osteoporotic fractures. Low molecular-weight-heparins (LMWHs) have been the golden rule in antithrombotic therapy during the previous two decades as a way to overcome the major drawbacks of unfractioned heparin. However there are few studies reporting the effects of LMWHs on bone repair after fractures. This review presents the studies about the effects of LMWHs on bone biology (bone cells and bone metabolism) and underlying the mechanisms by which LMWHs may impair fracture healing process. The authors’ research based on literature concluded that there are no facts and statistics for the role of LMWHs on fracture healing process in humans and the main body of evidence of their role comes from in vitro and animal studies. Further large clinical studies designed to compare different types of LMWHs, in different dosages and in different patient or animal models are needed for exploring the effects of LMWHs on fracture healing process. PMID:26161162

  4. Can we differentiate the low-molecular-weight heparins?

    PubMed

    Turpie, A G

    2000-01-01

    The low-molecular-weight heparins (LMWHs) have a number of therapeutic advantages, relative to standard unfractionated heparin (UFH). They are readily bioavailable when injected subcutaneously and can be given in fixed doses, allowing for far simpler administration. Several LMWHs are now commercially available, each demonstrating different physical and chemical properties and different activities in animal models of anticoagulation or hemorrhage. In clinical comparisons with placebo in the treatment of unstable coronary artery disease (UCAD), the LMWHs dalteparin sodium and nadroparin calcium have demonstrated good anticoagulant efficacy. In comparisons with UFH, on the other hand, only enoxaparin has shown superior anticoagulant activity, as reported in the results of the Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q-wave Coronary Events (ESSENCE) and Thrombolysis In Myocardial Infarction (TIMI) 11B trials. However, close scrutiny of the methodology of the clinical trials in UCAD reveals considerable differences in study designs, dosage regimens, duration of administration of active treatments, and the timing and definition of endpoints. Therefore, it would not be scientifically sound to compare results with the different LMWHs based on the current available studies. It is also not possible to draw any conclusions with regard to the relative efficacy of the different LMWHs, since there are no properly-sized comparative data between dalteparin sodium, enoxaparin sodium, and nadroparin calcium.

  5. Low molecular weight heparin use in unexplained recurrent miscarriage

    PubMed Central

    Yuksel, Halide; Kayatas, Semra; Boza, Aysen Telce; Api, Murat; Ertekin, A. Aktug; Cam, Cetin

    2014-01-01

    Objective: The aim of the study was to investigate whether the use of low molecular weight heparin (LMWH) improve live birth rates when compared with control group in patients with unexplained recurrent miscarriages (URM). Methods: In this prospective observational study 150 women with a history of two or more previous unexplained first trimester pregnancy loss who received LMWH; either enoxaparin (n=50), tinzaparin (n=50) or nothing (n=50) were followed for the pregnancy outcome measures. Only the patients who have used standardized dosage of LMWH (4000 IU/day enoxaparin or 3500 IU/day tinzaparin ) were included to the study. The primary end point was the live birth rate and secondary end points were the side effects, late pregnancy complications and neonatal outcome in the study cohorts. Results: Live birth was achieved 85% of the LMWH group and 66% of the control group (p=0.007). According to the subgroup analysis; live birth rates did not differ significantly between the enoxaparin and tinzaparin group (84% and 86%, respectively). Maternal and neonatal side effects were not statistically significant among the study participants. Conclusion: Thromboprophylaxis with LMWH resulted in a improved live-birth rate in patient with 2 or more consecutive unexplained recurrent pregnancy loss. Nevertheless these findings need to be confirmed in larger randomized trials. PMID:25674114

  6. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    PubMed

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  7. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites

    NASA Astrophysics Data System (ADS)

    Porras, A.; Tellez, J.; Casas-Rodriguez, J. P.

    2012-08-01

    Ultra high molecular weight polyethylene (UHMWPE) fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE) fibre reinforced composites were characterized using the End Notch Flexural (ENF) test. Critical strain energy release rate was obtained from the load - deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  8. Using low molecular weight heparin in special patient populations.

    PubMed

    Lim, Wendy

    2010-02-01

    Clinical trials evaluating low molecular weight heparin (LMWH) for the prevention and treatment of venous thromboembolism and acute coronary syndromes have led to their regulatory approval for these indications in the general population. However, certain patient populations have been excluded from these landmark clinical trials, including patients with renal insufficiency, obese patients and pregnant women. In these special populations, data on safety and efficacy is limited and typically based on pharmacokinetic studies often performed in healthy subjects, or small cohort studies which are generally not powered to evaluate clinical outcomes such as bleeding or recurrent thrombosis. Because LMWH is mainly cleared renally, patients with severe renal insufficiency are at risk of LMWH accumulation and increased bleeding risks. In obese patients, there is concern regarding possible overdosing of therapeutic dose LMWH, since LMWH does not distribute in fat tissue. There are also concerns about possible underdosing of prophylactic dose LMWH in obese individuals using the standard fixed doses, particularly in the extremely obese individuals undergoing bariatric surgery. Last, pregnancy poses challenges with regards to the safety of LMWH during pregnancy and use of LMWH around delivery. This review summarizes the existing data in these special populations and proposes general recommendations for practice.

  9. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  10. Regulatory considerations for generic or biosimilar low molecular weight heparins.

    PubMed

    García-Arieta, Alfredo; Blázquez, Antonio

    2012-06-01

    The aim of the present paper is to address the legal aspects, technical requirements and possible conditions of use associated to low molecular weight heparin generics and biosimilars that are arriving to the market in United States and the European Union, respectively. To this end the concept of "similar biological medicinal product" that was coined in 2003 by the pharmaceutical legislation of the European Union is compared to the concept of generic in the United States and the concept of generic in the European Union. This different legal basis determines directly the technical requirements to obtain a marketing authorisation. Therefore, the chemical/biological, non-clinical and clinical requirements to demonstrate therapeutic equivalence are different in these two Regulatory Authorities, FDA and EMA. Consequently, the possible conditions of use are different. In the United States the products approved as generics by the FDA are considered interchangeable to the Reference Listed Drug. In contrast, the EMA legislation only deals with the approvability or prescribability of the medicines and it is a national / regional decision of the member States to consider these biosimilar products as interchangeable or not.

  11. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  12. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    SciTech Connect

    Anzai, Jun; Kitamura, Masahiro; Nozaki, Takenori; Nagayasu, Toshie; Terashima, Akio; Asano, Taiji; Murakami, Shinya

    2010-12-17

    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontal tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal

  13. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration

    PubMed Central

    Yablonka-Reuveni, Zipora; Danoviz, Maria E.; Phelps, Michael; Stuelsatz, Pascal

    2015-01-01

    Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF) family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2, and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four Fgfr genes, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs. PMID:26074812

  14. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization.

    PubMed

    Chang, L C; Lee, H F; Yang, Z; Yang, V C

    2001-01-01

    Low molecular weight protamine (LMWP) appears to be a promising solution for heparin neutralization without the protamine-associated catastrophic toxic effects. The feasibility of this hypothesis was proven previously by using a peptide mixture produced from proteolytic digestion of protamine. To further examine the utility of this compound as an ultimate nontoxic protamine substitute, detailed studies on the purification and characterization of LMWP including the precise amino acid sequence, structure-function relationship, and possible mechanism were conducted. A number of LWMP fragments, composed of highly cationic peptides with molecular weights ranging from 700 to 1900 d, were prepared by digestion of native protamine with the protease thermolysin. These fragments were fractionated using a heparin affinity chromatography, and their relative binding strengths toward heparin were elucidated. Five distinct fractions were eluted at NaCl concentration ranging from 0.4 to 1.0 M and were denoted as TDSP1 to TDSP5, in increasing order of eluting ionic strength. Among these 5 fractions, TDSP4 and TDSP5 contained 3 LMWP peptide fragments, and they were found to retain the complete heparin-neutralizing function of protamine. By using a peptide mass spectrometry (MS) fingerprint mapping technique, the amino acid sequences of the microheterogeneous LMWP fragments in all these 5 elution fractions were readily identified. A typical structural scaffold made by arginine clusters in the middle and nonarginine residues at the N-terminal of the peptide sequence was observed for all these LMWP fragments. By aligning the sequences with the potency in heparin neutralization of these LMWP fragments, it was found that retention of potency similar to that of protamine required the presence of at least 2 arginine clusters in the LMWP fragments; such as the sequence of VSRRRRRRGGRRRR seen in the most potent LMWP fraction-TDSP5. The above finding was further validated by using a synthetic

  15. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  16. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents.

  17. Effect of cross-linking ultrahigh molecular weight polyethylene: Surface molecular orientation and wear characteristics

    SciTech Connect

    Sambasivan, Sharadha; Fischer, Daniel A.; Hsu, Stephen M.

    2007-07-15

    Molecular orientation at the surface layer of cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been examined. Molecular orientation has been shown to affect the wear resistance and surface mechanical properties of UHMWPE under biomechanical loading conditions. This study utilizes a nondestructive synchrotron based soft x-ray technique; near edge x-ray absorption fine structure at the carbon K-edge to examine the degree of surface molecular orientation of UHMWPE subjected to various cross-linking/sterilization techniques as a function of stress and wear. UHMWPE samples prepared under gamma irradiation, ethylene-oxide (EtO) treatment, and electron beam irradiation were worn in a wear tester systematically. Results suggest that the cross-linking resists surface orientation when the samples were under tensile and biomechanical stresses. The molecular orientation in the C-C chains in the polymer showed a monotonic decrease with an increase in gamma irradiation dosage levels. EtO sterilized samples showed more C-C chain orientation than the electron beam irradiated samples, but lower than the 30 kGy gamma irradiated samples. Ordered C-C chains in UHMWPE samples have been associated with more crystallinity or large strain plastic deformation of the polymer. Higher levels of gamma irradiation appear to induce cross-linking of C-C chains and render a polymer with more amorphous phase which resists orientation after wear and imparts wear resistance to the polymer.

  18. Molecular weight effects on interfacial properties of linear and ring polymer melts: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Meddah, Chahrazed; Milchev, Andrey; Sabeur, Sid Ahmed; Skvortsov, Alexander M.

    2016-11-01

    Using molecular dynamics simulations, we study and compare the pressure, P, and the surface tension, γ , of linear chains and of ring polymers at the hard walls confining both melts into a slit. We examine the dependence of P and γ on the length (i.e., molecular weight) N of the macromolecules. For linear chains, we find that both pressure and surface tension are inversely proportional to the chain length, P (N ) -P (N →∞ ) ∝N-1,γ (N ) -γ (N →∞ ) ∝N-1 , irrespective of whether the confining planes attract or repel the monomers. In contrast, for melts comprised of cyclic (ring) polymers, neither the pressure nor the surface tension is found to depend on molecular weight N for both kinds of wall-monomer interactions. While other structural properties as, e.g., the probability distributions of trains and loops at impenetrable walls appear quantitatively indistinguishable, we observe an amazing dissimilarity in the probability to find a chain end or a tagged monomer of a ring at a given distance from the wall in both kinds of polymeric melts. In particular, we demonstrate that the conformational equivalence of linear chains in a confined melt to a single chain under conditions of critical adsorption to a planar surface, established two decades ago, does also hold for ring polymers in a melt of linear chains. This analogy does not hold, however, for linear and ring chains in a confined melt of ring chains.

  19. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  20. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  1. [Low molecular weight heparin and non valvular atrial fibrillation].

    PubMed

    Ederhy, S; Di Angelantonio, E; Meuleman, C; Janower, S; Boccara, F; Cohen, A

    2006-12-01

    Low molecular weight heparin (LMWH) are obtained through chemical or enzyme depolymerisation of unfractioned heparins (UFH). LMWHs present several advantages over UFH: they exhibit a smaller interindividual variability of the anticoagulant effect, they have a greater bioavailability, a longer plasma half-life and do not require monitoring of the anticoagulant effect. LMWH have restrictive indications in AF patients, cardioversion (II level C and TEE for ACC/AHA/ESC and 2C for ACCP guidelines) or use as a bridge therapy (IIB, level C for ACC/AHA/ESC). The ACE study (Anticoagulation for cardioversion using enoxaparin), showed a reduction, though not statistically significant, of 42% of the composite end point (embolic event, major bleeding and death) 2.8% under enoxaparin vs. 4.8 % under conventional treatment, relative risk 0.58, CI 95% 0.23-1.46). Other studies, using dalteparin, confirmed that an anticoagulant treatment using LMWH followed by warfarin was at least as good as conventional management. ACUTE II (Assessment of cardioversion using transesophageal echochardiography), a randomized multicenter trial, compared the efficacy and tolerance of enoxaparin (1 mg/kg every 12 hours) and UFH in 155 patients eligible for a TEE-guided cardioversion. These patients were administered LMWH or UFH for 24 hours before TEE or cardioversion. There were no significative differences regarding the incidence of the study end points, in particular stroke and bleeding, and no death occurred. HAEST (Heparin in acute embolic stroke trial), a randomized, placebo-controlled, double blind trial failed to show the LMWH superiority over aspirin in patients with acute ischemic stroke and atrial fibrillation. Finally, LMWH have been proposed as a bridge therapy in patients under chronic VKA prior to surgery or invasive procedures. This strategy resulted in a low rate of thromboembolic events and major bleedings.

  2. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  3. Characterization and analysis of the molecular weight of lignin for biorefining studies

    SciTech Connect

    Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn; Naskar, Amit K.; Ragauskas, Arthur J.

    2014-06-04

    The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, and chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.

  4. Molecular dynamics study of the molecular weight dependence of surface tensions of normal alkanes and methyl methacrylate oligomers.

    PubMed

    Li, Chunli; Choi, Phillip

    2006-04-06

    Surface tensions (gamma) of normal alkanes and methyl methacrylate (MMA) oligomers at various molecular weights in the low molecular weight range were computed using a newly proposed molecular dynamics (MD) simulation strategy which was developed based on the definition of gamma = ( partial differential U/ partial differential sigma)n,V,S. The MD simulations, even with the use of a generic force field, reproduced the experimentally observed molecular weight dependence of gamma (i.e., gamma proportional Mn(-2/3), where Mn is the number-average molecular weight) for both series of oligomers. Analysis of the data reveals that solvent accessible surface area, one of the key input variables used for the calculation of gamma, exhibits an Mn(2/3) (rather than Mn(1)) dependence. The reason for such dependence is that solvent accessible surface area formed by the chainlike small molecules depends, to a larger extent, on their orientations rather than their size. However, this is not the case for high molecular weight molecules as solvent accessible surface area of such surfaces are determined by the orientations of their segments which are determined by the conformations of the molecules. This may explain why surface tension of polymers experimentally exhibits an Mn(-1) dependence. It is inferred that the corresponding molecular weight dependence of the entropy changes associated with molecules in the low and high molecular weight ranges would be different.

  5. Effect of FGF-2 and sciatic nerve grafting on ChAT expression in dorsal root ganglia neurons of spinal cord transected rats.

    PubMed

    Guzen, Fausto Pierdoná; de Araújo, Dayane Pessoa; Lucena, Eudes Euler de Souza; de Morais, Hécio Henrique Araújo; Cavalcanti, José Rodolfo Lopes de Paiva; do Nascimento, Expedito Silva; Costa, Miriam Stela Maris de Oliveira; Cavalcante, Jeferson Sousa

    2016-03-11

    Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.

  6. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Rotllan, Noemi; Cirera-Salinas, Daniel; Suárez, Yajaira

    2014-01-01

    ABSTRACT MicroRNA-149 (miR-149) is located within the first intron of the glypican-1 (GPC1) gene. GPC1 is a low affinity receptor for fibroblast growth factor (FGF2) that enhances FGF2 binding to its receptor (FGFR1), subsequently promoting FGF2–FGFR1 activation and signaling. Using bioinformatic approaches, both GPC1 and FGFR1 were identified and subsequently validated as targets for miR-149 (both the mature strand, miR-149, and the passenger strand, miR-149*) in endothelial cells (ECs). As a consequence of their targeting activity towards GPC1 and FGFR1, both miR-149 and miR-149* regulated FGF2 signaling and FGF2-induced responses in ECs, namely proliferation, migration and cord formation. Moreover, lentiviral overexpression of miR-149 reduced in vivo tumor-induced neovascularization. Importantly, FGF2 transcriptionally stimulated the expression of miR-149 independently of its host gene, therefore assuring the steady state of FGF2-induced responses through the regulation of the GPC1–FGFR1 binary complex in ECs. PMID:24463821

  7. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  8. Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro.

    PubMed

    Layman, John M; Ramirez, Sean M; Green, Matthew D; Long, Timothy E

    2009-05-11

    Establishing clear structure-property-transfection relationships is a critical step in the development of clinically relevant polymers for nonviral gene therapy. In this study, we determined the influence of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) molecular weight on cytotoxicity, DNA binding, and in vitro plasmid DNA delivery efficiency in human brain microvascular endothelial cells (HBMEC). Conventional free radical polymerization was used to synthesize PDMAEMA with weight-average molecular weights ranging from 43,000 to 915,000 g/mol. MTT and LDH assays revealed that lower molecular weight PDMAEMA (M(w) = 43,000 g/mol) was slightly less toxic than higher molecular weights (M(w) > 112,000 g/mol) and that the primary mode of toxicity was cellular membrane destabilization. An electrophoretic gel shift assay revealed that all PDMAEMA molecular weights completely bound with plasmid DNA. However, heparin competitive binding experiments revealed that higher molecular weight PDMAEMA (M(w) = 915,000 g/mol) had a greater binding affinity toward plasmid DNA than lower molecular weight PDMAEMA (M(w) = 43,000 g/mol). The molecular weight of PDMAEMA was found to have a dramatic influence on transfection efficiency, and luciferase reporter gene expression increased as a function of increasing molecular weight. However, cellular uptake of polyplexes was determined to be insensitive to PDMAEMA molecular weight. In addition, our data did not correlate polyplex size with transfection efficiency. Collectively, our data suggested that the intracellular fate of the polyplexes, which involves endosomal release and DNase resistance, is more important to overall transfection efficiency than barriers to entry, such as polyplex size.

  9. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  10. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  11. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  12. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene... chapter. (c) The provisions of paragraph (b) of this section are not applicable to polyethylene...

  13. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  14. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  15. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  16. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  17. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol... polyethylene glycol 400 shall be used to determine the total ethylene and diethylene glycol content...

  18. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  19. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  20. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  1. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators, are interesting soft materials that show great potential for many applications. Previously, we synthesized a series of methyl 4,6-O-benzylidene-a-D...

  2. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  3. The Relation Between Molecular Weight of Antigen and Ability to Elicit Passive Cutaneous Anaphylaxis*

    PubMed Central

    Leskowitz, S.; Ovary, Z.

    1962-01-01

    Passive cutaneous anaphylaxis in the guinea pig has been studied with rabbit antibody to a series of antigens of differing molecular weight. The results indicated that at a given antibody level the weight of antigen needed to elicit a reaction increases with its molecular weight. Previous observations have been confirmed that the amount of antigen needed to elicit a reaction at a high level of antibody is less than that required at a lower level. The results suggest that extremely small amounts of small molecular weight antigens might be sufficient to produce anaphylactic symptoms in highly sensitive individuals. PMID:14464304

  4. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  5. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  6. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin.

  7. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules

    PubMed Central

    1977-01-01

    The arrangement of the high molecular weight proteins associated with the walls of reconstituted mammalian brain microtubules has been investigated by electron microscopy of negatively stained preparations. The images are found to be consistent with an arrangement whereby the high molecular weight molecules are spaced 12 tubulin dimers apart, i.e., 960 A, along each protofilament of the microtubule, in agreement with the relative stoichiometry of tubulin and high molecular weight protein. Molecules on neighbouring protofilaments seem to be staggered so that they give rise to a helical superlattice, which can be superimposed on the underlying tubulin lattice. In micrographs of disintegrating tubules there is some indication of lateral interactions between neighbouring high molecular weight molecules. When the microtubules are depolymerized into a mixture of short spirals and rings, the high molecular weight proteins appear to remain attached to their respective protofilaments. PMID:65355

  8. Thermal and Mechanical Properties of Polyurethane-Diacetylene Segmented Copolymers. 1. Molecular Weight and Annealing Effects

    DTIC Science & Technology

    1989-05-31

    induced crystallization of the soft segments, the hard segment structure, weight fraction, and state of organization, the degree of phase separation...determined by the local environment of the chain. It is due to this dependence that polydiacetylene- based elastomers exhibit thermochromism and...Weight Determination. Molecular weights were determined on a Waters high pressure liquid chromatograph equipped with two Waters ultrastyragel columns

  9. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    SciTech Connect

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens; Widmer, Hans R.; Meyer, Morten

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  10. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.

    PubMed

    Chen, Wendy Yiting; Marcellin, Esteban; Hung, Jacky; Nielsen, Lars Keld

    2009-07-03

    The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other beta-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 +/- 0.1 MDa twice that observed in the wild-type strain, 1.8 +/- 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (rho = 0.84, p = 3 x 10(-5)) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides.

  11. Immunochemical identity of the high and low molecular weight forms of Galapagos marine iguana hemoglobin.

    PubMed

    Higgins, P J

    1978-01-01

    1. Two forms of Galapagos marine iguana methemoglobin, with molecular weights of 140,000 and 70,000 daltons, were identified in iguana RBC lysates by Sephadex G-200 molecular sieve fractionation. 2. The 140,000 dalton ferric hemoglobin was isolated by DEAE-Sephadex A-50 ion-exchange chromatography and found to be pure by electrophoretic and immunological criteria. 3. Immunochemical analyses revealed the high and low molecular weight hemoglobins to be antigenically identical.

  12. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  13. Antioxidant activity of high molecular weight chitosan and N,O-quaternized chitosans.

    PubMed

    Wan, Ajun; Xu, Qing; Sun, Yan; Li, Huili

    2013-07-17

    The objective of this study was to evaluate the in vitro antioxidant activity of high molecular weight chitosan based films. Three kinds of water-soluble quaternized chitosans with high molecular weight, namely N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (400-HTCC and 1240-HTCC), N-(2-hydroxyl) propyl-3-triethyl ammonium chitosan chloride (400-HTEC and 1240-HTEC), and O-(2-hydroxyl) propyl-3- trimethyl ammonium chitosan chloride (400-O-HTCC) were prepared from high molecular weight chitosans (400 and 1240 kDa). The in vitro antioxidant activity of a high molecular weight chitosan (1240-CS) and five quaternized chitosans was evaluated and compared as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•), hydroxyl radical (•OH), and superoxide radical (•O2(-)) using established methods, and the effect of the molecular weight, the concentration, the newly generated hydroxyl group, the extra introduced positive charge of quaternary ammonium salt group, etc., on the antioxidant activity of these high molecular weight chitosans is discussed. The data obtained in vitro models exhibited good antioxidant potency and suggested the possibility that high molecular weight chitosan based films could be effectively employed as natural antioxidant materials for application in the field of food and medicine.

  14. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages.

    PubMed

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-09-30

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.

  15. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.

  16. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity.

    PubMed

    Choi, Jong-il; Kim, Hyun-Joo

    2013-09-12

    Fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities. Recently, it has been reported that low molecular weight fucoidan has the enhanced antioxidant and anticoagulative activities. However, degradation techniques such as enzymolysis and acid hydrolysis for obtaining low molecular weight fucoidan, have the disadvantages such as narrow substrate specificity and unfavorable hydrolysis of side groups, respectively. In this study, low molecular weight fucoidan was prepared by gamma-irradiation. When fucoidan was gamma-irradiated, the molecular weight rapidly dropped to 38 kDa when the sample was irradiated at 10 kGy, then gradually dropped to 7 kDa without the significant elimination of the sulfate groups. Low molecular weight fucoidan had higher cytotoxicity than native fucoidan in cancer cells, such as AGS, MCF-7, and HepG-2. In addition, low molecular weight fucoidan showed higher inhibitory activity of cell transformation, which resulted in higher anticarcinogenicity. This result suggests that low molecular weight fucoidan with enhanced biological activities can be produced by a simple irradiation method without changing the functional groups.

  17. Time-dependent failure of amorphous poly-D,L-lactide: influence of molecular weight.

    PubMed

    Söntjens, Serge H M; Engels, Tom A P; Smit, Theo H; Govaert, Leon E

    2012-09-01

    The specific time-dependent deformation response of amorphous poly(lactic acid) (PLA) is known to lead to rapid failure of these materials in load-bearing situations. We have investigated this phenomenon in uniaxial compression on P(L)DLLA samples with various molecular weights. The experiments revealed a strong dependence of the yield stress on the applied strain rate. Lower molecular weights showed identical deformation kinetics as higher molecular weights, albeit at lower stress values. This dependence on molecular weight was incorporated into an Eyring-equation by introducing mobility through a virtual temperature that is shifted by the deviation of the T(g) from T(g,∞). Stress-dependent lifetime of polymer constructs was described by the use of this modified Eyring-equation, combined with a critical plastic strain. This model proves useful in predicting the molecular weight dependence of the time to failure, although it slightly overestimates life time at low stress levels for a material with very low molecular weight. The versatility of the model is demonstrated on e-beam sterilized PLDLLA, where the resulting reduction in molecular weight induces a substantial decrease in lifetime. A single T(g) measurement provides sufficient information to predict the decrease in lifetime.

  18. Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis.

    PubMed

    Harding, Stephen E; Gillis, Richard B; Adams, Gary G

    2016-01-01

    Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is a particularly powerful tool when used in conjunction with its sister technique, namely sedimentation velocity. Here, we describe key approaches now available and their application to the characterization of antibodies, polysaccharides and glycoconjugates. We indicate how major complications, such as thermodynamic non-ideality, can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor Don Winzor over several decades of research.

  19. Age-Related Changes in FGF-2, Fibroblast Growth Factor Receptors and β-Catenin Expression in Human Mesenchyme-Derived Progenitor Cells.

    PubMed

    Hurley, Marja M; Gronowicz, Gloria; Zhu, Li; Kuhn, Liisa T; Rodner, Craig; Xiao, Liping

    2016-03-01

    FGF-2 stimulates preosteoblast replication, and knockout of the FGF-2 gene in mice resulted in osteopenia with age, associated with decreased Wnt-β-Catenin signaling. In addition, targeted expression of FGF-2 in osteoblast progenitors increased bone mass in mice via Wnt-β-Catenin signaling. We posited that diminution of the intrinsic proliferative capacity of human mesenchyme-derived progenitor cells (HMDPCs) with age is due in part to reduction in FGF-2. To test this hypothesis HMDPCs from young (27-38), middle aged (47-56), and old (65-76) female human subjects were isolated from bone discarded after orthopedic procedures. HMDPCs cultures were mostly homogeneous with greater than 90% mesenchymal progenitor cells, determined by fluorescence-activated cell sorting. There was a progressive decrease in FGF-2 and FGFR1 mRNA and protein in HMDPCs with age. Since FGF-2 activates β-catenin, which can enhance bone formation, we also assessed its age-related expression in HMDPCs. An age-related decrease in total-β-Catenin mRNA and protein expression was observed. However there were increased levels of p-β-Catenin and decreased levels of activated-β-Catenin in old HMDSCs. FGF-2 treatment increased FGFR1 and β-Catenin protein, reduced the level of p-β-Catenin and increased activated-β-Catenin in aged HMDPCs. In conclusion, reduction in FGF-2 expression could contribute to age-related impaired function of HMDPCs via modulation of Wnt-β-catenin signaling.

  20. FGF-2 is required to prevent astrogliosis in the facial nucleus after facial nerve injury and mechanical stimulation of denervated vibrissal muscles.

    PubMed

    Hizay, Arzu; Seitz, Mark; Grosheva, Maria; Sinis, Nektarios; Kaya, Yasemin; Bendella, Habib; Sarikcioglu, Levent; Dunlop, Sarah A; Angelov, Doychin N

    2016-03-01

    Recently, we have shown that manual stimulation of paralyzed vibrissal muscles after facial-facial anastomosis reduced the poly-innervation of neuromuscular junctions and restored vibrissal whisking. Using gene knock outs, we found a differential dependence of manual stimulation effects on growth factors. Thus, insulin-like growth factor-1 and brain-derived neurotrophic factor are required to underpin manual stimulation-mediated improvements, whereas FGF-2 is not. The lack of dependence on FGF-2 in mediating these peripheral effects prompted us to look centrally, i.e. within the facial nucleus where increased astrogliosis after facial-facial anastomosis follows "synaptic stripping". We measured the intensity of Cy3-fluorescence after immunostaining for glial fibrillary acidic protein (GFAP) as an indirect indicator of synaptic coverage of axotomized neurons in the facial nucleus of mice lacking FGF-2 (FGF-2(-/-) mice). There was no difference in GFAP-Cy3-fluorescence (pixel number, gray value range 17-103) between intact wildtype mice (2.12±0.37×10(7)) and their intact FGF-2(-/-) counterparts (2.12±0.27×10(7)) nor after facial-facial anastomosis +handling (wildtype: 4.06±0.32×10(7); FGF-2(-/-): 4.39±0.17×10(7)). However, after facial-facial anastomosis, GFAP-Cy3-fluorescence remained elevated in FGF-2(-/-)-animals (4.54±0.12×10(7)), whereas manual stimulation reduced the intensity of GFAP-immunofluorescence in wild type mice to values that were not significantly different from intact mice (2.63±0.39×10). We conclude that FGF-2 is not required to underpin the beneficial effects of manual stimulation at the neuro-muscular junction, but it is required to minimize astrogliosis in the brainstem and, by implication, restore synaptic coverage of recovering facial motoneurons.

  1. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, D. C.; Vannucci, R. D.

    1992-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  2. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  3. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  4. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.

    PubMed

    Sun, Qian; Xie, Hong-Bin; Chen, Jingwen; Li, Xuehua; Wang, Zhuang; Sheng, Lianxi

    2013-07-01

    As an important part of dissolved organic matter (DOM), low molecular weight organic acids (LOAs) may play a key role in the process for DOM stabilizing carbon nanomaterials (e.g. C60) suspensions in aquatic environment. In addition, both LOAs and C60 have been detected in the troposphere and therefore have a chance to interact with each other in the gaseous phase. However, the mechanism for LOAs-C60 interactions and their environmental implications need further investigations. In this study, molecular dynamics (MD) simulation was employed to investigate the interactions between both neutral and ionic LOAs with C60 in vacuum and water. The results showed that the adsorptions of all LOAs on C60 in energy are favorable, and the aromatic acids have stronger interactions with C60 than the aliphatic acids in vacuum and water. The interaction energies (Eint) of the LOA anions with C60 were weaker than those of their corresponding neutral LOA molecules. The models were also developed to predict and interpret Eint based on the results from MD simulations. Dispersion, induction and hydrophobic interactions were found to be the dominating factor in Eint. These findings indicate that cost-efficient MD simulation can be employed as an important tool to predict the adsorption behavior of LOAs on carbon nanomaterials.

  5. FGF2 Stimulates COUP-TFII Expression via the MEK1/2 Pathway to Inhibit Osteoblast Differentiation in C3H10T1/2 Cells

    PubMed Central

    Lee, Mi Nam; Kim, Jung-Woo; Oh, Sin-Hye; Jeong, Byung-Chul; Hwang, Yun-Chan; Koh, Jeong-Tae

    2016-01-01

    Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that regulates many key biological processes, including organ development and cell fate determination. Although the biological functions of COUP-TFII have been studied extensively, little is known about what regulates its gene expression, especially the role of inducible extracellular factors in triggering it. Here we report that COUP-TFII expression is regulated specifically by fibroblast growth factor 2 (FGF2), which mediates activation of the MEK1/2 pathway in mesenchymal lineage C3H10T1/2 cells. Although FGF2 treatment increased cell proliferation, the induction of COUP-TFII expression was dispensable. Instead, FGF2-primed cells in which COUP-TFII expression was induced showed a low potential for osteoblast differentiation, as evidenced by decreases in alkaline phosphatase activity and osteogenic marker gene expression. Reducing COUP-TFII by U0126 or siRNA against COUP-TFII prevented the anti-osteogenic effect of FGF2, indicating that COUP-TFII plays a key role in the FGF2-mediated determination of osteoblast differentiation capability. This report is the first to suggest that FGF2 is an extracellular inducer of COUP-TFII expression and may suppress the osteogenic potential of mesenchymal cells by inducing COUP-TFII expression prior to the onset of osteogenic differentiation. PMID:27404388

  6. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  7. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  8. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  9. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    PubMed

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-05

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase).

  10. Simple nanoparticle-based luminometric method for molecular weight determination of polymeric compounds.

    PubMed

    Pihlasalo, Sari; Virtamo, Maria; Legrand, Nicolas; Hänninen, Pekka; Härmä, Harri

    2014-01-21

    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes.

  11. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  12. Effect of protein molecular weight on the mass transfer in protein mixing

    NASA Astrophysics Data System (ADS)

    Asad, Ahmed; Chai, Chuan; Wu, JiangTao

    2012-03-01

    The mixing of protein solutions with that of precipitating agents is very important in protein crystallization experiments. In this work, the interferometry images were recorded during the mixing of two proteins with different molecular weights: lysozyme of ˜14.6 kDa, trypsin of ˜23.3 kDa and pepsin of ˜34.8 kDa were placed in a Mach-Zehnder interferometer. The protein molecular weight dependence on the competition of the transport process and kinetics at the interface was studied. The concentration profiles of protein solutions were calculated to analyze the mass transfer during the mixing process. It was observed that the mass transfer process is more efficient during the mixing of proteins with higher molecular weights. In addition, the more rapid concentration changes above the interface suggest that convection may dominate the diffusion. The phenomenon of convection is higher in the protein solutions with higher molecular weight.

  13. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Rui; Han, Shu-He; Liu, Zong-Huai; Chen, Yu

    2016-02-01

    The surface chemical functionalization of noble metal nanocrystals is a promising strategy for improving the catalytic/electrocatalytic activity and selectivity of noble metal nanocrystals. In this work, we successfully synthesize the polyallylamine (PAA) with different molecular weight functionalized Pt nanodendrites (Pt-NDs) using a facile hydrothermal reduction method. The morphology and surface composition are investigated by transmission electron microscopy, element map, and thermogravimetric analysis. Furthermore, we detailedly investigate the effect of the molecular weight of PAA on the electrochemical property of the functionalized Pt-NDs. Electrochemical measurements show only low molecular weight PAA functionalized Pt-NDs allow electrolytes to access freely the Pt sites. Meanwhile, the low molecular weight PAA functionalized Pt-NDs show the excellent selectivity and activity for the oxygen reduction reaction in the presence of methanol.

  14. High and low molecular weight hyaluronic acid differentially influence macrophage activation.

    PubMed

    Rayahin, Jamie E; Buhrman, Jason S; Zhang, Yu; Koh, Timothy J; Gemeinhart, Richard A

    2015-07-13

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs.

  15. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  16. Corner rounding in EUV photoresist: tuning through molecular weight, PAG size, and development time

    SciTech Connect

    Anderson, Christopher; Daggett, Joe; Naulleau, Patrick

    2009-12-31

    In this paper, the corner rounding bias of a commercially available extreme ultraviolet photoresist is monitored as molecular weight, photoacid generator (PAG) size, and development time are varied. These experiments show that PAG size influences corner biasing while molecular weight and development time do not. Large PAGs are shown to exhibit less corner biasing, and in some cases, lower corner rounding, than small PAGs. In addition, heavier resist polymers are shown to exhibit less corner rounding than lighter ones.

  17. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser.

    PubMed

    Goodwin, D J; Martini, L G; Lawrence, M J

    2016-12-05

    The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydroxethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (<1000nm, as measured by laser diffraction) using wet-bead milling has been investigated. Due to the limited range of CE molecular weights commercially available, the CEs were degraded using ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average molecular weights (Mv) in the range of 236-33kg/mol. All other CEs successfully stabilised nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a series being more likely to result in nanoparticle production than their higher molecular weight counterparts. Unfortunately due to the nature of the ultrasonication process, it was not possible to compare the size of nabumetone particles produced using polymers of identical Mv. There was, however, enough similarity in the Mv of the various polymers to draw the general conclusion that there was no strong correlation between the Mv of the various polymers and their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2kg/mol or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hydroxypropylmethyl polymers of 52 and 38.8kg/mol or less produced nanoparticles. These results suggest that polymer molecular weight is not the only determinant of nanoparticle production and that structure of the polymer is at least as important as its molecular weight. In particular the hydrophobic nature of the CE was thought to be an important factor in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger its interaction

  18. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.

  19. Protein-binding affinity of leucaena condensed tannins of differing molecular weights.

    PubMed

    Huang, Xiao Dan; Liang, Juan Boo; Tan, Hui Yin; Yahya, Rosiyah; Long, Ruijun; Ho, Yin Wan

    2011-10-12

    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.

  20. Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films.

    PubMed

    Andersson, Helene; Hjärtstam, Johan; Stading, Mats; von Corswant, Christian; Larsson, Anette

    2013-01-23

    Films of ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be used for extended release coatings in oral formulations. The permeability and microstructure of free EC/HPC films with 30% w/w HPC were studied to investigate effects of EC molecular weight. Phase separation during film spraying and subsequent HPC leaching after immersion in aqueous media cause pore formation in such films. It was found that sprayed films were porous throughout the bulk of the films after water immersion. The molecular weight affected HPC leaching, pore morphology and film permeability; increasing the molecular weight resulted in decreasing permeability. A model to distinguish the major factors contributing to diffusion retardation in porous films showed that the trend in permeability was determined predominantly by factors associated with the geometry and arrangement of pores, independent of the diffusing species. The film with the highest molecular weight did, however, show an additional contribution from pore wall/permeant interactions. In addition, rapid drying and increasing molecular weight resulted in smaller pores, which suggest that phase separation kinetics affects the final microstructure of EC/HPC films. Thus, the molecular weight influences the microstructural features of pores, which are crucial for mass transport in EC/HPC films.

  1. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    PubMed

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-02-23

    Poly(ethylene carbonate) (PEC) is an unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196 kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, eroding-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R(2)=0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system.

  2. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  3. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  4. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  5. Immunolocalization of FGF-2, -7, -8, -10 and FGFR-1-4 during regeneration of the rat submandibular gland.

    PubMed

    Shimizu, Osamu; Yasumitsu, Tomohiro; Shiratsuchi, Hiroshi; Oka, Shunichi; Watanabe, Tatsuhisa; Saito, Tadahito; Yonehara, Yoshiyuki

    2015-10-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) play important roles in the development of the submandibular gland. Although regeneration of submandibular glands follows a similar process to their development, it is unknown how FGFs and FGFRs are distributed during regeneration of submandibular gland. The aim of this study was to determine the localization of FGFs and FGFRs during such regenerative processes. After 7 days' obstruction, the submandibular glands were collected at days 0, 1, 3, 7, 11 and 14 after duct release to study regeneration. The regenerative processes of the submandibular gland were investigated by immunohistochemistry for FGF-2, 7, 8, 10 and FGFR-1-4. Immunohistochemical staining revealed that FGF-2 was moderately expressed in the epithelial cells of duct-like structures (DLS) and newly formed acinar cells (NFAC) at days 0-7, and strongly in intercalated duct (ICD) at control gland and Day 7-14. FGF-7 was localized moderately in NFAC and DLS. FGF-8 was localized moderately in the epithelial cells of DLS during regeneration. Strong positive immunoreactions for FGF-10 were found in NFAC and the epithelial cells of DLS during regeneration, as well as the ICD and lateral surfaces of the maturing acinar cells (MAC). FGFR-1 was expressed moderately in the ICD, and weakly in the NFAC and MAC. Positive immunoreactions for FGFR-2 were not observed during regeneration. Additionally, FGFR-4 was detected strongly in the ICD and slightly in NFAC. These findings suggest that FGF-2, -7, -8 and -10 play important roles in NFAC, MAC, and DLS through FGFR-1 and -4 during regeneration of submandibular gland.

  6. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as...

  7. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    PubMed

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  8. A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Enrione, J.; Diaz-Calderon, P.; Taylor, A. J.; Ubbink, J.; Alam, M. A.

    2012-03-01

    The effects of low molecular weight diluents (namely water and glycerol) on the nanostructure and thermodynamic state of low water content gelatin matrices are explored systematically by combining positron annihilation lifetime spectroscopy (PALS) with calorimetric measurements. Bovine gelatin matrices with a variation in the glycerol content (0-10 wt.%) are equilibrated in a range of water activities (aw = 0.11-0.68, T = 298 K). Both water and glycerol reduce the glass transition temperature, Tg, and the temperature of dissociation of the ordered triple helical segments, Tm, while having no significant effect on the level of re-naturation of the gelatin matrices. Our PALS measurements show that over the concentration range studied, glycerol acts as a packing enhancer and in the glassy state it causes a nonlinear decrease in the average hole size, vh, of the gelatin matrices. Finally, we report complex changes in vh for the gelatin matrices as a function of the increasing level of hydration. At low water contents (Qw ˜ 0.01-0.10), water acts as a plasticizer, causing a systematic increase in vh. Conversely, for water contents higher than Qw ˜ 0.10, vh is found to decrease, as small clusters of water begin to form between the polypeptide chains.

  9. Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits.

    PubMed

    Yaşar, Fatih; Celik, Süeda; Köksel, Hamit

    2003-08-01

    The contribution of the three-dimensional structures of one heptapeptide (PQPQPFP) sequence and one pentapeptide (PQQPY) repeat sequence of alpha/beta-gliadins, one heptapeptide (PQQPFPQ) repeat sequence of gamma-gliadins, two heptapeptide (PQQPPFS and QQQQPVL) repeat motifs of low-molecular-weight (LMW) subunits and a tetrapeptide sequence in polyQ region of S-rich prolamins to their conformations are investigated by using the recently developed multicanonical simulation procedure. Ramachandran plots were prepared and analysed to predict the relative occurrence probabilities of gamma-tutn, gamma-turn, and helical structures. The probability of inverse 7-turn was generally higher than that of beta-turns in all sequences investigated. Occurrence probability of helical structure in the repetitive domain of gliadins was low. Structural predictions of QQQQPVL sequence of LMW-glutenin subunits and QQQQ sequence in the polyQ region of S-rich prolamins indicate the presence of helical structures with the probability of >20%. The probability of helical structure significantly decreased around 100 degrees C.

  10. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  11. Fibroblast growth factor-2 (FGF2) augmentation early in life alters hippocampal development and rescues the anxiety phenotype in vulnerable animals.

    PubMed

    Turner, Cortney A; Clinton, Sarah M; Thompson, Robert C; Watson, Stanley J; Akil, Huda

    2011-05-10

    Individuals with mood disorders exhibit alterations in the fibroblast growth factor system, including reduced hippocampal fibroblast growth factor-2 (FGF2). It is difficult, however, to pinpoint whether these alterations are a cause or consequence of the disorder. The present study asks whether FGF2 administered the day after birth has long-lasting effects on hippocampal development and emotionality. We show that early-life FGF2 shifts the pace of neurogenesis, with an early acceleration around weaning followed by a deceleration in adulthood. This, in turn, results in a denser dentate gyrus with more neurons. To assess the impact of early-life FGF2 on emotionality, we use rats selectively bred for differences in locomotor response to novelty. Selectively bred low-responder (bLR) rats show low levels of novelty-induced locomotion and exhibit high levels of anxiety- and depression-like behavior compared with their selectively bred high-responder counterparts. Early-life FGF2 decreased anxiety-like behavior in highly anxious bLRs without altering other behaviors and without affecting high-responder rats. Laser capture microscopy of the dentate gyrus followed by microarray analysis revealed genes that were differentially expressed in bLRs exposed to early-life FGF2 vs. vehicle-treated bLRs. Some of the differentially expressed genes that have been positively associated with anxiety were down-regulated, whereas genes that promote cell survival were up-regulated. Overall, these results show a key role for FGF2 in the developmental trajectory of the hippocampus as well as the modulation of anxiety-like behavior in adulthood, and they point to potential downstream targets for the treatment of anxiety disorders.

  12. Synthetic Glycosides and Glycoconjugates of Low Molecular Weight Natural Products.

    PubMed

    Grynkiewicz, G; Szeja, W

    2016-01-01

    Enzymatically controlled transfer of saccharide moieties constitutes a fundamental biological process, essential for both primary and secondary metabolism. Natural products, including countless glycosides, with a rich tradition of use in ethnopharmacology, remain a prime source of inspiration for medicinal chemistry and molecular pharmacology, but their availability from biological sources is usually scarce, hampering attempts at application for new drug discovery and development. Chemical glycosylation on the other hand, although continuously undergoing sophisticated mechanistic studies, has nevertheless already matured as a set of methods which are able to provide substantial amounts of pure chemical entities: natural glycosides, as well as their congeners and mimics, necessary for the study of biological activity in quality assurance systems and required for drug development by pharmaceutical regulations. The paper presents a review of natural products and their analogues glycosylation, in a set of arbitrary selected examples, supplemented with comments on general advances in chemical glycosylation methodology and their applicability for particular categories of secondary metabolites.

  13. Tyrosine kinase inhibitors - small molecular weight compounds inhibiting EGFR.

    PubMed

    Hegymegi-Barakonyi, Bálint; Eros, Dániel; Szántai-Kis, Csaba; Breza, Nóra; Bánhegyi, Péter; Szabó, Gábor Viktor; Várkondi, Edit; Peták, István; Orfi, László; Kéri, György

    2009-06-01

    Abnormally elevated EGFR kinase activity can lead to various pathological states, including proliferative diseases such as cancer. The development of selective protein kinase inhibitors has become an important area of drug discovery for the potential treatment of a variety of solid tumors such as breast, ovarian and colorectal cancers, NSCLC, and carcinoma of the head and neck. There are three small molecule EGFR kinase inhibitor drugs in clinical use (gefitinib, erlotinib and lapatinib), and several others are currently undergoing clinical development. This review summarizes the development of EGFR kinase inhibitors, and includes descriptions of the binding modes, the importance of a multiple-targets strategy, the effects of sensitizing and resistance mutations in the EGFR, and molecular diagnostic approaches. In addition, the use of target fishing for selectivity profiling, off-target identification and quantitative structure-activity relationship modeling for the prediction of EGFR inhibition is discussed.

  14. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.

    PubMed

    Wang, Xiang; Huang, Lei; Wang, Jin-Feng; Yang, Cheng-Min

    2008-01-01

    A dynamic heterogeneous phase polymerization reaction is found to be efficient for controllable cross-link of hemoglobin with glutaraldehyde. The selective absorption of the immobile phase and asymmetry of protein concentration leads to narrowness of the molecular weight distribution and lowness of the average molecular weight. Using this method, 53% of hemoglobin obtained is intermolecular cross-linked with 12 molecular equivalents of glutaraldehyde. The majority of poly-hemoglobins is in the range of 128 kD to 258 kD.

  15. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  16. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    NASA Astrophysics Data System (ADS)

    Satti, Angel J.; Andreucetti, Noemí A.; Ciolino, Andrés E.; Vitale, Cristian; Sarmoria, Claudia; Vallés, Enrique M.

    2010-11-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ( Satti et al., 2008).

  17. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.

  18. Slip of polydisperse polymers: Molecular weight distribution above and below the plane of slip

    NASA Astrophysics Data System (ADS)

    Sabzevari, Seyed Mostafa; Strandman, Satu; Wood-Adams, Paula Marie

    2015-04-01

    When strong slip occurs during the drag flow of highly entangled polybutadienes (PBD) in a sliding plate rheometer equipped with stainless steel parallel plates, a thin film of polymer debris remains on the substrate after the slip. This debris is assumed to be formed by the disentanglement process that occurs in strong slip at a distance of about one molecular size from the plate. In order to evaluate the composition of the debris we collected it with tetrahydrofuran and subjected it to gel permeation chromatography. It was found that the molecular weight distribution (MWD) of the debris is significantly different from that of the bulk. Moreover, in mixtures prepared from long and short PBDs with distinctly different molecular weight distributions, the MWD of the debris was found to be richer in low molecular weight components and leaner in the high molecular weight components compared to the bulk. This information is important since it reveals the compositional difference between the bulk and interfacial layer above and below the plane of slip. The difference in MWD is likely a consequence of the strong slip in which some of long chains are pulled away from the surface-adsorbed chains by the flow leaving a debris lean in the high molecular weight component.

  19. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  20. Analyzing the molecular weight distribution in supramolecular polymers.

    PubMed

    Schmid, Stephan A; Abbel, Robert; Schenning, Albertus P H; Meijer, E W; Sijbesma, Rint P; Herz, Laura M

    2009-12-09

    We have investigated the formation process of supramolecular linear polymer chains and its influence on the resulting chain length distribution function. For this purpose, we explored the migration of excitation energy between oligofluorene units coupled together through quadruple hydrogen-bonding groups to form linear chains that are terminated by oligophenylene vinylene end-caps acting as energy traps. The energy transfer dynamics from the main chain to the chain end was monitored experimentally using time-resolved PL spectroscopy and compared to an equivalent Monte Carlo simulation incorporating information on the structure of the chains, the transition transfer rates, and various weight distribution trial functions. We find that the assumption of a Flory distribution of chain lengths leads to excellent agreement between experimental and simulated data for a wide range of end-cap concentrations. On the other hand, both a Poisson function and a simplified assumption of a monodisperse distribution significantly underestimate the presence of long chains in the ensemble. Our results therefore show that supramolecular polymerization is a steplike process equivalent to polycondensation reactions in linear covalent polymers. These findings emphasize that equal reactivity of the supramolecular building blocks leads to a dynamic growth process for the supramolecular chain involving all chain components at all times.

  1. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  2. Immunolocalization of FGF1 and FGF2 in the regenerating tail of the lizard Lampropholis guichenoti: implications for FGFs as trophic factors in lizard tail regeneration.

    PubMed

    Alibardi, Lorenzo; Lovicu, Frank J

    2010-09-01

    A role for fibroblast growth factors in stimulating limb and tail regeneration in amphibians has been shown; however, it is unknown whether these growth factors are also involved in the regeneration of the tail of lizard, an amniote model for studies on tissue regeneration. The presence of fibroblast growth factor-1 (FGF1) and -2 (FGF2) in the regenerating tail of the lizard Lampropholis guichenoti has been studied using immunofluorescence labeling. The study reveals that FGF2 is mainly localized in the wound and scaling epidermis, in differentiating muscles, in spinal ganglia, regenerating nerves and spinal cord. FGF1 is also present in the wound and differentiating epidermis, but is detectable at lower levels in the regenerating muscles and spinal cord. FGF1 is present in blastema cells, while FGF2 labeling is relatively low in these cells. Fibroblasts of the forming dermis are rich in FGF1 but not in FGF2. Developing blood vessels label for both FGF1 and FGF2 while the cartilaginous, bone and fat tissues are poorly labeled or unlabeled for FGFs. The present study suggests that most FGFs in the regenerating tail are located in the nervous system, in the epidermis and muscles, and these tissues most likely require these growth factors for their differentiation and growth. The present study suggests that FGFs produced in the regenerating epidermis, spinal cord and nerves can stimulate tail regeneration in lizards.

  3. FGF2-mediated reciprocal tumor cell-endothelial cell interplay contributes to the growth of chemoresistant cells: a potential mechanism for superficial bladder cancer recurrence.

    PubMed

    Chen, Yule; Zhu, Guodong; Wu, Kaijie; Gao, Yang; Zeng, Jin; Shi, Qi; Guo, Peng; Wang, Xinyang; Chang, Luke S; Li, Lei; He, Dalin

    2016-04-01

    Patients with superficial bladder cancer can be definitively cured by one single transurethral resection (TUR) with additional intravesical chemotherapy; however, up to 75 % of cases display frequent and multiple recurrences. One of the major causes of recurrence is that chemotherapeutic drugs used in intravesical regimens may induce chemoresistance. However, the mechanisms by which these chemoresistant cells develop into recurrent tumors remain unclear. Recent clinical evidence revealed that the expression of pro-angiogenic factor FGF2 was associated with early local relapse in patients with superficial bladder cancer. In this study, we conducted a preliminary investigation of the mechanisms of chemoresistant cells mediated bladder cancer recurrence, focusing on FGF2-initiated tumor cell-endothelial cell interaction on chemoresistant cancer cell growth. We found that the expression of FGF2 was increased in chemoresistant bladder cell lines and in bladder tissues after intravesical chemotherapy. Although chemoresistant bladder cells grow slower than parental cells, chemoresistant bladder cancer cells had stronger ability than parental cells to stimulate endothelial cell migration, growth, and tube formation by producing FGF2. Inversely, endothelial cells significantly promoted chemoresistant bladder cancer growth in vitro and in vivo. Thus, targeting chemotherapy-induced FGF2 upregulation may provide a promising approach to manage the recurrence of superficial bladder cancer.

  4. Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors

    PubMed Central

    Foglieni, Chiara; Pagano, Katiuscia; Lessi, Marco; Bugatti, Antonella; Moroni, Elisabetta; Pinessi, Denise; Resovi, Andrea; Ribatti, Domenico; Bertini, Sabrina; Ragona, Laura; Bellina, Fabio; Rusnati, Marco; Colombo, Giorgio; Taraboletti, Giulia

    2016-01-01

    The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors. PMID:27000667

  5. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model.

    PubMed

    Khorsand, Behnoush; Nicholson, Nate; Do, Anh-Vu; Femino, John E; Martin, James A; Petersen, Emily; Guetschow, Brian; Fredericks, Douglas C; Salem, Aliasger K

    2017-02-28

    Bone fracture healing impairment related to systemic diseases such as diabetes can be addressed by growth factor augmentation. We previously reported that growth factors such as fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2) work synergistically to encourage osteogenesis in vitro. In this report, we investigated if BMP-2 and FGF-2 together can synergistically promote bone repair in a leporine model of diabetes mellitus, a condition that is known to be detrimental to union. We utilized two kinds of plasmid DNA encoding either BMP-2 or FGF-2 formulated into polyethylenimine (PEI) complexes. The fabricated nanoplexes were assessed for their size, charge, in vitro cytotoxicity, and capacity to transfect human bone marrow stromal cells (BMSCs). Using diaphyseal long bone radial defects in a diabetic rabbit model it was demonstrated that co-delivery of PEI-(pBMP-2+pFGF-2) embedded in collagen scaffolds resulted in a significant improvement in bone regeneration compared to PEI-pBMP-2 embedded in collagen scaffolds alone. This study demonstrated that scaffolds loaded with PEI-(pBMP-2+pFGF-2) could be an effective way of promoting bone regeneration in patients with diabetes.

  6. Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration.

    PubMed

    Barbieri, Davide; Yuan, Huipin; Luo, Xiaoman; Farè, Silvia; Grijpma, Dirk W; de Bruijn, Joost D

    2013-12-01

    In bone tissue regeneration, certain polymer and calcium-phosphate-based composites have been reported to enhance some biological surface phenomena, facilitating osteoinduction. Although the crucial role of inorganic fillers in heterotopic bone formation by such materials has been shown, no reports have been published on the potential effects the polymer phase may have. The present work starts from the assumption that the polymer molecular weight regulates the fluid uptake, which determines the hydrolysis rate and the occurrence of biological surface processes. Here, two composites were prepared by extruding two different molecular weight L/D,L-lactide copolymers with calcium phosphate apatite. The lower molecular weight copolymer allowed larger fluid uptake in the composite thereof, which was correlated with a higher capacity to adsorb proteins in vitro. Further, the large fluid absorption led to a quicker composite degradation that generated rougher surfaces and enhanced ion release. Following intramuscular implantation in sheep, only the composite with the lower molecular weight polymer could induce heterotopic bone formation. Besides influencing the biological potential of composites, the molecular weight also regulated their viscoelastic behaviour under cyclic stresses. The results lead to the conclusion that designing biomaterials with appropriate physico-chemical characteristics is crucial for bone tissue regeneration in mechanical load-bearing sites.

  7. Anticancer properties of low molecular weight oat beta-glucan – An in vitro study.

    PubMed

    Choromanska, Anna; Kulbacka, Julita; Rembialkowska, Nina; Pilat, Justyna; Oledzki, Remigiusz; Harasym, Joanna; Saczko, Jolanta

    2015-09-01

    Anticancer properties of 1-3, 1-4 oat beta glucan are under intensive investigation now. Antitumor characteristic of fungi and yeast beta-glucans have been widely recognized, but those polysaccharides are mostly insoluble which creates several problems especially in topical formulation. Also high molecular weight oat beta-glucans reveal high viscosity which restricts its application. According to those problems in the current study the antitumor activities of low molecular weight beta-glucan derived from oats were investigated in cancer cells: Me45, A431 and normal HaCaT and murine macrophages P388/D1. The low molecular weight beta-glucan from oat significantly deceased cancer cells viability, while for the normal cells it was non-toxic. It was observed that with the increasing incubation time and the beta-glucan concentration the cancer cells viability significantly deceased. Furthermore for the normal cells the low molecular weight beta-glucan from oat was non-toxic. Immunocytochemical ABC analysis showed that beta-glucan induced strong expression of caspase-12 in both cancer cell lines, while in HaCaT cells ABC reaction was significantly lower and in P388/D1 cell line ABC reaction was negative. Our preliminary studies show strong anti-tumor properties of new low molecular weight beta-glucan from oat and at the same time no toxicity for normal cells.

  8. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    PubMed

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media.

  9. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate).

    PubMed

    Boesel, Luciano F; Le Meur, Sylvaine; Thöny-Meyer, Linda; Ren, Qun

    2014-11-01

    Poly(4-hydroxybutyrate) (P4HB) is a bacterial polyhydroxyalkanoate with interesting biological and physico-chemical properties for the use in biomedical applications. The synthesis of P4HB through a fermentation process often leads to a polymer with a too high molecular weight, making it difficult to process it further by solvent- or melt-processing. In this work P4HB was degraded to obtain polymers with a molecular weight ranging from 1.5×10(3)g/mol to 1.0×10(6)g/mol by using a method established in our laboratory. We studied the effect of the change in molecular weight on thermal and mechanical properties. The decrease of the molecular weight led to an increase in the degree of crystallinity of the polymer. Regarding the tensile mechanical properties, the molecular weight played a more prominent role than the degree of crystallinity in the evolution of the properties for the different polymer fractions. The method presented herein allows the preparation of polymer fractions with easier processability and still adequate thermal and mechanical properties for biomedical applications.

  10. Raoult's law-based method for determination of coal tar average molecular weight

    SciTech Connect

    Brown, D.G.; Gupta, L.; Horace, H.K.; Coleman, A.J.

    2005-08-01

    A Raoult's law-based method for determining the number average molecular weight of coal tars is presented. The method requires data from two-phase coal tar/water equilibrium experiments, which readily are performed in environmental laboratories. An advantage of this method for environmental samples is that it is not impacted by the small amount of inert debris often present in coal tar samples obtained from contaminated sites. Results are presented for 10 coal tars from nine former manufactured gas plants located in the eastern United States. Vapor pressure osmometry (VPO) analysis provided similar average molecular weights to those determined with the Raoult's law-based method, except for one highly viscous coal tar sample. Use of the VPO-based average molecular weight for this coal tar resulted in underprediction of the coal tar constituents' aqueous concentrations. Additionally, one other coal tar was not completely soluble in solvents used for VPO analysis. The results indicate that the Raoult's law-based method is able to provide an average molecular weight that is consistent with the intended application of the data (e.g., modeling the dissolution of coal tar constituents into surrounding waters), and this method can be applied to coal tars that may be incompatible with other commonly used methods for determining average molecular weight, such as vapor pressure osmometry.

  11. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing.

    PubMed

    Trabucchi, E; Pallotta, S; Morini, M; Corsi, F; Franceschini, R; Casiraghi, A; Pravettoni, A; Foschi, D; Minghetti, P

    2002-01-01

    Hyaluronic acid protects granulation tissue from oxygen free radical damage and stimulates wound healing, but its molecular weight prevents it from permeating the epidermal barrier A low molecular weight hyaluronic acid preparation is able to permeate the skin, but it is unknown whether or not it retains the scavenging effects of oxygen free radicals in granulation tissue. Our experiments were conducted in rats with excisional or incisional wounds. Wound contraction over 11 days and breaking strength on the fifth day were measured. Oxygen free radical production was induced by intraperitoneal administration of two different xenobiotics: phenazine methosulfate and zymosan. The wounds were treated topically with low molecular weight hyaluronic acid (0.2%) cream or placebo. In the incisional wound group, the effects of superoxide dismutase were also determined. Absolute controls received wounds and placebo but no xenobiotics. Wound healing was significantly slower in the xenobiotic group than in the control groups. These effects were strongly reduced by topical administration of low molecular weight hyaluronic acid (0.2%) cream and in incisional wounds by topically injected superoxide dismutase. Low molecular weight hyaluronic acid is effective as the native compound against oxygen free radicals. Its pharmacological effects through transdermal administration should be tested in appropriate models.

  12. Bioactivity of Variant Molecular Weight Chitosan Against Drug-Resistant Bacteria Isolated from Human Wounds.

    PubMed

    Bano, Ijaz; Arshad, Muhammad; Ghauri, Muhammad Afzal; Yasin, Tariq; Younus, Muhammad

    2017-03-30

    Chitosan available from crab shells is usually of high molecular weight which may result in reduced efficiency for its antibacterial activity. One of the techniques for improving chitosan antibacterial efficiency is reducing its molecular weight. The irradiation of chitosan by gamma radiations is considered to be one of the most effective and widely used methods for improving its antibacterial activity. Chitosan obtained from crab shells was irradiated with gamma radiations at different doses, and effects on chitosan were analyzed by molecular weight determination and Fourier Transform Infrared spectroscopy. Unirradiated and irradiated chitosans were studied for their antibacterial properties against bacterial pathogens, that is, Pseudomonas aeruginosa (SS29), Escherichia coli (SS2, SS9), Proteus mirabilis (SS77), and Staphylococcus aureus (LM15). Studies have shown that irradiation has significantly developed and improved the antibacterial activity of crab shell chitosan. A correlation was found between bacterial metabolites and antibacterial activity by the analysis for 4-hydroxy-2-alkylquinolines and related metabolites of P. aeruginosa (SS29) in the absence and presence of chitosan by liquid chromatography mass spectrometer, exhibiting the suppression of these virulence factors due to chitosan. Antibacterial efficiency of chitosan was found to be molecular weight dependent and applied concentration of the chitosan. The findings suggest on the use of low-molecular weight chitosan as antibacterial agent in pharmaceutical preparations.

  13. Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce.

    PubMed

    Wang, Xudong; Chen, Xianni; Liu, Shuai; Ge, Xizu

    2010-01-01

    To clarify the effects of molecular weight of dissolved organic matter (DOM) on the toxicity and bioavailability of copper (Cu) to plants, DOM extracted from chicken manure was ultra-filtered into four fractions according to their molecular weights by means of sequential-stage ultrafiltration technique. Lettuce seeds were germinated by being exposed to the solutions containing Cu2+ with or without different fractions of DOM. The concentration of copper in roots, leaves, sprouts and the length of roots were investigated. The results showed that not all fractions of DOM could improve copper availability or toxicity. The fraction of DOM with larger molecular weight more than 1 kDa had higher complexation stability with Cu2+ and caused lower concentration of free Cu2+ ion in the solution of copper plus the fraction, resulting in lower availability and toxicity of copper to lettuce, but the fraction with molecular weight less than 1 kDa had the opposite function. Therefore, the molecular weight of 1 kDa may be the division point to determine DOM to increase or decrease copper availability and toxicity.

  14. Complete Molecular Weight Profiling of Low-Molecular Weight Heparins Using Size Exclusion Chromatography-Ion Suppressor-High-Resolution Mass Spectrometry.

    PubMed

    Zaia, Joseph; Khatri, Kshitij; Klein, Joshua; Shao, Chun; Sheng, Yuewei; Viner, Rosa

    2016-11-01

    Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor. Traditionally, the molecular weight distributions of LMWH preparations have been determined using size exclusion chromatography (SEC) with optical detection. Recent advances in liquid chromatography-mass spectrometry methods have enabled exact mass measurements of heparin saccharides roughly up to degree-of-polymerization 20, leaving the high molecular weight half of the LMWH preparation unassigned. We demonstrate a new LC-MS system capable of determining the exact masses of complete LMWH preparations, up to dp30. This system employed an ion suppressor cell to desalt the chromatographic effluent online prior to the electrospray mass spectrometry source. We expect this new capability will impact the ability to define LMWH mixtures favorably.

  15. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  16. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  17. The antineoplastic effect of low-molecular-weight heparins – a literature review

    PubMed Central

    Püsküllüoğlu, Mirosława; Krzemieniecki, Krzysztof

    2013-01-01

    There is some evidence for the antitumor effect of heparins, especially the low-molecular-weight ones. The authors discuss the potential mechanism of this antineoplastic effect and present results from several in vitro and in vivo experiments. The clinical trials concerning the impact of low-molecular-weight heparins on the tumor and on the patients’ survival are described. The objective was to find out if heparins could be administered as an antitumor drug, independently of their anticoagulatory properties. The antitumor role of tissue factor, heparinase, chemokines, stromal proteins, cellular interactions as well as angiogenesis and immunology seems certain. The results of the available studies seem promising but large clinical trials are necessary in order to confirm the antineoplastic effect of the low-molecular-weight heparins and to approve them for standard anticancer treatment. It could be a breakthrough in modern oncology. PMID:23788954

  18. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments.

  19. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells.

  20. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested.

  1. Pharmacological effects and clinical applications of ultra low molecular weight heparins.

    PubMed

    Liu, Zhang; Ji, Shengli; Sheng, Juzheng; Wang, Fengshan

    2014-02-01

    Heparin, one of the common anticoagulants, is clinically used to prevent and treat venous thromboembolism (VTE). Though it has been the drug of choice for many advanced medical and surgical procedures with a long history, the adverse events, such as bleeding, heparin-induced thrombocytopenia (HIT), allergic reactions, follow. Therefore, low molecular weight heparins (LMWHs) and ultra low molecular weight heparins (ULMWHs), with lower molecular weights, higher anti-FXa activity, longer half-life times and lower incidence of adverse events than unfractionated heparin (UFH), were researched and developed. Fondaparinux, a chemically synthesized ULMWH of pentasaccharide, has the same antithrombin III (AT-III)-binding sequence as found in UFH and LMWH. In addition, AVE5026 and RO-14, another two ULMWHs, are obtained by selective chemical depolymerization. In this paper, we review the preparation process, pharmacological effects and clinical applications of fondaparinux, AVE5026 and RO-14.

  2. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  3. Low molecular weight chitosan-insulin polyelectrolyte complex: characterization and stability studies.

    PubMed

    Al-Kurdi, Zakieh I; Chowdhry, Babur Z; Leharne, Stephen A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-30

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  4. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.

  5. Influence of refractive index and molecular weight of alcohol agents on skin optical clearing effect

    NASA Astrophysics Data System (ADS)

    Mao, Zhongzhen; Zheng, Ying; Hu, Yating; Lu, Wei; Luo, Qingming; Zhu, Dan

    2007-02-01

    In order to discuss the relative factors affecting the optical clearing effect of agents on skin tissues, six hydroxy-terminated and saturated alcohols with different refractive index and molecular weight were chosen as the optical clearing agents (OCAs). After being treated by different OCAs, the change of transmitted intensity of porcine skins in vitro was measured by single integrating sphere system. The results showed the optical clearing effects of six OCAs, i.e., glycerol, PEG400, PEG200, 1,3-propylene glycol, 1,4-butanediol and 1-butanol, arranged in the descending order. Based on the above results, the refractive index and molecular weight was further discussed. The optical clearing effect of alcohols has been deduced to have negative correlation with refractive index (r=-0.608), but no correlation with molecular weight (r= 0.008).

  6. Properties of different molecular weight sodium lignosulfonate fractions as dispersant of coal-water slurry

    SciTech Connect

    Zhou, M.S.; Qiu, X.Q.; Yang, D.J.; Lou, H.M.

    2006-07-01

    Four purified sodium lignosulfonate (SL) samples with different molecular weights were prepared by fractionation using ultrafiltration. The effect of the molecular weights of SL on the apparent viscosity of coal-water slurry (CWS) was investigated by studying the adsorption amounts and the zeta potentials in the coal-water interface. The results show that the adsorption behavior of the dispersants in the coal-water interface is the key factor to affect the dispersing effect, that the higher adsorption amount and compact adsorption film help reduce the viscosity reduction of CWS, and that the zeta potential is also an important factor influenced by the sulfonic group and carboxy contents of the lignosulfonate molecule. Furthermore, SL with a molecular weight ranging from 10000 to 50000 has both a higher adsorbed amount and zeta potential on the coal surface and the best effect on reducing the viscosity of the coal-water slurry.

  7. Supramolecular star polymers. Increased molecular weight with decreased polydispersity through self-assembly.

    PubMed

    Todd, Eric M; Zimmerman, Steven C

    2007-11-28

    A ditopic structure containing two heterocyclic DeAP units and programmed to self-assemble is used as an initiation unit for the synthesis of polylactide and polystyrene. The resultant polymers self-assemble into higher molecular weight structures with a lower molecular weight distribution. The largest discrete nanoscale polymeric assembly is proposed to be a hexameric star with a molecular weight of ca. 92.7 kDa. All polymeric assemblies generally exhibit PDI values of 1.3 to 1.5, which are lower than the PDI value of the corresponding polymeric arms. A hexameric assembly is stabilized by 30 hydrogen bonds, including six AADD.DDAA contacts. The hexameric star is formed under conditions that are at least partially controlled by kinetics.

  8. Rapid analysis of acylglycerols in low molecular weight milk fat fractions.

    PubMed

    Craven, R J; Lencki, R W

    2007-05-01

    A suitable analytical method was required to facilitate development of an industrial-scale short-path distillation (SPD) process. Short-path distillation produces milk fat distillates (MFD) enriched in low molecular weight milk fat components-viz. free fatty acids, monoacylglycerols, diacylglycerols, cholesterol and low molecular weight triacylglycerols. In this case, solid-phase extraction (SPE) was considered a better alternative than thin-layer chromatography for separating polar and apolar lipid components in MFD samples due to its speed and near-complete recoveries. Solid-phase extraction of MFDs yielded two fractions, both of which are sufficiently pure for subsequent analysis by gas chromatography. This procedure provided rapid and complete chemical characterization (including mass balances) of low-molecular weight milk-fat fractions.

  9. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  10. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements.

  11. Molecular Factors Governing the Liquid and Glassy States Recrystallization of Celecoxib in Binary Mixtures with Excipients of Different Molecular Weights.

    PubMed

    Grzybowska, K; Chmiel, K; Knapik-Kowalczuk, J; Grzybowski, A; Jurkiewicz, K; Paluch, M

    2017-03-08

    Transformation of poorly water-soluble crystalline pharmaceuticals to the amorphous form is one of the most promising strategies to improve their oral bioavailability. Unfortunately, the amorphous drugs are usually thermodynamically unstable and may quickly return to their crystalline form. A very promising way to enhance the physical stability of amorphous drugs is to prepare amorphous compositions of APIs with certain excipients which can be characterized by significantly different molecular weights, such as polymers, acetate saccharides, and other APIs. By using different experimental techniques (broadband dielectric spectroscopy, differential scanning calorimetry, X-ray diffraction) we compare the effect of adding the large molecular weight polymer-polyvinylpyrrolidone (PVP K30)-and the small molecular weight excipient-octaacetylmaltose (acMAL)-on molecular dynamics as well as the tendency to recrystallization of the amorphous celecoxib (CEL) in the amorphous solid dispersions: CEL-PVP and CEL-acMAL. The physical stability investigations of the binary systems were performed in both the supercooled liquid and glassy states. We found that acMAL is a better inhibitor of recrystallization of amorphous CEL than PVP K30 deep in the glassy state (T < Tg). In contrast, PVP K30 is a better crystallization inhibitor of CEL than acMAL in the supercooled liquid state (at T > Tg). We discuss molecular factors governing the recrystallization of amorphous CEL in examined solid dispersions.

  12. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  13. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer.

    PubMed

    Jenkins, Courtney L; Meredith, Heather J; Wilker, Jonathan J

    2013-06-12

    Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers.

  14. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.

    PubMed

    Rojruthai, Porntip; Sakdapipanich, Jitladda Tangpakdee; Takahashi, Seiji; Hyegin, Lee; Noike, Motoyoshi; Koyama, Tanetoshi; Tanaka, Yasuyuki

    2010-02-01

    Hevea brasiliensis is one of few higher plants producing the commercial natural rubber used in many significant applications. The biosynthesis of high molecular weight rubber molecules by the higher plants has not been clarified yet. Here, the in vitro rubber biosynthesis was performed by using enzymatically active small rubber particles (SRP) from Hevea. The mechanism of the in vitro rubber synthesis was investigated by the molecular weight distribution (MWD). The highly purified SRP prepared by gel filtration and centrifugation in the presence of Triton((R)) X-100 showed the low isopentenyl diphosphate (IPP) incorporation for the chain extension mechanism of pre-existing rubber. The MWD of in vitro rubber elongated from the pre-existing rubber chains in SRP was analyzed for the first time in the case of H. brasiliensis by incubating without the addition of any initiator. The rubber transferase activity of 70% incorporation of the added IPP (w/w) was obtained when farnesyl diphosphate was present as the allylic diphosphate initiator. The in vitro synthesized rubber showed a typical bimodal MWD of high and low molecular weight fractions in GPC analysis, which was similar to that of the in vivo rubber with peaks at around 10(6) and 10(5) Da or lower. The reaction time independence and dependence of molecular weight of high and low molecular weight fractions, respectively, indicated that the high molecular weight rubber was synthesized from the chain extension of pre-existing rubber molecules whereas the lower one was from the chain elongation of rubber molecules newly synthesized from the added allylic substrates.

  15. In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Luculescu, Catalin-Romeo; Dinescu, Maria; Canulescu, Stela; Schou, Jørgen

    2012-10-01

    In this work, polyethylene glycol (PEG) films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The possibility to tailor the properties of the films by means of polymer molecular weight was explored. The films of PEG of average molecular weights 400 Da, 1450 Da, and 10000 Da (PEG400, PEG1450, and PEG10000) were investigated in vitro, in media similar with those inside the body (phosphate buffer saline PBS with pH 7.4 and blood). The mass of the polymer did not change during this treatment, but the polymer molecular weight was found to strongly influence the films properties and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ˜66 grd for PEG400 to ˜41 grd for PEG1450 and to ˜15 grd for PEG10000. The same trend was observed during immersion of the PEG films in PBS. Before immersion in PBS, the refractive index of the films increased from ˜1.43 for PEG400 to ˜1.48 for PEG1450 and to ˜1.68 for PEG10000. During immersion in PBS the refractive index decreased gradually, but remained higher for the PEG molecules of higher mass. Finally, blood compatibility tests showed that the PEG films of higher molecular weight were most compatible with blood.

  16. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    PubMed

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity.

  17. FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3.

    PubMed

    Chaudhury, Sraboni; Aurbach, Elyse L; Sharma, Vikram; Blandino, Peter; Turner, Cortney A; Watson, Stanley J; Akil, Huda

    2014-08-12

    Posttranslational modifications of histone tails in chromatin template can result from environmental experiences such as stress and substance abuse. However, the role of epigenetic modifications as potential predisposing factors in affective behavior is less well established. To address this question, we used our selectively bred lines of high responder (bHR) and low responder (bLR) rats that show profound and stable differences in affective responses, with bLRs being prone to anxiety- and depression-like behavior and bHRs prone to addictive behavior. We first asked whether these phenotypes are associated with basal differences in epigenetic profiles. Our results reveal broad between-group differences in basal levels of trimethylated histone protein H3 at lysine 9 (H3K9me3) in hippocampus (HC), amygdala, and nucleus accumbens. Moreover, levels of association of H3K9me3 at Glucocorticoid Receptor (GR) and Fibroblast growth Factor 2 (FGF2) promoters differ reciprocally between bHRs and bLRs in these regions, consistent with these genes' opposing levels of expression and roles in modulating anxiety behavior. Importantly, this basal epigenetic pattern is modifiable by FGF2, a factor that modulates anxiety behavior. Thus, early-life FGF2, which decreases anxiety, altered the levels of H3K9me3 and its binding at FGF2 and GR promoters of bLRs rendering them more similar to bHRs. Conversely, knockdown of HC FGF2 altered both anxiety behavior and levels of H3K9me3 in bHRs, rendering them more bLR-like. These findings implicate FGF2 as a modifier of epigenetic mechanisms associated with emotional responsiveness, and point to H3K9me3 as a key player in the regulation of affective vulnerability.

  18. Transmembrane proteoglycans syndecan-2, 4, receptor candidates for the impact of HGF and FGF2 on semaphorin 3A expression in early-differentiated myoblasts

    PubMed Central

    Do, Mai-Khoi Q; Shimizu, Naomi; Suzuki, Takahiro; Ohtsubo, Hideaki; Mizunoya, Wataru; Nakamura, Mako; Sawano, Shoko; Furuse, Mitsuhiro; Ikeuchi, Yoshihide; Anderson, Judy E; Tatsumi, Ryuichi

    2015-01-01

    Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed an unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) triggered its expression exclusively at the early differentiation phase. In order to advance this concept, the present study described that transmembrane heparan/chondroitin sulfate proteoglycans syndecan-2, 4 may be the plausible receptor candidates for HGF and FGF2 to signal Sema3A expression. Results showed that mRNA expression of syndecan-2, 4 was abundant (two magnitudes higher than syndecan-1, 3) in early-differentiated myoblasts and their in vitro knockdown diminished the HGF/FGF2-induced expression of Sema3A down to a baseline level. Pretreatment with heparitinase and chondroitinase ABC decreased the HGF and FGF2 responses, respectively, in non–knockdown cultures, supporting a possible model that HGF and FGF2 may bind to heparan and chondroitin sulfate chains of syndecan-2, 4 to signal Sema3A expression. The findings, therefore, extend our understanding that HGF/FGF2-syndecan-2, 4 association may stimulate a burst of Sema3A secretion by myoblasts recruited to the site of muscle injury; this would ensure a coordinated delay in the attachment of motoneuron terminals onto fibers early in muscle regeneration, and thus synchronize the recovery of muscle fiber integrity and the early resolution of inflammation after injury with reinnervation toward functional recovery. PMID:26381016

  19. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells.

    PubMed

    Liu, Mi-Hua; Li, Guo-Hua; Peng, Li-Jun; Qu, Shun-Lin; Zhang, Yuan; Peng, Juan; Luo, Xin-Yuan; Hu, Heng-Jing; Ren, Zhong; Liu, Yao; Tang, Hui; Liu, Lu-Shan; Tang, Zhi-Han; Jiang, Zhi-Sheng

    2016-03-01

    Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.

  20. FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: Partnership with H3K9me3

    PubMed Central

    Chaudhury, Sraboni; Aurbach, Elyse L.; Sharma, Vikram; Blandino, Peter; Turner, Cortney A.; Watson, Stanley J.; Akil, Huda

    2014-01-01

    Posttranslational modifications of histone tails in chromatin template can result from environmental experiences such as stress and substance abuse. However, the role of epigenetic modifications as potential predisposing factors in affective behavior is less well established. To address this question, we used our selectively bred lines of high responder (bHR) and low responder (bLR) rats that show profound and stable differences in affective responses, with bLRs being prone to anxiety- and depression-like behavior and bHRs prone to addictive behavior. We first asked whether these phenotypes are associated with basal differences in epigenetic profiles. Our results reveal broad between-group differences in basal levels of trimethylated histone protein H3 at lysine 9 (H3K9me3) in hippocampus (HC), amygdala, and nucleus accumbens. Moreover, levels of association of H3K9me3 at Glucocorticoid Receptor (GR) and Fibroblast growth Factor 2 (FGF2) promoters differ reciprocally between bHRs and bLRs in these regions, consistent with these genes’ opposing levels of expression and roles in modulating anxiety behavior. Importantly, this basal epigenetic pattern is modifiable by FGF2, a factor that modulates anxiety behavior. Thus, early-life FGF2, which decreases anxiety, altered the levels of H3K9me3 and its binding at FGF2 and GR promoters of bLRs rendering them more similar to bHRs. Conversely, knockdown of HC FGF2 altered both anxiety behavior and levels of H3K9me3 in bHRs, rendering them more bLR-like. These findings implicate FGF2 as a modifier of epigenetic mechanisms associated with emotional responsiveness, and point to H3K9me3 as a key player in the regulation of affective vulnerability. PMID:25071177

  1. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  2. Effects of specific and prolonged expression of zebrafish growth factors, Fgf2 and Lif in primordial germ cells in vivo

    SciTech Connect

    Wong, Ten-Tsao; Collodi, Paul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer We discovered that nanos3 3 Prime UTR prolonged PGC-specific protein expression up to 26 days. Black-Right-Pointing-Pointer Expression of Fgf2 in PGCs significantly increased PGC number at later developmental stages. Black-Right-Pointing-Pointer Expression of Lif in PGCs resulted in a significant disruption of PGC migration. Black-Right-Pointing-Pointer Lif illicited its effect on PGC migration through Lif receptor a. Black-Right-Pointing-Pointer Our approach could be used to achieve prolonged PGC-specific expression of other proteins. -- Abstract: Primordial germ cells (PGCs), specified early in development, proliferate and migrate to the developing gonad before sexual differentiation occurs in the embryo and eventually give rise to spermatogonia or oogonia. In this study, we discovered that nanos3 3 Prime UTR, a common method used to label PGCs, not only directed PGC-specific expression of DsRed but also prolonged this expression up to 26 days post fertilization (dpf) when DsRed-nanos3 3 Prime UTR hybrid mRNAs were introduced into 1- to 2-cell-stage embryos. As such, we employed this knowledge to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and bone morphogenetic protein 4 (Bmp4) in the PGCs and evaluate their effects on PGC development in vivo for over a period of 3 weeks. The results show that expression of Fgf2 significantly increased PGC number at 14- and 21-dpf while Bmp4 resulted in severe ventralization and death of the embryos by 3 days. Expression of Lif resulted in a significant disruption of PGC migration. Mopholino knockdown experiments indicated that Lif illicited its effect on PGC migration through Lif receptor a (Lifra) but not Lifrb. The general approach described in this study could be used to achieve prolonged PGC-specific expression of other proteins to investigate their roles in germ cell and gonad development. The results also indicate that zebrafish PGCs

  3. Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1985-01-01

    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.

  4. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  5. Extraction of berkelium (IV) by neutral organophosphorus compounds and high molecular weight amines

    SciTech Connect

    Myasoedov, B.F.; Milyukova, M.S.; Malikov, D.A.

    1984-01-01

    The extraction behaviour of berkelium (IV) from inorganic acid solutions using neutral organophosphorus compounds and high molecular weight amines was studied. Distribution coefficients as a function of the nature and concentration of acid, extractant, organic solvent and oxidant were examined. The stoichiometry of Bk(IV) extraction has been studied and the composition of the extracted species has been determined. The data obtained allowed the authors to work out the extraction methods of separation and purification of berkelium from transplutonium elements, rare earths and several fission products using neutral organophosphorus compounds and high molecular weight amines. 8 figures, 2 tables.

  6. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  7. Apoptosis-inducing activity of high molecular weight fractions of tea extracts.

    PubMed

    Hayakawa, S; Kimura, T; Saeki, K; Koyama, Y; Aoyagi, Y; Noro, T; Nakamura, Y; Isemura, M

    2001-02-01

    High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.

  8. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  9. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei; Wang, Weifan

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  10. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  11. Effect of molecular weight on the electrophoretic deposition of carbon black nanoparticles in moderately viscous systems.

    PubMed

    Modi, Satyam; Panwar, Artee; Mead, Joey L; Barry, Carol M F

    2013-08-06

    Electrophoretic deposition from viscous media has the potential to produce in-mold assembly of nanoparticles onto three-dimensional parts in high-rate, polymer melt-based processes like injection molding. The effects of the media's molecular weight on deposition behavior were investigated using a model system of carbon black and polystyrene in tetrahydrofuran. Increases in molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤5 s), only carbon black deposited onto the electrodes, but the deposition decreased with increasing molecular weight and the resultant increases in suspension viscosity. For longer deposition times, polystyrene codeposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. This deposition behavior suggests that use of lower molecular polymers and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts for high-rate, one-step fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.

  12. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  13. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  14. Different cleavage site for high molecular weight kininogen in vivo following intravenous injection of dextran sulfate in the rabbit

    SciTech Connect

    Wiggins, R.C.

    1986-04-01

    Purified radiolabeled rabbit Hageman factor, prekallikrein, and high molecular weight kininogen were used to examine Hageman factor system molecular dynamics after the intravenous injection of heparin-like dextran sulfate polymer in the rabbit. Hageman factor system proteins rapidly disappeared from the circulation following dextran sulfate injection, as measured by radial immunodiffusion, by kaolin-releasable kinin formation, and by measuring circulating levels of radiolabeled Hageman factor, prekallikrein, and high molecular weight kininogen. /sup 125/I-Hageman factor was distributed mainly to lung, liver, and spleen following dextran sulfate injection. Proteolysis of circulating /sup 125/I-Hageman factor occurred at a site within a disulfide loop into fragments of 50,000 and 30,000 molecular weight. Proteolysis of /sup 125/I-prekallikrein also occurred with visualization of a 50,000 molecular weight fragment. Although extensive proteolysis of /sup 131/I-high molecular weight kininogen was observed, the cleavage fragments were not the same as those generated during contact activation in vitro. The major fragment of high molecular weight kininogen observed in vivo was at 80,000 molecular weight, in contrast to the 65,000 molecular weight fragment generated by kallikrein in vitro. These results indicate that high molecular weight kininogen can undergo proteolysis in vivo into fragments not known to be associated with kinin release.

  15. Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae.

    PubMed

    Andreeva, A M; Lamas, N E; Serebryakova, M V; Ryabtseva, I P; Bolshakov, V V

    2015-02-01

    Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.

  16. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    EPA Science Inventory

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  17. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  18. Molecular Weight Dependence of Interdiffusion and Adhesion of Polymers at Short Contact Times.

    PubMed

    Gurney, Robert; Henry, Anastase; Schach, Regis; Lindner, Anke; Creton, Costantino

    2017-02-21

    The autohesion and subsequent debonding of thin layers of three linear and monodisperse random copolymers of styrene-butadiene (SBR) with molecular weights varying between 30 and 75 times the average molecular weight between entanglements Me were investigated using a carefully controlled tack adhesion testing device in conjunction with a fast camera setup over a range of contact times tc (10 ms to 10 s) much shorter in comparison to the terminal relaxation times of the polymers. The evolution of the stress-strain curves and debonding mechanisms with increasing contact time was examined, and the work required to debond the layers was found to be strongly dependent on molecular weight at long contact times, but not at short contact times. We propose a cutoff contact time of 300 ms, corresponding to 10(4) times the entanglement time τe after which molecular weight becomes important in controlling the interdiffusion process and the debonding mechanisms of the tack test. For contact times over 300 ms, the debonding energy plotted as a function of tc normalized by the reptation time τrep, collapses onto a master curve. Below this threshold tc, by comparing the adhesion of SBR on itself with the adhesion of SBR on glass, we also show that interdiffusion plays a part in adhesion of two identical polymer layers even at the shortest contact times, where the interdiffusion is controlled by the number of entanglements formed which scales with 1/√N.

  19. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  20. Effect of high molecular weight glutenin subunit allelic composition on wheat flour tortilla quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat cultivars possessing quality attributes needed to produce optimum quality tortillas have not been identified. This study investigated the effect of variations in high molecular weight glutenin subunits encoded at the Glu-1 loci (Glu-A1, Glu-B1, Glu-D1) on dough properties and tortilla quality....

  1. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study the contributions of high-molecular-weight glutenin subunits (HMW-GS) to the gluten macropolymer and dough properties, wheat HMW-GS (x- and y-types) are synthesized in a bacterial expression system. These subunits are then purified and used to supplement dough mixing and extensigraph exper...

  2. Properties of UV-Cured Polyurethane Acrylates: Effect of Polyol Type and Molecular Weight

    DTIC Science & Technology

    1984-06-20

    glass transition temperature versus polypropylene oxide molecular weight for the IEM-PP series materials. Figure 5. DSC thermograms of the IEM-ES-25N...before and after one minute of UV-curing. Figure 3. DSC thermograms of the IEM-PP-O series materials before C---) and after (-) UV-curing. Figure 4. DSC

  3. Polyacrylamide Molecular Weight and Phosphogypsum Effects on Infiltration and Erosion in Semi-Arid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  4. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  5. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  6. Extraction of low molecular weight polynuclear aromatic hydrocarbons from ashes of coal-operated power plants

    SciTech Connect

    Mangani, F.; Cappiello, A.; Crescentini, G.; Bruner, F.; Bonfanti, L.

    1987-09-01

    A new procedure based on liquid-solid chromatography for the extraction of polynuclear aromatic hydrocarbons has been implemented. This yields results analogous to those of Soxhlet extraction for low molecular weight compounds. A very important reduction in the time required for sample preparation prior to gas chromatography/mass spectrometry analysis is obtained.

  7. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  8. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  9. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, they have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in different environments and (2) identify any genetic and environmental effects on tho...

  10. Recovering ultraclean lignins of controlled molecular weight from Kraft black-liquor lignins.

    PubMed

    Klett, A S; Chappell, P V; Thies, M C

    2015-08-18

    By operating in a region of liquid-liquid equilibrium, hot acetic acid-water mixtures can be used to simultaneously clean, fractionate, and solvate Kraft black-liquor lignins. Lignin-rich liquid phases of controlled molecular weight with key metals contents reduced to <50 ppm are obtained without a washing step.

  11. Effect of mahlep on molecular weight distribution of cookie flour gluten proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...

  12. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  13. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  14. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  15. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  16. Comparison of mass spectrometric techniques for generating molecular weight information on a class of ethoxylated oligomers.

    PubMed

    Parees, D M; Hanton, S D; Clark, P A; Willcox, D A

    1998-04-01

    The results of fast atom bombardment (FAB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), matrix-assisted laser desorption/ionization (MALD/I), electrospray ionization (ESI), and field desorption (FD) analyses of ethoxylated oligomers of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol(®) 104) were compared.Each of these desorption mass spectrometry (MS) techniques can produce spectra of unfragmented cationized oligomers. From the observed ion series we calculate average molecular weight information. We have compared the results of mass spectrometric analyses of a series of ethoxylated Surfynol surfactants. Our data indicate that FAB, ToF-SIMS, MALDI/I, and ESI produce similar results for the lower molecular weight species, but that as the average molecular weight increases FAB and SIMS produce slightly lower results than MALD/I and FD. This could be due to increased fragmentation. ESI produced a result similar to FAB and SIMS for the highest average molecular weight material. Further experiments compare the mass spectral results with gas chromatographic quantitative data. Although gas chromatography is not expected to accurately analyze the higher mass oligomers, we observe significant differences in intensities of the short-chain oligomers (especially the 0- and 1-mers) when compared to the desorption mass spectrometer results. These differences may reflect poor cationization efficiency for very short oligomer chains in the mass spectrometric analyses.

  17. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    PubMed

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability.

  18. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.

    PubMed

    Milanovic, Jovana; Schiehser, Sonja; Milanovic, Predrag; Potthast, Antje; Kostic, Mirjana

    2013-10-15

    The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2',6,6'-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42-9.67 mmol NaClO/g fiber) after modification times of 1h or longer.

  19. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  20. Depletion of high molecular weight dextran from the red cell surface measured by particle electrophoresis.

    PubMed

    Rad, Samar; Gao, Jie; Meiselman, Herbert J; Baskurt, Oguz K; Neu, Björn

    2009-02-01

    The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biological and biophysical interest, yet the mechanistic details governing the process are still being explored. A depletion model has been proposed for aggregation by the neutral polyglucose dextran and its applicability at high molecular weights has been recently documented. In the present study the depletion of high molecular weight dextrans on the red cell surface was measured as a function of polymer molecular mass (40 kDa-28 MDa), ionic strength (5 and 15 mM NaCl) and polymer concentration (< or =0.9 g/dL). The experimental data clearly indicate an increasing depletion effect with increasing molecular weight: the effects of medium viscosity on RBC mobility were markedly overestimated by the Helmholtz-Smoluchowski relation, with the difference increasing with dextran molecular mass. These results agree with the concept of polymer depletion near the RBC surface and lend strong support to a "depletion model" mechanism for dextran-mediated RBC aggregation. Our findings provide important new insight into polymer-RBC interactions and suggest the usefulness of this model for fundamental studies of cell-cell affinity and for the development of new agents to stabilize or destabilize specific bio-fluids.

  1. Self-assembled tetranuclear palladium catalysts that produce high molecular weight linear polyethylene.

    PubMed

    Shen, Zhongliang; Jordan, Richard F

    2010-01-13

    The phosphine-bis-arenesulfonate ligand PPh(2-SO(3)Li-4-Me-Ph)(2) (Li(2)[OPO]) coordinates as a kappa(2)-P,O chelator in Li[(Li-OPO)PdMe(Cl)] (2a) and (Li-OPO)PdMe(L) (L = pyridine (2b); MeOH (2d); 4-(5-nonyl)pyridine) (py', 3)). 2a reacts with AgPF(6) to form {(Li-OPO)PdMe}(n) (2c). Photolysis of 2d yields {(OPO)Pd}(2) (5) in which the [OPO](2-) ligand coordinates as a kappa(3)-O,P,O pincer. 3 self-assembles into a tetramer in which four (Li-OPO)PdMe(py') units are linked by Li-O bonds that form a central Li(4)S(4)O(12) cage. The Pd centers are equivalent but are spatially separated into two identical pairs. The Pd-Pd distance within each pair is 6.04 A. IR data (upsilon(ArSO(3)(-)) region) suggest that the solid state structures of 2a-c are similar to that of 3. 3 reacts with the cryptand Krypt211 to form [Li(Krypt211)][(OPO)PdMe(py')] (4). 3 is in equilibrium with a monomeric (Li-OPO)PdMe(py') species (3') in solution. 2a-c and 3 produce polyethylene (PE) with high molecular weight and a broad molecular weight distribution, characteristic of multisite catalysis. Under conditions where the tetrameric structure remains substantially intact, the PE contains a substantial high molecular weight fraction, while, under conditions where fragmentation is more extensive, the PE contains a large low molecular weight fraction. These results suggest that the tetrameric assembly gives rise to the high molecular weight polymer. In contrast, the monomeric complex 4, which contains a free pendant sulfonate group that can bind to Pd, oligomerizes ethylene to a Schultz-Flory distribution of C(4)-C(18) oligomers.

  2. Are molecular weights of proteins determined by superose 12 column chromatography correct?

    PubMed

    Lee, Shih-Chieh; Whitaker, John R

    2004-08-11

    Our research on several proteins indicates that accurate molecular weights cannot be determined by Superose 12 column chromatography. In support of this statement, we present data on molecular weights of purified red kidney bean alpha-amylase inhibitor (RKB alphaAI) and white kidney bean alpha-amylase inhibitor (WKB alphaAI) to document this problem. The molecular weight of purified RKB alphaAI determined by Sephadex G-100 gel filtration, polyacrylamide gel electrophoresis, Superose 12 gel filtration and cDNA were 49.0, 51.0, 22.9, and 49.805 kDa (not glycosylated), respectively. The molecular weights of WKB alphaAI by several methods were as follows: Sephadex G-100 gel filtration, 51.0 kDa; Superose 12 gel filtration in 0.2 M NaCl buffer, 23.1 kDa; polyacrylamide gel electrophoresis (PAGE), 51.0 kDa; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 45.0 kDa; multiangle laser light scattering (MALLS), 49.940 kDa; laser-assisted time-of-flight mass spectrometry (LATOFMS), 56.714 kDa; and cDNA sequence (with 12.2% carbohydrate), 55.9 kDa. The data indicate there is ionic interaction between proteins and the matrix of Superose 12 in low ionic strength buffers and hydrophobic interaction at higher ionic strength buffers. Researchers should be cautious when using Superose 12 columns for molecular weight determinations.

  3. Low-molecular-weight heparin prophylaxis: preoperative versus postoperative initiation in patients undergoing elective hip surgery.

    PubMed

    Hull, R D; Pineo, G F; MacIsaac, S

    2001-01-01

    Administration of low-molecular-weight heparin prophylaxis in elective hip implant patients commonly begins 12 h preoperatively in European practices to optimize effectiveness, and 12 to 24 h postoperatively in North American practices to optimize safety. A meta-analysis comparing these two treatment regimes revealed that preoperative initiation demonstrated greater efficacy and superior safety for patients (10.0% rate of total deep-vein thrombosis vs. 15.3%, P = .023). In addition to the pre/postsurgical debate, proximity of initiation of low-molecular-weight heparin in relation to surgery is an issue of critical importance. Recent studies revealed that beginning therapy immediately within 2 h preoperatively or 6 h postoperatively dramatically decreased the risk of venous thrombosis. An investigation of low-molecular-weight heparin prophylaxis initiated 2 h before elective hip surgery or approximately 6 h after surgery compared with warfarin sodium revealed that total and proximal deep-vein thrombosis rates were reduced in patients receiving low-molecular-weight heparin compared with warfarin. The frequencies of deep-vein thrombosis for patients receiving preoperative and postoperative dalteparin vs. warfarin for all deep-vein thrombosis were 36 of 337 (10.7%, P < .001) and 44 of 336 (13.1%, P < .001) vs. 81 of 338 (24.0%); and for proximal deep-vein thrombosis were 3 of 354 (0.8%, P = .035) and 3 of 358 (0.8%, P = .033) vs. 11 of 363 (3.0%). Relative risk reductions for the dalteparin groups vs. warfarin ranged from 45% to 72%. In this case, low-molecular-weight heparin administered in close proximity to surgery provided superior efficacy over warfarin. Major bleeding was significantly increased with the preoperative regimen but not the postoperative regimen.

  4. Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol.

    PubMed

    Kim, Kyoungtea; Cho, Eunae; Choi, Jae Min; Kim, Hwanhee; Jang, Ahri; Choi, Youngjin; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2014-06-15

    The low-molecular-weight succinoglycans isolated from Sinorhizobium meliloti are repeating octasaccharide units consisting of monomers, dimers, and trimers. Pindolol is a beta-blocker used to treat cardiovascular disorders. We investigated the formation of complexes between pindolol and low-molecular-weight succinoglycan monomers (SGs). Even though SGs have a linear structure, the solubility of pindolol in the presence of SGs was increased up to 7-fold compared with methyl-β-cyclodextrin reported as the best solubilizer of pindolol. Complexation of SGs with pindolol was confirmed by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Formation constants of complexes were determined from phase solubility diagrams. Conformation of complex was suggested based on a molecular docking study. The present study indicated that formation of pindolol/SGs complexes not only resulted in increased pindolol solubility but also could be useful for improving its clinical application as it did not affect cell viability.

  5. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.

    PubMed

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin

    2016-07-28

    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases.

  6. Dutch and arctic mutant peptides of {beta} amyloid{sub 1-40} differentially affect the FGF-2 pathway in brain endothelium

    SciTech Connect

    Solito, Raffaella; Corti, Federico; Fossati, Silvia; Mezhericher, Emiliya; Donnini, Sandra; Ghiso, Jorge; Giachetti, Antonio; Rostagno, Agueda; Ziche, Marina

    2009-02-01

    Single point mutations of the amyloid precursor protein generate A{beta} variants bearing amino acid substitutions at positions 21-23. These mutants are associated with distinct hereditary phenotypes of cerebral amyloid angiopathy, manifesting varying degrees of tropism for brain vessels, and impaired microvessel remodeling and angiogenesis. We examined the differential effects of E22Q (Dutch), and E22G (Arctic) variants in comparison to WT A{beta} on brain endothelial cell proliferation, angiogenic phenotype expression triggered by fibroblast growth factor (FGF-2), pseudo-capillary sprouting, and induction of apoptosis. E22Q exhibited a potent anti-angiogenic profile in contrast to E22G, which had a much weaker effect. Investigations on the FGF-2 signaling pathway revealed the greatest differences among the peptides: E22Q and WT peptides suppressed FGF-2 expression while E22G had barely any effect. Phosphorylation of the FGF-2 receptor, FGFR-1, and the survival signal Akt were abolished by E22Q and WT peptides, but not by E22G. The biological dissimilar effect of the mutant and WT peptides on cerebral EC cannot be assigned to a particular A{beta} structure, suggesting that the toxic effect of the A{beta} assemblies goes beyond mere multimerization.

  7. Memantine rescues transient cognitive impairment caused by high-molecular-weight aβ oligomers but not the persistent impairment induced by low-molecular-weight oligomers.

    PubMed

    Figueiredo, Cláudia P; Clarke, Julia R; Ledo, José Henrique; Ribeiro, Felipe C; Costa, Carine V; Melo, Helen M; Mota-Sales, Axa P; Saraiva, Leonardo M; Klein, William L; Sebollela, Adriano; De Felice, Fernanda G; Ferreira, Sergio T

    2013-06-05

    Brain accumulation of soluble amyloid-β oligomers (AβOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aβ oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AβOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AβOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aβ oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.

  8. Flour Quality and Related Molecular Characterization of High Molecular Weight Glutenin Subunit Genes from Wild Emmer Wheat Accession TD-256.

    PubMed

    Zhang, Da-Le; He, Ting-Ting; Liang, Hui-Hui; Huang, Lu-Yu; Su, Ya-Zhong; Li, Yu-Ge; Li, Suo-Ping

    2016-06-22

    To clarify the effect of high molecular weight glutenin subunit (HMW-GS) from wild emmer wheat on flour quality, which has the same mobility as that from common wheat, the composition and molecular characterization of HMW-GS from wild emmer wheat accession TD-256, as well as its flour quality, were intensively analyzed. It is found that the mobilities of Glu-A1 and Glu-B1 subunits from TD-256 are consistent with those of bread wheat cv. 'XiaoYan 6'. Nevertheless, dough rheological properties of TD-256 reveal its poor flour quality. In the aspect of molecular structure from HMW-GS, only two conserved cysteine residues can be observed in the deduced protein sequence of 1Bx14* from TD-256, while most Glu-1Bx contain four conserved cysteine residues. In addition, as can be predicted from secondary structure, the quantity both of α-helixes and their amino acid residues of the subunits from TD-256 is fewer than those of common wheat. Though low molecular weight glutenin subunit (LMW-GS) and gliadin can also greatly influence flour quality, the protein structure of the HMW-GS revealed in this work can partly explain the poor flour quality of wild emmer accession TD-256.

  9. The potential benefits of low-molecular-weight heparins in cancer patients.

    PubMed

    Robert, Francisco

    2010-01-14

    Cancer patients are at increased risk of venous thromboembolism due to a range of factors directly related to their disease and its treatment. Given the high incidence of post-surgical venous thromboembolism in cancer patients and the poor outcomes associated with its development, thromboprophylaxis is warranted. A number of evidence-based guidelines delineate anticoagulation regimens for venous thromboembolism treatment, primary and secondary prophylaxis, and long-term anticoagulation in cancer patients. However, many give equal weight to several different drugs and do not make specific recommendations regarding duration of therapy. In terms of their efficacy and safety profiles, practicality of use, and cost-effectiveness the low-molecular-weight heparins are at least comparable to, and offer several advantages over, other available antithrombotics in cancer patients. In addition, data are emerging that the antithrombotics, and particularly low-molecular-weight heparins, may exert an antitumor effect which could contribute to improved survival in cancer patients when given for long-term prophylaxis. Such findings reinforce the importance of thromboprophylaxis with low-molecular-weight heparin in cancer patients.

  10. Effects of Molecular Weight on poly( -pentadecalactone) Mechanical and Thermal Properties

    SciTech Connect

    Cai, J.; Liu, C; Cai, M; Zhu, J; Zuo, F; Hsiao, B; Gross, R

    2010-01-01

    A series of poly({omega}-pentadecalactone) (PPDL) samples, synthesized by lipase catalysis, were prepared by systematic variation of reaction time and water content. These samples possessed weight-average molecular weights (M{sub w}), determined by multi-angle laser light scattering (MALLS), from 2.5 x 10{sup 4} to 48.1 x 10{sup 4}. Cold-drawing tensile tests at room temperature of PPDL samples with M{sub W} between 4.5 x 10{sup 4} and 8.1 x 10{sup 4} showed a brittle-to-ductile transition. For PPDL with M{sub W} of 8.1 x 10{sup 4}, inter-fibrillar slippage dominates during deformation until fracture. Increasing M{sub W} above 18.9 x 10{sup 4} resulted in enhanced entanglement network strength and strain-hardening. The high M{sub W} samples also exhibited tough properties with elongation at break about 650% and tensile strength about 60.8 MPa, comparable to linear high density polyethylene (HDPE). Relationships among molecular weight, Young's modulus, stress, strain at yield, melting and crystallization enthalpy (by differential scanning calorimetry, DSC) and crystallinity (from wide-angle X-ray diffraction, WAXD) were correlated for PPDL samples. Similarities and differences of linear HDPE and PPDL molecular weight dependence on their mechanical and thermal properties were also compared.

  11. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xin, Meng; Ren, Li; Sun, Yang; Li, Hai-hua; Guan, Hua-Shi; He, Xiao-Xi; Li, Chun-Xia

    2016-05-23

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for nearly 30 years. To extend the applications of PSS, a series of low-molecular-weight PSSs (named FPs) were prepared by oxidative-reductive depolymerization, and the antithrombotic activities were investigated thoroughly in vitro and in vivo. The bioactivity evaluation demonstrated a positive correlation between the molecular weight and the anticoagulant and antithrombotic activities of FPs. FPs could prolong the APTT and clotting time and reduce platelet aggregation significantly. FPs could also effectively inhibit factor IIa in the presence of AT-III and HC-II. FPs decreased the wet weights and lengths of the thrombus and increased occlusion times in vivo. FP-6k, a PSS fragment with a molecular weight of 6 kDa, is an optimal antithrombotic candidate for further study and showed little chance for hemorrhagic action.

  12. Selectively Bred Rats Provide a Unique Model of Vulnerability to PTSD-Like Behavior and Respond Differentially to FGF2 Augmentation Early in Life.

    PubMed

    Prater, Katherine E; Aurbach, Elyse L; Larcinese, Hanna K; Smith, Taylor N; Turner, Cortney A; Blandino, Peter; Watson, Stanley J; Maren, Stephen; Akil, Huda

    2017-03-29

    Individuals respond differently to traumatic experiences, including their propensity to develop posttraumatic stress disorder (PTSD). Understanding individual differences in PTSD vulnerability will allow the development of improved prevention and treatment options. Here we characterized fear conditioning and extinction in rats selectively bred for differences in their locomotor response to a novel environment. Selectively bred high-responder (bHR) and low-responder (bLR) male rats are known to differ in their emotional reactivity on a range of measures of spontaneous anxiety- and depressive-like behaviors. We demonstrate that bHRs have facilitated extinction learning and retention compared with outbred Sprague Dawley rats, whereas bLRs show reduced extinction learning and retention. This indicates that bLRs are more vulnerable to PTSD-like behavior. Fibroblast growth factor 2 (FGF2) has previously been implicated in the development of these behavioral phenotypes and facilitates extinction learning in outbred animals, therefore we examined the effects of early-life FGF2 on bHR and bLR behavior. FGF2 administered on the day after birth facilitated extinction learning and retention in bHRs, but not in bLRs or control rats, during adulthood. This indicates that, under the current fear conditioning paradigm, early-life FGF2 has protective effects only in resilient animals. This stands in contrast to FGF2's ability to protect vulnerable animals in milder tests of anxiety. These results provide a unique animal model of individual differences in PTSD-like behavior, allowing the study of genetic, developmental, and environmental factors in its expression.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.37.

  13. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2)-dependent Oligomerization of Fibroblast Growth Factor 2 (FGF2) Triggers the Formation of a Lipidic Membrane Pore Implicated in Unconventional Secretion*

    PubMed Central

    Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382

  14. Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight.

    PubMed

    Tronci, Giuseppe; Kanuparti, Ramya Sri; Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-11-01

    The formation of naturally derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activated 1,3-phenylenediacetic acid (Ph) (E: 726±43-844±85MPa), compared to samples crosslinked via intramolecular carbodiimide-mediated condensation reaction (E: 588±38MPa). Resulting fibres displayed a dry diameter in the range of 238±18-355±28μm and proved to be mechanically stable (E: 230kPa) following equilibration with PBS, whilst a nearly complete degradation was observed after 5-day incubation in physiological conditions.

  15. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    PubMed

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification.

  16. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    SciTech Connect

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  17. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature.

  18. WeGET: predicting new genes for molecular systems by weighted co-expression

    PubMed Central

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  19. Isolation of high molecular weight plant nuclear DNA suitable for use in recombinant DNA technology.

    PubMed

    Kiss, T; Solymosy, F

    1987-01-01

    Nuclei isolated from leaf cells of broad bean (Vicia faba L) by a newly developed method based on the use of citric acid in the isolation medium and flotation on a Percoll cushion yielded high molecular weight plant nuclear DNA which was suitable for (i) analysis by restriction endonucleases, (ii) molecular cloning and (iii) genomic blot hybridization. Starting from nuclear preparations obtained by this method, U2 small nuclear RNA-specific DNA sequences were detected in Vicia faba L. This is the first report on the demonstration of small nuclear RNA-specific DNA sequences in plant material.

  20. Raman study of uniaxial deformation of single-crystal mats of ultrahigh molecular weight linear polyethylene

    NASA Astrophysics Data System (ADS)

    Zavgorodnev, Yu V.; Chvalun, S. N.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Gordeyev, S. A.; Prokhorov, K. A.

    2015-03-01

    We present for the first time a Raman spectroscopic study of the deformation process of solution-crystallized single-crystal mats of ultrahigh molecular weight linear polyethylene (UHMW PE). We study the deformed regions of the films, drawn only until the formation of the neck, and the films of much higher draw ratios, just before rupture starts. For comparison, we have also carried out Raman investigations of films produced by compression of UHMW PE powder. We have found that the uniaxial molecular orientation in the neck region of the single-crystal mat films develops more slowly as compared to the films, prepared by compression of the UHMW PE powder.

  1. B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects

    PubMed Central

    Morbidelli, Lucia; Parenti, Astrid; Giovannelli, Lisa; Granger, Harris J; Ledda, Fabrizio; Ziche, Marina

    1998-01-01

    Bradykinin (BK) contributes to the inflammatory response inducing vasodilation of postcapillary venules and has been demonstrated to induce neovascular growth in subcutaneous rat sponges. In this study the ability of BK to stimulate cell growth and migration in cultured endothelium from coronary postcapillary venules (CVEC) has been investigated. [3H]-thymidine incorporation in subconfluent and synchronised CVEC was used to monitor DNA synthesis over 24 h. BK promoted a concentration-dependent increase of DNA synthesis with maximal activity at 100 nM. At this concentration BK also induced 18 fold accumulation of c-Fos protein immunoreactivity in the nucleus within 1 h from peptide exposure. The total number of cells recovered after 48 h exposure to BK was increased in a concentration-dependent manner. Maximal effect was produced by 100 nM concentration of the peptide which produced 50% increase in cell number. The selective B1 receptor agonist Des-Arg9-BK mimicked the proliferative effect of BK, while the B2 receptor agonist kallidin was devoid of any activity. The proliferation induced by BK was abolished in a concentration-dependent manner by the addition of the B1 selective antagonist Des-Arg9-Leu8-BK, while the selective B2 receptor antagonist HOE140 did not modify BK-induced growth. DNA synthesis and growth promoted by a threshold concentration of fibroblast growth factor-2 (FGF-2) (0.25 nM) were potentiated by increasing concentrations of BK and Des-Arg9-BK. Endothelial cell migration assessed by the Boyden Chamber procedure was not promoted by BK or the selective B1 and B2 receptor agonists. These data are the first demonstration that BK promotes growth of endothelial cells from postcapillary venules. The mitogenic activity of BK involves c-Fos expression and potentiates the growth promoting effect of FGF-2. Only the B1 receptor appears to be responsible for the proliferation induced by BK and suggests that this type of receptor might be

  2. Temperature, Molecular Weight, and Concentration Dependences of Thermal Diffusion for Ethylene Glycol Oligomers and Crown Ethers

    NASA Astrophysics Data System (ADS)

    Maeda, Kousaku; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin

    The Soret coefficient ST of ethylene glycol oligomers (EGOs) and crown ethers (CEs) in water were obtained by thermal diffusion forced Rayleigh scattering by changing the temperature, molecular weight, and concentration. The effect of a hydroxyl group on the EGOs and the effect of the cyclic structure of CEs on the thermal diffusion were determined systematically by changing the molecular weights of the EGOs and CEs. For dilute aqueous solutions, EGOs and CEs, except EG, show positive ST values that decrease with increasing temperature, which is similar to the results of previous studies on mixtures of water and organic solvents. The temperature dependence of ST changes its behavior from negative to positive with decreasing number of repeating units of EGOs. This behavior is related to the increase in the number density of the hydroxyl group. The ST values of EG show two different concentration regions, namely, the low concentration (0-2 wt %) and high concentration (2-100 wt %) regions.

  3. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  4. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    PubMed

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  5. [Sequencing of low-molecular-weight DNA in blood plasma of irradiated rats].

    PubMed

    Vasilieva, I N; Bespalov, V G; Zinkin, V N; Podgornaya, O I

    2015-01-01

    Extracellular low-molecular-weight DNA in blood of irradiated rats was sequenced for the first time. The screening of sequences in the DDBJ database displayed homology of various parts of the rodent genome. Sequences of low-molecular-weight DNA in rat's plasma are enriched with G/C pairs and long interspersed elements relative to rat genome. DNA sequences in blood of rats irradiated at the doses of 8 and 100 Gy have marked distinctions. Data of sequencing of extracellular DNA from normal humans and with pathology were analyzed. DNA sequences of irradiated rats differ from the human ones by a wealth of long interspersed elements. This new knowledge lays the foundation for development of minimally invasive technologies of diagnosing the probability of pathology and controlling the adaptive resources of people in extreme environments.

  6. Friction and wear of polyethylene oxide polymer having a range of molecular weights

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction and wear experiments were conducted at light loads (25 to 250 g) with various molecular weights of the polyethylene oxide polymer sliding on itself and iron. Results of the experimental investigation indicate that: (1) the coefficient of friction for the polymer decreases with increasing molecular weight; (2) friction coefficient is higher for the polymer sliding on itself than it is for the polymer sliding on iron; (3) at sufficiently high loads localized surface melting occurs and the friction coefficient is the same for the polymer sliding on itself and iron; (4) fracture cracks develop in the sliding wear track at higher but not lower sliding velocities, reflecting a strain rate sensitivity to crack initiation, and (5) the friction coefficient for the polymer sliding on iron increases with the formation of a polymer film on the iron surface.

  7. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.

  8. HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight.

    PubMed

    Johnson, Russell N; Chu, David S H; Shi, Julie; Schellinger, Joan G; Carlson, Peter M; Pun, Suzie H

    2011-10-30

    Polycations are one of the most frequently used classes of materials for non-viral gene transfer in vivo. Several studies have demonstrated a sensitive relationship between polymer structure and delivery activity. In this work, we used reverse addition-fragmentation chain transfer (RAFT) polymerization to build a panel of N-(2-hydroxypropyl)methacrylamide (HPMA)-oligolysine copolymers with varying peptide length and polymer molecular weight. The panel was screened for optimal DNA-binding, colloidal stability in salt, high transfection efficiency, and low cytotoxicity. Increasing polyplex stability in PBS correlated with increasing polymer molecular weight and decreasing peptide length. Copolymers containing K(5) and K(10) oligocations transfected cultured cells with significantly higher efficiencies than copolymers of K(15). Four HPMA-oligolysine copolymers were identified that met the desired criteria. Polyplexes formed with these copolymers demonstrated both salt stability and transfection efficiencies on-par with poly(ethylenimine) PEI in cultured cells.

  9. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules.

    PubMed

    Mayjonade, Baptiste; Gouzy, Jérôme; Donnadieu, Cécile; Pouilly, Nicolas; Marande, William; Callot, Caroline; Langlade, Nicolas; Muños, Stéphane

    2016-10-01

    De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.

  10. Influence of molecular weight on the resistance of polylactide fibers by radiation sterilization

    SciTech Connect

    Horacek, I.; Kudlacek, L. . Dept. of Fibres and Textile Chemistry)

    1993-10-05

    The mechanical properties and in vitro degradability of poly(L-lactide) fibers with different average molecular weights, prepared by a dry spinning-hot drawing process from CHCl[sub 3] solutions, were studied in relation to the [gamma]-irradiation dose. In the range of molecular weight of 1.6--3.6 [times] 10[sup 5], no differences were found in the relative decrease of tensile strength after irradiation of 25 kGy. Changes of the elongation at break are discussed in terms of a network solution theory. In vitro degradation of the fibers is also discussed in network solution theory terms. Regardless of the courses of degradation curves, it may be stated that all prepared fibers could be sterilized by [gamma]-rays and the rate of degradation was not affected by the irradiation dose.

  11. Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants

    PubMed Central

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-01-01

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds. PMID:24378988

  12. Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives.

    PubMed

    Xu, Xu; Bi, Decheng; Wan, Min

    2016-01-01

    Alginate is a naturally occurring acidic linear polysaccharide obtained from marine brown seaweed. Low molecular weight structurally diverse derivatives and oligosaccharides derived from alginate have shown various tremendous biological and pharmacological activities. It has been demonstrated that immuno-inflammation is involved in many prevalent human diseases, such as cancer, severe infection and neurodegeneration. Given the activities of marine natural products in the regulation of immune responses, increasing efforts are being made toward the development of lowmolecular- weight natural compounds that aid in the prevention and treatment of immune- and inflammatory-related diseases. In this review, we describe the development of chemical modification and molecular depolymerization methods that modify the physicochemical and biological characteristics of alginate. Additionally, current progress in research on immuno-inflammatory, anti-neurodegenerative and anti-tumor activities of alginate derivatives is highlighted.

  13. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  14. High molecular weight DNA assembly in vivo for synthetic biology applications.

    PubMed

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  15. Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing.

    PubMed

    Demeler, Borries; Brookes, Emre; Nagel-Steger, Luitgard

    2009-01-01

    A computational approach for fitting sedimentation velocity experiments from an analytical ultracentrifuge in a model-independent fashion is presented. This chapter offers a recipe for obtaining high-resolution information for both the shape and the molecular weight distributions of complex mixtures that are heterogeneous in shape and molecular weight and provides suggestions for experimental design to optimize information content. A combination of three methods is used to find the solution most parsimonious in parameters and to verify the statistical confidence intervals of the determined parameters. A supercomputer implementation with a MySQL database back end is integrated into the UltraScan analysis software. The UltraScan LIMS Web portal is used to perform the calculations through a Web interface. The performance and limitations of the method when employed for the analysis of complex mixtures are demonstrated using both simulated data and experimental data characterizing amyloid aggregation.

  16. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants.

    PubMed

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-12-23

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.

  17. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  18. Molecular weight of polydisperse icodextrin effects its oncotic contribution to water transport.

    PubMed

    Nishimura, Kohei; Kamiya, Yohei; Miyamoto, Keiichi; Nomura, Shinsuke; Horiuchi, Takashi

    2008-01-01

    Icodextrin, a mixture of polysaccharides of alpha-(1 --> 4) polyglucopyranose having 10% branched chains, is clinically available as a D-glucose substitute for peritoneal dialysis (PD). Due to the high intraperitoneal retention time of this glucose polymer (GP), water transport from the vessels to the peritoneal cavity is prolonged even in PD patients with high peritoneal permeability. The purpose of this study was to elucidate why 7.5% icodextrin solution has such a broad distribution of molecular weights. A gel permeation chromatography study indicated that the average molecular weight was about 18.0 kDa in terms of number average (Mn) and 31.3 kDa in terms of weight average (Mw), respectively, resulting in a polydispersity index (Mn/Mw) of 1.74. Five fractions of GP having Mn values of 41.3, 19.3, 8.3, 3.8, and 2.1 kDa, respectively, produced 0.24, 0.49, 0.50, 0.08, and 0.03 mOsmol/kg H2O of colloid osmotic pressure. Water transport through a membrane having a molecular cutoff of 15 kDa was simulated using the mass transfer coefficient and reflection coefficient for each fraction. Fractions with Mn values of 19.3 and 8.3 kDa contributed to water transport dominantly (approximately 76%), while only 18%, 5%, and 3% of total water removal was contributed by fractions with Mn values of 41.3, 3.8 and 2.1 kDa, respectively. As a result of enzymatic degradation for 10 h by 2, 10, or 20 U/l alpha-amylase, a decrease in the high molecular weight zone (40-60 kDa) and a rise in the low molecular weight zone (1-2 kDa) were seen with few change in the distribution profile between 4 and 30 kDa. These results suggested that fractions in the molecular range between 8.3 and 19.3 kDa, where the distribution profile was less influenced by enzymatic degradation, preferably contributed to water transport.

  19. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers.

    PubMed

    Fang, Gang; Zeng, Fang; Yu, Changmin; Wu, Shuizhu

    2014-10-01

    Low-molecular-weight polyethyleneimine (LMW PEI) exhibits poorer transfection efficiency but lower cytotoxicity compared to high-molecular-weight polyethyleneimine (such as PEI 25kDa). To enhance the gene transfection performance of LMW PEI, we herein demonstrate a new strategy for modifying LMW PEI. A crosslinker containing an acid-labile hydrazone bond (hydrazone-based crosslinker) was synthesized and used to crosslink PEI 1.8kDa and convert it into higher-molecular-weight polycations. And the crosslinked polycations were further modified by incorporating a betaine monomer [N,N-dimethyl(acrylamidopropyl)ammonium propane sulfonate, DMAAPS] onto their surfaces. The molar percentages of the incorporated betaine molecules to amino groups on the polycations were determined as 21.2%, 36.0% and 77.2%, respectively. Molecular weights of the modified polycations were measured using capillary viscometry at pH 7.4 and 5.0, respectively, and the degradation of the polymers in acidic solution was confirmed. The PEIs modified with hydrazone and betaine (PEI-Hdz-DMAAPS) exhibit much lower cytotoxicity than PEI 25K, and they also show no or little hemolytic effect with their hemolysis rates around 5%. PEI-Hdz-DMAAPS21.2%/DNA and PEI-Hdz-DMAAPS36.0%/DNA complexes exhibit high transfection efficiencies, which are comparable to or higher than that of PEI 25K/DNA complex in the absence or presence of 10% serum. With these improved gene delivery properties, the PEI-Hdz-DMAAPS samples have great potential for serving as efficient gene carriers. This strategy may provide some insights for constructing some other biocompatible materials.

  20. Studies on the murine Ss protein. I. Purification, molecular weight, and subunit structure

    PubMed Central

    1975-01-01

    The murine Ss protein has been isolated and purified. Using specific antisera, the radiolabeled protein has a mol wt of 120,000 in sodium dodecyl sulfate polyacrylamide gels. It is composed of two basic subunits of 23,000 and 14,000 daltons. The smaller molecular weight subunit contains a single disulfide bridge, is devoid of carbohydrate, and may represent the murine equivalent of beta2-microglobulin. PMID:809530

  1. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements.

    PubMed

    McKellop, H; Shen, F W; Lu, B; Campbell, P; Salovey, R

    1999-03-01

    Osteolysis induced by ultra high molecular weight polyethylene wear debris is one of the primary factors limiting the lifespan of total hip replacements. Crosslinking polyethylene is known to improve its wear resistance in certain industrial applications, and crosslinked polyethylene acetabular cups have shown improved wear resistance in two clinical studies. In the present study, crosslinked polyethylene cups were produced by two methods. Chemically crosslinked cups were produced by mixing a peroxide with ultra high molecular weight polyethylene powder and then molding the cups directly to shape. Radiation-crosslinked cups were produced by exposing conventional extruded ultra high molecular weight polyethylene bar stock to gamma radiation at various doses from 3.3 to 100 Mrad (1 Mrad = 10 kGy), remelting the bars to extinguish residual free radicals (i.e., to minimize long-term oxidation), and then machining the cups by conventional techniques. In hip-joint simulator tests lasting as long as 5 million cycles, both types of cross-linked cups exhibited dramatically improved resistance to wear. Artificial aging of the cups by heating for 30 days in air at 80 degrees C induced oxidation of the chemically crosslinked cups. However, a chemically crosslinked cup that was aged 2.7 years at room temperature had very little oxidation. Thus, whether substantial oxidation of chemically crosslinked polyethylene would occur at body temperature remains unclear. The radiation-crosslinked remelted cups exhibited excellent resistance to oxidation. Because crosslinking can reduce the ultimate tensile strength, fatigue strength, and elongation to failure of ultra high molecular weight polyethylene, the optimal crosslinking dose provides a balance between these physical properties and the wear resistance of the implant and might substantially reduce the incidence of wear-induced osteolysis with total hip replacements.

  2. New cyanopeptide-derived low molecular weight inhibitors of trypsin-like serine proteases.

    PubMed

    Radau, Gregor; Schermuly, Sonja; Fritsche, Alexandra

    2003-08-01

    This paper deals with the design, syntheses, and inhibition tests of new low molecular weight thrombin inhibitors utilizing cyanopeptides, the secondary metabolites of cyanobacteria with interesting biological activities, as new lead structures. Starting with aeruginosin 98-B (1) as a lead structure, we have developed and synthesised new, selective acting inhibitors of serine proteases (RA-1005 and RA-1009, which are suitable targets for further structure-activity studies.

  3. Crosslinker-Induced Effects on the Gelation Pathway of a Low Molecular Weight Hydrogel.

    PubMed

    Noteborn, Willem E M; Zwagerman, Damy N H; Talens, Victorio Saez; Maity, Chandan; van der Mee, Lars; Poolman, Jos M; Mytnyk, Serhii; van Esch, Jan H; Kros, Alexander; Eelkema, Rienk; Kieltyka, Roxanne E

    2017-03-01

    The use of polymeric crosslinkers is an attractive method to modify the mechanical properties of supramolecular materials, but their effects on the self-assembly of the underlying supramolecular polymer networks are poorly understood. Modulation of the gelation pathway of a reaction-coupled low molecular weight hydrogelator is demonstrated using (bio)polymeric crosslinkers of disparate physicochemical identities, providing a handle for control over materials properties.

  4. Effects of low molecular weight chitosan (LMC-1) on shrimp preservation

    NASA Astrophysics Data System (ADS)

    Yu, Guang-Li; Wang, Yuan-Hong; Liu, Shu-Qing; Tian, Xue-Lin

    1996-06-01

    This study on the effects of low molecular weight chitosan (LMC-1) and shrimp preserving agents such as phytic acid (PA), sodium bisulfite (SB), and crustacean preservative (CP) on the preservation of shrimp ( Trachypenaeus curvirostris) and the bacteriostasis of LMC-1 showed that: (1) Different LMC-1 concentration has different bacteriostasis on E. coli, B. subtilis and S. aureau; (2) LMC-1 and CP are better than PA and SB for preserving the freshness of shrimp stored at 4 °C.

  5. Low molecular weight Neutral Boron Dipyrromethene (Bodipy) dyads for fluorescence-based neural imaging

    NASA Astrophysics Data System (ADS)

    Bai, Dan; Benniston, Andrew C.; Clift, Sophie; Baisch, Ulrich; Steyn, Jannetta; Everitt, Nicola; Andras, Peter

    2014-05-01

    The neutral low molecular weight julolidine-based borondipyrromethene (Bodipy) dyads JULBD and MJULBD were used for fast voltage-sensitive dye imaging of neurons in the crab stomatogastric ganglion. The fluorescence modulation of the dyads mirrors alterations in the membrane potential of the imaged neurons. The toxicity of the dyes towards the neurons is related to their structure in that methyl groups at the 3,5 positions results in reduced toxic effects.

  6. Prolactin induces expression of FGF-2 and a novel FGF-responsive NonO/p54nrb-related mRNA in rat lymphoma cells.

    PubMed

    Too, C K; Knee, R; Pinette, A L; Li, A W; Murphy, P R

    1998-02-01

    The rat Nb2-11C lymphoma cell line expresses high affinity prolactin (PRL) receptors, and requires lactogenic hormones for survival and proliferation. We have applied differential display to identify genes which are differentially induced in Nb2-11C cells following PRL stimulation, or which are constitutively expressed in the PRL-independent Nb2-Sp cells. In the present study we characterized a clone (22c.2) which was expressed in Nb2-Sp cells, and in Nb2-11C cells given PRL for 3 h but not in untreated cells. The 279 bp cDNA had 95% homology with the 3' end of the murine 2.6 kb FGF-inducible gene 14 (FIN14). When clone 22c.2 was used to screen a Nb2-Sp cDNA library to obtain a longer cDNA, a unique 1039 bp clone PNR (Prolactin-responsive/ NonO-Related) was isolated, subcloned and sequenced. The deduced amino acid sequence encoded by the PNR open reading frame had significant homology with a family of RNA- and DNA-binding proteins which include the human polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF), the murine non-POU-domain-containing octamer-binding protein (NonO) and the human NonO homologue p54nrb. Nb2-11C cells expressed three PNR-related mRNA transcripts of 2.5, 3.0 and > 10 kb. Expression of the 2.5 and 3.0 kb transcripts were increased at least 4-fold within 3 h of PRL treatment. PNR expression was also significantly stimulated within 3 h by addition of FGF-2 to either Nb2-11C or Nb2-Sp cells, although alone FGF-2 was not mitogenic for either cell line. Reverse transcription-polymerase chain reaction (RT-PCR) confirmed the expression of both FGF-2 and FGF receptor mRNA in Nb2 cells. raising the possibility of an autocrine or paracrine function for FGF-2 in lymphoma cells. Furthermore, PRL rapidly stimulated the expression of FGF-2 mRNA in a time- and dose-dependent manner in both Nb2-11C and Nb2-Sp cells. FGF-2 expression was increased within 1 h and was maintained at a high level for at least 10 h following treatment with 2

  7. The Effect of Molecular Weight on the Composite Properties of Cured Phenylethynyl Terminated Imide Oligomers

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1997-01-01

    As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.

  8. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Strahan, Gary D; Levine, Alex C; Nomura, Christopher T

    2015-03-01

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW). Glycerine was used as the primary carbon source with varying concentrations of MeOH. Methanol retarded but did not completely inhibit growth and PHB production in Pseudomonas oleovorans. Proton NMR analysis revealed that the PHB polymers were end-capped with methoxy chemical groups causing MW reductions. The MW decreases were contingent upon the initial MeOH media concentration and the duration of the fermentations. The largest impact occurred at an initial MeOH concentration of 0.10% (w/v) where the number average molecular weights (Mn) decreased by 39%, 55%, and 72% in the 48, 72 and 96 h cultures, respectively. Diffusion ordered NMR spectroscopy revealed a diffusivity (D) increase in the smaller molecular weight polymers with the PHB synthesized in the presence of 0.85% MeOH (72 h post-inoculation) having a D value of 0.66×10(-10) m2/s. Diffusivity increases indicate a reduction in hydrodynamic radii (Rhz) consistent with shorter chain-lengths. Crude glycerine from the biodiesel production process has been used as an inexpensive fermentation feedstock for polyhydroxyalkanoate (PHA) synthesis but its composition is facility-dependent. This information will be vital to tailor PHA properties to specific applications.

  9. Phosphorylation of low-molecular-weight proteins in preparations of rat heart sarcolemma and sarcoplasmic reticulum.

    PubMed

    Lamers, J M; Stinis, J T

    1982-01-01

    Two substrate proteins for cAMP-dependent protein kinase detected in a rat heart sarcolemma preparation displayed molecular weights of 24,000 and 9000 in sodium dodecyl sulfate gels and were shown to be interconvertible. The 9000-dalton protein could readily be separated from other low molecular weight phosphoproteins (mol. wt. 14,000 and 7000) by the use of 15% polyacrylamide gels. In addition to an endogenous cAMP-dependent protein kinase the membrane preparation also contained a protein-phosphorylation system that required Ca2+ and calmodulin. It appeared that both 24,000- and 55,000-dalton proteins were substrates for the endogenous Ca2+- and calmodulin-dependent protein kinase. Contaminating sarcoplasmic reticulum vesicles, first loaded with calcium oxalate, could be separated from the enriched sarcolemma preparation by sucrose gradient centrifugation. The separation was confirmed by comparative analysis of 5'-nucleotidase, Na+ -Ca2+ antiporter, and (Ca2+ + Mg2+)-dependent ATPase activities and by determination of gel electrophoretic (phospho)protein composition, sialic acid, cholesterol, and phospholipid contents. The 24,000-dalton phosphoprotein complex was equally distributed between sarcolemmal and sarcoplasmic reticulum fractions, whereas the 55,000- and 7000-dalton proteins were predominantly found in the sarcolemmal fraction. The 24,000-dalton protein was most likely phospholamban, because no other phosphoprotein was found in the 20,000 molecular weight range.

  10. Determination of dextrose equivalent value and number average molecular weight of maltodextrin by osmometry.

    PubMed

    Rong, Y; Sillick, M; Gregson, C M

    2009-01-01

    Dextrose equivalent (DE) value is the most common parameter used to characterize the molecular weight of maltodextrins. Its theoretical value is inversely proportional to number average molecular weight (M(n)), providing a theoretical basis for correlations with physical properties important to food manufacturing, such as: hygroscopicity, the glass transition temperature, and colligative properties. The use of freezing point osmometry to measure DE and M(n) was assessed. Measurements were made on a homologous series of malto-oligomers as well as a variety of commercially available maltodextrin products with DE values ranging from 5 to 18. Results on malto-oligomer samples confirmed that freezing point osmometry provided a linear response with number average molecular weight. However, noncarbohydrate species in some commercial maltodextrin products were found to be in high enough concentration to interfere appreciably with DE measurement. Energy dispersive spectroscopy showed that sodium and chloride were the major ions present in most commercial samples. Osmolality was successfully corrected using conductivity measurements to estimate ion concentrations. The conductivity correction factor appeared to be dependent on the concentration of maltodextrin. Equations were developed to calculate corrected values of DE and M(n) based on measurements of osmolality, conductivity, and maltodextrin concentration. This study builds upon previously reported results through the identification of the major interfering ions and provides an osmolality correction factor that successfully accounts for the influence of maltodextrin concentration on the conductivity measurement. The resulting technique was found to be rapid, robust, and required no reagents.

  11. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films.

    PubMed

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R

    2003-09-11

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

  12. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  13. Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography.

    PubMed

    Saravanan, R; Shanmugam, A

    2010-03-01

    The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500-7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.

  14. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  15. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.

    PubMed

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide.

  16. Molecular weight-dependent genetic information transfer with disulfide-linked polyethylenimine-based nonviral vectors.

    PubMed

    Parhiz, Hamideh; Hashemi, Maryam; Hatefi, Arash; Shier, Wayne Thomas; Farzad, Sara Amel; Ramezani, Mohammad

    2013-07-01

    One strategy for improving gene vector properties of polyethylenimine is to facilitate individual transfection mechanism steps. This study investigates (i) improving transfection efficiency by attaching peptide nuclear localization signals (nuclear localization signals: SV40 large T antigen nuclear localization signal or C-terminus of histone H1) to polyethylenimine (10 kDa) and (ii) using disulfide linkages, which are expected to be stable during polyplex formation, but cleaved inside cells giving improved gene release. Nuclear localization signal-containing polyplexes exhibited low cytotoxicity, whereas transfection efficiency with high molecular weight plasmid DNA increased up to 3.6 times that of underivatized polyethylenimine in Neuro2A cells at higher molar ratio of polyethylenimine-nitrogen to DNA-phosphate (N/P) ratios. However, with luciferase-specific low molecular weight small interfering RNA in Neuro2A/EGFPLuc cells, nuclear localization signal-containing polyplexes with disulfide linkages caused substantial cytotoxicity at N/P ratios >15 and no consistent significant reduction in luciferase expression. Possible explanations for molecular weight-dependent differences in genetic information transfer by polyplexes containing disulfide-linked nuclear localization signals are discussed.

  17. Melt rheology and molecular weight degradation of amylopectin during multiple pass extrusion of starch

    SciTech Connect

    Willett, J.L.; Millard, M.M.; Jasberg, B.K.

    1996-12-31

    The degradation of starch during extrusion and the role of specific mechanical energy (SME) in this process have been widely studied for single pass extrusion, Multiple extrusion histories are not uncommon in the plastics industry, but little if any has been reported on their effects on starch. Native waxy maize starch (app. 98% amylopectin) was initially converted to a thermoplastic by twin screw extrusion. This extrudate was equilibrated to either 18% or 23% moisture content, and subsequently re-extruded in a single screw extruder (3:1 compression screw) at 110{degrees}C or 130{degrees}C. Melt viscosity data were calculated using the output-pressure data from the second pass. The melts exhibited shear thinning behavior; the power law index increased with temperature, and slightly with moisture content. Molecular weights of selected second-pass extrudates, as well as the native starch and the first-pass extrudate, were measured by light scattering in dimethyl sulfoxide/water. The initial extrusion pass reduced the molecular weight from 300 million to 50 million. Molecular weight reductions in the second pass increased with increasing SME. A first order expression was shown to fit the MW-SME data with a correlation coefficient of 0.91. Implications of the degradation on extrusion processing of starch and the use of single screw extruders for rheological characterization will be discussed.

  18. Influence of molecular weight on in vitro immunostimulatory properties of instant coffee.

    PubMed

    Passos, Cláudia P; Cepeda, Márcio R; Ferreira, Sónia S; Nunes, Fernando M; Evtuguin, Dmitry V; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2014-10-15

    Instant coffee was prepared and fractionated into higher (>100kDa), medium (5-10, 10-30, 30-100kDa) and lower (1-5, <1kDa) molecular weight fractions. Sugars and linkage composition characteristics of arabinogalactans and galactomannans were recovered in all fractions. Also, amino acid analysis performed after hydrolysis showed similar compositions in all fractions. On the contrary, free chlorogenic acids and caffeine were only detected in the lowest molecular weight fraction (<1kDa). A direct relationship between the melanoidins browning index and the molecular weight was observed. The fractions obtained were incubated in vitro with murine spleen lymphocytes in order to evaluate their possible immunostimulatory abilities. The surface expression of CD69 (early activation marker) on different lymphocyte sub-populations showed that the fraction with 1-5kDa was able to induce activation of B-lymphocytes. This was the only fraction to induce B-lymphocyte activation, since all the other fractions failed, even when higher concentrations were used.

  19. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1).

  20. Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti.

    PubMed

    Cho, Eunae; Choi, Jae Min; Kim, Hwanhee; Tahir, Muhammad Nazir; Choi, Youngjin; Jung, Seunho

    2013-04-01

    Iron is an essential nutrient for nitrogen-fixing legume root nodules, and the chelation of ferrous iron plays an important role in the mobility and availability of iron to the legume. In the present study, we investigated the iron-binding properties of low-molecular weight succinoglycans isolated from the nitrogen-fixing bacterium, Sinorhizobium meliloti. The low-molecular weight succinoglycans comprising three monomers (M1-M3), four dimers (D1-D4), and six trimers (T1-T6) of the succinoglycan repeating unit were purified by various chromatographic techniques. Interestingly, the colorimetric ferrozine method showed that the succinoglycans T6, M3, and D3 demonstrated a ferrous iron chelating ability of 83, 63, and 38 % per mg, respectively. The individual binding constants were determined as 43703, 2313, and 760 M(-1) for succinoglycans T6, M3, and D3 using ultraviolet-visible spectroscopy. The complexation of succinoglycan and ferrous iron can cause structural changes, which were analyzed by circular dichroism spectroscopy. Furthermore, the complex could provide antioxidant activity through an anti-Fenton reaction. These results demonstrate that the low-molecular weight succinoglycans can effectively modulate iron biochemistry as a novel ferrous iron-acquisition system of S. meliloti.

  1. Analysis of low molecular weight compounds by MALDI-FTICR-MS.

    PubMed

    Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long

    2011-05-15

    This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS.

  2. Megalin Knockout Mice as an Animal Model of Low Molecular Weight Proteinuria

    PubMed Central

    Leheste, Jörg-Robert; Rolinski, Boris; Vorum, Henrik; Hilpert, Jan; Nykjaer, Anders; Jacobsen, Christian; Aucouturier, Pierre; Moskaug, Jan Øivind; Otto, Albrecht; Christensen, Erik Ilsø; Willnow, Thomas E.

    1999-01-01

    Megalin is an endocytic receptor expressed on the luminal surface of the renal proximal tubules. The receptor is believed to play an important role in the tubular uptake of macromolecules filtered through the glomerulus. To elucidate the role of megalin in vivo and to identify its endogenous ligands, we analyzed the proximal tubular function in mice genetically deficient for the receptor. We demonstrate that megalin-deficient mice exhibit a tubular resorption deficiency and excrete low molecular weight plasma proteins in the urine (low molecular weight proteinuria). Proteins excreted include small plasma proteins that carry lipophilic compounds including vitamin D-binding protein, retinol-binding protein, α1-microglobulin and odorant-binding protein. Megalin binds these proteins and mediates their cellular uptake. Urinary loss of carrier proteins in megalin-deficient mice results in concomitant loss of lipophilic vitamins bound to the carriers. Similar to megalin knockout mice, patients with low molecular weight proteinuria as in Fanconi syndrome are also shown to excrete vitamin/carrier complexes. Thus, these results identify a crucial role of the proximal tubule in retrieval of filtered vitamin/carrier complexes and the central role played by megalin in this process. PMID:10514418

  3. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  4. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  5. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    DOE PAGES

    Mondal, Titash; Ashkar, Rana; Butler, Paul; ...

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less

  6. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    SciTech Connect

    Mondal, Titash; Ashkar, Rana; Butler, Paul; Bhowmick, Anil K.; Krishnamoorti, Ramanan

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphitic nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.

  7. Study of Low Molecular Weight Impurities in Pluronic Triblock Copolymers using MALDI, Interaction Chromatography, and NMR

    NASA Astrophysics Data System (ADS)

    Helming, Z.; Zagorevski, D.; Ryu, C. Y.

    2014-03-01

    Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers are a group of commercial macromolecular amphiphilic surfactants that have been widely studied for their applications in polymer-based nanotechnology and drug-delivery. It has been well-established that the synthesis of commercial Pluronic triblocks results in low molecular weight ``impurities,'' which are generally disregarded in the applications and study of these polymers. These species have been shown to have significant effects on the rheological properties of the material, as well as altering the supramolecular ``micellar'' structures for which the polymers are most often used. We have isolated the impurities from the bulk Pluronic triblock using Interaction Chromatography (IC) techniques, and subjected them to analysis by H1 NMR and MALDI (Matrix-Assisted Laser Desorption Ionization) Mass Spectrometry to identify relative block composition and molecular weight information. We report significant evidence of at least two polymeric components: a low-molecular-weight homopolymer of poly(ethylene oxide) and a ``blocky'' copolymer of both poly(ethylene oxide) and poly(propylene oxide). This has significant implications, not only for the applied usage of Pluronic triblock copolymers, but for the general scientific acceptance of the impurities and their effects on Pluronic micelle and hydrogel formation.

  8. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

    PubMed Central

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2016-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  9. Low molecular weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity

    PubMed Central

    Amado, Luciana; Kuzminov, Andrei

    2013-01-01

    Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously-synthesized leading strands after synthesis, producing the observed low molecular weight intermediates. Here we show that, in an E. coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the low molecular weight replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli. PMID:23876705

  10. Detonation-Synthesis Nanodiamonds in Compositions of Ultrahigh-Molecular-Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Dubkova, V. I.; Korzhenevskii, A. P.; Krut‧ko, N. P.; Komarevich, V. G.; Kul‧bistkaya, L. V.

    2016-07-01

    A study has been made of the influence of an ultradisperse carbonaceous product, i.e., detonation-synthesis nanodiamonds, on the structure and properties of nanocomposites based on ultrahigh-molecular-weight polyethylene using electron microscopy and acoustic, electrophysical, thermomechanical, and x-ray phase analysis methods It has been shown that a diamond blend is a structurally active filler of ultrahigh-molecular-weight polyethylene, which changes the crystalline and supermolecular structure of the polymer during its melt crystallization under the conditions of uniaxial plastic deformation. The developed polymer nanocomposites based on ultrahigh-molecular-weight polyethylene, which contain 0.5-0.25 wt.% of the diamond blend, possess higher than average indices of hardness, modulus of elasticity, and electrical conductivity manifested to a larger extent in the frequency range 1-10 kHz, a low friction factor (0.15-0.18), and high resistance to wear under dry-friction conditions (the wear rate is 10-4-10-5 mg/m).

  11. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  12. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer-monomer interaction.

    PubMed

    Kumaki, Jiro; Kawauchi, Takehiro; Ute, Koichi; Kitayama, Tatsuki; Yashima, Eiji

    2008-05-21

    Stereoregular isotactic and syndiotactic poly(methyl methacrylate)s (it- and st-PMMAs) are known to form a multiple-stranded complementary helix, so-called stereocomplex (SC) through van der Waals interactions, which is a rare example of helical supramolecular structures formed by a commodity polymer. In this study, we prepared SCs by using uniform it- and st-PMMAs and those with a narrow molecular weight distribution having different molecular weights and investigated their structures in detail using high-resolution atomic force microscopy as a function of the molecular weight and molecular weight distribution of the component PMMAs. We found that complementary it- and st-PMMAs with the longer molecular length determine the total length of the SC, and molecules of the shorter component associate until they fill up or cover the longer component. These observations support a supramolecular triple-stranded helical structure of the SCs composed of a double-stranded helix of two intertwined it-PMMA chains included in a single helix of st-PMMA, and this triple-stranded helix model of the SCs appears to be applicable to the it- and st-PMMAs having a wide range of molecular weights we employed in this study. In homogeneous double-stranded helices of it-PMMA, it has been found that, in mixtures of two it-PMMAs with different molecular weights, chains of the same molecular weight selectively form a double-stranded it-PMMA helix, or recognize the molecular weights of each other ("molecular sorting"). We thus demonstrate that molecular weight recognition is possible, without any specific interaction between monomer units, through the formation of a topological multiple-stranded helical structure based upon van der Waals interaction.

  13. Fibroblast growth factor-2 (FGF2) and syndecan-1 (SDC1) are potential biomarkers for putative circulating CD15+/CD30+ cells in poor outcome Hodgkin lymphoma patients

    PubMed Central

    2013-01-01

    Background High risk, unfavorable classical Hodgkin lymphoma (cHL) includes those patients with primary refractory or early relapse, and progressive disease. To improve the availability of biomarkers for this group of patients, we investigated both tumor biopsies and peripheral blood leukocytes (PBL) of untreated (chemo-naïve, CN) Nodular Sclerosis Classic Hodgkin Lymphoma (NS-cHL) patients for consistent biomarkers that can predict the outcome prior to frontline treatment. Methods and materials Bioinformatics data mining was used to generate 151 candidate biomarkers, which were screened against a library of 10 HL cell lines. Expression of FGF2 and SDC1 by CD30+ cells from HL patient samples representing good and poor outcomes were analyzed by qRT-PCR, immunohistochemical (IHC), and immunofluorescence analyses. Results To identify predictive HL-specific biomarkers, potential marker genes selected using bioinformatics approaches were screened against HL cell lines and HL patient samples. Fibroblast Growth Factor-2 (FGF2) and Syndecan-1 (SDC1) were overexpressed in all HL cell lines, and the overexpression was HL-specific when compared to 116 non-Hodgkin lymphoma tissues. In the analysis of stratified NS-cHL patient samples, expression of FGF2 and SDC1 were 245 fold and 91 fold higher, respectively, in the poor outcome (PO) group than in the good outcome (GO) group. The PO group exhibited higher expression of the HL marker CD30, the macrophage marker CD68, and metastatic markers TGFβ1 and MMP9 compared to the GO group. This expression signature was confirmed by qualitative immunohistochemical and immunofluorescent data. A Kaplan-Meier analysis indicated that samples in which the CD30+ cells carried an FGF2+/SDC1+ immunophenotype showed shortened survival. Analysis of chemo-naive HL blood samples suggested that in the PO group a subset of CD30+ HL cells had entered the circulation. These cells significantly overexpressed FGF2 and SDC1 compared to the GO group. The

  14. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Brachet, Guillaume; Duong, Romain; Sojinrin, Tobiloba; Respaud, Renaud; Aubrey, Nicolas; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2016-10-01

    Vibrational spectroscopic techniques can detect small variations in molecular content, linked with disease, showing promise for screening and early diagnosis. Biological fluids, particularly blood serum, are potentially valuable for diagnosis purposes. The so-called Low Molecular Weight Fraction (LMWF) contains the associated peptidome and metabolome and has been identified as potentially the most relevant molecular population for disease-associated biomarker research. Although vibrational spectroscopy can deliver a specific chemical fingerprint of the samples, the High Molecular Weight Fraction (HMWF), composed of the most abundant serum proteins, strongly dominates the response and ultimately makes the detection of minor spectral variations a challenging task. Spectroscopic detection of potential serum biomarkers present at relatively low concentrations can be improved using pre-analytical depletion of the HMWF. In the present study, human serum fractionation by centrifugal filtration was used prior to analysis by Attenuated Total Reflection infrared spectroscopy. Using a model sample based on glycine spiked serum, it is demonstrated that the screening of the LMWF can be applied to quantify blinded concentrations up to 50 times lower. Moreover, the approach is easily transferable to different bodily fluids which would support the development of more efficient and suitable clinical protocols exploring vibrational spectroscopy based ex-vivo diagnostic tools. Revealing serum LMWF for spectral serological diagnostic applications.

  15. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.

    PubMed

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-12-14

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.

  16. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  17. Azobenzene Containing Low-Molecular Weight Organic Glasses for Optical Recording

    NASA Astrophysics Data System (ADS)

    Aleksejeva, J.; Teteris, J.; Tokmakovs, A.

    In this work photoinduced processes and holographic surface relief formation in azobenzene containing low- molecular weight organic glasses were studied. The molecular glasses due to trans-cis isomerisation and photo- orientation of molecules possess high sensitivity to the light irradiation and therefore they are promising media for holographic recording. Electric field of linearly polarized light causes an alignment of molecule dipoles perpendicularly to the electric field vector and this process is accompanied by an appearance of photoinduced optical anisotropy in organic glasses. The photoinduced birefringence and dichroism induced by 532 nm light was studied. Holographic recording in organic molecular glasses was performed with 532 nm solid-state diode-pumped laser Verdi-6. Very rapid holographic grating recording and surface relief formation at small recording beam intensities was observed. The dependence of recorded grating diffraction efficiency and surface relief depth on recording beams polarization state and intensities was studied. The surface relief was studied with AFM.

  18. Characterization of high-molecular-weight glutenin subunits from Eremopyrum bonaepartis and identification of a novel variant with unusual high molecular weight and altered cysteine residues.

    PubMed

    Jiang, Qian-Tao; Zhang, Xiao-Wei; Ma, Jian; Wei, Long; Zhao, Shan; Zhao, Quan-Zhi; Qi, Peng-Fei; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2014-04-01

    We characterized two high-molecular-weight glutenin subunit (HMW-GS) variants from Eremopyrum bonaepartis, determined their complete open reading frames, and further expressed them in a bacterial system. The variants have many novel structural features compared with typical subunits encoded by Glu-1 loci: 1Fx3.7 and 1Fy1.5 exhibit hybrid properties of x- and y-type subunits. In addition, unusual molecular mass and altered number and distribution of cysteine residues were unique features of HMW-GSs encoded by Glu-F1 from E. bonaepartis. The mature 1Fx3.7 subunit has a full length of 1,223 amino acid residues, making it the largest subunit found thus far, while 1Fy1.5 is just 496 residues. In addition, the mutated PGQQ repeat motif was found in the repetitive region of 1Fx3.7. Although it has a similar molecular mass to that previously reported for 1Dx2.2, 1Dx2.2* and 1S(sh)x2.9 subunits, 1Fx3.7 appears to have had a different evolutionary history. The N-terminal and repetitive regions have a total of four additional cysteine residues, giving 1Fx3.7 a total of eight cysteines, while 1Fy1.5 has only six cysteines because the GHCPTSPQQ nonapeptide at the end of the repetitive region is deleted. With its extra cysteine residues and the longest repetitive region, features that are relevant to good wheat quality, the 1Fx3.7 subunit gene could be an excellent candidate for applications in wheat quality improvement.

  19. Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns.

    PubMed

    Sommers, Cynthia D; Ye, Hongping; Kolinski, Richard E; Nasr, Moheb; Buhse, Lucinda F; Al-Hakim, Ali; Keire, David A

    2011-11-01

    We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment. For UFH, a mean ± standard deviation value for M(w) of 16,773 ± 797 was observed with a range of 15,620 to 18,363 (n = 20, run in triplicate). For LMWHs by SEC-MALLS, we measured mean M(w) values for dalteparin, tinzaparin, and enoxaparin of 6,717 ± 71 (n = 4), 6,670 ± 417 (n = 3), and 3,959 ± 145 (n = 3), respectively. PAGE analysis of the same UFH, dalteparin, tinzaparin, and enoxaparin samples showed values of 16,135 ± 643 (n = 20), 5,845 ± 45 (n = 4), 6,049 ± 95 (n = 3), and 4,772 ± 69 (n = 3), respectively. These orthogonal measurements are the first M(w) results obtained with a large heparin sample set on product being marketed after the heparin crisis of 2008 changed the level of scrutiny of this drug class. In this study, we compare our new data set to samples analyzed over 10 years earlier. In addition, we found that the PAGE analysis of heparinase digested UFH and neat LMWH samples yield characteristic patterns that provide a facile approach for identification and assessment of drug quality and uniformity.

  20. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    PubMed

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  1. Effect of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme.

    PubMed

    Morgenstern, Josefine; Baumann, Pascal; Brunner, Carina; Hubbuch, Jürgen

    2017-03-15

    During production, purification, formulation, and storage proteins for pharmaceutical or biotechnological applications face solution conditions that are unfavorable for their stability. Such harmful conditions include extreme pH changes, high ionic strengths or elevated temperatures. The characterization of the main influencing factors promoting undesired changes of protein conformation and aggregation, as well as the manipulation and selective control of protein stabilities are crucially important to biopharmaceutical research and process development. In this context PEGylation, i.e. the covalent attachment of polyethylene glycol (PEG) to proteins, represents a valuable strategy to improve the physico-chemical properties of proteins. In this work, the influence of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme is investigated. Specifically, conformational and colloidal properties were studied by means of high-throughput melting point determination and automated generation of protein phase diagrams, respectively. Lysozyme from chicken egg-white as a model protein was randomly conjugated to 2kDa, 5kDa and 10kDa mPEG-aldehyde and resulting PEGamer species were purified by chromatographic separation. Besides protein stability assessment, residual enzyme activities were evaluated employing a Micrococcus lysodeikticus based activity assay. PEG molecules with lower molecular weights and lower PEGylation degrees resulted in higher residual activities. Changes in enzyme activities upon PEGylation have shown to result from a combination of steric hindrance and molecular flexibility. In contrast, higher PEG molecular weights and PEGylation degrees enhanced conformational and colloidal stability. By PEGylating lysozyme an increase of the protein solubility by more than 11-fold was achieved.

  2. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread.

    PubMed

    Andersson, Roger; Fransson, Gunnel; Tietjen, Markus; Aman, Per

    2009-03-11

    Content of dietary fiber and dietary fiber components in whole-grain rye (n = 18) were analyzed. The average total content, when fructan was included, was for dietary fiber 19.9% (range of 18.7-22.2%) and for extractable dietary fiber 7.4% (range of 6.9-7.9%). Arabinoxylan was the main dietary fiber component, with an average total content of 8.6%, followed by fructan (4.1%). During baking of whole-grain rye bread, only small changes in total content of arabinoxylan, arabinogalactan, and beta-glucan occurred, while the content of resistant starch increased and the content of fructan decreased in a baking-method-dependent manner. The molecular-weight distribution of extractable arabinoxylan in the flour was analyzed with a new method and ranged from 4 x 10(4) to 9 x 10(6) g/mol, with a weight average molecular weight of about 2 x 10(6) g/mol. During crisp bread making, only a limited degradation of arabinoxylan molecular weight was detected, while a notable degradation was observed in sour-dough bread. The molecular weight of extractable beta-glucan in the whole-grain rye flour ranged from 10(4) to 5 x 10(6) g/mol, with a weight average molecular weight of 0.97 x 10(6) g/mol. During bread making, the molecular weight of the beta-glucan was substantially degraded.

  3. A Critique of Asphaltene Fluorescence Decay and Depolarization-Based Claims about Molecular Weight and Molecular Architecture

    SciTech Connect

    Strausz,O.; Safarik, I.; Lown, E.; Morales-Izquierdo, A.

    2008-01-01

    Relying on experimental and theoretical data available from the literature, it is shown that the conclusions derived from measurements of fluorescence decay and depolarization kinetic times as reported in a series of papers over the past decade are egregiously wrong. To start with, the decay time measurements were done with inappropriate instrumentation which resulted in misleading results. Misinterpretation of the results led to the mistaken conclusion that bichromophoric type molecules are absent from petroleum asphaltene and therefore the architecture of the asphaltene molecule features a single condensed cyclic core spiked with some alkyl chains, in spite of irrefutable chemical evidence to the contrary. It was further concluded that if the asphaltene core is a single condensed ring, then the fluorescence depolarization with rotational correlation time method is applicable for the molecular weight determination of asphaltene. This is definitely not so, since, regardless of any other considerations, asphaltene is a mixture of a plethora of different, unknown components, with unknown concentrations along with innumerable different, unknown and some known chromophores portraying widely different absorption coefficients, fluorescence quantum yields, and kinetic decay times. Consequently, asphaltene fluorescence is a highly complex function of the above attributes and as such it is a totally unsuitable property for its molecular weight determination. The injection of an incorrect, single condensed ring core architecture for asphaltene has caused some confusion in asphaltene chemistry that has now hopefully been settled.

  4. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  5. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    PubMed Central

    Soeiro, Vinicius C.; Melo, Karoline R. T.; Alves, Monique G. C. F.; Medeiros, Mayara J. C.; Grilo, Maria L. P. M.; Almeida-Lima, Jailma; Pontes, Daniel L.; Costa, Leandro S.; Rocha, Hugo A. O.

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  6. Molecular weight determination of block copolymers by pulsed gradient spin echo NMR.

    PubMed

    Barrère, Caroline; Mazarin, Michaël; Giordanengo, Rémi; Phan, Trang N T; Thévand, André; Viel, Stéphane; Charles, Laurence

    2009-10-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is the technique of choice to achieve molecular weight data for synthetic polymers. Because the success of a MALDI-MS analysis critically depends on a proper matrix and cation selection, which in turn relates closely to the polymer chemical nature and size, prior estimation of the polymer size range strongly helps in rationalizing MALDI sample preparation. We recently showed how pulsed gradient spin echo (PGSE) nuclear magnetic resonance could be used as an advantageous alternative to size exclusion chromatography, to rationalize MALDI sample preparation and confidently interpret MALDI mass spectra for homopolymers. Our aim here is to extend this methodology to the demanding case of amphiphilic block copolymers, for which obtaining prior estimates on the Mw values appears as an even more stringent prerequisite. Specifically, by studying poly(ethylene oxide) polystyrene block copolymers of distinct molecular weights and relative block weight fractions, we show how PGSE data can be used to derive the block Mw values. In contrast to homopolymers, such determination requires not only properly recorded calibration curves for each of the polymers constituting the block copolymers but also an appropriate hydrodynamic model to correctly interpret the diffusion data.

  7. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    PubMed

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  8. Site-specific interactions of neurotrophin-3 and fibroblast growth factor (FGF2) in the embryonic development of the mouse cochlear nucleus.

    PubMed

    Hossain, Waheeda A; D'Sa, Chrystal; Morest, D Kent

    2006-08-01

    Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13-E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time-lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes.

  9. Optimization of release pattern of FGF-2 and BMP-2 for osteogenic differentiation of low-population density hMSCs.

    PubMed

    Lei, Lei; Wang, Shuo; Wu, Honghui; Ju, Wei; Peng, Jian; Qahtan, Anwar Saeed Ahmed; Chen, Chen; Lu, Yanqin; Peng, Jieying; Zhang, Xing; Nie, Hemin

    2015-01-01

    In the modern design, most delivery systems for bone regeneration focus on a single growth factor (GF) or a simple mixture of multiple GFs, overlooking the coordination of proliferation and osteogenesis induced by various factors. In this study, core-shell microspheres with poly-l-lactide core-poly(lactic-co-glycolic acid) shell were fabricated, and two GFs, basic fibroblast growth factor 2 (FGF-2) and bone morphogenetic protein 2 (BMP-2) were encapsulated into the core or/and shell. The effects of different release patterns (parallel or sequential manners) of FGF-2 and BMP-2 from these core-shell microspheres on the osteogenic differentiation of low-population density human mesenchymal stem cells (hMSCs) were investigated and the temporal organization of GF release was optimized. In vitro experiments suggested that induction of osteogenic differentiation of low-population density hMSCs by the sequential delivery of FGF-2 followed by BMP-2 from the core-shell microspheres (group S2) was much more efficient than that by the parallel release of the two factors from uniform microspheres (group U). The osteogenic induction by the sequential delivery of BMP-2 followed by FGF-2 from core-shell microspheres (group S1) was even worse than that from microspheres loaded with BMP-2 in both core and shell (group B), although comparable to the cases of parallel delivery of dual GFs (group P). This study showed the advantages of group S2 microspheres in inducing osteogenic differentiation of low-population density hMSCs and the necessity of time sequence studies in tissue engineering while multiple GFs are involved.

  10. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism.

    PubMed

    Kunze, Michael M; Benz, Fabienne; Brauß, Thilo F; Lampe, Sebastian; Weigand, Julia E; Braun, Johannes; Richter, Florian M; Wittig, Ilka; Brüne, Bernhard; Schmid, Tobias

    2016-07-01

    Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2.

  11. Molecular Size and Weight of Asphaltene and Asphaltene Solubility Fractions from Coals, Crude Oils and Bitumen

    SciTech Connect

    Badre,S.; Goncalves, C.; Norinaga, K.; Gustavson, G.; Mullins, O.

    2005-01-01

    The molecular weight of asphaltenes has been a controversy for several decades. In recent years, several techniques have converged on the size of the fused ring system; indicating that chromophores in virgin crude oil asphaltenes typically have 4-10 fused rings. Consequently, the molecular weight debate is equivalent to determining whether asphaltenes are monomeric (one fused-ring system per molecule) or whether they are polymeric. Time-resolved fluorescence depolarization (FD) is employed here to interrogate the absolute size of asphaltene molecules and to determine the relation of the size of the fused ring system to that of the corresponding molecule. Coal, petroleum and bitumen asphaltenes are compared. Molecular size of coal asphaltenes obtained here by FD-determined rotational diffusion match closely with Taylor-dispersion-derived translational diffusion measurements with UV absorption. Coal asphaltenes are smaller than petroleum asphaltenes. N-methyl pyrrolidinone (NMP) soluble and insoluble fractions are examined. NMP soluble and insoluble fractions of asphaltenes are monomeric. It is suggested that the 'giant' asphaltene molecules reported from SEC studies using NMP as the eluting solvent may actually be the expected flocs of asphaltene which are not soluble in NMP. Data is presented that intramolecular electronic relaxation in asphaltenes does not perturb FD results.

  12. Purification and properties of molecular-weight variants of human placental alkaline phosphatase

    PubMed Central

    Ghosh, Nimai K.; Fishman, William H.

    1968-01-01

    1. Alkaline phosphatase of human placenta was purified by a procedure involving homogenization with tris buffer, pH8·6, extraction with butanol, ammonium sulphate fractionation, exposure to heat, ethanol fractionation, gel filtration, triethylaminoethylcellulose anion-exchange chromatography, continuous curtain electrophoresis on paper and equilibrium dialysis. Methods for both laboratory-scale and large-scale preparation were devised. 2. Two major molecular-weight variants designated A and B were separated by molecular sieving with Sephadex G-200 and variant A was purified 4000-fold. 3. Variant B, which comes off the Sephadex G-200 column before variant A, is the electrophoretically slower-moving species on starch gel and is quite heterogeneous. 4. Purified variant A was fairly homogeneous on the basis of electrophoretic studies on starch gel and Sephadex gel, ultracentrifugation and immunodiffusion. 5. The respective molecular weights for variants A and B were 70000 and over 200000 on the basis of sucrose-density-gradient ultracentrifugation. Variant A exhibited a sedimentation coefficient of 4·2s. 6. Crystalline variant B could be converted into fast-moving variant A and vice versa. 7. Kinetic studies indicated no difference between the two variants. These include linear rates of hydrolysis, pH optimum, Michaelis constants and uncompetitive stereospecific l-phenylalanine inhibition. 8. The amino acid compositions of variants A and B and of placental albumin were determined. ImagesFig. 3.Fig. 5.Fig. 7.Fig. 8.Fig. 9. PMID:4970595

  13. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo.

    PubMed

    Niu, Y C; Liu, J C; Zhao, X M; Wu, X X

    2009-01-01

    Previous studies indicated that the low molecular weight polysaccharide extracts from Agaricus blazei are potential antitumor agents or adjuvant in tumor treatment. In this study, we investigated the antitumor activity of LMPAB, a low molecular weight polysaccharide isolated from Agaricus blazei, and the molecular mechanisms of its antitumor activity. The antitumor effect of LMPAB was examined using mouse sarcoma 180 (S180) xenograft models. Antiangiogenic effect of LMPAB was determined by chicken embryo chorioallantoic membrane (CAM) angiogenesis and Matrigel-induced neovascularization in vivo models. The mRNA and protein levels of vascular endothelial growth factor (VEGF) were assessed using real-time reverse transcription-polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assays. Tumor inhibitory rates in the S180 xenograft models were 9.7, 23.9, and 33.0%, respectively, after administration of LMPAB at dose of 50, 100, and 200 mg/kg/day for 2 weeks. LMPAB also inhibited angiogenesis in the CAM model and Matrigel-induced neovascularization in C57BL/6 mice. The mRNA and protein levels of VEGF in tumor tissues were significantly down-regulated in the BALB/c mice received LMPAB treatment. Furthermore, significant down-regulation of serum VEGF levels was also observed in the mice. Our data suggest that LMPAB might be a promising agent for tumor therapy, and the antitumor and antiangiogenic effects of LMPAB may be related with down-regulation of VEGF.

  14. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis.

    PubMed

    Kay, Richard; Barton, Chris; Ratcliffe, Lucy; Matharoo-Ball, Balwir; Brown, Pamela; Roberts, Jane; Teale, Phil; Creaser, Colin

    2008-10-01

    A rapid acetonitrile (ACN)-based extraction method has been developed that reproducibly depletes high abundance and high molecular weight proteins from serum prior to mass spectrometric analysis. A nanoflow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) multiple reaction monitoring (MRM) method for 57 high to medium abundance serum proteins was used to characterise the ACN-depleted fraction after tryptic digestion. Of the 57 targeted proteins 29 were detected and albumin, the most abundant protein in serum and plasma, was identified as the 20th most abundant protein in the extract. The combination of ACN depletion and one-dimensional nano-LC/MS/MS enabled the detection of the low abundance serum protein, insulin-like growth factor-I (IGF-I), which has a serum concentration in the region of 100 ng/mL. One-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the depleted serum showed no bands corresponding to proteins of molecular mass over 75 kDa after extraction, demonstrating the efficiency of the method for the depletion of high molecular weight proteins. Total protein analysis of the ACN extracts showed that approximately 99.6% of all protein is removed from the serum. The ACN-depletion strategy offers a viable alternative to the immunochemistry-based protein-depletion techniques commonly used for removing high abundance proteins from serum prior to MS-based proteomic analyses.

  15. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering.

  16. [The administration of interleukin-1beta during early postnatal develop ment impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats].

    PubMed

    Trofimov, A N; Zubareva, O E; Shvarts, A P; Ishchenko, A M; Klimenko, V M

    2014-09-01

    According to the Neurodevelopmental hypothesis, the long-lasting cognitive deficit in schizophrenia and other types of neuropathology may occur by injurious factors, such as hypoxia, traumas, infections that take place during pre- and postnatal development, at least at early stages. These pathological conditions are often associated with the high production of pro-inflammatory cytokine interleukin-1B (IL-1B) by the cells of immune and nervous systems. We investigated the expression of genes involved in the neuroplastic regulation (Fgf2 and Timp2) in medial prefrontal cortex and dorsal and ventral regions of hippocampus of adult rats that were treated with IL-1beta between P15 and P21. The learning impairment in IL-1beta-treated rats is accompanied by lower FGF-2 mRNA levels in medial prefrontal cortex and ventral (not dorsal) hippocampus, but TIMP-1 was not affected. No differences in TIMP-1 and FGF-2 mRNA expressions were observed in untrained IL-1beta-treated when compared to control rats.

  17. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway

    PubMed Central

    Yang, Jing; Zhang, Dan; Yu, Ying; Zhang, Run-Ju; Hu, Xiao-Ling; Huang, He-Feng; Lu, Yong-Chao

    2015-01-01

    Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm cells (TEs) that lead to the formation of the blastocyst as well as the underlying mechanism have not been elucidated. The present study has demonstrated for the first time that endogenous FGF2 secreted by TEs can regulate protein expression and distribution in TEs via the FGFR2-mediated activation of PKC and p38, which are important for the development of expanded blastocysts. This finding provides the first explanation for the long-observed phenomenon that only high concentrations of exogenous FGFs have effects on embryonic development, but in vivo the amount of endogenous FGFs are trace. Besides, the present results suggest that FGF2/FGFR2 may act in an autocrine fashion and activate the downstream PKC/p38 pathway in TEs during expanded blastocyst formation. PMID:26378412

  18. AdLTR2EF1α-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine.

    PubMed

    Guo, L; Gao, R; Xu, J; Jin, L; Cotrim, A P; Yan, X; Zheng, C; Goldsmith, C M; Shan, Z; Hai, B; Zhou, J; Zhang, C; Baum, B J; Wang, S

    2014-10-01

    Patients frequently experience a loss of salivary function following irradiation (IR) for the treatment of an oral cavity and oropharyngeal cancer. Herein, we tested if transfer of fibroblast growth factor-2 (FGF2) cDNA could limit salivary dysfunction after fractionated IR (7.5 or 9 Gy for 5 consecutive days to one parotid gland) in the miniature pig (minipig). Parotid salivary flow rates steadily decreased by 16 weeks post-IR, whereas blood flow in the targeted parotid gland began to decrease ~3 days after beginning IR. By 2 weeks, post-IR salivary blood flow was reduced by 50%, at which point it remained stable for the remainder of the study. The single preadministration of a hybrid serotype 5 adenoviral vector encoding FGF2 (AdLTR2EF1a-FGF2) resulted in the protection of parotid microvascular endothelial cells from IR damage and significantly limited the decline of parotid salivary flow. Our results suggest that a local treatment directed at protecting salivary gland endothelial cells may be beneficial for patients undergoing IR for oral cavity and oropharyngeal cancer.

  19. FGF2 and EGF Are Required for Self-Renewal and Organoid Formation of Canine Normal and Tumor Breast Stem Cells.

    PubMed

    Cocola, Cinzia; Molgora, Stefano; Piscitelli, Eleonora; Veronesi, Maria Cristina; Greco, Marianna; Bragato, Cinzia; Moro, Monica; Crosti, Mariacristina; Gray, Brian; Milanesi, Luciano; Grieco, Valeria; Luvoni, Gaia Cecilia; Kehler, James; Bellipanni, Gianfranco; Reinbold, Rolland; Zucchi, Ileana; Giordano, Antonio

    2017-03-01

    Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.

  20. Low molecular weight PEI-based biodegradable lipopolymers as gene delivery vectors.

    PubMed

    Xun, Miao-Miao; Zhang, Xue-Chao; Zhang, Ji; Jiang, Qian-Qian; Yi, Wen-Jing; Zhu, Wen; Yu, Xiao-Qi

    2013-02-21

    Non-viral gene vectors play an important role in the development of gene therapy. In this report, different hydrophobic chains were introduced into low molecular weight (LMW) PEI-based biodegradable oligomers to form a series of lipopolymers (LPs), and their structure-activity relationships were studied. Results revealed that the nine polymers can condense plasmid DNA well to form nanoparticles with appropriate sizes (120-250 nm) and positive zeta-potentials (+25-40 V). In vitro experiments were carried out and it was found that LP2 showed much higher transfection efficiency both in the presence and in the absence of serum under the polymer/DNA weight ratio of 0.8 in A549 cells.

  1. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    PubMed

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure.

  2. Low molecular weight quaternised chitosan (11): in vitro assessment of absorption enhancing properties.

    PubMed

    Jonker-Venter, C; Snyman, D; Janse van Rensburg, C; Jordaan, E; Schultz, C; Steenekamp, J H; Hamman, J H; Kotzé, A F

    2006-04-01

    N-Trimethyl chitosan chloride (TMC; high molecular weight) and N-trimethyl chitosan oligosaccharide (TMO; low molecular weight) with different degrees of quaternisation were synthesised and evaluated for their absorption enhancing properties across mucosal epithelia. These quaternised chitosan derivatives (0.0625% w/v-0.5% w/v) showed a significant decrease in the transepithelial electrical resistance (TEER) of cultured rabbit tracheal epithelial cell monolayers as compared to the control. The degree of quaternisation and concentration of the compounds influenced the extent of the reduction in TEER. Higher degrees of quaternisation and an increase in the concentration of the compound were associated with a more pronounced reduction in the TEER. The TMO derivatives seemed to be more effective in lowering the TEER of tracheal cell monolayers as compared to the TMC polymers. Ciliary beat frequency (CBF) is the main defence mechanism of the respiratory tract and is therefore a useful parameter in evaluating the toxicity of nasally administered drugs and additives. The effect of the synthesised chitosan derivatives on the CBF of human nasal epithelial cells at pH 7.4 was determined by a method based on an analogue contrast enhancement technique. The TMO oligomers exhibited lower inhibition of the CBF of human nasal epithelial cells compared to that of the TMC polymers. It was proposed that this reduced effect on the CBF is due to the lower viscosity and molecular weight of TMO. However, no acute toxicity was found with any of the synthesised chitosan derivatives by means of the CBF tests conducted in this study.

  3. Preparation, characterization and applications of low-molecular-weight alginate-oligochitosan nanocapsules

    NASA Astrophysics Data System (ADS)

    Wang, Ting; He, Nongyue

    2010-02-01

    The development of drug-delivering nanoparticles from natural materials for various biomedical applications is an area of great promise. However, the contradictory data on their uncontrollable diameter, unstable structure and toxic effects, highlight the need to study their preparation, characterization and cytotoxic effects in cells. In this work, nanocapsules are made from a type of W/O microemulsion system with low-molecular-weight alginate (LMWALG) and oligochitosan (OCS). The particles possess excellent biocompatibility and good biodegradability. The size of capsules is controlled and optimized by carefully adjusting the molecular weight and concentration of LMWALG and OCS. We found, from orthogonal experiments, the encapsulation time leading to a uniform size distribution with an average diameter of 136 nm. Furthermore, we found that molecular weights of LMWALG and OCS significantly influence the stability and size of capsules. The optimized nanocapsules are further used to study the drug release of BSA. Results show that the efficiency of encapsulation approximately reaches 88.4% and the concentration of BSA in phosphate-buffered solution (PBS, pH = 7.4) is well maintained at a level of 35 to 40% from 12 h to 48 h, due to the stable and slow degradation of the nanocapusules. The biocompatibility of LMWALG/OCS nanocapsules is cross-examined by cytotoxicity experiments and acute systemic toxicological tests, and they were found to enhance the survival rate of the cells from 80.30 to 95.39% in 7 days. The synthesized nanocapsules exhibit high biocompatibility, non-toxicity, biodegradation, and uniform size, providing a new potential candidate for drug releases in clinic experiments.

  4. Chitosan nanocapsules: Effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability.

    PubMed

    Santander-Ortega, M J; Peula-García, J M; Goycoolea, F M; Ortega-Vinuesa, J L

    2011-02-01

    In recent years, chitosan nanocapsules have shown promising results as carriers for oral drug or peptide delivery. The success in their applicability strongly depends on the stability of these colloidal systems passing through the digestive tract. In gastric fluids, clear stability comes from the high surface charge density of the chitosan shell, which is completely charged at acidic pH values. However, in the intestinal fluid (where the pH is almost neutral) the effective charge of these nanocapsules approaches zero, and the electrostatic forces cannot provide any stabilization. Despite the lack of surface charge, chitosan nanocapsules remain stable in simulated intestinal fluids. Recently, we have demonstrated that this anomalous stability (at zero charge) is owed to short-range repulsive forces that appear between hydrophilic particles when immersed in saline media. The present work examines the influence of the chitosan hydrophobicity, as well as molecular weight, in the stability of different chitosan nanocapsules. A study has been made of the size, polydispersity, electrophoretic mobility, and colloidal stability of eight core-shell nanocapsule systems, in which the chitosan-shell properties have been modified using low-molecular-weight (LMW) and high-molecular-weight (HMW) chitosan chains having different degrees of acetylation (DA). With regard to the stability mediated by repulsive hydration forces, the LMW chitosan provided the best results. In addition, contrary to initial expectations, greater stability (also mediated by hydration forces) was found in the samples formed with chitosan chains of high DA values (i.e. with less hydrophilic chitosan). Finally, a theoretical treatment was also tested to quantify the hydrophilicity of the chitosan shells.

  5. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases.

  6. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  7. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  8. Alkyl cross-linked low molecular weight polypropyleneimine dendrimers as efficient gene delivery vectors

    PubMed Central

    Ariaee, Faezeh Moghadam; Hashemi, Maryam; Farzad, Sara Amel; Abnous, Khalil; Ramezani, Mohammad

    2016-01-01

    Objective(s): In recent years, polypropyleneimine (PPI) dendrimers have attracted great interest as non-viral gene delivery systems because of their attractive features including highly branched architecture with number of reactive end groups. However, without being structurally modified, they are not efficient gene carriers. In the present study, generation 2 and 3 (G2 and G3) of PPI dendrimers were conjugated with alkylcarboxylate groups as linker to enhance the transfection efficiency while maintaining their low cell toxicity. Materials and Methods: First, 10-bromodecanoic acid was covalently attached to all available surface primary amines of PPI G2 and G3 to increase their lipophilicity. In the subsequent step, PPIs were conjugated to the alkylcarboxylate groups of alkylcarboxylate-PPI derivatives to increase the number of surface primary amines. Physicochemical properties of modified PPIs were determined. Transfection experiments (using both luciferase and green fluorescent protein (GFP)- expressing plasmids) and cytotoxicity assay were performed to evaluate the efficiency of the final derivatives. Results: Fabricated vectors condensed DNA effectively so that polyplexes with appropriate size (below 155 nm) and positive surface charge were constructed. Cross-linked low molecular weight PPIs (G2 or G3) with decanoate linkage increased transfection efficiency significantly while maintaining the low cytotoxicity. PPI G2 derivative exhibited increased buffering capacity which is believed to be responsible for better proton sponge mechanism leading to higher transfection efficiency. Conclusion: Our results indicated that oligomerization of low molecular weight PPI (PPI G2-alkyl-PPI G2 conjugate) could be an approach to increase the transfection efficiency and to lower the cytotoxicity of low molecular weight polycations. PMID:27872706

  9. Isolation of a very high molecular weight polylactosamine from an ovarian cyst mucin of blood group

    SciTech Connect

    Wu, A.S.S.; Bush, C.A.

    1986-05-01

    Treatment of a blood group A active ovarian cyst mucin glycoprotein with alkaline borohydride under conditions expected to cleave-O-glycosidically linked carbohydrate chains releases a polysaccharide of average molecular weight 25,000 daltons. It contains no peptide or mannose at the 1% level and carbohydrate analysis gives fuc:galNAc:gal:glcNAc in the ratio of 1:1:2.5:2.5. The /sup 13/C and /sup 1/H NMR spectra show that the polysaccharide has non-reducing terminal side chains of the structure galNAc(..cap alpha..-1 ..-->.. 3)(fuc(..cap alpha..-1 ..-->.. 2)) gal(..beta..-1 ..-->.. 3) glcNAc (i.e. a type 1 chain). Periodate oxidation removes all the fucose and galNAc from the non-reducing terminal but leaves intact the backbone composed of ..beta..-linked gal and glcNAc as would be expected for a polylactosamine. They conclude that this is a high molecular weight polylactosamine which is related to the asparagine linked polylactosamine chains of cell surface glycoproteins which have been implicated in cell differentiation. However, the blood group A polysaccharide from the ovarian cyst mucin is unique in several respects. It has a much larger molecular weight than even the erythroglycan of the red cell membrane protein, band 3, and is linked to the protein by an -O-glycosidic bond rather than the -N-asparagine linkage of the previously known polylactosamines which have a trimannosyl core. Its blood group A side chains are on a type one core rather than type 2 which is found on other polylactosamines.

  10. Low-molecular-weight heparin biosimilars: potential implications for clinical practice. Australian Low-Molecular-Weight Heparin Biosimilar Working Group (ALBW).

    PubMed

    Nandurkar, H; Chong, B; Salem, H; Gallus, A; Ferro, V; McKinnon, R

    2014-05-01

    A working group of clinicians and scientists was formed to review the clinical considerations for use of low-molecular-weight heparin (LMWH) biosimilars. LMWH are biological molecules of significant complexity; the full complexity of chemical structure is still to be elucidated. LMWH biosimilars are products that are biologically similar to their reference product and rely on clinical data from a reference product to establish safety and efficacy. The complex nature of LMWH molecules means that it is uncertain whether a LMWH biosimilar is chemically identical to its reference product; this introduces the possibility of differences in activity and immunogenicity. The challenge for regulators and clinicians is to evaluate the level of evidence required to demonstrate that a LMWH is sufficiently similar to the reference product. The consensus opinion of the working group is that prior to clinical use a LMWH biosimilar should have proven efficacy and safety, similar to the reference product with prospective studies, which should be confirmed with a proactive post-marketing pharmacovigilance programme.

  11. [High molecular weight chitosan and sodium alginate effect on secretory acid proteinase of Candida albicans].

    PubMed

    Calamari, Silvia; Bojanich, Alejandra; Barembaum, Silvina; Azcurra, Ana; Virga, Carolina; Dorronsoro, Susana

    2004-12-01

    The effect of high molecular weight chitosan (HMWCh) and sodium alginate (NaAL) on acid proteinase secretion of Candida albicans (one of culture collection and five isolates) was evaluated. The secretion of acid proteinase was induced in the presence and the absence of these polymers in different concentrations and their enzymatic activity was determined. HMWCh and NaAL significantly diminished the enzymatic activity (>76% for the collection strains and > 89% for the isolates, p < 0.05). HMWCh did not modify protein concentrations, but NaAL did. It can be concluded that both polymers can inhibit the proteinase activity of Candida albicans.

  12. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  13. Resolution of high molecular weight proteins in dependence on electric field strength in polyacrylamide gel electrophoresis.

    PubMed

    Starita-Geribaldi, M; Houri, A

    1997-01-01

    Resolution of high molecular weight proteins, in the upper region of polyacrylamide gels, w