Science.gov

Sample records for molecular weight heparin

  1. Low-molecular-weight heparins and angiogenesis.

    PubMed

    Norrby, Klas

    2006-02-01

    The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are

  2. Low molecular weight heparin in prevention of perioperative thrombosis.

    PubMed Central

    Leizorovicz, A.; Haugh, M. C.; Chapuis, F. R.; Samama, M. M.; Boissel, J. P.

    1992-01-01

    OBJECTIVE--To determine whether prophylactic treatment with low molecular weight heparin reduces the incidence of thrombosis in patients who have had general or orthopaedic surgery. DESIGN--Meta-analysis of results from 52 randomised, controlled clinical studies (29 in general surgery and 23 in orthopaedic surgery) in which low molecular weight heparin was compared with placebo, dextran, or unfractionated heparin. SUBJECTS--Patients who had had general or orthopaedic surgery. INTERVENTION--Once daily injection of a low molecular weight heparin compared with placebo, dextran, or unfractionated heparin. MAIN OUTCOME MEASURES--Incidence of deep venous thrombosis, pulmonary embolism, major haemorrhages, and death. RESULTS--The results confirm that low molecular weight heparins are more efficacious for the prophylactic treatment of deep venous thrombosis than placebo (common odds ratio 0.31, 95% confidence interval 0.22 to 0.43; p < 0.001) and dextran (0.44, 0.30 to 0.65; p < 0.001). The results suggest that low molecular weight heparins are also more efficacious than unfractionated heparin (0.85, 0.74 to 0.97; p = 0.02), with no significant difference in the incidence of major haemorrhages (1.06, 0.93 to 1.20; p = 0.62). CONCLUSIONS--Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular weight heparin reduces the risk of fatal pulmonary embolism compared with heparin. PMID:1281030

  3. Low-molecular-weight heparins: differential characterization/physical characterization.

    PubMed

    Guerrini, Marco; Bisio, Antonella

    2012-01-01

    Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.

  4. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  5. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin.

    PubMed

    Sun, Xiaojun; Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Xia, Qiangwei; Linhardt, Robert J

    2016-02-01

    Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.

  6. Photochemical Preparation of a Novel Low Molecular Weight Heparin

    PubMed Central

    Higashi, Kyohei; Hosoyama, Saori; Ohno, Asami; Masuko, Sayaka; Yang, Bo; Sterner, Eric; Wang, Zhenyu; Linhardt, Robert J.; Toida, Toshihiko

    2011-01-01

    Commercial low molecular weight heparins (LMWHs) are prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical ß-elimination, and enzymatic β-elimination. The disadvantages of these methods are that strong reaction conditions or harsh chemicals are used and these can result in decomposition or modification of saccharide units within the polysaccharide backbone. These side-reactions reduce product quality and yield. Here we show the partial photolysis of unfractionated heparin can be performed in distillated water using titanium dioxide (TiO2). TiO2 is a catalyst that can be easily removed by centrifugation or filtration after the photochemical reaction takes place, resulting in highly pure products. The anticoagulant activity of photodegraded LMWH (pLMWH) is comparable to the most common commercially available LMWHs (i.e., Enoxaparin and Dalteparin). 1H NMR spectra obtained show that pLMWH maintains the same core structure as unfractionated heparin. This photochemical reaction was investigated using liquid chromatography/mass spectrometry (LC/MS) and unlike other processes commonly used to prepare LMWHs, photochemically preparation affords polysaccharide chains of reduced length having both odd and even of saccharide residues. PMID:22205826

  7. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  8. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  9. [Practical use of low molecular weight heparins in angiology].

    PubMed

    Plettner, J L

    1991-01-01

    The recent development of low molecular weight heparins (LMWH), obtained by the depolymerization of standard non-fractioned heparin (NFH), considerably simplifies the course of anticoagulant treatments. They now allow effectively and safely dealing with the risks of thrombosis, both in hospital and at the patient's home. Their effectiveness for both the prevention and the treatment of thromboembolic accidents has been proved by many clinical trials. In comparison to standard heparin, the LMWHs still have a high anti-Xa activity, but their anti-IIa action is much reduced, thus preserving their antithrombotic power while reducing the hemorrhagic risks. Owing to their better bioavailability and longer half-life, they allow using in priority the subcutaneous route, reducing the frequency of the injections and simplifying surveillance, without impairing the effectiveness of the treatment. The prevention of thrombosis with LMWHs requires one daily subcutaneous dose. The control of the anti-Xa activity is not necessary for the doses used. Prior to initiating a curative treatment, it is essential to confirm the existence of thrombosis. When the diagnosis is definitive, the three LMWHs currently known are used after reconversion, at a dosage of 100 IU/kg/12 hrs. The anti-Xa activity, in samples taken 3 to 4 hours after the injection, must be maintained between 0.5 and 1 IU anti-Xa/ml. It is prudent to control the platelet level at D5 and D10, although thrombocytopenia is exceptional. The changeover treatment with antivitamins K (AVK), which is essential to prevent the recurrence of venous thrombosis, is initiated very early (2nd or 3rd day).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Does low molecular weight heparin shorten term labor?

    PubMed

    Ekman-Ordeberg, Gunvor; Akerud, Anna; Dubicke, Aurelija; Malmström, Anders; Hellgren, Margareta

    2010-01-01

    Dalteparin, a low molecular weight heparin (LMWH), is given to pregnant women with thrombotic disorders. Clinical observations together with the documented changes of heparan sulfate proteoglycans in normal and protracted labor fostered the idea that LMWH shortens delivery time. Labor time was retrospectively determined among nulliparous pregnant women treated with dalteparin because of previous venous thromboembolism (VTE), thrombophilia or acute VTE during current pregnancy. Their labor time was compared to matched untreated controls. The proportion of instrumental deliveries and neonatal outcome was also compared. The dalteparin-treated group showed a significantly (30%) shorter labor time compared to matched controls. Total instrumental deliveries were the same in the two groups but operative intervention due to protracted labor was significantly less common in dalteparin-treated women. There was no difference in neonatal outcome. Dalteparin most likely shortens parturition time and may decrease the number of operative interventions due to protracted labor.

  11. Massive choroidal hemorrhage associated with low molecular weight heparin therapy.

    PubMed

    Neudorfer, M; Leibovitch, I; Goldstein, M; Loewenstein, A

    2002-04-01

    An 84-year-old woman with unstable angina pectoris was treated with subcutaneous enoxaparine (Clexane) for several days before presenting with severe pain and decreased vision in her left eye. The intraocular pressure was 70 mmHg, and fundus examination showed a pigmented choroidal lesion and associated choroidal and retinal detachment. Ultrasonography was consistent with choroidal hemorrhage, and she was diagnosed as having acute glaucoma secondary to massive subchoroidal hemorrhage. Medical control of the intraocular pressure resulted in a significant clinical improvement. Intraocular hemorrhage and angle-closure glaucoma are rare and previously unreported complications in patients treated with low molecular weight heparin. It is important to be aware of this ocular complication as these drugs are so often used. PMID:11943940

  12. Voltammetric extraction of heparin and low-molecular-weight heparin across 1,2-dichloroethane/water interfaces.

    PubMed

    Jing, Ping; Kim, Yushin; Amemiya, Shigeru

    2009-12-01

    Heparin and low-molecular-weight heparin are voltammetrically extracted across 1,2-dichloroethane/water interfaces for the detection of these highly sulfated polysaccharides widely used as anticoagulants/antithrombotics in many medical procedures. A new heparin ionophore, 1-[4-(dioctadecylcarbamoyl)butyl]guanidinium, is the first to enable the voltammetric extraction of various polyanionic heparins with average molecular weights of up to approximately 20 kDa including those in commercial preparations (i.e., Arixtra (1.5 kDa), Lovenox (4.5 kDa), and unfractionated heparin (15 kDa), as well as chromatographically fractionated heparins (7, 9, 15, and 20 kDa)). Facilitated Arixtra extraction is fully and quantitatively characterized by micropipet voltammetry to propose that cooperative effects from strong heparin-binding capability and high lipophilicity of this ionophore are required for the formation of an electrically neutral and highly lipophilic complex of a heparin molecule with multiple ionophore molecules to be extracted into the nonpolar organic phase. At the same time, the participation of multiple ionophore molecules in interfacial complexation with a heparin molecule slows down its extraction across the interface. This kinetic limitation is enhanced by fast mass transfer at a micropipet-supported interface to compromise thermodynamically favorable selectivity for heparin and an important contaminant, oversulfated chondroitin sulfate, thereby requiring a macroscopic interface for sensing applications. Another highly lipophilic guanidinium ionophore, N,N-dioctadecylguanidinium, cannot completely extract even Arixtra, which indicates the importance of elaborate ionophore design for heparin extraction.

  13. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin.

    PubMed

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2015-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4-16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  14. Low-molecular-weight heparin in the treatment of deep venous thrombosis.

    PubMed Central

    Hauer, K E

    1998-01-01

    Traditionally, acute deep venous thrombosis (DVT) is treated with intravenous heparin followed by oral anticoagulants. With the advent of the low-molecular-weight heparins (LMWHs), this strategy is changing dramatically. LMWHs are compounds derived from standard unfractionated heparin that offer distinct clinical advantages over unfractionated heparin, including better bioavailability, longer half-life, and a more predictable anticoagulant response that obviates the need for laboratory monitoring. The common side effects of unfractionated heparin, including bleeding, thrombocytopenia, and osteoporosis, may be less common with LMWH. For the treatment of established venous thromboembolism, LMWH is at least as safe and effective as unfractionated heparin. Recent studies demonstrate that home therapy of DVT with LMWH, compared with inpatient therapy with unfractionated heparin, produces comparable clinical outcomes and patient satisfaction, with dramatic cost savings. With careful patient selection, home therapy of venous thromboembolism is quickly becoming the new standard of care. PMID:9795594

  15. Effects of unfractionated heparin, low-molecular-weight heparin, and heparinoid on thromboelastographic assay of blood coagulation.

    PubMed

    Zmuda, K; Neofotistos, D; Ts'ao, C H

    2000-05-01

    Thromboelastography (TEG) has been used increasingly as an intraoperative hemostasis monitoring device. Low-molecular-weight heparins are given increasingly to reduce the development of antibodies against the heparin-platelet factor 4 complex, and heparinoids are given to patients who have developed the antibody. We studied the effect of unfractionated heparin, a low-molecular-weight heparin (enoxaparin sodium [Lovenox]), and a heparinoid (danaparoid sodium [Orgaran]) on blood clotting assayed with TEG (TEG clotting) in vitro and the efficacy of protamine sulfate and heparinase for reversing the effect. Heparin, enoxaparin, and danaparoid all caused a dose-dependent inhibition of TEG clotting of normal blood. Concentrations of enoxaparin and danaparoid that totally inhibited TEG clotting only minimally prolonged the activated partial thromboplastin time. While inhibition of TEG clotting by heparin and enoxaparin was reversed by protamine sulfate and heparinase, inhibition by danaparoid was reversed only by heparinase. Abnormal TEG clotting was observed in patients receiving enoxaparin whose plasma level of the drug was more than 0.1 antiXa U/mL. However, the degree of TEG abnormality did not always coincide with plasma levels of the drug.

  16. Anti-heparanase activity of ultra-low-molecular-weight heparin produced by physicochemical depolymerization.

    PubMed

    Achour, Oussama; Poupard, Nicolas; Bridiau, Nicolas; Bordenave Juchereau, Stephanie; Sannier, Fredéric; Piot, Jean-Marie; Fruitier Arnaudin, Ingrid; Maugard, Thierry

    2016-01-01

    Heparanase is an endo-β-D-glucuronidase that plays an important role in cancer progression, in particular during tumor angiogenesis and metastasis. Inhibiting this enzyme is considered as one of the most promising approaches in cancer therapy. Heparin is a complex glycoaminoglycan known as a strong inhibitor of heparanase. It is primarily used in clinical practice for its anticoagulant activities, which may not be compatible with its use as anti-angiogenic agent. In this study, we described the production of ultra-low-molecular-weight heparins (ULMWH) by a physicochemical method that consists in a hydrogen peroxide-catalyzed radical hydrolysis assisted by ultrasonic waves. We assessed the structural characteristics, anticoagulant and anti-heparanase activities of the obtained heparin derivatives and compared them with three commercial low-molecular-weight heparins (LMWH), glycol-split non-anticoagulant heparins and heparins produced by enzymatic methods. ULMWH generated by the physicochemical method were characterized by high anti-heparanase and moderate anticoagulant activities. These heparin derivatives might be potential candidates for cancer therapy when a compromise is needed between anti-heparanase and anticoagulant activities.

  17. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    PubMed

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity.

  18. [Treatment with danaparoid during pregnancy for a woman with a cutenous allergy to low-molecular-weight heparin] .

    PubMed

    de Saint-Blanquat, L; Simon, L; Toubas, M F; Hamza, J

    2000-12-01

    The authors describe a case of heparin-induced skin reaction due to two preparations of low molecular weight heparin in a pregnant woman. The main characteristics of heparin-related cutaneous allergy are reported. The use of an heparinoid, usually indicated for patients with heparin-induced thrombocytopenia, appeared to be efficient and safe for the mother and her fetus. An epidural analgesia was performed for labor analgesia, 24 hours after the last injection of danaparid of sodium. PMID:11200764

  19. Comparison of efficacy and safety of low molecular weight heparins and unfractionated heparin in initial treatment of deep venous thrombosis: a meta-analysis.

    PubMed Central

    Leizorovicz, A.; Simonneau, G.; Decousus, H.; Boissel, J. P.

    1994-01-01

    OBJECTIVE--To compare the efficacy and safety of low molecular weight heparins and unfractionated heparin in the initial treatment of deep venous thrombosis for the reduction of recurrent thromboembolic events, death, extension of thrombus, and haemorrhages. DESIGN--Meta-analysis of results from 16 randomised controlled clinical studies. SUBJECTS--2045 patients with established deep venous thrombosis. INTERVENTION--Treatment with low molecular weight heparins or unfractionated heparin. MAIN OUTCOME MEASURES--Incidences of thromboembolic events (deep venous thrombosis or pulmonary embolism, or both); major haemorrhages; total mortality; and extension of thrombus. RESULTS--A significant reduction in the incidence of thrombus extension (common odds ratio 0.51, 95% confidence interval 0.32 to 0.83; P = 0.006) in favour of low molecular weight heparin was observed. Non-significant trends also in favour of the low molecular weight heparins were observed for the recurrence of thromboembolic events (0.66, 0.41 to 1.07; P = 0.09), major haemorrhages (0.65, 0.36 to 1.16; P = 0.15), and total mortality (0.72, 0.46 to 1.4; P = 0.16). CONCLUSIONS--Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in the treatment of venous thrombosis. These results, however, remain to be confirmed by using clinical outcomes in suitably powered clinical trials. PMID:8086867

  20. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  1. Fluorophore-assisted carbohydrate electrophoresis for the determination of molecular mass of heparins and low-molecular-weight (LMW) heparins.

    PubMed

    Buzzega, Dania; Maccari, Francesca; Volpi, Nicola

    2008-11-01

    We report the use of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine the molecular mass (M) values of heparins (Heps) and low-molecular-weight (LMW)-Hep derivatives. Hep are labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid and FACE is able to resolve each fraction as a discrete band depending on their M. After densitometric acquisition, the migration distance of each Hep standard is acquired and the third-grade polynomial calibration standard curve is determined by plotting the logarithms of the M values as a function of migration ratio. Purified Hep samples having different properties, pharmaceutical Heps and various LMW-Heps were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw and polydispersity (Mw/Mn) were examined by both techniques and found to be similar. This approach offers certain advantages over the HPSEC method. The derivatization process with 8-aminonaphthalene-1,3,6-trisulfonic acid is complete after 4 h so that many samples may be analyzed in a day also considering that multiple samples can be run simultaneously and in parallel and that a single FACE analysis requires approx. 15 min. Furthermore, FACE is a very sensitive method as it requires approx. 5-10 microg of Heps, about 10-100-fold lower than samples and standards used in HPSEC evaluation. Finally, the utilization of mini-gels allows the use of very low amounts of reagents with neither expensive equipment nor any complicated procedures having to be applied. This study demonstrates that FACE analysis is a sensitive method for the determination of the M values of Heps and LMW-Heps with possible utilization in virtually any kind of research and development such as quality control laboratories due to its rapid, parallel analysis of multiple samples by means of common and simple largely used

  2. The potential benefits of low-molecular-weight heparins in cancer patients

    PubMed Central

    2010-01-01

    Cancer patients are at increased risk of venous thromboembolism due to a range of factors directly related to their disease and its treatment. Given the high incidence of post-surgical venous thromboembolism in cancer patients and the poor outcomes associated with its development, thromboprophylaxis is warranted. A number of evidence-based guidelines delineate anticoagulation regimens for venous thromboembolism treatment, primary and secondary prophylaxis, and long-term anticoagulation in cancer patients. However, many give equal weight to several different drugs and do not make specific recommendations regarding duration of therapy. In terms of their efficacy and safety profiles, practicality of use, and cost-effectiveness the low-molecular-weight heparins are at least comparable to, and offer several advantages over, other available antithrombotics in cancer patients. In addition, data are emerging that the antithrombotics, and particularly low-molecular-weight heparins, may exert an antitumor effect which could contribute to improved survival in cancer patients when given for long-term prophylaxis. Such findings reinforce the importance of thromboprophylaxis with low-molecular-weight heparin in cancer patients. PMID:20074349

  3. De novo synthesis of a narrow size distribution low-molecular-weight heparin

    PubMed Central

    Chandarajoti, Kasemsiri; Xu, Yongmei; Sparkenbaugh, Erica; Key, Nigel S; Pawlinski, Rafal; Liu, Jian

    2014-01-01

    Heparin, a commonly used anticoagulant drug, is a mixture of highly sulfated polysaccharides with various molecular weights (MWs). The unique sulfation pattern dictates the anticoagulant activity of heparin. Commercial heparins are categorized into three forms according to their average MW: unfractionated heparin (UFH, MWavg 14,000), low-MW heparin (LMWH, MWavg 3500–6500) and the synthetic pentasaccharide (fondaparinux, MW 1508.3). UFH is isolated from porcine intestine while LMWH is derived from UFH by various methods of depolymerization, which generate a wide range of oligosaccharide chain lengths. Different degradation methods result in structurally distinct LMWH products, displaying different pharmacological and pharmacokinetic properties. In this report, we utilized a chemoenzymatic method to synthesize LMWH with the emphasis on controlling the size distribution of the oligosaccharides. A tetrasaccharide primer and a controlled enzyme-based polymerization were employed to build a narrow size oligosaccharide backbone. The oligosaccharide backbones were further modified by a series of sulfation and epimerization steps in order to obtain a full anticoagulation activity. Determination of the anticoagulation activity in vitro and ex vivo indicated that the synthetic LMWH has higher potency than enoxaparin, a commercial LMWH drug in clinical usage. PMID:24626379

  4. Thromboprophylaxis with low-molecular-weight heparin in outpatients with plaster-cast immobilisation of the leg.

    PubMed

    Kock, H J; Schmit-Neuerburg, K P; Hanke, J; Rudofsky, G; Hirche, H

    1995-08-19

    Deep-vein thrombosis is common after plaster-cast immobilisation for traumatic injury. We did a randomised prospective study of the effect of low-molecular-weight heparin on the incidence of deep-vein thrombosis in patients with minor injuries treated with plaster-cast immobilisation of the leg. A control group (n = 163) received no prophylaxis, the prophylaxis group received low-molecular-weight heparin once daily (n = 176). The incidence of deep-vein thrombosis in the prophylaxis group was 0% (one tailed p < 0.006) vs 4.3% in the control group. No severe side-effects of low-molecular-weight heparin were observed. Thromboprophylaxis with low-molecular-weight heparin once daily is effective in reducing the risk of deep-vein thrombosis in outpatients with plaster-cast immobilisation of the leg.

  5. Low molecular weight heparin gels, based on nanoparticles, for topical delivery.

    PubMed

    Loira-Pastoriza, C; Sapin-Minet, A; Diab, R; Grossiord, J L; Maincent, P

    2012-04-15

    A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(®) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated. PMID:22310458

  6. Low molecular weight heparin gels, based on nanoparticles, for topical delivery.

    PubMed

    Loira-Pastoriza, C; Sapin-Minet, A; Diab, R; Grossiord, J L; Maincent, P

    2012-04-15

    A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(®) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated.

  7. [Preparation and antithrombogenicity of oxidated low molecular weight heparin-antithrombin complex coated-polyvinyl chloride tubing].

    PubMed

    Luo, Peng; Liu, Weiyong; Yang, Chun; Zhou, Hua; Cao, Ruijun; Yang, Jian

    2011-02-01

    Based on non-enzymatic protein glycated reaction, the sodium periodate-oxidated low molecular weight heparin-antithrombin covalent complex (SPLMWATH) was produced. By using polyethyleneimine-glutaraldehyde bonding technique, polyvinyl chloride (PVC) tubings were coated with SPLMWATH, heparin and low molecular weight heparin (LMWH). Spectrophotometry and dynamic clotting time experiment were used to determine the synthetic ratio of SPLMWATH, graft density, coating leaching ratio and to evaluate the antithrombogenicity of different coating on the PVC tubings. The results showed that the synthetic ratio of SPLMWATH was approximately 55%, and compared with heparin coating and LMWH coating, the graft density of SPLMWATH coating on the PVC tubing was smaller, but its coating stability and antithrombogenicity were significantly better than that of heparin coating and LMWH coating on the PVC tubings.

  8. Eczematous plaques related to unfractionated and low-molecular-weight heparin in pregnancy: cross-reaction with danaparoid sodium.

    PubMed

    Blickstein, Dorith; Hod, Moshe; Bar, Jacob

    2003-12-01

    The use of low-molecular-weight heparin has been expanded to prevent pregnancy complications such as pregnancy loss, intra-uterine growth restriction and severe early-onset pre-eclampsia in high-risk patients with evidence of acquired or congenital thrombophilia. Therefore, the number of patients with side effects from low-molecular-weight heparin is expected to increase. We describe two women with infiltrating patchy plaques that developed in reaction to low-molecular-weight heparin during pregnancy. In the first patient, a switch to other formulations of heparin and heparinoid failed; the second patient, however, did well when enoxaparin was replaced with dalteparin. This report confirms the risk of skin reactions to enoxaparin and dalteparin, and reports on a skin reaction associated with danaparoid sodium in a pregnant woman. PMID:14614358

  9. Reliable low-molecular-weight heparin reversal in a child undergoing emergency surgery: a case report.

    PubMed

    Botros, Mena M; Mahmoud, Mohamed A; Costandi, Andrew J

    2016-09-01

    Low-molecular-weight heparin neutralization using protamine alone can be unreliable, especially in cases of immediate reversal for emergency surgery. Here, we describe a unique case of a 17-month-old girl with a history of glioneuronal tumor and corresponding hydrocephalus status post debulking and ventriculoperitoneal shunt placement, who was placed on enoxaparin after the development of a sagittal sinus thrombosis. Patient presented for emergency craniectomy and evacuation of subdural bleed after a fall while on therapeutic dose of enoxaparin. Protamine and fresh frozen plasma were used in the patient's perioperative course providing a reliable reversal of enoxaparin. PMID:27555185

  10. [Venous thrombo-embolic disease in cancer. Low molecular weight heparin indications].

    PubMed

    Nou, M; Laroche, J-P

    2016-05-01

    Cancer and venous thrombo-embolic disease (VTE) are closely related. Indeed, cancer can reveal VTE and VTE can be the first sign of cancer. Low molecular weight heparin (LWMH) is now the first line treatment in cancer patients. Compliance with marketing authorizations and guidelines are crucial for patient-centered decision-making. This work deals with the prescription of LWMH in patients who develop VTE during cancer in order to better recognize what should or should not be done. The patient's wishes must be taken into consideration when making the final therapeutic decision. The other treatments are discussed: vitamin K antagonists and direct oral anticoagulants (DOACs) may be useful. PMID:27146099

  11. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  12. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  13. [Implementing ambulatory prevention of thrombosis with low molecular weight heparin in plaster immobilization of the lower extremity].

    PubMed

    Kock, H J; Schmit-Neuerburg, K P; Hanke, J; Terwort, A; Rudofsky, G; Hirche, H

    1994-12-01

    Plaster cast immobilisation following trauma is a major risk factor for the development of deep vein thrombosis. In our controlled, randomized and prospective study in patients with minor injuries the incidence of deep vein thrombosis was 4.3% in conservatively treated outpatients with plaster cast immobilisation of the leg (n = 163 control group without prophylaxis). By application of low molecular weight heparin once daily the number of deep vein thrombosis in the prophylaxis group (n = 176) was reduced to 0% (p = 0.006). No severe side effects of low molecular weight heparin were observed. Subcutaneous injections were self-applicated by 89% of males and 72% of females. We conclude that thromboprophylaxis with low molecular weight heparin once daily is effective to reduce the risk of deep vein thrombosis in outpatients with plaster cast immobilisation of the leg.

  14. The regulation of factor IXa by supersulfated low molecular weight heparin.

    PubMed

    Misenheimer, Tina M; Sheehan, John P

    2010-11-23

    Supersulfated low molecular weight heparin (ssLMWH) inhibits the intrinsic tenase (factor IXa-factor VIIIa) complex in an antithrombin-independent manner. Recombinant factor IXa with alanine substitutions in the protease domain (K126A, N129A, K132A, R165A, R170A, N178A, R233A) was assessed with regard to heparin affinity in solution and ability to regulate protease activity within the factor IXa-phospholipid (PL) and intrinsic tenase complexes. In a soluble binding assay, factor IXa K126A, K132A, and R233A dramatically (10-20-fold) reduced ssLMWH affinity, while factor IXa N129A and R165A moderately (5-fold) reduced affinity relative to wild type. In the factor IXa-PL complex, binding affinity for ssLMWH was increased 4-fold, and factor X activation was inhibited with a potency 7-fold higher than predicted for wild-type protease-ssLMWH affinity in solution. In the intrinsic tenase complex, ssLMWH inhibited factor X activation with a 4-fold decrease in potency relative to wild-type factor IXa-PL. The mutations increased resistance to inhibition by ssLMWH in a similar fashion for both enzyme complexes (R233A > K126A > K132A/R165A > N129A/N178A/wild type) except for factor IXa R170A. This protease had ssLMWH affinity and potency for the factor IXa-PL complex similar to wild-type protease but was moderately resistant (6-fold) to inhibition in the intrinsic tenase complex based on increased cofactor affinity. These results are consistent with conformational regulation of the heparin-binding exosite and macromolecular substrate catalysis by factor IXa. An extensive overlap exists between the heparin and factor VIIIa binding sites on the protease domain, with residues K126 and R233 dominating the heparin interaction and R165 dominating the cofactor interaction.

  15. Low molecular weight heparin improves healing of chronic venous ulcers especially in the elderly.

    PubMed

    Serra, Raffaele; Buffone, Gianluca; Molinari, Vincenzo; Montemurro, Rossella; Perri, Paolo; Stillitano, Domenico M; Amato, Bruno; de Franciscis, Stefano

    2015-04-01

    Venous ulcers are common, especially in the elderly, accounting for more than 50% of all lower extremity ulcers with important socioeconomic problems. Improving extracellular matrix functioning, by heparin administration, seems to be a way to support wound healing. A total of 284 patients with venous ulcers were recruited in a 4-year period. All patients were subjected to the most appropriate treatment after considering their preference (compression therapy followed or not by vein surgery). Patients were randomised into two groups of 142 persons in each (group A and group B as cases and controls, respectively). Patients of group A, in addition to the basic treatment as described earlier, received administration of nadroparin 2850 IU/0.3 ml through subcutaneous injection once a day for 12 months, whereas group B patients received basic treatment alone. Healing was assessed by means of direct ulcer tracing with computerised planimetry. Group A showed a healing rate of 83·80% at 12 months, whereas that of group B was 60·56%. Results by age group surprisingly showed that the group of older patients took the most advantage from long-term treatment with low molecular weight heparin; this group also had lowest recurrence rate.

  16. Low molecular weight heparin tinzaparin antagonizes cisplatin resistance of ovarian cancer cells.

    PubMed

    Pfankuchen, Daniel Bastian; Stölting, Daniel Philipp; Schlesinger, Martin; Royer, Hans-Dieter; Bendas, Gerd

    2015-09-15

    Low molecular weight heparin (LMWH) is routinely used for antithrombotic treatment of cancer patients. Preclinical- and clinical data suggest that LMWH has beneficial effects for cancer patients beyond the prevention of thrombosis, i.e. by inhibiting metastasis. It is, however, unclear whether heparin has an impact on the efficiency of chemotherapy in cancer patients. Here we show that a therapeutic dosage of LMWH tinzaparin reverses cisplatin resistance of A2780cis human ovarian cancer cells to the level of sensitive cells. This novel activity of tinzaparin is associated with intense transcriptional reprogramming. Our gene expression profiling experiments revealed that 3776 genes responded to tinzaparin treatment. For this reason tinzaparin has a complex impact on diverse biological processes. We discovered that tinzaparin inhibits the expression of genes that mediate cisplatin resistance of A2780cis cells. In contrast tinzaparin induced the expression of genes that antagonize drug resistance. This activity of tinzaparin is mediated by cell surface proteoglycans, since enzymatic cleavage of heparan sulfates prevented the reversal of cisplatin resistance. These data indicate that cell surface heparan sulfate proteoglycans play an important role for chemotherapy resistance. The results of this study shed a new light on LMWH application in cancer therapy and suggest tinzaparin as promising treatment option of ovarian cancer patients in combination with anticancer drugs. Future clinical trials are needed to validate these findings. PMID:26239805

  17. Market entry of biosimilar low-molecular-weight heparins in Europe: opportunities and challenges.

    PubMed

    Simoens, Steven; Huys, Isabelle

    2013-04-01

    This article examines the market entry of biosimilar low-molecular-weight heparins (LMWHs) in Europe by focusing on regulatory requirements, pricing, reimbursement, prescribing, and dispensing. The window for biosimilar LMWHs to enter the market is narrow on the supply side because of several factors. These include (1) regulatory requirements, including a quality dossier, clinical and nonclinical studies, pharmacodynamic and pharmacokinetic studies, immunogenicity studies, and a comparability exercise (but a reduction in clinical data requirements might be plausible in some cases); (2) prices of originator LMWHs are lower than those of other biologic products; (3) European prices of originator LMWHs are lower than those observed in the rest of the world; (4) research and development and manufacturing costs are substantial; (5) costs of active pharmaceutical ingredients have increased following the heparin contamination crisis; and (6) biosimilar LMWHs may be subjected to generic medicine pricing regulations. Furthermore, there are limited opportunities for biosimilar LMWHs on the demand side. This is because, although LMWHs have a large market volume in Europe, demand-side incentives for biosimilar LMWHs are largely absent, and the questions about interchangeability and substitution between originator and biosimilar LMWHs have yet to be fully resolved. PMID:23235959

  18. The Anti-Factor Xa Range For Low Molecular Weight Heparin Thromboprophylaxis

    PubMed Central

    Ward, Salena M.

    2015-01-01

    Low molecular weight heparins (LMWHs) are now the mainstay option in the prevention and treatment of venous thromboembolism. In some patients receiving therapeutic doses of LMWH, activity can be measured by quantifying the presence of Anti-factor Xa (AFXa) for dose adjustment. However, currently there are no guidelines for LMWH monitoring in patients on thromboprophylactic, doses, despite certain patient populations may be at risk of suboptimal dosing. This review found that while the AFXa ranges for therapeutic levels of LMWHs are relatively well defined in the literature, prophylactic ranges are much less clear, thus making it difficult to interpret current research data. From the studies published to date, we concluded that a reasonable AFXa target range for LMWH deep venous thromboses prophylaxis might be 0.2-0.5 IU/mL. PMID:26733269

  19. Postoperative Suprachoroidal Hemorrhage in a Glaucoma Patient on Low Molecular Weight Heparin

    PubMed Central

    AlHarkan, Dora H.; AlJadaan, Ibrahim A.

    2013-01-01

    Suprachoroidal hemorrhage is a complication associated with intraocular surgery that can occur both intraoperatively and postoperatively. Several intraoperative or postoperative risk factors have been indentified. The use of low-molecular weight heparin (LMWH) is considered one of the risk factors in surgical cases (ocular or non ocular) and non-surgical cases. Here we present a case of suprachoroidal hemorrhage in a glaucoma patient that occurred after preoperative prophylactic LMWH for deep venous thrombosis. The use of LMWH has been reported to cause suprachoroidal hemorrhage even in patients without any risk factors. The use of LMWH continues to increase, hence it is important to be aware of the possibility of suprachoroidal hemorrhage and to determine the risk/benefit ratio, especially in patients with other risk factors. PMID:23741139

  20. Effects of a supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters.

    PubMed

    Glusa, E; Barthel, W; Schenk, J; Radziwon, P; Butti, A; Markwardt, F; Breddin, K H

    1998-01-01

    In a phase I trial effects of a new supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters were investigated in healthy volunteers. Parameters studied were activated partial thromboplastin time (aPTT), thrombin time, Heptest, anti-activated factor II (anti-FIIa) and anti-activated factor X (anti-FXa) activity, platelet adhesion, platelet count, platelet-induced thrombin generation time (PITT), bleeding time, antithrombin III, fibrinogen and several safety parameters. After single intravenous (i.v.) injections of IK-SSH (0.14, 0.33 and 0.66 mg/kg) aPTT, Heptest and PITT were strongly and dose-dependently prolonged. After ascending subcutaneous (s.c.) doses of IK-SSH (0.33, 0.66 and 1 mg/kg) aPTT, Heptest and PITT were prolonged in a dose-dependent manner. Repeat s.c. injections of 1 mg/kg IK-SSH for 5 days markedly prolonged aPTT, Heptest and PITT. No cumulative effects were observed. Anti-FIIa and anti-FXa activity were not or only slightly increased. Bleeding time, thrombin time and platelet adhesion were not significantly changed after i.v. and s.c. injections of IK-SSH. However, tissue factor pathway inhibitor (TFPI) concentration was markedly increased after each injection of IK-SSH and returned to the preinjection value 24 h later. IK-SSH prolongs aPTT, Heptest and PITT in a similar manner as other low molecular weight heparins but without significantly affecting thrombin time, FIIa and FXa activity. The release of TFPI may well be responsible for the prolongation of aPTT, Heptest and PITT. IK-SSH may be further developed as an antithrombotic agent.

  1. Acute dyspnea in a woman with swelling of the left leg treated with low molecular weight heparine.

    PubMed

    Luyx, C; Vanpee, D; Douala, C; Gillet, J B

    2001-05-01

    A case of rectus sheath hematoma diagnosed initially as probable pulmonary embolism in a patient on anticoagulation with low molecular weight heparins for swelling of the left leg is presented. Prompt consideration of this hematoma in the emergency department is important to avoid unnecessary and potentially dangerous treatment. PMID:11326351

  2. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives – An In Silico Approach

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins.

  3. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives – An In Silico Approach

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins. PMID:27594785

  4. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives - An In Silico Approach.

    PubMed

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins. PMID:27594785

  5. Anti Xa monitoring during treatment with low molecular weight heparin or danaparoid: inter-assay variability.

    PubMed

    Kitchen, S; Iampietro, R; Woolley, A M; Preston, F E

    1999-10-01

    If laboratory monitoring of low molecular weight heparin (LMWH) therapy is required the test of choice is the anti Xa activity assay. The relationship between anti Xa results obtained using different techniques is unknown. The aim of the present study was to compare anti Xa results obtained with eight different commercially available anti Xa activity assays (five chromogenic and three clotting based assays) in samples from patients receiving either therapeutic or prophylactic LMWH (enoxaparin or dalteparin) or danaparoid. We have demonstrated that highly significant differences exist between results obtained using different techniques. The mean anti Xa activity in patients receiving treatment or prophylaxis with enoxaparin ranged from 0.28 to 0.64 iu/ml. A similar relationship was present in samples from patients treated with dalteparin, mean anti Xa results ranging from 0.43 to 0.69 iu/ml. The Heptest clotting assay as used here in combination with the Automated Coagulation Laboratory instrument, was associated with lower results than other clotting or chromogenic techniques. In patients receiving danaparoid for heparin induced thrombocytopaenia (HIT) mean results with three clotting based assays were 0.30 to 0.36 u/ml, compared to mean results of 0.47 to 0.65 u/ml for chromogenic assays. Our data clearly indicate that the selection of anti Xa assay method could influence patient management since the dose required to achieve the therapeutic range would differ according to the assay employed. This is particularly important since the frequency of haemorrhagic side effects has been shown by others to be dose dependent, irrespective of the concomitant anti Xa activity results. In danaparoid therapy the clotting assays studied here should not be employed for monitoring without a modified target range, unless it can be demonstrated that the higher doses required to achieve the therapeutic range are safe. PMID:10544915

  6. Efficacy and safety of once daily low molecular weight heparin (tinzaparin sodium) in high risk pregnancy.

    PubMed

    Ní Ainle, Fionnuala; Wong, Audris; Appleby, Niamh; Byrne, Brigitte; Regan, Carmen; Hassan, Tayyaba; Milner, Marie; Sullivan, Ann O; White, Barry; O'Donnell, James

    2008-10-01

    Low molecular weight heparin (LMWH) is widely regarded as the anticoagulant treatment of choice for the prevention and treatment of venous thromboembolism during pregnancy. However, previous studies have demonstrated that the pharmacokinetic profiles of LMWH vary significantly with increasing gestation. Consequently, it remains unclear whether LMWH regimens recommended for use in nonpregnant individuals can be safely extrapolated to pregnant women. The aims of this study were to assess the safety and the efficacy of tinzaparin sodium (Innohep) administered only once daily during pregnancy. A systematic retrospective review identified a cohort of 37 high-risk pregnancies which had been managed using tinzaparin 175 IU/kg once daily. In 26 cases, the index pregnancy had been complicated by development of an acute venous thromboembolism (17 deep vein thrombosis and nine pulmonary embolism). For each individual, case notes were examined and data extracted using a predetermined questionnaire. No episodes of recurrent venous thromboembolism were identified amongst this cohort of pregnancies managed using once daily LMWH administration. However, two unusual thrombotic complications were observed, including a parietal infarct in one patient, and a postpartum cerebral venous thrombosis in another. Once daily tinzaparin was well tolerated, with no cases of heparin-induced thrombocytopaenia, symptomatic osteoporosis, or foetal malformations. Tinzaparin dose modification based upon peak anti-Xa levels occurred in 45% of the cases examined. The present study is the largest study to have examined the clinical efficacy of once daily LMWH for use in pregnant women at high risk of venous thromboembolism. Our data support the safety and efficacy of antenatal tinzaparin at a dose of 175 IU/kg. In order to determine whether this once daily regimen provides equivalent (or indeed greater) thromboprophylaxis to twice daily LMWH regimens during pregnancy will require highly powered direct

  7. Low molecular weight heparin (enoxaparin) reverses pregangrene in a preterm neonate.

    PubMed

    Gohil, Jayendra R; Solanki, Dhaval I; Vaghjiyani, Lalji

    2009-01-01

    A 34-week-old, 1.6 kg preterm boy was admitted for management of mild respiratory distress syndrome. On the third day of life 1 min after an intravenous cannulation attempt at the right cubital fossa, he developed pregangrene bluish discoloration of all fingertips up to the distal interphalangial joint and pallor of right palm. Pulsations on right forearm were reduced. There was no evidence of sepsis.Enoxaparin, a low molecular weight heparin (1.5 mg/kg (standard dose)) was injected subcutaneously in the abdomen in two doses 12 h apart within 2 h of the event. At 6 h after the first dose, brachial artery pulsation was bilaterally symmetrical. After the second dose, bilateral radial artery pulsation became symmetrical. The pregangrene changes returned to normal within 20 h as the distal phalanges became pink and warm. He was discharged on the eighth day of life. Enoxaparin was safe and effective in this preterm infant for reversal of pregangrene.

  8. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin.

    PubMed

    Yang, Tianzhi; Hussain, Alamdar; Bai, Shuhua; Khalil, Ikramy A; Harashima, Hideyoshi; Ahsan, Fakhrul

    2006-10-27

    This study tests the hypothesis that positively charged polyethylenimines (PEIs) enhance nasal absorption of low molecular weight heparin (LMWH) by reducing the negative surface charge of the drug molecule. Physical interactions between PEIs and LMWH were studied by Fourier transform infrared (FTIR) spectroscopy, particle size analysis, conductivity measurements, zeta potential analysis, and azure A assay. The efficacy of PEIs in enhancing nasal absorption of LMWH was studied by administering LMWH formulated with PEI into the nose of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The metabolic stability of LMWH was evaluated by incubating the drug in rat nasal mucosal homogenates. FTIR spectra of the LMWH-PEI formulation showed a shift in peak position compared to LMWH or PEI alone. Decreases in conductivity, zeta potential and the amount of free LMWH in the PEI-LMWH formulation, as revealed by azure A assay, suggest that PEIs possibly neutralize the negative surface charge of LMWH. The efficacy of PEI in enhancing the bioavailability of nasally administered LMWH can be ranked as PEI-1000 kDa>or=PEI-750 kDa>PEI-25 kDa. When PEI-1000 kDa was used at a concentration of 0.25%, there was a 4-fold increase in both the absolute and relative bioavailabilities of LMWH compared to the control formulation. Overall, these results indicate that polyethylenimines can be used as potential carriers for nasally administered LMWHs. PMID:17023085

  9. Study of the Efficacy, Safety and Tolerability of Low-Molecular-Weight Heparin vs. Unfractionated Heparin as Bridging Therapy in Patients with Embolic Stroke due to Atrial Fibrillation

    PubMed Central

    Feiz, Farnia; Sedghi, Reyhane; Salehi, Alireza; Hatam, Nahid; Bahmei, Jamshid; Borhani-Haghighi, Afshin

    2016-01-01

    Background Anticoagulation with adjusted dose warfarin is a well-accepted treatment for the prevention of recurrent stroke in patients with atrial fibrillation. Meanwhile, using bridging therapy with heparin or heparinoids before warfarin for initiation of anticoagulation is a matter of debate. We compared safety, efficacy, and tolerability of low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH) as a bridging method in patients with recent ischemic stroke due to atrial fibrillation. Method This study was a randomized single-blind controlled trial in patients with acute ischemic stroke due to atrial fibrillation who were eligible for receiving warfarin and were randomly treated with 60 milligrams (mg) of LMWH (enoxaparin) subcutaneously every 12 h, or 1000 units/h of continuous intravenous heparin. The primary efficacy endpoints were recurrence of new ischemic stroke, myocardial infarction and/or death. The primary safety endpoint was central nervous system and/or systemic bleeding. Results Seventy-four subjects were recruited. Baseline demographic and clinical characteristics of two groups were matched. Composite endpoint outcome of new ischemic stroke, myocardial infarction, and/or death in follow-up period was seen in 10 subjects (27.03%) in UFH group and in four subjects (10.81%) in LMWH group (p value: 0.136). All hemorrhages and symptomatic central nervous system (CNS) hemorrhages in follow-up period were in 7 (18.9%) and 4 (10.8%) patients in UFH group, in 5 (13.5%), and 3 (8.1%) patients in LMWH group (p values: 0.754 and 0.751), respectively. Drop out and major adverse-effects such as heparin-induced thrombocytopenia and drug hypersensitivity were not seen in any patient. Conclusion Enoxaparin can be a safe and efficient alternative for UFH as bridging therapy. PMID:27403222

  10. Low molecular weight heparin in one or two doses for the initial treatment of venous thromboembolic disease?

    PubMed

    Albornoz, Juan Pablo; Valenzuela, Andrés; Aizman, Andrés

    2015-11-20

    The preferred dosification for low molecular weight heparins is in two doses for most patients with venous thromboembolic disease. A daily dose would make treatment simpler, less expensive and more comfortable while retaining a similar benefit and safety. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified two systematic reviews including five randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded it is not clear whether the risk of recurrence differs between the two alternatives because the certainty of the evidence is very low, and that administering low molecular weight heparin in two doses might be associated to little or no difference in the risk of major bleeding and mortality.

  11. Low molecular weight heparin in one or two doses for the initial treatment of venous thromboembolic disease?

    PubMed

    Albornoz, Juan Pablo; Valenzuela, Andrés; Aizman, Andrés

    2015-01-01

    The preferred dosification for low molecular weight heparins is in two doses for most patients with venous thromboembolic disease. A daily dose would make treatment simpler, less expensive and more comfortable while retaining a similar benefit and safety. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified two systematic reviews including five randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded it is not clear whether the risk of recurrence differs between the two alternatives because the certainty of the evidence is very low, and that administering low molecular weight heparin in two doses might be associated to little or no difference in the risk of major bleeding and mortality. PMID:26609705

  12. Low-molecular-weight heparin and abciximab for thrombo-occlusive saphenous vein graft disease. Report of 2 cases.

    PubMed Central

    Yaryura, R; Doucet, J; Mathur, V S

    1997-01-01

    Both reoperation and alternative treatments for thrombo-occlusive disease of saphenous vein grafts have been fraught with a high rate of complications and a low rate of long-term success. We report 2 cases in which thrombo-occlusive saphenous vein graft disease was treated with the aid of abciximab during the intervention and with low-molecular-weight heparin for 7 to 12 days in an outpatient setting. Images PMID:9456497

  13. Preclinical safety evaluation of low molecular weight heparin-deoxycholate conjugates as an oral anticoagulant.

    PubMed

    Kim, Ji-young; Jeon, Ok-Cheol; Moon, Hyun Tae; Hwang, Seung Rim; Byun, Youngro

    2016-01-01

    The preclinical safety of a newly developed oral anticoagulant, the low molecular weight heparin-deoxycholate conjugate (OH09208), was evaluated by a comprehensive evaluating program in compliance with standard guidelines. The single dose oral toxicity study in rats receiving 2000 and 5000 mg kg(-1) of OH09208 did not reveal any mortality, unusual body weight changes or necropsy findings. The results of the 4-week oral toxicity study with a 4-week recovery program in rats receiving OH09208 in doses of 100, 300 and 1000 mg kg(-1) day(-1) did not reveal any mortality, or indicate any unusual clinical signs, or show any toxicokinetic relationships to the administration of OH09208. Although the increase in liver enzymes in one male dog treated with 300 mg kg(-1) day(-1) and one female dog treated with 1000 mg kg(-1) day(-1) could not be excluded from the effect of the test substance, no other toxicologically significant changes were observed in the 4-week oral toxicity study with a 4-week recovery in beagle dogs. Thus, while the no-observed-adverse-effect level value from the 4-week study in both male and female rats was 1000 mg kg(-1) day(-1), those from the 4-week study in male and female beagle dogs were 300 and 1000 mg kg(-1) day(-1), respectively. Furthermore, OH09208 did not induce anaphylactic reactions in guinea pigs, micronucleated bone marrow cells in male ICR mice, chromosomal aberration in Chinese hamster lung cell lines, bacterial reverse mutation, and any abnormalities in hERG current assay, mouse central nervous system and dog cardiovascular studies. Overall, there were no unexpected toxicities in this preclinical study that might have precluded the safe administration of OH09208 to humans.

  14. Preparation and evaluation of a novel oral delivery system for low molecular weight heparin

    PubMed Central

    Lavanya, Nallaguntla; Muzib, Yallamalli Indira; Aukunuru, Jithan; Balekari, Umamahesh

    2016-01-01

    Objective: The objective of the present work was to prepare and evaluate a novel oral formulation for systemic delivery of low molecular weight heparin (LMWH). The formulation consisted of Eudragit S 100-coated positively charged liposomes encapsulating LMWH and a penetration enhancer. Materials and Methods: Positively charged liposomes were first prepared by the thin film hydration method using lipid (soy phosphotidylcholine and cholesterol) and stearyl amine (SA) in the optimum ratio of 16:1, along with cetylpyridinium chloride (CPC) as a penetration enhancer. Prepared liposomes were coated with negatively charged Eudragit S 100 (0.3% w/v). The formulations were studied for various in vitro and in vivo properties. Differential scanning calorimetry (DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) studies, and in vitro drug release were used for in vitro characterization of the formulations. Ex vivo permeation studies were performed by using distal small intestine of rat. Oral absorption studies were conducted with the rat model. Results: Coating of the liposomes was confirmed by SEM and particle size determination studies. In vitro release studies of coated liposomes have demonstrated that the release of LMWH was in the following order: Stomach < small intestine < distal small intestine < colon. Ex vivo permeation studies have shown a fivefold increase in permeation of LMWH with Eudragit S 100-coated liposomes compared to uncoated, uncharged liposomes. Oral absorption studies have showed that with Eudragit-coated liposomes, the oral bioavailability of LMWH was improved, compared to plain LMWH solution. This is revealed by a threefold increase in the area under the curve (AUC) of the plasma concentration time curve. Conclusion: A novel formulation for oral delivery of LMWH was thus successfully prepared and evaluated. PMID:27606258

  15. Preparation and evaluation of a novel oral delivery system for low molecular weight heparin

    PubMed Central

    Lavanya, Nallaguntla; Muzib, Yallamalli Indira; Aukunuru, Jithan; Balekari, Umamahesh

    2016-01-01

    Objective: The objective of the present work was to prepare and evaluate a novel oral formulation for systemic delivery of low molecular weight heparin (LMWH). The formulation consisted of Eudragit S 100-coated positively charged liposomes encapsulating LMWH and a penetration enhancer. Materials and Methods: Positively charged liposomes were first prepared by the thin film hydration method using lipid (soy phosphotidylcholine and cholesterol) and stearyl amine (SA) in the optimum ratio of 16:1, along with cetylpyridinium chloride (CPC) as a penetration enhancer. Prepared liposomes were coated with negatively charged Eudragit S 100 (0.3% w/v). The formulations were studied for various in vitro and in vivo properties. Differential scanning calorimetry (DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) studies, and in vitro drug release were used for in vitro characterization of the formulations. Ex vivo permeation studies were performed by using distal small intestine of rat. Oral absorption studies were conducted with the rat model. Results: Coating of the liposomes was confirmed by SEM and particle size determination studies. In vitro release studies of coated liposomes have demonstrated that the release of LMWH was in the following order: Stomach < small intestine < distal small intestine < colon. Ex vivo permeation studies have shown a fivefold increase in permeation of LMWH with Eudragit S 100-coated liposomes compared to uncoated, uncharged liposomes. Oral absorption studies have showed that with Eudragit-coated liposomes, the oral bioavailability of LMWH was improved, compared to plain LMWH solution. This is revealed by a threefold increase in the area under the curve (AUC) of the plasma concentration time curve. Conclusion: A novel formulation for oral delivery of LMWH was thus successfully prepared and evaluated.

  16. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin.

    PubMed

    Bai, Shuhua; Thomas, Chandan; Ahsan, Fakhrul

    2007-08-01

    This study was designed to test the hypothesis that positively charged dendrimers form a complex with enoxaparin, a low-molecular weight heparin (LMWH), and that the resulting drug-dendrimer complex is effective in preventing deep vein thrombosis after pulmonary administration. Fourier Transform Infrared (FTIR) spectroscopy and the azure A assay were used to evaluate interactions between dendrimers and enoxaparin. The efficacy of polyamidoamine (PAMAM) dendrimers in enhancing pulmonary absorption of enoxaparin was studied by administering enoxaparin-dendrimer formulations into the lungs of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The optimized formulations were evaluated for their efficacy in preventing deep vein thrombosis in a rodent model. The safety of the formulations was tested by studying their effects on mucociliary transport rate (MTR) in a frog palate model and by measuring injury markers in rat bronchoalveolar fluid. The FTIR data and azure A assay revealed ionic interactions between the amino groups of cationic dendrimers and the carboxylic and sulfate groups of enoxaparin. Positively charged dendrimers increased the relative bioavailability of enoxaparin by 40%, while a negatively charged dendrimer had no effect. Formulations containing 1% G2 or 0.5% G3 PAMAM dendrimer plus enoxaparin were as efficacious in preventing deep vein thrombosis in a rat model as subcutaneously administered enoxaparin. The formulations did not adversely affect the MTR or produce extensive damage to the lungs. Positively charged dendrimers are a suitable carrier for pulmonary delivery of enoxaparin. They enhance pulmonary absorption of LMWH probably by reducing negative surface charge density of the drug molecule. PMID:17286291

  17. Where and When To Inject Low Molecular Weight Heparin in Hemodiafiltration? A Cross Over Randomised Trial

    PubMed Central

    Dhondt, Annemieke; Pauwels, Ruben; Devreese, Katrien; Eloot, Sunny; Glorieux, Griet; Vanholder, Raymond

    2015-01-01

    Background and Objective Low molecular weight heparins (LMWHs) are small enough to pass large pore dialysis membranes. Removal of LMWH if injected before the start of the session is possible during high-flux dialysis and hemodiafiltration. The aim of this study was to determine the optimal mode (place and time) of tinzaparin administration during postdilution hemodiafiltration. Study Design, Setting, Patients In 13 chronic hemodiafiltration patients, 3 approaches of injection were compared in a randomised cross over trial: i) before the start of the session at the inlet blood line filled with rinsing solution (IN0), ii) 5 min after the start at the inlet line filled with blood (IN5) and iii) before the start of the session at the outlet blood line (OUT0). Anti-Xa activity, thrombin generation, visual clotting score and reduction ratios of urea and beta2microglobulin were measured. Results Anti-Xa activity was lower with IN0 compared with IN5 and OUT0, and also more thrombin generation was observed with IN0. No differences were observed in visual clotting scores and no clinically relevant differences were observed in solute reduction ratio. An anti-Xa of 0.3 IU/mL was discriminative for thrombin generation. Anti-Xa levels below 0.3 IU/mL at the end of the session were associated with worse clotting scores and lower reduction ratio of urea and beta2microglobulin. Conclusions Injection of tinzaparin at the inlet line before the start of postdilution hemodiafiltration is associated with loss of anticoagulant activity and can therefore not be recommended. Additionally, we found that an anti-Xa above 0.3 IU/mL at the end of the session is associated with less clotting and higher dialysis adequacy. Trial Registration Clinicaltrials.gov NCT00756145 PMID:26076014

  18. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin.

    PubMed

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water-in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16-38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  19. Hypersulfated low molecular weight heparin with reduced affinity for antithrombin acts as an anticoagulant by inhibiting intrinsic tenase and prothrombinase.

    PubMed

    Anderson, J A; Fredenburgh, J C; Stafford, A R; Guo, Y S; Hirsh, J; Ghazarossian, V; Weitz, J I

    2001-03-30

    In buffer systems, heparin and low molecular weight heparin (LMWH) directly inhibit the intrinsic factor X-activating complex (intrinsic tenase) but have no effect on the prothrombin-activating complex (prothrombinase). Although chemical modification of LMWH, to lower its affinity for antithrombin (LA-LMWH) has no effect on its ability to inhibit intrinsic tenase, N-desulfation of LMWH reduces its activity 12-fold. To further explore the role of sulfation, hypersulfated LA-LMWH was synthesized (sLA-LMWH). sLA-LMWH is not only a 32-fold more potent inhibitor of intrinsic tenase than LA-LMWH; it also acquires prothrombinase inhibitory activity. A direct correlation between the extent of sulfation of LA-LMWH and its inhibitory activity against intrinsic tenase and prothrombinase is observed. In plasma-based assays of tenase and prothrombinase, sLA-LMWH produces similar prolongation of clotting times in plasma depleted of antithrombin and/or heparin cofactor II as it does in control plasma. In contrast, heparin has no effect in antithrombin-depleted plasma. When the effect of sLA-LMWH on various components of tenase and prothrombinase was examined, its inhibitory activity was found to be cofactor-dependent (factors Va and VIIIa) and phospholipid-independent. These studies reveal that sLA-LMWH acts as a potent antithrombin-independent inhibitor of coagulation by attenuating intrinsic tenase and prothrombinase.

  20. Development and qualification of a size exclusion chromatography coupled with multiangle light scattering method for molecular weight determination of unfractionated heparin.

    PubMed

    Beirne, John; Truchan, Hilary; Rao, Lin

    2011-01-01

    The molecular weight of unfractionated heparin was determined by size exclusion chromatography (SEC) coupled with multiangle light scattering (MALS) detection. The SEC/MALS method determines absolute molecular weight directly from the angular dependence of scattered light intensity as a function of concentration and does not rely on molecular weight standards for column calibration. The SEC/MALS method developed at Scientific Protein Laboratories was qualified in terms of specificity, precision, robustness, and accuracy. By eliminating the requirement of well-characterized molecular weight standards derived from heparin, the present procedure represents a clear improvement over the column calibration methods used in molecular weight determination. The SEC/MALS method is suitable for routine quality control of unfractionated heparin. PMID:20838778

  1. Effect of heparin and a low-molecular weight heparinoid on PAF-induced airway responses in neonatally immunized rabbits.

    PubMed Central

    Sasaki, M.; Herd, C. M.; Page, C. P.

    1993-01-01

    1. We have investigated the effect of an unfractionated heparin preparation, a low-molecular weight heparinoid (Org 10172) and the polyanionic molecule polyglutamic acid against PAF-induced airway hyperresponsiveness and pulmonary cell infiltration in neonatally immunized rabbits in vivo. 2. Exposure of neonatally immunized rabbits to aerosolized platelet activating factor (PAF) (80 micrograms ml-1 for 60 min) elicited an increase in airway responsiveness to inhaled histamine 24 h and 72 h following challenge which was associated with an infiltration of inflammatory cells into the airways, as assessed by bronchoalveolar lavage (BAL). 3. A significant increase in the total numbers of cells recovered from BAL fluid was associated with significantly increased cell numbers of neutrophils, eosinophils and mononuclear cells 24 h following PAF exposure. The numbers of eosinophils and neutrophils in the airways remained elevated 72 h after challenge. 4. The intravenous administration of an unfractionated preparation of heparin (100 units kg-1) or Org 10172 (100 micrograms kg-1) 30 min prior to PAF exposure significantly inhibited the airway hyperresponsiveness induced by PAF, 24 h and 72 h following challenge. PAF-induced hyperresponsiveness was not significantly affected by prior intravenous administration of polyglutamic acid (100 micrograms kg-1). 5. The intravenous administration of unfractionated heparin (100 units kg-1), Org 10172 (100 micrograms kg-1) or polyglutamic acid (100 micrograms kg-1) 30 min prior to PAF exposure significantly inhibited the expected increase in total cell infiltration. 6. This study shows that unfractionated heparin and a low-molecular weight heparinoid, Org 10172, are capable of inhibiting both the airway hyperresponsiveness and pulmonary cell infiltration induced by PAF in the rabbit. PMID:7693273

  2. Livedoid vasculopathy in a patient with lupus anticoagulant and MTHFR mutation: treatment with low-molecular-weight heparin.

    PubMed

    Abou Rahal, Jihane; Ishak, Rim S; Otrock, Zaher K; Kibbi, Abdul-Ghani; Taher, Ali T

    2012-11-01

    Livedoid vasculopathy is characterized by painful purpuric lesions on the extremities which frequently ulcerate and heal with atrophic scarring. For many years, livedoid vasculopathy has been considered to be a primary vasculitic process. However, there has been evidence considering livedoid vasculopathy as an occlusive vasculopathy due to a hypercoagulable state. We present the case of livedoid vasculopathy in a 21-year-old female who had been suffering of painful lower extremity lesions of 3 years duration. The patient was found to be lupus anticoagulant positive and homozygous for methylenetetrahydrofolate reductase C677T mutation. The patient was successfully treated with low-molecular-weight heparin. PMID:22592843

  3. The efficacy and safety of low-molecular-weight heparin and unfractionated heparin in the treatment of cerebral venous sinus thrombosis

    PubMed Central

    Afshari, Daryoush; Moradian, Nasrin; Nasiri, Freshteh; Razazian, Nazanin; Bostani, Arash; Sariaslani, Payam

    2015-01-01

    Objective: To compare the efficacy and safety of low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH) in the treatment of patients with cerebral venous sinus thrombosis (CVST), and to provide an appropriate treatment option in these patients. Method: This is a randomized double blind clinical trial conducted between December 2013 and December 2014. The subjects were selected among patients referred to Neurology Department, Imam Reza Hospital; affiliated to Kermanshah University of Medical Sciences, Kermanshah, Iran. Fifty-two cases of CVST were included in this study and randomly divided into 2 groups. Twenty-six cases received LMWH and the other 26 cases received UFH. The primary outcomes include hospital mortality rate and neurologic deficits as assessed by the National Institutes of Health Stroke Scale (NIHSS). The secondary end point was disability as measured by the Modified Rankin Scale (MRS). Results: We observed the rate of mortality and neurological deficits and disability based on NIHSS, and the MRS did not differ between the 2 groups. Conclusion: The efficacy of LMWH and UFH in reduction of neurologic deficit and functional disability in patients with CVST are similar. PMID:26492115

  4. Efficacy and safety of low molecular weight heparin compared to unfractionated heparin for chronic outpatient hemodialysis in end stage renal disease: systematic review and meta-analysis

    PubMed Central

    Kumar, Anita Ashok; Sethi, Mansha; Khanna, Rohit C.; Pancholy, Samir Bipin

    2015-01-01

    Background. Low molecular weight heparin (LMWH) is an effective anti-coagulant for thrombotic events. However, due to its predominant renal clearance, there are concerns that it might be associated with increased bleeding in patients with renal disease. Objectives. We systematically evaluated the efficacy and safety of LMWH compared to unfractionated heparin (UH) in end stage renal disease (ESRD) patients. Search Methods. Pubmed, Embase and cochrane central were searched for eligible citations. Selection Criteria. Randomized controlled trials, comparing LMWH and UH, involving adult (age > 18 years), ESRD patients receiving outpatient, chronic, intermittent hemodialysis were included. Data Collection and Analysis. Two independent reviewers performed independent data abstraction. I2 statistic was used to assess heterogeneity. Random effects model was used for meta-analysis. Results. Nineteen studies were included for systematic review and 4 were included for meta-analysis. There were no significant differences between LMWH and UFH for extracorporeal circuit thrombosis [risk ratio: 1 (95% CI [0.62–1.62])] and bleeding complications [risk ratio: 1.16 (95% CI [0.62–2.15])]. Conclusions. LMWH is as safe and effective as UFH. Considering the poor quality of studies included for the review, larger well conducted RCTs are required before conclusions can be drawn. PMID:25780780

  5. Development of a fluorescent anti-factor Xa assay to monitor unfractionated and low molecular weight heparins.

    PubMed

    Harris, Leanne F; Castro-López, Vanessa; Hammadi, Nissrin; O'Donnell, James S; Killard, Anthony J

    2010-06-15

    Fluorogenic assays have many potential advantages over traditional clot-based and chromogenic assays such as the absence of interference from a range of factor deficiencies as well as offering the possibility of assays in platelet rich plasma or whole blood. A fluorogenic anti-factor Xa (anti-FXa) assay has been developed for the determination of unfractionated heparin (UFH), low molecular weight heparins (LMWHs), namely enoxaparin and tinzaparin, and the synthetic heparinoid danaparoid, in commercial human pooled plasma. The assay was based on the complexation of heparin-spiked plasmas with exogenous FXa at a concentration of 4nM in the presence of 0.9microM of the fluorogenic substrate methylsulfonyl-D-cyclohexylalanyl-glycyl-arginine-7-amino-4-methylcoumarin acetate (Pefafluor FXa). Pooled plasma samples were spiked with concentrations of anticoagulants in the range 0-1.6U/ml. The assay was capable of the measurement of UFH and danaparoid in the range 0-1U/ml, and enoxaparin and tinzaparin in the range 0-0.8 and 0-0.6U/ml, respectively. Correlation coefficients generated by linear regression of the log/lin data analysis were between 0.93 and 0.96 for the anticoagulants tested. Assay percentage coefficients of variation were typically below 7%. PMID:20441964

  6. A comparison of the sensitivity of APTT reagents to the effects of enoxaparin, a low-molecular weight heparin.

    PubMed

    Ip, B K; Thomson, A R; Moriarty, H T

    2001-08-01

    Low-molecular weight heparin (LMWH) is the product of enzymatic or chemical degradation of unfractionated heparin (UFH). It has been found to have better bio-availibility, more predictable dose response and can be used as an alternative to UFH for prophylaxis and treatment of thrombotic disorders. It is claimed that no laboratory monitoring is necessary for LMWH therapy; however, for the aged, renal impaired, obese or grossly underweight, monitoring of dose effect with anti-Xa assay is recommended. The activated partial thromboplastin time (APTT), which is the test of choice for UFH monitoring, is believed to be insensitive to the effect of LMWH. The sensitivity of the APTT to heparin lies in the APTT reagent used. In this study, eight different APTT reagents were used to compare the APTT with anti-Xa activity in ex vivo plasma from patients who were on enoxaparin (LMWH, Clexane) therapy. It was found that, as with UFH, APTT reagents show variable sensitivity to LMWH. The APTTs from all eight reagents were found to have a linear relationship to anti-Xa activity. The APTT results using three of the reagents gave an indication of the use of LMWH therapy. It was also found that patients who were lupus anticoagulant (LA)-positive had much more prolonged APTTs when on LMWH therapy; however, a linear correlation between APTT and anti-Xa was not present in these patients.

  7. Comparison of biological activities of two low molecular weight heparins in 10 healthy volunteers.

    PubMed Central

    Azizi, M; Veyssier-Belot, C; Alhenc-Gelas, M; Chatellier, G; Billaud-Mesguish, E; Fiessinger, J N; Aiach, M

    1995-01-01

    1. Low molecular weight heparins (LMWHs) are produced by different depolymerization processes and may therefore differ with respect to their pharmacokinetic properties. 2. We designed a single dose, randomized cross-over study in 10 healthy volunteers to compare the 24 h pharmacokinetics of two LMWHs, reviparin and enoxaparin, which have been previously shown to be clinically equivalent in terms of post-operative deep vein thrombosis prevention, despite significant differences in their in vivo biological activity. The two LMWHs were subcutaneously administered at the same dosages that are used in clinical studies: 4250 anti-Xa iu for reviparin and 40 mg for enoxaparin which have similar in vitro anti-Xa activities. 3. The overall 24 h profiles of the plasma anti-Xa and anti-thrombin activities were similar for reviparin and enoxaparin. The Amax and the AUC(0, 24h) of plasma anti-Xa activity after reviparin administration were both slightly but significantly lower than those observed after enoxaparin administration (difference between treatments of 0.03 95% CI[0.01-0.05] iu ml-1 h and 0.56 95% CI[0.22-0.90] iu ml-1 for Amax and AUC(0, 24h) respectively). After adjustment for in vitro anti-Xa activity, the statistical difference between the two LMWHs persisted for the AUC(0, 24h) but not for the Amax of plasma anti-Xa activity. The tmax and the MRT values for plasma anti-Xa activity did not significantly differ between the two drugs. The t1/2 for reviparin did not significantly differ from that of enoxaparin (2.7 +/- 0.7 h vs 3.5 +/- 0.9 h respectively, NS). The Amax of the plasma anti-thrombin activity after reviparin administration was also slightly but significantly lower than that observed after enoxaparin administration, (difference between treatments of 0.018 95% CI[0.01-0.025] iu ml-1) whereas the AUC(0, 24h) of anti-thrombin activity vs time was not. A slight but significant increase of the activated partial thromboplastin time of a similar magnitude was

  8. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Lamprecht, Alf; Koenig, Petra; Ubrich, Nathalie; Maincent, Philippe; Neumann, Dirk

    2006-08-01

    Nanoparticles (NPs) have shown their efficiency in increasing the oral bioavailability of macromolecular drugs, among them heparin. However, mechanisms of absorption are still unclear. Here, heparin-loaded NPs were prepared from different polymers (Eudragit® RS, poly(lactic-co-glycolic acid) (PLGA), and their respective mixtures) and analysed for their mucoadhesive properties using a resonant mirror system. Subsequent binding and drug transport studies of the free heparin and heparin-loaded NPs were carried out on Caco-2 cells. Cationic NPs were found to be mucoadhesive, while pure drug and polyester NPs were not. The adsorption of anionic heparin masked the positive surface charge of the particles, thus partially diminishing the adhesiveness to mucin. Increased binding to Caco-2 cells was found for all NP formulation, with RS/PLGA NPs showing maximum binding. However, the transport of heparin was the same for the RS/PLGA NPs and the PLGA NPs and slightly higher than for the free drug. In all cases, no NP transport across the cell layer was observed. When Caco-2 cells were coated with an additional mucin layer, cell binding of RS NPs and RS/PLGA NPs was further increased. Transport across Caco-2 cells demonstrated similar tendencies to results obtained without mucin. In contrast, cationic NPs led to higher heparin transport in the presence of mucin. The mechanism of drug absorption associated with RS NPs was concluded to be independent of typical transcellular NP transport.

  9. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    PubMed

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources.

  10. Deep venous thrombosis and pulmonary embolism. Part 1. Initial treatment: usually a low-molecular-weight heparin.

    PubMed

    2013-04-01

    Patients with deep venous thrombosis are at a short-term risk of symptomatic or even life-threatening pulmonary embolism, and a long-term risk of post-thrombotic syndrome, characterised by lower-limb pain, varicose veins, oedema, and sometimes skin ulcers. What is the best choice of initial antithrombotic therapy following deep venous thrombosis or pulmonary embolism, in terms of mortality and short-term and long-term complications? How do the harm-benefit balances of the different options compare? To answer these questions, we reviewed the available literature using the standard Prescrire methodology. Unfractionated heparin has documented efficacy in reducing mortality and recurrent thromboembolic events in patients with pulmonary embolism or symptomatic proximal (above-knee) deep venous thrombosis. The authors of a systematic review selected 23 trials of low-molecular-weight heparin (LMWH) versus adjusted-dose unfractionated heparin in a total of 9587 patients. Deaths, recurrences and major bleeds were less frequent with LMWH than with unfractionated heparin. The results of other meta-analyses are similar, but all are undermined by a probable publication bias and methodological flaws. Compared to unfractionated heparin, LMWHs have the advantage of fixed-dose administration, once or twice daily, by subcutaneous injection. All available LMWHs seem to have similar efficacy. Those with the longest experience of use are enoxaparin, dalteparin and nadroparin. The harm-benefit balances of fondaparinux and rivaroxaban do not appear more favourable than that of an LMWH followed by an adjusted-dose vitamin K antagonist. A meta-analysis included 12 trials comparing thrombolysis with anticoagulation alone in 700 patients with deep venous thrombosis. Adding a thrombolytic drug did not reduce mortality or the incidence of pulmonary embolism, whereas it increased the incidence of bleeding. A meta-analysis of 13 trials failed to show that adding a thrombolytic drug to initial

  11. Ozonolysis of the double bond of the unsaturated uronate residue in low-molecular-weight heparin and K5 heparosan.

    PubMed

    Masuko, Sayaka; Higashi, Kyohei; Wang, Zhenyu; Bhaskar, Ujjwal; Hickey, Anne Marie; Zhang, Fuming; Toida, Toshihiko; Dordick, Jonathan S; Linhardt, Robert J

    2011-09-27

    Ozone is known to add across and cleave carbon-carbon double bonds. Ozonolysis is widely used for the preparation of pharmaceuticals, for bleaching substances and for killing microorganisms in air and water sources. Some polysaccharides and oligosaccharides, such as those prepared using chemical or enzymatic β-elimination, contain a site of unsaturation. We examined ozonolysis of low-molecular-weight heparins (LMWHs), enoxaparin and logiparin, and heparosan oligo- and polysaccharides for the removal of the nonreducing terminal unsaturated uronate residue. 1D (1)H NMR showed that these ozone-treated polysaccharides retained the same structure as the starting polysaccharide, except that the C4-C5 double bond in the nonreducing end unsaturated uronate had been removed. The anticoagulant activity of the resulting product from enoxaparin and logiparin was comparable to that of the starting material. These results demonstrate that ozonolysis is an important tool for the removal of unsaturated uronate residues from LMWHs and heparosan without modification of the core polysaccharide structure or diminution of anticoagulant activity. This reaction also has potential applications in the chemoenzymatic synthesis of bioengineered heparin from Escherichia coli-derived K5 heparosan.

  12. M118--a rationally engineered low-molecular-weight heparin designed specifically for the treatment of acute coronary syndromes.

    PubMed

    Kishimoto, Takashi Kei; Qi, Yi Wei; Long, Alison; Capila, Ishan; Sasisekharan, Ram; Guerrero, Luis; Fier, Ian; Roach, James; Venkataraman, Ganesh

    2009-11-01

    The initial choice of anticoagulant therapy administered in emergency departments for acute coronary syndromes (ACS) has important consequences for subsequent patient care, as neither unfractionated heparin (UFH) nor low-molecular-weight heparin (LMWH) are ideally suited for all potential clinical treatment pathways. UFH remains widely used for surgical interventions because of the ability to rapidly reverse its anticoagulant activity. However, the unpredictable pharmacokinetic profile of UFH presents safety issues, and the low subcutaneous bioavailability limits the utility of UFH for patients who are medically managed. LMWH has superior pharmacokinetic properties, but its anticoagulant activity cannot be effectively monitored or reversed during surgery. There is an unmet medical need for a baseline anticoagulant therapy that addresses these shortcomings while retaining the beneficial properties of both UFH and LMWH. We describe here M118, a novel LMWH designed specifically for use in the treatment of ACS. M118 shows broad anticoagulant activity, including potent activity against both factor Xa (~240 IU/mg) and thrombin (factor IIa; ~170 IU/mg), low polydispersity, high (78%) subcutaneous bioavailability in rabbits, and predictable subcutaneous and intravenous pharmacokinetics. Additionally, the anticoagulant activity of M118 is monitorable by standard coagulation assays and is reversible with protamine. M118 demonstrates superior activity to conventional LMWH in a rabbit model of abdominal arterial thrombosis without increasing bleeding risk, and is currently being evaluated in a phase II clinical trial evaluating efficacy and safety in patients undergoing percutaneous coronary intervention. PMID:19888526

  13. Dose titration study of tinzaparin, a low molecular weight heparin, in patients on chronic hemodialysis.

    PubMed

    Egfjord, M; Rosenlund, L; Hedegaard, B; Buchardt, H L; Stengel, C; Gardar, P; Andersen, L; Andersen, L

    1998-08-01

    The minimal necessary dose of Innohep (IH) (MNDI) (Innohep [tinzaparin], Leo Pharmaceutical Corp., Ballerup, Denmark) was examined in 40 patients switched from conventional heparin ([CH], Leo Pharmaceutical Corp.) to IH and in 13 patients already treated with IH. Clotting in the venous chamber and in the dialyzer was evaluated on a 4 point scale by visual inspection. IH was administrated as a bolus injection into the arterial side of the dialyzer at the beginning of dialysis sessions. The initial dose of IH was 50% of the total dose of CH used before the study (in respective IU). According to clotting in the venous chamber or dialyzer, the dose of IH was titrated by stepwise changes of 500 IU to the lowest possible dose until 3 subsequent dialysis sessions without clotting were obtained. The total dose of CH (bolus and infusion) before switching was 6,162 +/- 2,100 IU. The bleeding time from the cannulation site after dialysis, in 24 patients with A-V fistulas, was 7.1 +/- 2.8 min(triplicates). Eight patients were excluded before achieving the MNDI, 3 due to bleeding not clearly related to heparinization (1 due to gingival bleeding, 1 to epistaxis, and 1 to sugillations), 1 due to alopecia, 2 due to a need of more than 10,000 IU of IH, and 2 patients due to cessation of treatment resulting from anxiety. After switching over, the MNDI amounted to 66 +/- 26% in respective IU. The conversion IH/CH ratio correlated significantly to the blood flow rate and the type of dialyzer. When compared on 3 subsequent sessions before and after switching to IH, no differences were found in the bleeding time after decannulation and in clotting in the venous chamber while dialyzer clotting fell on the visual scale from an average of 0.36 to 0.19 (p < 0.01). No total clot formation was observed during the study. The MNDI correlated positively to the body weight, blood flow rate, and time on dialysis (with the respective coefficients of correlation of r being 0.58, 0.44, and 0.30, p

  14. [Ambulatory prevention of thrombosis with low molecular weight heparin in plaster immobilization of the lower extremity].

    PubMed

    Kock, H J; Schmit-Neuerburg, K P; Hanke, J; Hakmann, A; Althoff, M; Rudofsky, G; Hirche, H

    1993-06-01

    Plaster cast immobilisation following trauma is a major risk factor for the development of deep vein thrombosis. In our controlled, randomized and prospective study on patients with minor injuries incidence of DVT in conservatively treated out-patients with plaster cast immobilisation of the leg was 3.9% in the control group (n = 126) without prophylaxis. By s.c. self-application of LMV heparin once daily the number of DVT in the prophylaxis group (n = 115) was reduced to 0. No severe side effects of NMH were observed. We conclude that thromboprophylaxis with LMW heparin once daily up to now conspiciously reduced the risk of DVT in outpatients with plaster cast immobilisation of the leg.

  15. Measuring Anti–Factor Xa Activity to Monitor Low-Molecular-Weight Heparin in Obesity: A Critical Review

    PubMed Central

    Egan, Gregory; Ensom, Mary H H

    2015-01-01

    Background: The choice of whether to monitor anti–factor Xa (anti-Xa) activity in patients who are obese and who are receiving low-molecular-weight heparin (LMWH) therapy is controversial. To the authors’ knowledge, no systematic review of monitoring of anti-Xa activity in such patients has been published to date. Objective: To systematically ascertain the utility of monitoring anti-Xa concentrations for LMWH therapy in obese patients. Data Sources: MEDLINE (1946 to September 2014), the Cochrane Database of Systematic Reviews, Embase (1974 to September 2014), PubMed (1947 to September 2014), International Pharmaceutical Abstracts (1970 to September 2014), and Scopus were searched using the terms obesity, morbid obesity, thrombosis, venous thrombosis, embolism, venous thromboembolism, pulmonary embolism, low-molecular weight heparin, enoxaparin, dalteparin, tinzaparin, anti-factor Xa, anti-factor Xa monitoring, anti-factor Xa activity, and anti-factor Xa assay. The reference lists of retrieved articles were also reviewed. Study Selection and Data Extraction: English-language studies describing obese patients treated with LMWH or reporting anti-Xa activity were reviewed using a 9-step decision-making algorithm to determine whether monitoring of LMWH therapy by means of anti-Xa activity in obesity is warranted. Studies published in abstract form were excluded. Data Synthesis: The analysis showed that anti-Xa concentrations are not strongly associated with thrombosis or hemorrhage. In clinical studies of LMWH for thromboprophylaxis in bariatric surgery, orthopedic surgery, general surgery, and medical patients, and for treatment of venous thrombo embolism and acute coronary syndrome, anti-Xa activity can be predicted from dose of LMWH and total body weight; no difference in clinical outcome was found between obese and non-obese participants. Conclusions: Routinely determining anti-Xa concentrations in obese patients to monitor the clinical effectiveness of LMWH is

  16. A new plastic collection tube made of polyethylene terephtalate is suitable for monitoring traditional anticoagulant therapy (oral anticoagulant, unfractionated heparin, and low molecular weight heparin).

    PubMed

    Toulon, Pierre; Ajzenberg, Nadine; Smahi, Motalib; Guillin, Marie-Claude

    2007-01-01

    To improve the safety of blood collection, plastic tubes have been developed but various interactions with the coagulation system and/or antithrombotic drugs were reported with the first generation of such tubes. The aim of this multicentre study was to compare hemostasis test results measured in evacuated plastic tubes made of polyethylene terephtalate (VenoSafe, Terumo Europe) and in siliconized glass tubes containing the same citrate concentration (0.129 M). In addition, the impact of aging of the plastic tube was investigated by collecting blood samples in tubes at 8 months and at 1 month before expiry. Blood was drawn in 3 centres from untreated patients (n=269), patients on oral anticoagulant treatment (OAT, n=221), and patients treated with either unfractionated heparin (UFH, n=73) or a low molecular weight derivative (LMWH, n=48). Prothrombin time (PT) or INR, activated partial thromboplastin time (APTT) and anti-FXa activity were locally performed, when applicable. In untreated patients and in patients on OAT, PT and APTT values were found statistically shorter (p<0.05) when evaluated in plastic tubes than in glass tubes, except when PT was evaluated using a human thromboplastin. Surprisingly, significantly longer APTT and higher anti-FXa activities were obtained when blood from patients on UFH was drawn in plastic than in glass tubes. However, none of the differences had any clinical relevance (Bland-Altman analysis). In patients on anticoagulant treatment, there was no effect of aging of the plastic tubes. These results suggest that the plastic tube VenoSafe is suitable for coagulation testing both in untreated subjects and more interestingly in patients on traditional anticoagulant therapy during the whole shelf life indicated by the manufacturer. PMID:16426667

  17. Prophylaxis of venous thromboembolism: low molecular weight heparin compared to the selective anticoagulants rivaroxaban, dabigatran and fondaparinux.

    PubMed

    Welzel, D; Hull, R; Fareed, J

    2011-06-01

    Newer therapeutic options available in the prevention of postoperative thromboembolism, currently focused on fondaparinux, rivaroxaban and dabigatran warrant an overall therapeutic assessment. The constitutive comparisons with enoxaparin are based on a combined outcome measure solely driven by the incidence of "asymptomatic deep vein thrombosis". Its validity as a clinically relevant endpoint is missing if antithrombotics of different classes are compared. This is because they target different phases of thrombogenesis i. e. ahead and beyond the asymptomatic stage of thrombosis. Additional concerns refer to the dosing-regimens and their practical administration: Fondaparinux, rivaroxaban and dabigatran are dosed to achieve maximum effects very close to their limits of tolerance whereas wide dosing spectra for the low molecular weight herparin (LMWH)'s indicate the potential for dose adaptation and increase. The other disadvantage to the control-heparin originates in the timing for the 1st administration which doesn't fit in with the "just-in-time" principle. So the enoxaparin-regimen is lacking in benchmark-quality - with the consequence that the meaning of the Phase III-trials does'nt go beyond a mere technical demarcation from the marketed variant of the product as defined by the stipulations in the package insert. As to tolerance the selective anticoagulants exhibit an increased risk of major and other clinically relevant bleeding, exceeding that of enoxaparin by 30% (P<0.001). The outcome of the meta-analyses on fondaparinux, rivaroxaban and dabigatran is supported by product-specific calculations and assessments of the European Medicine Equivalence Agency (EMEA). Rivaroxaban and dabigatran show significant age-dependent renal accumulation. Because the dose-finding studies were restricted to patients over 60 year old the regimens definitely established are not applicable to younger patients. The reason for the limited therapeutic index of the selective

  18. Patient compliance with extended low molecular weight heparin injections following hip and knee arthroplasty.

    PubMed

    Deakin, Dan E; Mishreki, Andrew; Aslam, Nadim; Docker, Charles

    2010-01-01

    The use of extended duration thromboprophylaxis following hip and knee arthroplasty is becoming widespread. The aim of our study was to determine patient compliance with extended duration thromboprophylaxis using low molecular weight (LMWH) injections following hip and knee arthroplasty. 42 consecutive patients undergoing hip and knee arthroplasty were prospectively contacted during their fifth post operative week. A fully anonymised questionnaire was completed by each patient. All patients responded. One was excluded having been prescribed warfarin for pre existing atrial fibrillation. Twenty nine (71%) patients were discharged with the intention of self administering LMWH injections. Eight (20%) and four (9%) patients were discharged with the intention of administration by a relative or district nurse respectively. No patient required the person administering the injections to be changed after discharge from hospital. 90% (n=37) of patients reported not missing any doses. 10% (n=2) of patients missed one dose and 10% (n=2) missed two doses. Patient compliance with extended duration thromboprophylaxis using LMWH injections is extremely high. Oral thromboprophylaxis may be useful in the minority of patients requiring daily visits by a nurse to administer injections.

  19. Opposing Effects of Low Molecular Weight Heparins on the Release of Inflammatory Cytokines from Peripheral Blood Mononuclear Cells of Asthmatics

    PubMed Central

    Shastri, Madhur D.; Stewart, Niall; Eapen, Mathew; Peterson, Gregory M.; Zaidi, Syed Tabish R.; Gueven, Nuri; Sohal, Sukhwinder Singh; Patel, Rahul P.

    2015-01-01

    Background T-cell-mediated inflammatory cytokines, such as interleukin (IL)-4, IL-5, IL-13 and tumor necrosis factor-alpha (TNF-α), play an important role in the initiation and progression of inflammatory airways diseases. Low-molecular-weight heparins (LMWHs), widely used anticoagulants, possess anti-inflammatory properties making them potential treatment options for inflammatory diseases, including asthma. In the current study, we investigated the modulating effects of two LMWHs (enoxaparin and dalteparin) on the release of cytokines from stimulated peripheral blood mononuclear cells (PBMCs) of asthmatic subjects to identify the specific components responsible for the effects. Methods PBMCs from asthmatic subjects (consist of ~75% of T-cells) were isolated from blood taken from ten asthmatic subjects. The PBMCs were pre-treated in the presence or absence of different concentrations of LMWHs, and were then stimulated by phytohaemagglutinin for the release of IL-4, IL-5, IL-13 and TNF-α. LMWHs were completely or selectively desulfated and their anticoagulant effect, as well as the ability to modulate cytokine release, was determined. LMWHs were chromatographically fractionated and each fraction was tested for molecular weight determination along with an assessment of anticoagulant potency and effect on cytokine release. Results Enoxaparin inhibited cytokine release by more than 48%, whereas dalteparin increased their release by more than 25%. The observed anti-inflammatory effects of enoxaparin were independent of their anticoagulant activities. Smaller fractions, in particular dp4 (four saccharide units), were responsible for the inhibitory effect of enoxaparin. Whereas, the larger fractions, in particular dp22 (twenty two saccharide units), were associated with the stimulatory effect of dalteparin. Conclusion Enoxaparin and dalteparin demonstrated opposing effects on inflammatory markers. These observed effects could be due to the presence of structurally

  20. The Efficacy of Low Molecular Weight Heparin for the Prevention of Venous Thromboembolism after Hip Fracture Surgery in Korean Patients

    PubMed Central

    Kim, Kwang-Kyoun; Won, Ye-Yeon

    2016-01-01

    Purpose The aim of this study was to investigate the efficacy of low-molecular-weight heparin (LMWH) for the prevention of venous thromboembolism in Korean patients who underwent hip fracture surgery (HFS). Materials and Methods Prospectively, a total 181 cases were classified into the LMWH user group (116 cases) and LMWH non-user group (65 cases). Each group was sub-classified according to fracture types as follows: 81 cases of intertrochanteric fracture (group A: 49, group B: 32) and 100 cases of neck fracture (group C: 67, group D: 33). We compared the incidence of deep vein thrombosis (DVT) and pulmonary embolism (PE) according to LMWH use. Results Of the 181 cases, four DVTs were found in the LMWH user groups (1 in group A, and 3 in group C). One case of PE was found in LMWH non-user group D. The incidences of DVT and PE showed no statistically significant differences between the LMWH user and non-user groups (p=0.298 and 0.359, respectively). In subgroup analysis, no statistically significant differences were found between groups A and B and between groups C and D. Conclusion The administration of LMWH was not effective in the prevention of venous thromboembolism and PE in the Korean patients who underwent HFS. PMID:27401653

  1. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation.

    PubMed

    Paliwal, Rishi; Paliwal, Shivani R; Agrawal, Govind P; Vyas, Suresh P

    2012-01-17

    The aim of present study was to investigate the potential of mucoadhesive polymer chitosan (CS) and N-trimethyl chitosan (TMC) based nanoparticulate systems for oral bioavailability enhancement of low molecular weight heparin (LMWH). The TMC was synthesized by methylation of chitosan followed by characterization using infrared spectroscopy and (1)H-NMR spectroscopy. The IR and NMR spectra of TMC confirmed the presence of trimethyl groups and estimated the degree of quaternization for TMC about 46%. TMC nanoparticles were then prepared by ionic gelation method. The developed CS-NPs and TMC-NPs were characterized for various parameters including morphology, particle size, zeta potential, entrapment efficiency, in vitro release behavior and storage stability at different temperature and simulated gastrointestinal tract conditions. The fluorescent microscopy study confirmed the higher particle uptake of TMC-NPs by gastrointestinal epithelium in comparison to the CS-NPs. The concentration of LMWH in the systemic circulation followed by oral administration of formulations was estimated using FXa chromogenic assay. A significant increase (p<0.05) in the oral bioavailability of LMWH was observed with TMC-NPs than both CS-NPs as well as plain LMWH solution. These findings suggested that TMC nanoparicles hold promise for oral delivery of LMWH and clinical applicability for the treatment of vascular disorders like deep vein thrombosis and pulmonary embolism, etc. PMID:22079712

  2. Transdermal delivery of low molecular weight heparin loaded in flexible liposomes with bioavailability enhancement: comparison with ethosomes.

    PubMed

    Song, Yun-Kyoung; Hyun, Seo Yeon; Kim, Hyung-Tae; Kim, Chong-Kook; Oh, Jung-Mi

    2011-01-01

    Low molecular weight heparin (LMWH)-loaded flexible liposomes (flexosomes) were formulated for transdermal delivery, and their physicochemical and pharmacokinetic parameters were compared with LMWH-loaded ethosomes. Flexosomes had similar particle size compared with ethosomes, but their deformability was higher than that of ethosomes (76.7% vs. 46.8%). In vitro, flexosomes demonstrated 2.6-fold higher permeability coefficient than ethosomes. In comparison to LMWH aqueous solution, skin deposition of flexosome increased 3.2-fold, while that of ethosome increased only 2.0-fold. In vivo, after the topical application of flexosome to hairless mouse, [anti-Xa](max) was 1.11 IU/mL, while ethosomes showed only 0.32 IU/mL. Moreover, AUC(0-24 h) of flexosomes was 2.5-fold higher than ethosomes. In conclusion, the enhanced skin permeation and bioavailability of LMWH can be achieved with flexosomes in comparison with ethosomes. The LMWH transdermal delivery via flexosomes has the potential to replace the parenteral dosage forms for the treatment of venous thromboembolism, pulmonary embolism and cardiovascular events.

  3. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation.

    PubMed

    Paliwal, Rishi; Paliwal, Shivani R; Agrawal, Govind P; Vyas, Suresh P

    2012-01-17

    The aim of present study was to investigate the potential of mucoadhesive polymer chitosan (CS) and N-trimethyl chitosan (TMC) based nanoparticulate systems for oral bioavailability enhancement of low molecular weight heparin (LMWH). The TMC was synthesized by methylation of chitosan followed by characterization using infrared spectroscopy and (1)H-NMR spectroscopy. The IR and NMR spectra of TMC confirmed the presence of trimethyl groups and estimated the degree of quaternization for TMC about 46%. TMC nanoparticles were then prepared by ionic gelation method. The developed CS-NPs and TMC-NPs were characterized for various parameters including morphology, particle size, zeta potential, entrapment efficiency, in vitro release behavior and storage stability at different temperature and simulated gastrointestinal tract conditions. The fluorescent microscopy study confirmed the higher particle uptake of TMC-NPs by gastrointestinal epithelium in comparison to the CS-NPs. The concentration of LMWH in the systemic circulation followed by oral administration of formulations was estimated using FXa chromogenic assay. A significant increase (p<0.05) in the oral bioavailability of LMWH was observed with TMC-NPs than both CS-NPs as well as plain LMWH solution. These findings suggested that TMC nanoparicles hold promise for oral delivery of LMWH and clinical applicability for the treatment of vascular disorders like deep vein thrombosis and pulmonary embolism, etc.

  4. Transdermal delivery of low molecular weight heparin loaded in flexible liposomes with bioavailability enhancement: comparison with ethosomes.

    PubMed

    Song, Yun-Kyoung; Hyun, Seo Yeon; Kim, Hyung-Tae; Kim, Chong-Kook; Oh, Jung-Mi

    2011-01-01

    Low molecular weight heparin (LMWH)-loaded flexible liposomes (flexosomes) were formulated for transdermal delivery, and their physicochemical and pharmacokinetic parameters were compared with LMWH-loaded ethosomes. Flexosomes had similar particle size compared with ethosomes, but their deformability was higher than that of ethosomes (76.7% vs. 46.8%). In vitro, flexosomes demonstrated 2.6-fold higher permeability coefficient than ethosomes. In comparison to LMWH aqueous solution, skin deposition of flexosome increased 3.2-fold, while that of ethosome increased only 2.0-fold. In vivo, after the topical application of flexosome to hairless mouse, [anti-Xa](max) was 1.11 IU/mL, while ethosomes showed only 0.32 IU/mL. Moreover, AUC(0-24 h) of flexosomes was 2.5-fold higher than ethosomes. In conclusion, the enhanced skin permeation and bioavailability of LMWH can be achieved with flexosomes in comparison with ethosomes. The LMWH transdermal delivery via flexosomes has the potential to replace the parenteral dosage forms for the treatment of venous thromboembolism, pulmonary embolism and cardiovascular events. PMID:21425940

  5. Low molecular weight heparin mediating targeting of lymph node metastasis based on nanoliposome and enzyme-substrate interaction.

    PubMed

    Ye, Tiantian; Jiang, Xuewei; Li, Jing; Yang, Rui; Mao, Yuling; Li, Kai; Li, Liang; Chen, Fen; Yao, Jianhua; Wu, Yingliang; Yang, Xinggang; Wang, Shujun; Pan, Weisan

    2015-05-20

    The aim of our study is to develop a new function of low molecular weight heparin (LMWHEP) for targeting tumor metastatic lymph node based on LMWHEP-modified nanoliposome and LMWHEP-heparanase (HPA) interaction (LMWHEP-HPA). At First, LMWHEP-modified nanoliposomes (LMWHEP-LPs) were prepared by the electrostatic attraction and the physiochemical properties were evaluated. Then the effects of LMWHEP-HPA on the stability and drug release were investigated. In addition, the cellular uptake of LMWHEP-LPs was studied by using Hela, MCF-7, L929 and RAW264.7 cells. Finally, the targeting ability as well as the tissue distribution was examined in the mice model bearing Hela tumor lymph node metastasis. LMWHEP-LPs prepared had suitable physicochemical properties. The effect results of LMWHEP-HPA showed that LMWHEP coated on the surface of nanoliposome could be degraded by HPA. Compared with the unmodified-nanoliposome, the LMWHEP modification could improve the cellular uptake and increase the targeting ability to the metastatic lymph nodes according to LMWHEP-HPA. This study demonstrates LMWHEP is a highly promising polymer material for the targeting of tumor lymph node metastasis.

  6. Evaluation of the Oral Bioavailability of Low Molecular Weight Heparin Formulated With Glycyrrhetinic Acid as Permeation Enhancer.

    PubMed

    Motlekar, Nusrat A; Srivenugopal, Kalkunte S; Wachtel, Mitchell S; Youan, Bi-Botti C

    2006-02-01

    Low molecular weight heparin (LMWH) is the agent of choice for anticoagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, its therapeutic use is limited due to poor oral bioavailability. The aim of this study was to investigate the oral delivery of LMWH, ardeparin formulated with 18-beta glycyrrhetinic acid (GA), as an alternative to currently used subcutaneous (sc) delivery. Drug transport through Caco-2 cell monolayers was monitored in the presence and absence of GA by scintillation counting and transepithelial electrical resistance. Regional permeability studies using rat intestine were performed using a modified Ussing chamber. Cell viability in the presence of various concentrations of enhancer was determined by MTT assay. The absorption of ardeparin after oral administration in rats was measured by an anti-factor Xa assay. Furthermore, the eventual mucosal epithelial damage was histologically evaluated. Higher ardeparin permeability (~7-fold) compared to control was observed in the presence of 0.02 % GA. Regional permeability studies indicated predominant absorption in the duodenal segment. Cell viability studies showed no significant cytotoxicity below 0.01 % GA. Ardeparin oral bioavailability was significantly increased (F(relative)/(S.C). = 13.3%) without causing any damage to the intestinal tissues. GA enhanced the oral absorption of ardeparin both in vitro and in vivo. The oral formulation of ardeparin with GA could be absorbed in the intestine. These results suggest that GA may be used as an absorption enhancer for the oral delivery of LMWH. PMID:17710191

  7. Absorption enhancing effects of chitosan oligomers on the intestinal absorption of low molecular weight heparin in rats.

    PubMed

    Zhang, Hailong; Mi, Jie; Huo, Yayu; Huang, Xiaoyan; Xing, Jianfeng; Yamamoto, Akira; Gao, Yang

    2014-05-15

    Absorption enhancing effects of chitosan oligomers with different type and varying concentration on the intestinal absorption of low molecular weight heparin (LMWH) were examined by an in situ closed loop method in different intestinal sections of rats. Chitosan hexamer with the optimal concentration of 0.5% (w/v) showed the highest absorption enhancing ability both in the small intestine and large intestine. The membrane toxicities of chitosan oligomers were evaluated by morphological observation and determining the biological markers including amount of protein and activity of lactate dehydrogenase (LDH) released from intestinal epithelium cells. There was no obvious change both in levels of protein and LDH and morphology in the intestinal membrane between control and various chitosan oligomers groups, suggesting that chitosan oligomers did not induce any significant membrane damage to the intestinal epithelium. In addition, zeta potentials became less negative and amount of free LMWH gradually decreased when various chitosan oligomers were added to LMWH solution, revealing that electrostatic interaction between positively charged chitosan oligomers and negative LMWH was included in the absorption enhancing mechanism of chitosan oligomers. In conclusion, chitosan oligomers, especially chitosan hexamer, are safe and efficient absorption enhancers and can be used promisingly to improve oral absorption of LMWH.

  8. Comparative assessment of low-molecular-weight heparins in cancer from the perspective of patient outcomes and survival

    PubMed Central

    Falanga, Anna; Vignoli, Alfonso; Diani, Erika; Marchetti, Marina

    2011-01-01

    Patients with cancer are at high risk of developing venous thromboembolism (VTE), including deep venous thrombosis and pulmonary embolism. Compared to non-cancer patients, VTE in cancer is more frequently associated with clinical consequences, including recurrent VTE, bleeding, and an increase in the risk of death. Low-molecular-weight heparins (LMWHs) are commonly recommended for the prevention and treatment of VTE in cancer patients because of their favorable risk-to-benefit profile. Indeed, compared with vitamin K antagonists, LMWHs are characterized by a reduced need for coagulation monitoring, few major bleeding episodes, and once-daily dosing, which make these drugs more suitable in the cancer setting. Guidelines have been published recently with the aim to improve the clinical outcomes in cancer patients at risk of VTE and its complications. Coagulation activation in cancer may have a role not only in thrombosis but also in tumor growth and dissemination. Hence, inhibition of fibrin formation has been considered a possible tool against the progression of malignant disease. Clinical studies show that anticoagulant drugs may have a beneficial effect on survival in cancer patients, with a major role for LMWHs. Recently a number of prospective randomized clinical trials to test LMWHs to improve cancer survival as a primary endpoint in cancer patients have been conducted. Although the results are controversial, the interest in this research area remains high. PMID:22915978

  9. Low-molecular-weight heparin for prevention of placenta-mediated pregnancy complications: protocol for a systematic review and individual patient data meta-analysis (AFFIRM)

    PubMed Central

    2014-01-01

    Background Placenta-mediated pregnancy complications include pre-eclampsia, late pregnancy loss, placental abruption, and the small-for-gestational age newborn. They are leading causes of maternal, fetal, and neonatal morbidity and mortality in developed nations. Women who have experienced these complications are at an elevated risk of recurrence in subsequent pregnancies. However, despite decades of research no effective strategies to prevent recurrence have been identified, until recently. We completed a pooled summary-based meta-analysis that strongly suggests that low-molecular-weight heparin reduces the risk of recurrent placenta-mediated complications. The proposed individual patient data meta-analysis builds on this successful collaboration. The project is called AFFIRM, An individual patient data meta-analysis oF low-molecular-weight heparin For prevention of placenta-medIated pRegnancy coMplications. Methods/Design We conducted a systematic review to identify randomized controlled trials with a low-molecular-weight heparin intervention for the prevention of recurrent placenta-mediated pregnancy complications. Investigators and statisticians representing eight trials met to discuss the outcomes and analysis plan for an individual patient data meta-analysis. An additional trial has since been added for a total of nine eligible trials. The primary analyses from the original trials will be replicated for quality assurance prior to recoding the data from each trial and combining it into a common dataset for analysis. Using the anonymized combined data we will conduct logistic regression and subgroup analyses aimed at identifying which women with previous pregnancy complications benefit most from treatment with low-molecular-weight heparin during pregnancy. Discussion The goal of the proposed individual patient data meta-analysis is a thorough estimation of treatment effects in patients with prior individual placenta-mediated pregnancy complications and

  10. Low-molecular-weight heparin modulates vein wall fibrotic response in a plasminogen activator inhibitor 1-dependent manner

    PubMed Central

    Obi, Andrea T.; Diaz, Jose A.; Ballard-Lipka, Nicole L.; Roelofs, Karen J.; Farris, Diana M.; Lawrence, Daniel A.; Henke, Peter K.; Wakefield, Thomas W.

    2014-01-01

    Background Treatment with low-molecular-weight heparin (LMWH) favorably alters the vein wall response to deep venous thrombosis (DVT), although the mechanisms remain unclear. Previous studies have suggested that LMWH alters the levels of circulating plasminogen activator inhibitor 1 (PAI-1), a known mediator of fibrosis, and may improve endogenous fibrinolysis. We hypothesized that LMWH favorably alters the vein wall response by binding of PAI-1 and acceleration of fibrinolysis. Methods Wild-type and PAI-1 −/− mice underwent treatment with LMWH after induction of occlusive DVT. Vein wall and plasma were harvested and analyzed by enzyme-linked immunosorbent assay, zymography, real-time polymerase chain reaction, and immunohistochemistry. Results Wild-type mice treated with LMWH exhibited diminished vein wall fibrosis (0.6 ± 0.6 vs 1.4 ± 0.2; P < .01; n = 5) and elevation of circulating PAI-1 (1776 ± 342 vs 567 ± 104 ρg/mL; P < .01; n = 5) compared with untreated controls after occlusive DVT. PAI-1−/− mice treated with LMWH were not similarly protected from fibrosis, despite improved thrombus resolution. Treatment with LMWH was associated with decreased intrathrombus interleukin-lβ (68.6 ± 31.0 vs 223.4 ± 28.9 ρg/mg total protein; P < .01; n = 5) but did not alter inflammatory cell recruitment to the vein wall. PAI-1 −/− mice exhibited significantly elevated intrathrombus (257.2 ± 51.5 vs 4.3 ± 3.8 ρg/mg total protein; n = 5) and vein wall interleukin-13 (187.2 ± 57.6 vs 9.9 ± 1.1 ρg/mg total protein; P < .05; n = 5) as well as vein wall F4/80 positively staining monocytes (53 ± 11 vs 16 ± 2 cells/5 high-power fields; P < .05; n = 4). Conclusions LMWH did not accelerate venous thrombosis resolution but did protect against vein wall fibrosis in a PAI-1-dependent manner in an occlusive DVT model. Lack of PAI-1 correlated with accelerated venous thrombosis resolution but no protection from fibrosis. PAI-1 inhibition as a treatment strategy

  11. Attenuation of corneal neovascularization by topical low-molecular-weight heparin-taurocholate 7 without bleeding complication

    PubMed Central

    Kim, Jae Yong; Kim, Soo Yeon; Cheon, Mi Hyun; Kim, Eun-Soon; Song, In Seok; Kim, Myoung Joon; Tchah, Hungwon

    2016-01-01

    AIM To investigate the antiangiogenic effects and safety of topically administered low-molecular-weight heparin-taurocholate 7 (LHT7) on corneal neovascularization (CoNV). METHODS Twenty-four Sprague-Dawley rats were randomly distributed into four groups of six rats each. The central corneas were cauterized using a silver/potassium nitrate solution. From 2d after cauterization, 12.5 mg/mL (low LHT7 group) or 25 mg/mL (high LHT7 group) LHT7 was topically administered three times daily; 12.5 mg/mL bevacizumab was topically administered as positive control (bevacizumab) group, with normal saline (NS) administered as negative control (NS group). The corneas were digitally photographed to calculate the CoNV percentage from the neovascularized corneal area at 1 and 2wk. RESULTS The 4 study groups did not have different CoNV percentages at 1wk after injury (P>0.05). However, the low LHT, high LHT, and bevacizumab groups had significantly lower CoNV percentages than the NS group at 2wk (all P<0.05). No significant differences in CoNV percentage were found among the low LHT, high LHT, and bevacizumab groups (all P>0.05). All groups except the NS group had lower CoNV percentages at 2wk post-injury than the levels observed at 1wk (all P<0.05). CONCLUSION Topically-administered LHT7 inhibited CoNV without complication after chemical cauterization in the rat. PMID:27672587

  12. Low molecular weight heparin seems to improve local capillary circulation and healing of chronic foot ulcers in diabetic patients.

    PubMed

    Jörneskog, G; Brismar, K; Fagrell, B

    1993-01-01

    Ten diabetic patients with peripheral arterial occlusive disease, peripheral polyneuropathy and chronic foot ulcers were given 2500 U low molecular weight heparin (Fragmin, Kabi-Pharmacia AB, Sweden) subcutaneously once a day during 8 weeks. The mean age was 63 (47-80) years and the mean duration of foot ulcers 8 (4-12) months. All patients had previously received conventional treatment during 12 weeks, without any noticeable improvement on ulcer healing. The ulcer area was measured, and the skin microcirculation of the forefoot and around the ulcers was investigated before, during and after treatment with Fragmin. The total skin microcirculation was measured by laser Doppler fluxmetry, the nutritional skin microcirculation by vital capillaroscopy and the macrocirculation by determination of the ankle/arm pressure ratio. The ulcer area decreased significantly in eight patients of which four healed the ulcers completely. Of the remaining two patients one deteriorated, whereas one showed a decrease of the ulcer area during treatment, but an increase when treatment was stopped. The macro- and total microcirculation were unchanged in all patients, whereas the nutritional capillary circulation improved in seven out of nine patients, concomitantly with clinical improvement. The biological zero value (a flow-independent part of the LD signal) was high in 4 patients before treatment, but decreased during treatment and remained low even after treatment with Fragmin.-The results indicate that Fragmin positively influences the healing process of chronic foot ulcers in diabetic patients, possibly by improving the capillary circulation in the ulcer margin, in spite of an unchanged arterial and total skin microcirculation of the region.

  13. Strategies and outcomes of periprocedural bridging therapy with low-molecular-weight heparin in patients with mechanical heart valves.

    PubMed

    Schulman, Jacqueline M; Majeed, Ammar; Mattsson, Eva; Schulman, Sam; Holmström, Margareta; Ågren, Anna

    2015-11-01

    Patients with mechanical heart valves (MHV) undergoing invasive procedures often receive periprocedural bridging with low-molecular-weight heparin (LMWH). The bridging strategies used in real-life and the predictors for bleeding and thrombosis are not well studied. We retrospectively assessed patients with MHV that underwent invasive procedures requiring vitamin K antagonist interruption and LMWH bridging. Thromboembolic and bleeding events occurring up to 30 days after the procedures were recorded. Predictors of major bleeding events (MBEs) were analyzed with logistic regression. We evaluated 547 patients with MHV who underwent 275 procedures during a 6.5-year period. Bridging with LMWH was used in 185 procedures in a total of 117 patients. Combined pre- and post-operative bridging was the most frequently employed (63 %). Doses of LMWH were prophylactic in 96 (52 %) of the procedures and therapeutic in 89 (48 %). The procedure-related bleeding risk was evaluated as high in 70 (38 %) and low in 115 (62 %) of the procedures. There was a trend to more frequent use of prophylactic doses (61 %) in high-risk surgery, and more therapeutic doses (53 %) in low-risk ones. There were 36 bleeding episodes, 21 (11 % of procedures) of which were classified as MBEs, but there were no thromboembolic events. Most MBEs (n = 14; 67 %) occurred in surgeries with high bleeding risk. In the multivariate analysis, the bleeding risk of the surgery itself was the only independent predictor for MBEs. For patients with MHV receiving perioperative bridging with LMWH, the major predictor for MBE is the bleeding risk of the surgery.

  14. Comparative studies on chitosan and polylactic-co-glycolic acid incorporated nanoparticles of low molecular weight heparin.

    PubMed

    Yang, Tianzhi; Nyiawung, Divine; Silber, Alexandra; Hao, Jiukuan; Lai, Leanne; Bai, Shuhua

    2012-12-01

    This study was performed to test the feasibility of chitosan and polylactic-co-glycolic acid (PLGA) incorporated nanoparticles as sustained-release carriers for the delivery of negatively charged low molecular weight heparin (LMWH). Fourier transform infrared (FTIR) spectrometry was used to evaluate the interactions between chitosan and LMWH. The shifts, intensity, and broadening of the characteristic peaks for the functional groups in the FTIR spectra indicated that strong interactions occur between the positively charged chitosans and the negatively charged LMWHs. Three types of LMWH nanoparticles (NP-1, NP-2, and NP-3) were prepared using chitosan with or without PLGA: NP-1 nanoparticles were formed by polyelectrolyte complexation after single mixing, NP-2 nanoparticles were prepared by polyelectrolyte complexation after single emulsion-diffusion-evaporation, and NP-3 nanoparticles were optimized by double emulsion-diffusion-evaporation. NP-3 nanoparticles of LMWH prepared by the emulsion-diffusion-evaporation method showed significant differences in particle morphology, size, zeta potential, and drug release profile compared to NP-1 nanoparticles formed by polyelectrolyte complexation. Another ionic complex of LMWH with chitosan-incorporated PLGA nanoparticles (NP-2) showed lower drug entrapment efficiency than that of NP-1 and NP-3. The drug release rate of NP-3 was slower than the release rates of NP-1 and NP-2, although particle morphology of NP-3 was similar to that of NP-2. Cell viability was not adversely affected when cells were treated with all three types of nanoparticles. The data presented in this study demonstrate that nanoparticles formulated with chitosan-PLGA could be a safe sustained-release carrier for the delivery of LMWH.

  15. Histopathologic effects of a low molecular weight heparin on bone healing in rats: a promising adjuvant in dacryocystorhinostomy

    PubMed Central

    Alp, Mehmet Numan; Oken, Ozdamar Fuad; Sargon, Mustafa Fevzi; Ucaner, Ahmet

    2016-01-01

    AIM To investigate the effect of short-term prophylactic dose of a low molecular weight heparin (LMWH) drug on the bone healing process in an animal model simulating the osteotomy obtained in dacryocystorhinostomy. METHODS Forty male Wistar albino rats were divided into 2 groups. Subcutaneous injections of enoxaparin 1 mg/kg (enoxaparin-treated group) and saline solution (control group) were performed once daily for 4d, beginning on the first preoperative day. The osteotomy was created at the femoral diaphysis in all animals by using a Kirschner wire. Each group was further divided into 2 subgroups depending on the timing of the second operation, 14 or 21d following initial osteotomy. Patent osteotomy area on the second and the third weeks in each group were calculated by using a computer software on digital micrographs. RESULTS The patent osteotomy areas at the second and the third weeks were significantly larger in the enoxaparin-treated group than those of the control group (P<0.001 for each time-period). In the control group, the patent osteotomy area at the third week of healing was significantly smaller than that of the second week (P=0.003), whereas there was no significant difference between these two measurements in the enoxaparin-treated group (P=0.185). CONCLUSION Short-term administration of enoxaparin resultes in a significant alteration in bone healing at 14 and 21d after injury. LMWHs can be regarded as promising alternative adjuvants in dacryocystorhinostomy after being evaluated with further clinical and animal studies. PMID:27366684

  16. Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan nanoparticles for delivery of low-molecular-weight heparin.

    PubMed

    Mahjub, Reza; Heidari Shayesteh, Tavakol; Radmehr, Moojan; Vafaei, Seyed Yaser; Amini, Mohsen; Dinarvand, Rasoul; Dorkoosh, Farid Abedin

    2016-01-01

    The aim of this study was preparation, optimization and in vitro characterization of nanoparticles composed of 6-[O-carboxymethyl]-[N,N,N-trimethyl] (TMCMC) for oral delivery of low-molecular-weight heparin. The chitosan derivative was synthesized. Nanoparticles were prepared using the polyelectrolyte complexation method. Box-Behnken response surface experimental design methodology was used for optimization of nanoparticles. The morphology of nanoparticles was studied using transmission electron microscopy. In vitro release of enoxaparin from nanoparticles was determined under simulated intestinal fluid. The cytotoxicity of nanoparticles on a Caco-2 cell line was determined, and finally the transport of prepared nanoparticles across Caco-2 cell monolayer was defined. Optimized nanoparticles with proper physico-chemical properties were obtained. The size, zeta potential, poly-dispersity index, entrapment efficiency and loading efficiency of nanoparticles were reported as 235 ± 24.3 nm, +18.6 ± 2.57 mV, 0.230 ± 0.03, 76.4 ± 5.43% and 12.6 ± 1.37%, respectively. Morphological studies revealed spherical nanoparticles with no sign of aggregation. In vitro release studies demonstrated that 93.6 ± 1.17% of enoxaparin released from nanoparticles after 600 min of incubation. MTT cell cytotoxicity studies showed no cytotoxicity at 3 h post-incubation, while the study demonstrated concentration-dependent cytotoxicity after 24 h of exposure. The obtained data had shown that the nanoparticles prepared from trimethylcarboxymethyl chitosan may be considered as a good candidate for oral delivery of enoxaparin.

  17. Attenuation of corneal neovascularization by topical low-molecular-weight heparin-taurocholate 7 without bleeding complication

    PubMed Central

    Kim, Jae Yong; Kim, Soo Yeon; Cheon, Mi Hyun; Kim, Eun-Soon; Song, In Seok; Kim, Myoung Joon; Tchah, Hungwon

    2016-01-01

    AIM To investigate the antiangiogenic effects and safety of topically administered low-molecular-weight heparin-taurocholate 7 (LHT7) on corneal neovascularization (CoNV). METHODS Twenty-four Sprague-Dawley rats were randomly distributed into four groups of six rats each. The central corneas were cauterized using a silver/potassium nitrate solution. From 2d after cauterization, 12.5 mg/mL (low LHT7 group) or 25 mg/mL (high LHT7 group) LHT7 was topically administered three times daily; 12.5 mg/mL bevacizumab was topically administered as positive control (bevacizumab) group, with normal saline (NS) administered as negative control (NS group). The corneas were digitally photographed to calculate the CoNV percentage from the neovascularized corneal area at 1 and 2wk. RESULTS The 4 study groups did not have different CoNV percentages at 1wk after injury (P>0.05). However, the low LHT, high LHT, and bevacizumab groups had significantly lower CoNV percentages than the NS group at 2wk (all P<0.05). No significant differences in CoNV percentage were found among the low LHT, high LHT, and bevacizumab groups (all P>0.05). All groups except the NS group had lower CoNV percentages at 2wk post-injury than the levels observed at 1wk (all P<0.05). CONCLUSION Topically-administered LHT7 inhibited CoNV without complication after chemical cauterization in the rat.

  18. Additive and synergistic effects of a low-molecular-weight, heparin-like molecule and low doses of cyclosporin in preventing arterial graft rejection in rats.

    PubMed

    Plissonnier, D; Amichot, G; Lecagneux, J; Duriez, M; Gentric, D; Michel, J B

    1993-01-01

    Arteriosclerotic intimal proliferation is one of the main long-term complications of organ transplantation. Low-molecular-weight, heparin-like molecules prevent myointimal proliferation in arterial wall injury and limit rejection in skin allografts. Cyclosporin limits rejection but has no major effect on intimal proliferation. Therefore, an experimental protocol was designed to test whether heparin-like molecules interacted with low doses of cyclosporin to prevent arterial wall immune system injury and response in a model of arterial graft rejection in normotensive and hypertensive rats. Aortic allografts were performed in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) normotensive control rats. Four groups of 10 allografted (SHR and WKY) rats were used: one group was treated with placebo, one with low doses of cyclosporin (2 mg/kg body wt per day), one with low-molecular-weight, heparin-like molecule (1 mg/kg body wt per hour), and one with low doses of cyclosporin plus low-molecular-weight, heparin-like molecule. Ten SHRs and 10 WKYs were isografted and served as the control groups. All rats were killed 8 weeks after aortic grafting. Structural parameters of the grafted segment were measured by morphometric analysis on formalin-fixed sections with specific stains. The classical signs of immune system injury and response were present in the untreated allografts in SHRs and WKYs: inflammatory infiltration of the adventitia, medial injury, and intimal proliferative response. Low doses of cyclosporin had a significant beneficial effect on immune medial injury by increasing medial thickness and the number of remaining smooth muscle cells and decreasing the extracellular matrix injury. Cyclosporin had no protective effect on intimal proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Successful Treatment of Dental Infection-Induced Chronic Cavernous Sinus Thrombophlebitis With Antibiotics and Low-Molecular-Weight Heparin: Two Case Reports.

    PubMed

    Li, Yuan; Zheng, Bo; Chen, Kangning; Gui, Li

    2015-08-01

    Two patients developed cavernous sinus thrombophlebitis from a tooth infection. A 36-year-old man experienced a severe headache with bilateral third and sixth cranial nerve palsies after extraction of his left upper third molar. Another 53-year-old diabetic man developed fever, headache, and bilateral complete ophthalmoplegia after a tooth infection. The brain magnetic resonance imaging scans of both patients showed bilateral cavernous sinus partial thrombosis. Broad-spectrum antibiotics plus low-molecular-weight heparin successfully resolved all symptoms. Both patients recovered fully without any recurrence at the 3-month follow-up visit.

  20. Successful Treatment of Dental Infection-Induced Chronic Cavernous Sinus Thrombophlebitis With Antibiotics and Low-Molecular-Weight Heparin: Two Case Reports.

    PubMed

    Li, Yuan; Zheng, Bo; Chen, Kangning; Gui, Li

    2015-08-01

    Two patients developed cavernous sinus thrombophlebitis from a tooth infection. A 36-year-old man experienced a severe headache with bilateral third and sixth cranial nerve palsies after extraction of his left upper third molar. Another 53-year-old diabetic man developed fever, headache, and bilateral complete ophthalmoplegia after a tooth infection. The brain magnetic resonance imaging scans of both patients showed bilateral cavernous sinus partial thrombosis. Broad-spectrum antibiotics plus low-molecular-weight heparin successfully resolved all symptoms. Both patients recovered fully without any recurrence at the 3-month follow-up visit. PMID:26173405

  1. Parnaparin, a low-molecular-weight heparin, prevents P-selectin-dependent formation of platelet-leukocyte aggregates in human whole blood.

    PubMed

    Maugeri, Norma; Di Fabio, Giovannina; Barbanti, Miriam; de Gaetano, Giovanni; Donati, Maria Benedetta; Cerletti, Chiara

    2007-06-01

    Parnaparin, a low-molecular-weight heparin (LMWH), prevents platelet activation and interaction with polymorphonuclear leukocyte (PMN) in a washed cell system. The in-vitro effect of parnaparin was studied here on platelet-PMN aggregates formed with more physiologic approaches in whole blood, in parallel with unfractionated heparin and enoxaparin, another LMWH. Citrated blood from healthy subjects was stimulated: i) from passage through the "Platelet Function Analyzer" (PFA-100), a device that exposes blood to standardized high shear flow through collagen/ADP cartridges; ii) by collagen and ADP (2 and 50 mug/ml, respectively) added in combination under stirring in an aggregometer cuvette; iii) with recombinant Tissue Factor, to generate thrombin concentrations able to activate platelets without inducing blood clotting, or iv) the Thrombin Receptor Activating Peptide-6 (TRAP-6). Platelet P-selectin and platelet-PMN aggregates were measured by flow cytometry upon stimulation of blood. Fibrinogen binding to platelets and markers of PMN activation were also detected. Platelet P-selectin expression and platelet-PMN aggregate formation were induced in all four activation conditions tested. Parnaparin prevented in a concentration-dependent manner (0.3-0.8 IUaXa/ml) the expression of P-selectin and the formation of mixed aggregates, while the two reference heparin preparations had a much weaker effect. Platelet fibrinogen binding and PMN activation markers (fibrinogen binding, CD11b and CD40) were also prevented by parnaparin. These data extend in more physiological systems of platelet activation, the anti-inflammatory profile of parnaparin, previously reported in washed cells. The greater effect of parnaparin, as compared to the reference heparins, could be due to chemico-physical differences possibly unrelated to their anticoagulant effect. PMID:17549299

  2. Effect of dalteparin, a low-molecular-weight heparin, as adjunctive therapy in patients with Kawasaki disease: a retrospective study

    PubMed Central

    2014-01-01

    Background Dalteparin, a low-molecular-weight heparin, has anticoagulant and anti-angiogenic activity. This study investigated whether dalteparin reduced coronary artery lesion (CAL) prevalence, and resistance to intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Methods This retrospective study comprised two parts. In the first cohort, 126 patients with KD (68 male, 58 female; median age: 22 months, range: 1–67 months) admitted to Nihon University Nerima-Hikarigaoka Hospital from January 2004 to June 2008, received either dalteparin 75 IU/kg/day, IVIG 400 mg/kg/day for 5 consecutive days, and aspirin 30 mg/kg/day, or dalteparin 75 IU/kg/day and aspirin 30 mg/kg/day, until clinical improvement. Control data came from the 2005–6 Nationwide KD survey. In the second cohort, 112 patients with KD (59 male, 53 female; median age: 19 months, range: 1–66 months) admitted from June 2010 to February 2012, received either dalteparin 75 IU/kg/day, IVIG 2.0 g/kg over 12 h, and aspirin 30 mg/kg/day, or dalteparin 75 IU/kg/day and aspirin 30 mg/kg/day. Control data came from the 2009–10 Nationwide KD survey. No patients enrolled in the nationwide surveys received dalteparin. All patients at our institution were given dalteparin in their combination therapy. Results A comparison of the first cohort with controls in the nationwide survey showed that the prevalence of initial administration of IVIG was 80.2% versus 86.0%; the rate of additional IVIG administration was 7.1% versus 14.0% (p = 0.03); CAL prevalence in the acute period was 4.8% versus 11.9% (p < 0.01); and the prevalence of cardiovascular sequelae was 0% versus 3.8% (p < 0.05). A comparison of the second cohort with controls in the nationwide survey showed that the rate of initial administration of IVIG was 92.9% versus 89.5%; the rate of additional IVIG administration was 8.9% versus 17.1% (p = 0.02); the prevalence of resistance to IVIG was 3.6% versus 14.9% (p

  3. Determination of the molecular weight of low-molecular-weight heparins by using high-pressure size exclusion chromatography on line with a triple detector array and conventional methods.

    PubMed

    Bisio, Antonella; Mantegazza, Alessandra; Vecchietti, Davide; Bensi, Donata; Coppa, Alessia; Torri, Giangiacomo; Bertini, Sabrina

    2015-01-01

    The evaluation of weight average molecular weight (Mw) and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs). As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC), the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn) by HP-SEC combined with a triple detector array (TDA) was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS); refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep) and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI) and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i) γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii) the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of the lower

  4. Determination of the molecular weight of low-molecular-weight heparins by using high-pressure size exclusion chromatography on line with a triple detector array and conventional methods.

    PubMed

    Bisio, Antonella; Mantegazza, Alessandra; Vecchietti, Davide; Bensi, Donata; Coppa, Alessia; Torri, Giangiacomo; Bertini, Sabrina

    2015-03-19

    The evaluation of weight average molecular weight (Mw) and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs). As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC), the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn) by HP-SEC combined with a triple detector array (TDA) was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS); refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep) and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI) and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i) γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii) the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of the lower

  5. Low Molecular Weight Heparin (LMWH) Improves Peritoneal Function and Inhibits Peritoneal Fibrosis Possibly through Suppression of HIF-1α, VEGF and TGF-β1

    PubMed Central

    Li, Juan; Guo, Zhi Yong; Gao, Xian Hua; Bian, Qi; Jia, Meng; Li Lai, Xue; Wang, Tie Yun; Bian, Xiao Lu; Wang, Hai Yan

    2015-01-01

    Background Peritoneal fibrosis is the major cause of ultrafiltration failure, and intraperitoneal administration of Low Molecular Weight Heparin (LMWH) was reported to protect peritoneal function. But the exact mechanism of its influence on peritoneal structure and function is still unknown. Methods A fibrosis model of rat was established by intraperitoneal (IP) administration of PD fluid and Erythromycin Lactobionate. Fifty-two rats were randomly divided into 6 groups: (1) normal control group (CON, n = 6); (2) normal saline group (NS, n = 10); (3) high-glucose group (GLU, n = 10); (4) heparin group (HEP, n = 6); (5) low dose LMWH group (LLMWH, n = 10); (6) high dose LMWH group (HLMWH, n = 10). Two hour peritoneal equilibration test was performed after 28 days of intervention. The peritoneum, mesentery and omentum were harvested, and evaluated by Hematoxylin-Eosin and Masson Trichrome staining. The expressions of HIF-1α, VEGF and TGF-β1 in parietal peritoneum were detected by IHC and RT-PCR (Reverse Transcriptase Polymerase Chain Reaction). Results Compared with group CON and NS, ultrafiltration volume and D2/D0 glucose in group GLU decreased significantly, D/Purea (Dialysate-Plasma ratio of urea), D/Palb (Dialysate-Plasma ratio of albumin), peritoneal thickness, neoangiogenesis and inflammatory reaction increased significantly (all P<0.05). Administration of heparin and LMWH markedly alleviated these above pathological changes. The protein and mRNA levels of HIF-1α, VEGF and TGF-β1 increased significantly in group GLU, and decreased significantly after administration of LMWH in a dose-dependent manner. Conclusions LMWH ameliorates peritoneal function and inhibits peritoneal fibrosis, possibly through suppression of HIF-1α, VEGF and TGF-β1. PMID:25723475

  6. Modification of polyurethane surface with an antithrombin-heparin complex for blood contact: influence of molecular weight of polyethylene oxide used as a linker/spacer.

    PubMed

    Sask, Kyla N; Berry, Leslie R; Chan, Anthony K C; Brash, John L

    2012-01-31

    Polyurethane (PU) was modified using isocyanate chemistry to graft polyethylene oxide (PEO) of various molecular weights (range 300-4600). An antithrombin-heparin (ATH) covalent complex was subsequently attached to the free PEO chain ends, which had been functionalized with N-hydroxysuccinimide (NHS) groups. Surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS) to confirm the modifications. Adsorption of fibrinogen from buffer was found to decrease by ~80% for the PEO-modified surfaces compared to the unmodified PU. The surfaces with ATH attached to the distal chain end of the grafted PEO were equally protein resistant, and when the data were normalized to the ATH surface density, PEO in the lower MW range showed greater protein resistance. Western blots of proteins eluted from the surfaces after plasma contact confirmed these trends. The uptake of ATH on the PEO-modified surfaces was greatest for the PEO of lower MW (300 and 600), and antithrombin binding from plasma (an indicator of heparin anticoagulant activity) was highest for these same surfaces. The PEO-ATH- and PEO-modified surfaces also showed low platelet adhesion from flowing whole blood. It is concluded that for the PEO-ATH surfaces, PEO in the low MW range, specifically MW 600, may be optimal for achieving an appropriate balance between resistance to nonspecific protein adsorption and the ability to take up ATH and bind antithrombin in subsequent blood contact.

  7. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    PubMed

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  8. Low-Molecular-Weight Heparin (Reviparin) Reduces the Incidence of Femoropopliteal In-Stent Stenosis: Preliminary Results of an Ongoing Study

    SciTech Connect

    Strecker, Ernst-Peter K.; Goettmann, Dieter; Boos, Irene B. L.; Vetter, Sylvia

    1998-09-15

    Purpose: To examine the efficacy of the low-molecular-weight heparin, reviparin, for prevention of femoropopliteal stent restenosis. Methods: Forty-two patients who had implantation of flexible tantalum stents for the treatment of stenosis (n= 24) or occlusion (n= 18) of the femoral (n= 27) or popliteal (n= 15) arteries were included in this study protocol. An intraarterial bolus of 5000 IU heparin was given before percutaneous transluminal angioplasty (PTA), and in the case of stent implantation due to unsuccessful PTA, an additional dose of reviparin (3500 anti-factor Xa IU) was given. Postprocedurally, 10,500 anti-factor Xa IU of reviparin were administered intravenously over 24 hr, followed by 3500 anti-factor Xa IU subcutaneously twice a day for 23 days. Oral aspirin (100 mg/day) was prescribed for the long term. Follow-up criteria (maximum follow-up 37 months) were clinical symptoms, Doppler ankle arm indices, color and duplex sonography, and angiography for suspicion of restenosis. Results: Early stent thromboses were not observed. Overall primary patency rate (PPR) was 88% {+-} 6.0% (1 year) and 74% {+-} 10.1% (2 years). Major hemorrhagic complications have not occurred. Conclusion: Reviparin administered in a high dose over a period of 24 days is a safe medication regimen and provides excellent patency rates after stent implantation.

  9. The effects of unfractionated heparin, low molecular weight heparin and danaparoid on the thromboelastogram (TEG): an in-vitro comparison of standard and heparinase-modified TEGs with conventional coagulation assays.

    PubMed

    Coppell, Jason A; Thalheimer, Ulrich; Zambruni, Andrea; Triantos, Christos K; Riddell, Anne F; Burroughs, Andrew K; Perry, David J

    2006-03-01

    To investigate the effects of unfractionated heparin (UFH), low molecular weight heparin (LMWH) and danaparoid (DPD) added to whole blood in vitro on standard and heparinase-modified thromboelastogram (TEG) parameters compared with conventional assays of coagulation. The effects of UFH, LMWH and DPD on standard TEG parameters were compared with the prothrombin time, activated partial thromboplastin time, thrombin time and anti-activated factor X (anti-FXa) activity, at concentrations of these anticoagulants ranging from 0.025 to 1 U/ml. In the second part of the study, the effects of very low concentrations (0.005-0.05 U/ml) of UFH, LMWH and DPD on the difference between standard and heparinase-modified TEG parameters were compared with the prothrombin time, activated partial thromboplastin time, thrombin time and anti-FXa activity. Standard TEG parameters were outside the reference range at lower concentrations of UFH, LMWH and DPD than most conventional coagulation assays were able to detect. Only anti-FXa activity was more sensitive to the presence of these anticoagulants than the standard TEG alone. The lowest concentration of UFH, LMWH and DPD used in this study (0.005 U/ml) caused significant differences between the standard and heparinase-modified alpha-angles of the TEG. In addition, the difference between standard and heparinase-modified TEG parameters distinguished between low concentrations (0.005-0.05 U/ml) of UFH with greater sensitivity than anti-FXa activity, but were less sensitive to LMWH and DPD. The standard TEG is more sensitive to UFH, LMWH and DPD than most conventional coagulation tests, with the exception of anti-FXa activity. Calculation of the difference between standard and heparinase-modified TEG parameters greatly increases the sensitivity of the assay for the effects of these anticoagulants, and is more sensitive to very low quantities of UFH than anti-FXa activity. PMID:16479191

  10. Biomedical application of low molecular weight heparin/protamine nano/micro particles as cell- and growth factor-carriers and coating matrix.

    PubMed

    Ishihara, Masayuki; Kishimoto, Satoko; Takikawa, Makoto; Hattori, Hidemi; Nakamura, Shingo; Shimizu, Masafumi

    2015-05-22

    Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm-3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures.

  11. Low molecular weight heparin in patients undergoing free tissue transfer following head and neck ablative surgery: review of efficacy and associated complications.

    PubMed

    Eley, Karen A; Parker, Rachel J; Watt-Smith, Stephen R

    2013-10-01

    Most microsurgeons report the use of anticoagulants in their routine practice. Anti-Xa concentrations are preferentially used to monitor treatment with low molecular weight heparin (LMWH). The aim of this retrospective study was to measure the therapeutic response to standard dosing with LMWH (using anti-Xa) in patients after ablative and reconstructive surgery for head and neck cancer, and to review the associated risk of bleeding. We retrospectively reviewed 153 patients who had undergone resection of primary or recurrent tumours of the head and neck with free flap reconstruction. In total, 173 free flap procedures were completed. Medical records were reviewed to find the anticoagulation regimen used, anti-Xa result, patients' weight, and any associated complications. Fourteen patients returned to theatre because of bleeding; of these no cause was identified in 6 and a haematoma was evacuated. The distribution of unexplained haematoma was similar for all dose regimens of dalteparin. Anti-Xa results were available in 47 cases, and of these, 22 (47%) were within the prophylactic range (0.2 IU/ml or more). Our results highlight the high incidence of inadequate response to standard prophylactic doses of LMWH in patients with head and neck cancer. Increasing the dose of dalteparin does not seem to increase the risk of bleeding or formation of a haematoma. These findings may be transferable to other surgical specialties.

  12. [Long-term treatment with a low-molecular-weight heparin administered subcutaneously compared with a vitamin K antagonist: subanalysis of patients with cancer].

    PubMed

    Romera-Villegas, Antonio; Martí Mestre, Xavier; Vila Coll, Ramón; Colomé Nafría, Esteve

    2015-01-01

    We performed a subanalysis of cancer patients enrolled in a clinical trial that compared long-term (6 months) treatment with a low-molecular-weight heparin (LMWH) administered subcutaneously or with acenocoumarol. The subanalysis assessed whether the characteristics of the tumor had an influence on the clinical response. A randomized open trial included 69 patients with cancer and symptomatic proximal deep vein thrombosis of the lower limbs. The tumor characteristics and treatment type were recorded. The main assessment criterion was the 12-month incidence of recurrent symptomatic venous thromboembolism (VTE). Sixty-one patients (88.4%) were analyzed. At the time of inclusion, the cancer characteristics and treatment were comparable between the 2 groups. Over the course of 12 months, the recurrent VTE was significantly greater in the elderly patients (71.5 ± 6.4 vs. 62.0 ± 15.1; p=.006). The logistic regression analysis showed no association between VTE recurrence and the location or extent of the tumor. However, the use of thrombogenic chemotherapy (p=.045) was independently associated with VTE recurrence, and longterm treatment with tinzaparin was almost a protective factor (p=.15). In this small sample, we observed an association between thrombogenic chemotherapy and recurrent VTE. The tendency towards a reduction in VTE recurrence at 12 months in patients with cancer in the LMWH group could be attributed to the effect of the full LMWH dosage. PMID:25771087

  13. Pharmacokinetics of a paclitaxel-loaded low molecular weight heparin-all-trans-retinoid acid conjugate ternary nanoparticulate drug delivery system.

    PubMed

    Hou, Lin; Yao, Jing; Zhou, Jianping; Zhang, Qiang

    2012-07-01

    Amphiphilic low molecular weight heparin-all-trans-retinoid acid (LHR) conjugate, as a drug carrier for cancer therapy, was found to have markedly low toxicity and to form self-assembled nanoparticles for simultaneous delivery of paclitaxel (PTX) and all-trans-retinoid acid (ATRA) in our previous study. In the present study, PTX-loaded LHR nanoparticles were prepared and demonstrated a spherical shape with particle size of 108.9 nm. Cellular uptake analysis suggested rapid internalization and nuclear transport of LHR nanoparticles. In order to investigate the dynamic behaviors and targeting ability of LHR nanoparticles on tumor-bearing mice, near-infrared fluorescent (NIFR) dye DiR was encapsulated into the nanoparticles for ex vivo optical imaging. The results indicated that LHR nanoparticles could enhance the targeting and residence time in tumor site. Furthermore, in vivo biodistribution study also showed that the area under the plasma concentration time curve (AUC (0→inf)) values of PTX and ATRA for PTX-loaded LHR nanoparticles in tumor were 1.56 and 1.62-fold higher than those for PTX plus ATRA solution. Finally, PTX-loaded LHR nanoparticles demonstrated greater tumor growth inhibition effect in vivo without unexpected side effects, compared to PTX solution and PTX plus ATRA solution. These results suggest that PTX-loaded LHR nanoparticles can be considered as promising targeted delivery system for combination cancer chemotherapy to improve therapeutic efficacy and minimize adverse effects.

  14. Low-molecular-weight heparins for managing vasoocclusive crises in people with sickle cell disease: a summary of a cochrane systematic review.

    PubMed

    van Zuuren, Esther J; Fedorowicz, Zbys

    2014-01-01

    We summarize a Cochrane systematic review that was conducted to assess the effects of low-molecular-weight heparins (LMWH) for managing vasoocclusive crises (VOC) in people with sickle cell disease. Sickle cell disease is one of the most common and severe genetic disorders in the world. It can be divided into three broadly distinct clinical phenotypes characterized by either hemolysis, pain syndromes or organ damage. Pain is the most prominent symptom of vasoocclusion, and hypercoagulability is a well-established pathogenic phenomenon in people with sickle cell disease. Searches included the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, abstract books of conference proceedings and several online trials registries (December 2012). One study (with an overall unclear to high risk of bias) comprising 253 participants was included. This study provided limited data, but concluded that tinzaparin resulted in a more rapid resolution of pain, and in a statistically significant lower number of hospitalization days compared to a placebo. Two minor bleeding events were reported as adverse events in the tinzaparin group. Based on the results from this single study, there is incomplete evidence to either support or refute the effectiveness of LMWH in people with sickle cell disease.

  15. Incidences of Deep Vein Thrombosis and Pulmonary Embolism after Total Knee Arthroplasty Using a Mechanical Compression Device with and without Low-Molecular-Weight Heparin

    PubMed Central

    Park, Sin Hyung; Ahn, Joong Hyeon; Park, Yong Bok; Lee, Sun Geun

    2016-01-01

    Purpose To investigate the incidence of thromboembolic events and complications related to bleeding after total knee arthroplasty (TKA) with a mechanical compression device alone or in combination with low-molecular-weight heparin (LMWH). Materials and Methods A total of 489 TKA patients (776 knees) were retrospectively reviewed for the incidence of thromboembolic events and complications related to bleeding. While 233 patients (354 knees) were treated with a mechanical compressive device without LMWH, 256 patients (422 knees) were treated with the mechanical compressive device along with LMWH. Results The incidences of deep vein thrombosis (DVT) and pulmonary embolism (PE) were 15 of 375 knees (4.0%) and 5 of 375 knees (1.3%), respectively, in the group that used only a mechanical compressive device, and 14 of 401 knees (3.4%) and 5 of 401 knees (1.2%), respectively, in the group that used the mechanical compressive device with LMWH. There was no significant difference between the two groups (p=0.125 and p=0.146, respectively). The postoperative hemovac drainage amount was 635±57 mL in the group with a mechanical compressive device only and 813±84 mL in the group with the device and LMWH; therefore, the amount of drainage was significantly greater in the latter group (p=0.013). Conclusions Mechanical compression alone for prophylaxis against DVT and PE after TKA can be an attractive option in Korean patients. PMID:27595075

  16. A supersulfated low-molecular-weight heparin (IK-SSH) increases plasma levels of free and total tissue factor pathway inhibitor after intravenous and subcutaneous administration in humans.

    PubMed

    Kaiser, B; Glusa, E; Hoppensteadt, D A; Breddin, H K; Amiral, J; Fareed, J

    1998-09-01

    Unfractionated as well as low-molecular-weight heparins (LMWH) are known to cause an increase in blood levels of tissue factor pathway inhibitor (TFPI). To study the effect of a newly developed supersulfated LMWH (IK-SSH, Iketon Farmaceutici) on TFPI concentrations in human plasma, the compound was injected into volunteers at doses of 0.14, 0.33 and 0.66 mg/kg intravenously or 0.33, 0.66 and 1.0 mg/kg subcutaneously. At certain known times blood was drawn and plasma levels of both total and free TFPI were measured using enzyme-linked immunosorbent assay methodology. Baseline plasma concentrations of TFPI were 72.2+/-3.1 ng/ml for total and 10.8+/-0.8 ng/ml for free TFPI. Intravenous or subcutaneous injection of IK-SSH led to a strong and long-lasting rise in TFPI levels which were increased more than 5-fold for total TFPI and more than 30-fold for free TFPI. Maximum TFPI levels were reached 5-10 min after intravenous and 60 min after subcutaneous administration. IK-SSH caused prolongation of ex-vivo clotting times in the APTT and Heptest assay, whereas thrombin time was not affected. Anticoagulant actions of IK-SSH showed a significant correlation to plasma concentrations of TFPI and they are thought to be based at least partially on the release of TFPI from vascular sites.

  17. Antibody profile of pregnant women with antiphospholipid syndrome and pregnancy outcome after treatment with low dose aspirin and low-weight-molecular heparin.

    PubMed

    Glasnović, Marija; Bosnjak, Ivica; Vcev, Aleksandar; Soldo, Ivan; Kosuta, Maja; Lenz, Bahrija; Glasnović-Horvatić, Elizabeta; Soldo-Butković, Silva; Mićunović, Nikola

    2007-03-01

    The aim of the research was to show our diagnostic and therapeutic experience with antiphospholipid syndrome (APS) in pregnant women. 36 pregnant women suspect on APS were included in the study: 32 with primary antiphospholipd syndrome (PAPS) and 4 with secondary antiphospholipid syndrome (SAPS). All pregnant women received low-molecular-weight-heparin (LMWH) and low dose aspirin (LDA) therapy. Control group represented 26 women with SAPS and previous bad reproductive anamnesis. Average pregnancy lasted 37.06 +/- 0.707 weeks. LMWH and LDA therapy was successful in 97.22%. Lupus anticoagulant (LA) was found to be more frequent in PAPS group (71.87%). Anticardiolipin antibodies (aCL) were found to be more frequent in SAPS (26.66%). For three patients (3.37%), PAPS was diagnosed due to a fact that they had positive antibeta2-glycoproteinl (antibeta-GP1). To make APS diagnosis, it is of great importance to search for all antiphospholipid antibodies. LMWH and low dose of acetylsalicylic acid should be the first choice therapy.

  18. Incidences of Deep Vein Thrombosis and Pulmonary Embolism after Total Knee Arthroplasty Using a Mechanical Compression Device with and without Low-Molecular-Weight Heparin

    PubMed Central

    Park, Sin Hyung; Ahn, Joong Hyeon; Park, Yong Bok; Lee, Sun Geun

    2016-01-01

    Purpose To investigate the incidence of thromboembolic events and complications related to bleeding after total knee arthroplasty (TKA) with a mechanical compression device alone or in combination with low-molecular-weight heparin (LMWH). Materials and Methods A total of 489 TKA patients (776 knees) were retrospectively reviewed for the incidence of thromboembolic events and complications related to bleeding. While 233 patients (354 knees) were treated with a mechanical compressive device without LMWH, 256 patients (422 knees) were treated with the mechanical compressive device along with LMWH. Results The incidences of deep vein thrombosis (DVT) and pulmonary embolism (PE) were 15 of 375 knees (4.0%) and 5 of 375 knees (1.3%), respectively, in the group that used only a mechanical compressive device, and 14 of 401 knees (3.4%) and 5 of 401 knees (1.2%), respectively, in the group that used the mechanical compressive device with LMWH. There was no significant difference between the two groups (p=0.125 and p=0.146, respectively). The postoperative hemovac drainage amount was 635±57 mL in the group with a mechanical compressive device only and 813±84 mL in the group with the device and LMWH; therefore, the amount of drainage was significantly greater in the latter group (p=0.013). Conclusions Mechanical compression alone for prophylaxis against DVT and PE after TKA can be an attractive option in Korean patients.

  19. Enhanced anti-angiogenesis and anti-tumor activity of endostatin by chemical modification with polyethylene glycol and low molecular weight heparin.

    PubMed

    Tan, Haining; Yang, Shenglin; Liu, Chunhui; Cao, Jichao; Mu, Guoying; Wang, Fengshan

    2012-12-01

    Endostatin (ES), a potent endogenous angiogenesis inhibitor found in 1997 by O'Reilly, can effectively inhibit angiogenesis, inhibit the growth and metastasis of tumors. ES can also decrease drug resistance in long term and repeated treatment when it is used in combination with other chemotherapeutic agents. But there are still lots of obstacles on its clinical application, such as the need of a high dose to maintain its efficacy short half-life, poor stability, expensive, and some other shortcomings just like other protein drugs. Chemical modification on ES by polyethylene glycol (PEG) and low molecular weight heparin (LMWH) were successfully carried out in order to obtain a better ES derivative. Several classic experimental models were employed to study the bioactivity of ES and modified ES, including chicken chorioallantoic membrane (CAM) assay, corneal neovascularization (CNV) assay and Sarcoma 180 tumor bearing mice assay. The results showed that PEG-ES and LMWH-ES had better anti-angiogenesis and anti-tumor activity than ES, which indicates that LMWH was also a good protein modifier.

  20. Preparation and characterization of self-assembled nanoparticles based on low-molecular-weight heparin and stearylamine conjugates for controlled delivery of docetaxel

    PubMed Central

    Kim, Dong-Hwan; Termsarasab, Ubonvan; Cho, Hyun-Jong; Yoon, In-Soo; Lee, Jae-Young; Moon, Hyun Tae; Kim, Dae-Duk

    2014-01-01

    Low-molecular-weight heparin (LMWH)–stearylamine (SA) conjugates (LHSA)-based self-assembled nanoparticles were prepared for intravenous delivery of docetaxel (DCT). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide were used as coupling agents for synthesis of LHSA conjugates. The physicochemical properties, in vitro antitumor efficacy, in vitro cellular uptake efficiency, in vivo antitumor efficacy, and in vivo pharmacokinetics of LHSA nanoparticles were investigated. The LHSA nanoparticles exhibited a spherical shape with a mean diameter of 140–180 nm and a negative surface charge. According to in vitro release and in vivo pharmacokinetic test results, the docetaxel-loaded LHSA5 (LMWH:SA =1:5) nanoparticles exhibited sustained drug release profiles. The blank LHSA nanoparticles demonstrated only an insignificant cytotoxicity in MCF-7 and MDAMB 231 human breast cancer cells; additionally, higher cellular uptake of coumarin 6 (C6) in MCF-7 and MDAMB 231 cells was observed in the LHSA5 nanoparticles group than that in the C6 solution group. The in vivo tumor growth inhibition efficacy of docetaxel-loaded LHSA5 nanoparticles was also significantly higher than the Taxotere®-treated group in the MDAMB 231 tumor-xenografted mouse model. These results indicated that the LHSA5-based nanoparticles could be a promising anticancer drug delivery system. PMID:25525355

  1. Hemostasis during low molecular weight heparin anticoagulation for continuous venovenous hemofiltration: a randomized cross-over trial comparing two hemofiltration rates

    PubMed Central

    2009-01-01

    Introduction Renal insufficiency increases the half-life of low molecular weight heparins (LMWHs). Whether continuous venovenous hemofiltration (CVVH) removes LMWHs is unsettled. We studied hemostasis during nadroparin anticoagulation for CVVH, and explored the implication of the endogenous thrombin potential (ETP). Methods This cross-over study, performed in a 20-bed teaching hospital ICU, randomized non-surgical patients with acute kidney injury requiring nadroparin for CVVH to compare hemostasis between two doses of CVVH: filtrate flow was initiated at 4 L/h and converted to 2 L/h after 60 min in group 1, and vice versa in group 2. Patients received nadroparin 2850 IU i.v., followed by 380 IU/h continuously in the extracorporeal circuit. After baseline sampling, ultrafiltrate, arterial (art) and postfilter (PF) blood was taken for hemostatic markers after 1 h, and 15 min, 6 h, 12 h and 24 h after converting filtrate flow. We compared randomized groups, and 'early circuit clotting' to 'normal circuit life' groups. Results Fourteen patients were randomized, seven to each group. Despite randomization, group 1 had higher SOFA scores (median 14 (IQR 11-15) versus 9 (IQR 5-9), p = 0.004). Anti-Xa art activity peaked upon nadroparin bolus and declined thereafter (p = 0.05). Anti-Xa PF did not change in time. Anti-Xa activity was not detected in ultrafiltrate. Medians of all anti-Xa samples were lower in group 1 (anti-Xa art 0.19 (0.12-0.37) vs. 0.31 (0.23-0.52), p = 0.02; anti-Xa PF 0.34 (0.25-0.44) vs. 0.51 (0.41-0.76), p = 0.005). After a steep decline, arterial ETPAUC tended to increase (p = 0.06), opposite to anti-Xa, while postfilter ETPAUC increased (p = 0.001). Median circuit life was 24.5 h (IQR 12-37 h). Patients with 'short circuit life' had longer baseline prothrombin time (PTT), activated thromboplastin time (aPTT), lower ETP, higher thrombin-antithrombin complexes (TAT) and higher SOFA scores; during CVVH, anti-Xa, and platelets were lower; PTT, aPTT, TAT

  2. Adjunct low-molecular-weight heparin to improve live birth rate after recurrent implantation failure: a systematic review and meta-analysis.

    PubMed

    Potdar, Neelam; Gelbaya, Tarek A; Konje, Justin C; Nardo, Luciano G

    2013-01-01

    BACKGROUND Poor fertility outcomes in women with recurrent implantation failure (≥ RIF) present significant challenges in assisted reproduction, and various adjuncts, including heparin, are used for potential improvement in pregnancy rates. We performed this systematic review and meta-analysis to evaluate the effect of low-molecular-weight heparin (LMWH) on live birth rates (LBRs) and implantation rates (IRs) in women with RIF and undergoing IVF. METHODS Studies comparing LMWH versus control/placebo in women with RIF were searched for on MEDLINE, EMBASE, Cochrane Library, conference proceedings and databases for registered and ongoing trials (1980-2012). Statistical analysis was performed using Review Manager 5.1. The main outcome measure was LBR per woman. RESULTS Two randomized controlled trials (RCTs) and one quasi-randomized trial met the inclusion criteria. One study included women with at least one thrombophilia ( Qublan et al., 2008) and two studies included women with unexplained RIF ( Urman et al., 2009; Berker et al., 2011). Pooled risk ratios in women with ≥ 3 RIF (N = 245) showed a significant improvement in the LBR (risk ratio (RR) = 1.79, 95% confidence interval (CI) = 1.10-2.90, P = 0.02) and a reduction in the miscarriage rate (RR = 0.22, 95% CI = 0.06-0.78, P = 0.02) with LMWH compared with controls. The IR for ≥ 3 RIF (N = 674) showed a non-significant trend toward improvement (RR = 1.73, 95% CI 0.98-3.03, P = 0.06) with LMWH. However, the beneficial effect of LMWH was not significant when only studies with unexplained RIF were pooled. The summary analysis for the numbers needed to be treated with LMWH showed that approximately eight women would require treatment to achieve one extra live birth. CONCLUSIONS In women with ≥3 RIF, the use of adjunct LMWH significantly improves LBR by 79% compared with the control group; however, this is to be considered with caution, since the overall number of participants in the studies was small. Further

  3. Low-molecular-weight heparins are superior to vitamin K antagonists for the long term treatment of venous thromboembolism in patients with cancer: a cochrane systematic review

    PubMed Central

    Akl, Elie A; Barba, Maddalena; Rohilla, Sandeep; Terrenato, Irene; Sperati, Francesca; Muti, Paola; Schünemann, Holger J

    2008-01-01

    Background Cancer and its therapies increase the risk of venous thromboembolism. Compared to patients without cancer, patients with cancer anticoagulated for venous thromboembolism are more likely to develop recurrent thrombotic events and major bleeding. Addressing all important outcomes including harm is of great importance to make evidence based health care decisions. The objective of this study was to compare low molecular weight heparin (LMWH) and oral anticoagulants (vitamin K antagonist (VKA) and ximelagatran) for the long term treatment of venous thromboembolism in patients with cancer. Methods A systematic review of the medical literature. We followed the Cochrane Collaboration methodology for conducting systematic reviews. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Results Eight randomized controlled trials (RCTs) were eligible and reported data for patients with cancer. The quality of evidence was low for death and moderate for recurrent venous thromboembolism. LMWH, compared to VKA provided no statistically significant survival benefit (Hazard ratio (HR) = 0.96; 95% CI 0.81 to 1.14) but a statistically significant reduction in venous thromboembolism (HR = 0.47; 95% (Confidence Interval (CI) = 0.32 to 0.71). There was no statistically significant difference between LMWH and VKA in bleeding outcomes (RR = 0.91; 95% CI = 0.64 to 1.31) or thrombocytopenia (RR = 1.02; 95% CI = 0.60 to 1.74). Conclusion For the long term treatment of venous thromboembolism in patients with cancer, LMWH compared to VKA reduces venous thromboembolism but not death. PMID:18634550

  4. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Xiong, Hui; Zohra Dahmani, Fatima; Sun, Li; Li, Yuanke; Yao, Li; Zhou, Jianping; Yao, Jing

    2015-04-01

    Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.

  5. The Impact of Inherited Thrombophilia Types and Low Molecular Weight Heparin Treatment on Pregnancy Complications in Women with Previous Adverse Outcome

    PubMed Central

    Aracic, Nada; Roje, Damir; Jakus, Ivana Alujevic; Bakotin, Marinela

    2016-01-01

    Purpose To assess the distribution of births and spontaneous abortions, first-trimester abortion (FTA) and mid-trimester abortion (MTA), in untreated (n=128) and low molecular weight heparin (LMWH) treated pregnancies (n=50) of the same women with inherited thrombophilias and adverse pregnancy outcome (APO) in previous pregnancies. We particularly investigated the impact of LMWH on reducing the pregnancy complications in two thrombophilia types, "Conventional" and "Novel". Materials and Methods 50 women with inherited thrombophilia (26 Conventional and 24 Novel) and APO in previous pregnancies were included in the study. Conventional group included factor V Leiden (FVL), prothrombin G20210A (PT) mutations and antithrombin (AT), protein S (PS), and protein C (PC) deficiency, while the Novel group included methylentetrahydrofolate-reductase (MTHFR), plasminogen activator inhibitor-1 (PAI-1), and angiotensin converting enzyme (ACE) polymorphism. APO was defined as one of the following: preterm birth (PTB), fetal growth restriction (FGR), preeclampsia (PE), intrauterine fetal death (IUFD), placental abruption (PA) and deep venous thrombosis (DVT). Results There was no difference in distribution of births and spontaneous abortions between Conventional and Novel thrombophilia in untreated pregnancies (χ2=2.7; p=0.100) and LMWH treated pregnancies (χ2=0.442; p=0.506). In untreaed pregnancies thrombophilia type did not have any impact on the frequency of FTA and MTA (χ2=0.14; p=0.711). In birth-ended pregnancies LMWH treatement reduced the incidence of IUFD (p=0.011) in Conventional and FGR, IUFD, and PTB in Novel thrombophilia group. Conclusion The equal impact of two thrombophilia types on the pregnancy outcomes and a more favorable effect of LMWH therapy on pregnancy complications in Novel thrombophilia group point the need for Novel thrombophilias screening and the future studies on this issue should be recommended. PMID:27401656

  6. A novel conjugate of low-molecular-weight heparin and Cu,Zn-superoxide dismutase: study on its mechanism in preventing brain reperfusion injury after ischemia in gerbils.

    PubMed

    Qi, Jingzong; Li, Yizhao; Zhang, Hongwei; Cheng, Yanna; Sung, Yongfu; Cao, Jichao; Zhao, Ying; Wang, Fengshan

    2009-03-13

    Low-molecular-weight heparin (LMWH) and Cu,Zn-superoxide dismutase (SOD) were extensively investigated on preventing brain reperfusion injury after ischemia (BRII) in the past few years and both exhibited some advantages as well as limits in practice. To explore whether chemical modification for LMWH and SOD can lead to improved bioactivity,in our present study, we examined the efficacy of LMWH conjugated SOD (LMWH−SOD) in the model of BRII gerbils. Ischemia/reperfusion was performed for 5 min by clamping the bilateral common carotid arteries of gerbils. LMWH−SOD, SOD and the mixture of LMWH and SOD (LMWH+SOD) were administered intravenously to corresponding animals just before ischemia. 24 h after reperfusion, serum malondialdehyde (MDA) content and SOD activity were measured, the expression of intercellular adhesion molecule-1 (ICAM-1) was examined by immunohistochemistry, and the brain sections were processed for Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling.The results showed that LMWH−SOD significantly lowered MDA content (P<0.001, versus SOD and LMWH+SOD) and elevated SOD activity (P<0.05, versus SOD and LMWH+SOD) in the serum of BRII gerbils. Immunohistochemical results indicated ICAM-1 positive staining was lighter, pyramidal cells of hippocampal CA1 region were more regular and the changes in cell edema were minor, and apoptosis of hippocampal cells was milder in LMWH−SOD treated animals than in SOD or LMWH+SOD treated animals, untreated BRII animals and sham-operated animals. The results suggest that the novel LMWH−SOD conjugate can inhibit upregulation of ICAM-1 and prevent neuronal cell apoptosis in BRII gerbils, and the LMWH−SOD conjugate has better anti-inflammatory and neuroprotective effects in BRII than native SOD and the mixture of LMWH and SOD.

  7. Monitoring Low Molecular Weight Heparins at Therapeutic Levels: Dose-Responses of, and Correlations and Differences between aPTT, Anti-Factor Xa and Thrombin Generation Assays

    PubMed Central

    Thomas, Owain; Lybeck, Emanuel; Strandberg, Karin; Tynngård, Nahreen; Schött, Ulf

    2015-01-01

    Background Low molecular weight heparins (LMWH’s) are used to prevent and treat thrombosis. Tests for monitoring LMWH’s include anti-factor Xa (anti-FXa), activated partial thromboplastin time (aPTT) and thrombin generation. Anti-FXa is the current gold standard despite LMWH’s varying affinities for FXa and thrombin. Aim To examine the effects of two different LMWH’s on the results of 4 different aPTT-tests, anti-FXa activity and thrombin generation and to assess the tests’ concordance. Method Enoxaparin and tinzaparin were added ex-vivo in concentrations of 0.0, 0.5, 1.0 and 1.5 anti-FXa international units (IU)/mL, to blood from 10 volunteers. aPTT was measured using two whole blood methods (Free oscillation rheometry (FOR) and Hemochron Jr (HCJ)) and an optical plasma method using two different reagents (ActinFSL and PTT-Automat). Anti-FXa activity was quantified using a chromogenic assay. Thrombin generation (Endogenous Thrombin Potential, ETP) was measured on a Ceveron Alpha instrument using the TGA RB and more tissue-factor rich TGA RC reagents. Results Methods’ mean aPTT at 1.0 IU/mL LMWH varied between 54s (SD 11) and 69s (SD 14) for enoxaparin and between 101s (SD 21) and 140s (SD 28) for tinzaparin. ActinFSL gave significantly shorter aPTT results. aPTT and anti-FXa generally correlated well. ETP as measured with the TGA RC reagent but not the TGA RB reagent showed an inverse exponential relationship to the concentration of LMWH. The HCJ-aPTT results had the weakest correlation to anti-FXa and thrombin generation (Rs0.62–0.87), whereas the other aPTT methods had similar correlation coefficients (Rs0.80–0.92). Conclusions aPTT displays a linear dose-respone to LMWH. There is variation between aPTT assays. Tinzaparin increases aPTT and decreases thrombin generation more than enoxaparin at any given level of anti-FXa activity, casting doubt on anti-FXa’s present gold standard status. Thrombin generation with tissue factor-rich activator is

  8. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin

    PubMed Central

    Deshpande, Amol A.; Madhavan, P.; Deshpande, Girish R.; Chandel, Ravi Kumar; Yarbagi, Kaviraj M.; Joshi, Alok R.; Moses Babu, J.; Murali Krishna, R.; Rao, I. M.

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0–5 min) followed by gradient mode (2–85% B in 5–60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r2) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  9. Effects of atorvastatin combined with low-molecular-weight heparin on plasma inflammatory cytokine level and pulmonary pathophysiology of rats with sepsis

    PubMed Central

    Jing, Fei; Li, Ming; Ren, Hongsheng; Zhang, Jitian; Yao, Qingchun; Chu, Yufeng; Wang, Chunting

    2016-01-01

    The aim of the present study was to investigate the effect of atorvastatin combined with low-molecular-weight heparin (LMWH) on plasma early inflammatory cytokine levels as well as pulmonary pathophysiology of rats with sepsis. A total of 122 rats were randomly divided into five groups including the sham operation group (n=10), CLP group (n=10), atorvastatin group (n=34, 20 mg/kg/day), LMWH group (n=34, 100 IU/kg/day), and atorvastatin combined with LMWH group (n=34). Blood samples from 6 rats in each group were collected to detect TNF-α, IL-1β and HMGB1 concentration in plasma by linked immunosorbent assay at baseline and postoperatively at 4, 8, 12 and 24 h. Pulmonary pathophysiology was observed postoperatively at 24 h. The remaining 10 rats in each group were used to calculate the 7-day cumulative mortality rate. Compared to the sham operation group, the scores in CLP were greater than those of the sham operation group (P<0.05). Compared to the CLP group, the sepsis severity scores of the atorvastatin, LMWH, and atorvastatin combined with LMWH groups decreased gradually. Significant difference was detected in the four groups (P<0.05 0.01). Compared to the sham operation group, at 4, 8, 12 and 24 h, the TNF-α, IL-1β and HMGB1 levels in plasma in CLP increased significantly (P<0.01). Compared to the CLP group, the TNF-α, IL-1β and HMGB1 levels of plasma in other groups decreased gradually, and there was a significant difference in the four groups (P<0.01). At 24 h post operation, compared to the sham operation group, the damage of pulmonary pathophysiology in CLP was more severe. Compared to the CLP group, the damage of pulmonary pathophysiology in other groups was slight. Compared to the CLP group, the 7-day cumulative mortality rate in other groups decreased significantly (P<0.05). In conclusion, atorvastatin, combined with LMWH can decrease sepsis severity, plasma inflammatory cytokine levels, pulmonary pathophysiology, and the 7-day cumulative mortality

  10. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin.

    PubMed

    Deshpande, Amol A; Madhavan, P; Deshpande, Girish R; Chandel, Ravi Kumar; Yarbagi, Kaviraj M; Joshi, Alok R; Moses Babu, J; Murali Krishna, R; Rao, I M

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0-5 min) followed by gradient mode (2-85% B in 5-60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r(2)) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  11. The molecular charge and size of heparins determine their impact on the decidualization of human endometrial stromal cells.

    PubMed

    Fluhr, Herbert; Spratte, Julia; Heidrich, Stephanie; Ehrhardt, Jens; Greinacher, Andreas; Zygmunt, Marek

    2011-06-01

    Heparin modulates the decidualization of human endometrial stromal cells (ESCs), but the molecular mechanisms behind these effects are still unknown. In the present study, we further specified this biological effect of heparin in human ESCs in vitro. ESCs were isolated from hysterectomy specimens, decidualized over 12 days using progesterone and 17β-estradiol and incubated with thrombin, factor Xa (FXa), unfractionated heparin, dextran sulfate, danaparoid or different low-molecular-weight heparins (LMWHs). Production of insulin-like growth factor (IGF)-I, prolactin (PRL) and IGF-binding protein (IGFBP)-1 by ESCs was measured using ELISAs. Like heparin, thrombin and FXa cause an increase in IGF-I in ESCs, suggesting an action of heparin independent from its anticoagulatory effects. This was supported by demonstrating the induction of the same effects on IGF-I, PRL and IGFBP-1 as heparin by dextran sulfate, a polysaccharide of similar size and charge as heparin, but without anticoagulatory properties. LMWHs with the same anti-FXa activity as heparin showed less pronounced effects on ESCs than heparin, whereas the very short pentasaccharide fondaparinux (17 kDa) had barely any effect, further supporting the primary role of molecular size and charge mediating these biological effects of heparin on ESCs. In conclusion, the effects of heparin on the decidualization of human ESCs seem to be independent of its anticoagulatory function, but rather depend on the charge and the size of this polysulfated glycosaminoglycan. Therefore, highly sulfated polysaccharides with a molecular weight >17 kDa might be an interesting pharmacological approach for the therapy of endometrial pathologies, e.g. the treatment of women suffering from recurrent miscarriage or repeated implantation failure. PMID:21220249

  12. Utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors treated with G-CSF for mobilization of peripheral blood stem cells.

    PubMed

    Martino, Massimo; Luise, Francesca; Oriana, Vincenzo; Console, Giuseppe; Moscato, Tiziana; Mammì, Corrado; Messina, Giuseppe; Massara, Elisabetta; Irrera, Giuseppe; Piromalli, Angela; Lombardo, Vincenzo Trapani; Laganà, Carmelo; Iacopino, Pasquale

    2007-01-01

    The aim of the study was to verify the utility of the clinical practice of administering thrombophilic screening and antithrombotic prophylaxis with low-molecular-weight heparin to healthy donors receiving granulocyte colony-stimulating factor to mobilize peripheral blood stem cells. Thrombophilia screening comprised of testing for factor V Leiden G1691A, prothrombin G20210A, the thermolabile variant (C677T) of the methylene tetrahydrofolate reductase gene, protein C, protein S, factor VIII and homocysteine plasmatic levels, antithrombin III activity, and acquired activated protein C resistance. We investigated prospectively 72 white Italian healthy donors, 39 men and 33 women, with a median age of 42 years (range, 18-65). Five donors (6.9%) were heterozygous carriers of Factor V Leiden G1691A; two healthy donors had the heterozygous prothrombin G20210A gene mutation; C677T mutation in the methylene tetrahydrofolate reductase gene was present in 34 (47.2%) donors in heterozygous and in 7 donors (9.7%) in homozygous. Acquired activated protein C resistance was revealed in 8 donors of the study (11.1%). The protein C plasmatic level was decreased in 3 donors (4.2%); the protein S level was decreased in 7 donors (9.7%). An elevated factor VIII dosage was shown in 10 donors (13.9%) and hyperhomocysteinemia in 9 donors (12.5%). Concentration of antithrombin III was in the normal range for all study group donors. The factor V Leiden mutation was combined with the heterozygous prothrombin G20210A in 2 cases and with protein S deficiency in one case; 2 healthy donors presented an associated deficiency of protein C and protein S. Although none of these healthy subjects had a previous history of thrombosis, low-molecular-weight heparin was administered to all donors during granulocyte colony-stimulating factor administration to prevent thrombotic events. No donor experienced short or long-term thrombotic diseases after a median follow-up of 29.2 months. Our data do not

  13. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.

    PubMed

    Avci, Fikri Y; Karst, Nathalie A; Linhardt, Robert J

    2003-01-01

    Heparin and low molecular weight heparins are major clinical anticoagulants and the drugs of choice for the treatment of deep venous thrombosis. The discovery of an antithrombin binding domain in heparin focused interest on understanding the mechanism of heparin's antithrombotic/ anticoagulant activity. Various heparin-mimetic oligosaccharides have been prepared in an effort to replace polydisperse heparin and low molecular weight heparins with a structurally-defined anticoagulant. The goal of attaining a heparin-mimetic with no unwanted side-effects has also provided motivation for these efforts. This article reviews structure-activity relationship (SAR) of structurally-defined heparin-mimetic oligosaccharides. PMID:14529394

  14. M/sub r/ 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor

    SciTech Connect

    Moscatelli, D.; Joseph-Silverstein, J.; Manejias, R.; Rifkin, D.B.

    1987-08-01

    A M/sub r/ 25,000 form of basic fibroblast growth factor (bFGF) has been isolated from guinea pig grain along with the typical M/sub r/ 18,000 form. Both forms were purified to homogeneity by a combination of heparin-affinity chromatography and ion-exchange chromatography on an FPLC Mono S column. The M/sub r/ 25,000 form, like the M/sub r/ 18,000 form was not eluted from the heparin-affinity column with 0.95 M NaCl, but was eluted with 2 M NaCl. The M/sub r/ 25,000 guinea pig protein stimulated plasminogen activator production by cultured bovine capillary endothelial cells in a dose-dependent manner at concentration of 0.1-10 ngml, the same range that was effective for guinea pig and human M/sub r/ 18,000 bFGFs. The binding of human /sup 125/I-labeled bFGF to baby hamster kidney cells is inhibited equally by the M/sub r/ 25,000 guinea pig protein and the M/sub r/ 18,000 guinea pig and human bFGFs. Polyclonal antibodies raised against human bFGF recognize both the M/sub r/ 25,000 and 18,000 guinea pig proteins in an immunoblot analysis. In a radioimmunoassay, both the M/sub r/ 25,000 and M/sub r/ 18,000 guinea pig proteins compete equally well with iodinated human bFGF for binding to the anti-human bFGF antibodies. When treated with low concentrations of trypsin, the M/sub r/ 25,000 guinea pig bFGF was converted to a M/sub r/ 18,000 protein. These results show that the two molecules are closely related and suggest that the M/sub r/ 25,000 protein shares substantial homology with the M/sub r/ 18,000 bFGF

  15. A feasibility study to inform the design of a randomized controlled trial to identify the most clinically and cost effective Anticoagulation Length with low molecular weight heparin In the treatment of Cancer Associated Thrombosis (ALICAT): study protocol for a mixed-methods study

    PubMed Central

    2014-01-01

    Background Venous thromboembolism is common in patients with cancer and requires anticoagulation with low molecular weight heparin. Current data informs anticoagulation as far as six months, yet guidelines recommend anticoagulation beyond six months in patients who have locally advanced or metastatic cancer. This recommendation, based on expert consensus, has not been evaluated in a clinical study. ALICAT (Anticoagulation Length in Cancer Associated Thrombosis) is a feasibility study to identify the most clinically and cost effective length of anticoagulation with low molecular weight heparin in the treatment of cancer associated thrombosis. Methods/Design ALICAT is a randomized multi-centre phase two mixed-methods study with three components: a randomized controlled trial, embedded qualitative study and a survey investigating pathways of care. The randomized controlled trial will compare ongoing low molecular weight heparin treatment for cancer-associated thrombosis versus cessation of low molecular weight heparin at six months treatment (current licensed practice) in patients with locally advanced or metastatic cancer. The embedded qualitative study will include focus groups with clinicians to investigate attitudes to recruiting to the study, identify the challenges of progressing to a full randomized controlled trial, and also semi-structured interviews with patients and relatives/carers to explore their attitudes towards participating in the study and potential barriers and concerns to participation. Finally, a UK wide survey exercise will be undertaken to develop a classification and enumeration system for the cancer associated thrombosis models and pathways of care. Discussion There is a lack of evidence determining the length of anticoagulation for patients with cancer associated thrombosis and subsequently treatment length varies. The ALICAT study will consider the feasibility of recruiting patients to a phase three trial. Trial registration Current

  16. Low-Molecular-Weight Heparin or Dual Antiplatelet Therapy Is More Effective Than Aspirin Alone in Preventing Early Neurological Deterioration and Improving the 6-Month Outcome in Ischemic Stroke Patients

    PubMed Central

    Yi, Xingyang; Wang, Chun; Zhang, Biao; Lin, Jing

    2015-01-01

    Background and Purpose Dual antiplatelet therapy (DAT) with clopidogrel and aspirin has been shown to confer greater protection against early neurological deterioration (END) and early recurrent ischemic stroke (ERIS) than aspirin alone in patients who have experienced an acute ischemic stroke. However, few studies have compared the effects of anticoagulation therapy with low-molecular-weight heparin (LMWH), DAT, and aspirin. Methods Patients with acute ischemic stroke (n=1,467) were randomized to therapy groups receiving aspirin (200 mg daily for 14 days, followed by 100 mg daily for 6 months), DAT (200 mg of aspirin and 75 mg of clopidogrel daily for 14 days, then 100 mg of aspirin daily for 6 months), or LMWH (4,000 antifactor Xa IU of enoxaparin in 0.4 mL subcutaneously twice daily for 14 days, followed by 100 mg of aspirin daily for 6 months). The effects of these treatment strategies on the incidence of END, ERIS, and deep-vein thrombosis (DVT) were observed for 10-14 days after treatment, and their impacts on a good outcome were evaluated at 6 months. Results The DAT and LMWH were associated with a more significant reduction of END and ERIS within 14 days compared with aspirin-alone therapy. In addition, LMWH was associated with a significantly lower incidence of DVT within 14 days. At 6 months, DAT or LMWH improved the outcome among patients aged >70 years and those with symptomatic stenosis in the posterior circulation or basilar artery compared with aspirin. Conclusions LMWH or DAT may be more effective than aspirin alone for reducing the incidence of END and ERIS within 14 days, and is associated with improved outcomes in elderly patients and those with stenosis in the posterior circulation or basilar artery at 6 months poststroke. PMID:25628738

  17. [Thrombopenia increased by heparin and danaparoid].

    PubMed

    Godet, G; Bertrand, M; Van de Steen, E; Boccara, G; Koskas, F

    2001-01-01

    Pathogenesis, frequency, and management of heparin-induced thrombocytopaenia are well-known. They may be related with both unfractioned heparin and low-molecular weight heparin. Suspected heparin must be discontinued as soon as the diagnosis is established. Orgaran (danaparoid sodium) may be used for management of patients with heparin-associated thrombocytopaenia but can itself be associated with a thrombocytopaenia. Our case report allows us to catch in mind such a crossed complication. PMID:11234580

  18. Heparin-induced thrombocytopenia.

    PubMed

    2013-05-01

    Patients can develop thrombocytopenia during heparin therapy.The most frequent form, type I heparin-induced thrombocytopenia, does not require cessation of therapy. Type II heparin-induced thrombocytopenia is immune-mediated. It can cause venous or arterial thrombosis, which may be fatal or require amputation. Type II thrombocytopenia typically develops 5 to 10 days after initiation of treatment, sometimes earlier in patients previously exposed to heparins. The recommendations on platelet-count monitoring during heparin therapy are not based on high-level evidence. The main risk factors for type II thrombocytopenia must be taken into account: unfractionated heparin, previous heparin exposure, surgery, female patient. For patients considered at high risk for heparin-induced thrombocytopenia, platelet-count monitoring is usually recommended at least twice a week for at least 2 weeks. The treatment of immune-mediated heparin-induced thrombocytopenia is based on stopping heparin and replacing it with danaparoid or argatroban. In practice, the decision to initiate treatment with unfractionated or low-molecular-weight heparin is not a trivial one. In addition to the bleeding risk, the risk of type II thrombocytopenia in the short- term, or during subsequent heparin therapy, should be taken into account when assessing the harm-benefit balance. PMID:23819174

  19. Collaborative study for the calibration of replacement batches for the heparin low-molecular-mass for assay biological reference preparation.

    PubMed

    Terao, E; Daas, A

    2016-01-01

    The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively.

  20. Collaborative study for the calibration of replacement batches for the heparin low-molecular-mass for assay biological reference preparation.

    PubMed

    Terao, E; Daas, A

    2016-01-01

    The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively. PMID:27507705

  1. Collaborative study to establish the Low-molecular-mass heparin for assay--European Pharmacopoeia Biological Reference Preparation.

    PubMed

    Gray, E; Rigsby, P; Behr-Gross, M-E

    2004-12-01

    Thirty laboratories participated in a collaborative study to calibrate replacements for the 1st International Standard for Low Molecular Weight Heparin and the European Pharmacopoeia Low-molecular-mass heparin for assay Biological Reference Preparation. Two freeze-dried materials and one liquid preparation were included in the study. All three samples gave excellent intra- and inter-laboratory variations (majority of mean % geometric coefficient of variation < 10 %) when assayed against the 1st International Standard by both anti-Xa and anti-IIa assays. There were no major differences found between potency estimates using all methods and that obtained using European Pharmacopoeia method only. Overall, this study showed that the differences between the candidates are marginal. Based on the results of the study Sample B, 01/608 was established as the 2nd International Standard for Low Molecular Weight Heparin. Sample A, 01/592 and sample C, the liquid preparation, were established as replacements for the European Pharmacopoeia 'Low-molecular-mass heparin for assay' Biological Reference Preparation.

  2. Interactions between nattokinase and heparin/GAGs.

    PubMed

    Zhang, Fuming; Zhang, Jianhua; Linhardt, Robert J

    2015-12-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin's interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin's interaction with antithrombin and fibroblast growth factors.

  3. Semisynthesis and analysis of lipophilically modified unfractionated and low molecular mass heparins.

    PubMed

    Malsch, R; Harenberg, J; Guerrini, M; Torri, G; Casu, B; Heene, D L

    1994-01-01

    Unfractionated heparin and LMMH were substituted with different lipophilic organic compounds. Specifically endpoint attached (LMMH-tyramine and LMMH-tyramine-FITC) and nonspecifically substituted heparins (acylated heparins, and LMMH-biotin and LMMH-cholesterol hemisuccinate) were obtained. The lipophilically substituted heparins were analysed by HPSEC and showed different retention times, high peak purity, different UV/VIS absorbances, and areas under the absorbance time curve. The determination of the average molecular mass Mn, Mm, and Mz and the polydispersity P was performed by PAGE. The substituted heparins showed an increase in their molecular mass Mm, ranging from 2.9 to 129.7% unfractionated heparin and 3.9 to 224.0% (LMMH) compared with the parent compounds (unfractionated heparin and LMMH). The anticoagulant activity was measured by anti-Factor Xa. Lipophilically modified heparin had an aXa activity ranging from 52 to 168 U/mg (unfractionated) and 60 to 108 U/mg (LMMH) and antithrombin activity ranging from 31 to 270 U/mg (unfractionated) and 5 to 15 U/mg (LMMH). The thrombin generation inhibition assay demonstrated an effective anticoagulant potency of the modified compounds. They were neutralized by different amounts (1.1 to 4.1, w/w) of protamin. 1H NMR spectroscopy revealed the specific endpoint attachment of tyramine to LMMH and FITC to LMMH-tyramine. The lipophilically modified heparins showed intact anticoagulant properties and are now used for pharmacokinetic investigations. PMID:7997890

  4. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  5. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  6. Manipulating the surface active and anticoagulant properties of heparin through amphiphilic molecular constructs

    NASA Astrophysics Data System (ADS)

    Mintz, Rosita Candida

    Cardiovascular devices implanted within the vasculature are subjected to non-specific adsorption of plasma proteins. This initiates the blood coagulation cascade and platelet adhesion and activation, leading to thrombus formation. In this thesis Heparin Alkyl Diblock (HAD) surfactants were developed to improve the blood compatibility of cardiovascular biomaterials. The material designs involved using heparin, a natural anticoagulant, to inhibit coagulation pathway enzymes and mimic the cell glycocalyx to provide a repulsive force field to inhibit non-specific protein adsorption. Type AB linear (HAD Cn, n = 6,10,12,18) and branched (HAD nx 18, n = 2,3,4) heparin surfactants were synthesized by end point coupling primary and secondary alkyl amines to heparin via reductive amination. Surfactant yields (83--4%) and anticoagulant activity (149.8 +/- 3.7--39.6 +/- 0.6 IU/mg) decreased with increased branching and hydrocarbon number. Surfactant adsorption, self assembly and molecular packing of HAD surfactants at the air/liquid and liquid/solid interface were a function of the number of hydrocarbons in the surfactant alkyl segment and the presence or absence of an ionic liquid phase. Increased molecular packing was observed at the air/PBS and PBS/graphite interface, relative to aqueous interfaces, resulting from buffer cations shielding heparin's negatively charged sulfate and carboxyl groups. At the PBS/graphite interface, the surfactant's apparent heparin head group cross section decreased in diameter (1.84 to 1.05 nm) and increased in tilt angle (75.7 to 81.9°) with increasing alkyl carbon number (n = 6 to 18). The heparin head group reached a minimum diameter, equivalent to the surfactant's diameter at the air/PBS interface (0.57 nm) just prior to 36 hydrocarbons in the surfactant. For surfactants with 36 to 78 hydrocarbons, the surfactant's heparin head group oriented normal to the graphite surface and alkyl overlap or interdigitation increased (0.02 to 0.59 nm

  7. Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Sawada, Toshihiko; Fedorov, Dmitri G.; Kitaura, Kazuo

    The fragment molecular orbital method (FMO) was applied to the geometry optimization of several heparin oligosaccharides at the RHF/6-31(+)G(d) level combined with the polarizable continuum model (PCM). For comparison, GLYCAM force field optimization in explicit solvent was also conducted. Good accuracy of FMO was demonstrated in comparison to ab initio at the MP2/PCM level. The interaction analysis was conducted using the pair interaction energy decomposition analysis (PIEDA), and the role of hydrogen bonding and solvent was elucidated in the helix formation of heparin in solution. Content:text/plain; charset="UTF-8"

  8. Heparin-induced thrombocytopaenia complicated by arterial and venous thrombosis: report of 2 cases successfully treated by a danaparoid sodium.

    PubMed

    Darling, K; Jaumotte, C; Saussoy, P; Zech, F; Lavenne, E; Hainaut, P

    2000-01-01

    Heparin-induced thrombocytopaenia is a dreaded, although infrequent, complication of heparin therapy. We report two cases of heparin-induced thrombocytopaenia (HIT) type II occurring in a patient treated with standard (unfractionated) heparin and in another patient given a low-weight molecular heparin. The clinical course of the first patient illustrates the potentially severe thrombotic complications of HIT. Both cases were treated successfully by danaparoid sodium. Clues to the diagnosis and treatment are briefly discussed. PMID:10981327

  9. Structural characterization of pharmaceutical heparins prepared from different animal tissues.

    PubMed

    Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. PMID:23526651

  10. Current management of heparin-induced thrombocytopenia.

    PubMed

    Cosmi, Benilde

    2015-12-01

    Heparin-induced thrombocytopenia (HIT) is an immune adverse reaction to heparin (both unfractionated and low-molecular-weight), which is mediated by the formation of IgG antibodies against platelet factor 4-heparin complexes. The IgG/platelet factor 4 immunocomplexes activate platelets with resulting thrombocytopenia, which is not associated with bleeding, but with paradoxical life-threatening thrombotic complications, for coagulation activation. HIT diagnosis requires the assessment of pre-test clinical probability in combination with the measurement of platelet activating antibodies against platelet factor 4-heparin complexes with immunological and functional assays. When HIT is diagnosed, any form of heparin should be stopped and a non-heparin alternative anticoagulant should be started. Argatroban and danaparoid are currently the only drugs licensed for HIT, with different country availability. Bivalirudin is an option in cardiac surgery and procedures in HIT patients. PMID:26368591

  11. Current management of heparin-induced thrombocytopenia.

    PubMed

    Cosmi, Benilde

    2015-12-01

    Heparin-induced thrombocytopenia (HIT) is an immune adverse reaction to heparin (both unfractionated and low-molecular-weight), which is mediated by the formation of IgG antibodies against platelet factor 4-heparin complexes. The IgG/platelet factor 4 immunocomplexes activate platelets with resulting thrombocytopenia, which is not associated with bleeding, but with paradoxical life-threatening thrombotic complications, for coagulation activation. HIT diagnosis requires the assessment of pre-test clinical probability in combination with the measurement of platelet activating antibodies against platelet factor 4-heparin complexes with immunological and functional assays. When HIT is diagnosed, any form of heparin should be stopped and a non-heparin alternative anticoagulant should be started. Argatroban and danaparoid are currently the only drugs licensed for HIT, with different country availability. Bivalirudin is an option in cardiac surgery and procedures in HIT patients.

  12. 78 FR 36786 - Linking Marketplace Heparin Product Attributes and Manufacturing Processes to Bioactivity and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... antibodies to complexes formed between platelet factor 4 (PF4) and heparin which can occur in patients who...-heparin antibodies are observed in all patients with HIT. In addition, low molecular weight heparins or the synthetic pentasaccharide (fondaparinux) have also been shown to cause HIT antibody...

  13. Delayed-type skin reaction to the heparin-alternative danaparoid.

    PubMed

    Szolar-Platzer, C; Aberer, W; Kränke, B

    2000-11-01

    Eczematous, infiltrated plaques at the site of subcutaneously administered heparin appear to be common. Heparinoids cannot be recommended in general as a substitute for heparin or low molecular weight heparin because delayed-type skin reactions to these molecules can also occur, as demonstrated in this case report. PMID:11044823

  14. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  15. Molecular Basis of Glycosaminoglycan Heparin Binding to the Chemokine CXCL1 Dimer*

    PubMed Central

    Poluri, Krishna Mohan; Joseph, Prem Raj B.; Sawant, Kirti V.; Rajarathnam, Krishna

    2013-01-01

    Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of “active” chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue. PMID:23864653

  16. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  17. Heparin-Induced Thrombocytopenia: A Comprehensive Clinical Review.

    PubMed

    Salter, Benjamin S; Weiner, Menachem M; Trinh, Muoi A; Heller, Joshua; Evans, Adam S; Adams, David H; Fischer, Gregory W

    2016-05-31

    Heparin-induced thrombocytopenia is a profoundly dangerous, potentially lethal, immunologically mediated adverse drug reaction to unfractionated heparin or, less commonly, to low-molecular weight heparin. In this comprehensive review, the authors highlight heparin-induced thrombocytopenia's risk factors, clinical presentation, pathophysiology, diagnostic principles, and treatment. The authors place special emphasis on the management of patients requiring procedures using cardiopulmonary bypass or interventions in the catheterization laboratory. Clinical vigilance of this disease process is important to ensure its recognition, diagnosis, and treatment. Misdiagnosis of the syndrome, as well as misunderstanding of the disease process, continues to contribute to its morbidity and mortality.

  18. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  19. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  20. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  1. Heparin centenary - an ever-young life-saving drug.

    PubMed

    Torri, Giangiacomo; Naggi, Annamaria

    2016-06-01

    On the centenary of the discovery of heparin, the International Journal of Cardiology agreed to publish a collection of mini reviews that summarize the historical development of this ever-young life-saving drug. The present articles deal not only with the historical milestones, but also with current and future perspectives regarding the development of heparin in terms of its structure, as well as on-going biochemical, biological and clinical research. Attention is focused on recent applications of heparin derivatives to non-anticoagulant or antithrombotic therapies, providing particular emphasis on their inhibitory activities, including their potential as anti-cancer agents. In the Chapter, entitled 'Recent innovations in the structural analysis of heparin', some recent technological advances are described for the problem of monitoring the purity and reproducibility of pharmaceutical heparin. These now permit sensitive detection of non-heparin impurities, as well as the detection of heparin from different animal sources, to be made in pharmaceutical heparin samples. In 'Past, present, and future perspectives of heparin in clinical settings and the role of impaired renal function', the author traces the history of heparin and the development of low molecular weight heparin, highlighting the large number of clinical trials in which it has been involved, and reviewing its efficacy among patients with impaired renal function. In the final chapter, 'Old and new applications of non-anticoagulant heparin', the authors survey some of the many non-anticoagulant activities of heparin and its derivatives, including glycol-split heparin, which has demonstrated promising activities in a wide-range of situations. PMID:27264864

  2. Heparin Dodecasaccharide Containing Two Antithrombin-binding Pentasaccharides

    PubMed Central

    Viskov, Christian; Elli, Stefano; Urso, Elena; Gaudesi, Davide; Mourier, Pierre; Herman, Frederic; Boudier, Christian; Casu, Benito; Torri, Giangiacomo; Guerrini, Marco

    2013-01-01

    The antithrombin (AT) binding properties of heparin and low molecular weight heparins are strongly associated to the presence of the pentasaccharide sequence AGA*IA (ANAc,6S-GlcUA-ANS,3,6S-I2S-ANS,6S). By using the highly chemoselective depolymerization to prepare new ultra low molecular weight heparin and coupling it with the original separation techniques, it was possible to isolate a polysaccharide with a biosynthetically unexpected structure and excellent antithrombotic properties. It consisted of a dodecasaccharide containing an unsaturated uronate unit at the nonreducing end and two contiguous AT-binding sequences separated by a nonsulfated iduronate residue. This novel oligosaccharide was characterized by NMR spectroscopy, and its binding with AT was determined by fluorescence titration, NMR, and LC-MS. The dodecasaccharide displayed a significantly increased anti-FXa activity compared with those of the pentasaccharide, fondaparinux, and low molecular weight heparin enoxaparin. PMID:23843463

  3. Structural and binding studies of SAP-1 protein with heparin.

    PubMed

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  4. Molecular Beacon-Based Fluorescent Assay for Specific Detection of Oversulfated Chondroitin Sulfate Contaminants in Heparin without Enzyme Treatment.

    PubMed

    Lee, Chih-Yi; Tseng, Wei-Lung

    2015-01-01

    Oversulfated chondroitin sulfate (OSCS) is a harmful contaminant in the pharmaceutical heparin. The development of a rapid, convenient, sensitive, and selective method is required for routine analysis of OSCS in pharmaceutical heparin. Here we report a simple, rapid, sensitive, and enzyme-free method for detecting OSCS in heparin based on the competitive binding between OSCS and the adenosine-repeated molecular beacon (MB) stem to coralyne in the presence of Ca(2+) ions. The MB (A8-MB-A8) contains a 22-mer loop, a stem of a pair of 8-mer adenosine (A) bases, a fluorophore unit at the 5'-end, and a quencher at the 3'-end. The presence of coralyne promotes these A-A mismatches to form a hairpin-shaped MB. However, this kind of MB is incapable of differentiating between heparin and OSCS because they both exhibit strong electrostatic attraction with coralyne. This study found that while Ca(2+) ions can efficiently suppress the negative charges of heparin, they do not neutralize the negative charge of OSCS. Thus, in the presence of Ca(2+) ions, OSCS can remove coralyne from the MB stem, initiating fluorescence of the MB. Under optimal conditions (10 nM A8-MB-A8, 800 nM coralyne, and 0.5 mM Ca(2+) ions), the proposed system can detect 0.01% w/w OSCS in heparin in under 5 min without enzyme treatment. This study also validates the practicality of the proposed system to determine 0.01% w/w OSCS in the pharmaceutical heparin.

  5. Towards molecular modeling of the impact of heparin-derived oligosaccharides on hIFN-γ binding

    NASA Astrophysics Data System (ADS)

    Lilkova, E.; Petkov, P.; Ilieva, N.; Litov, L.

    2015-10-01

    Human interferon gamma (hIFN-γ) is an important signalling molecule, which plays a key role in the formation and modulation of immune response. The role of the cytokine C-termini in the formation of a complex with the extracellular receptor is still controversial due to the lack of structural information about this domain. Moreover, the C-termini are also responsible for the high affinity interaction of hIFN-γ with the glycosaminoglicans heparan sulfate and heparin. This interaction can drastically change the properties and behaviour of the protein. We performed molecular dynamics simulations in order to model the structure of the hIFN-γ C-terminal part and the interaction of the cytokine with heparin-derived oligosaccharides. For this purpose we reconstructed the missing C-terminal amino acid residues and performed folding simulations to determine their conformation. In order to simulate the interaction with heparin-like fragments, we developed CHARMM 36 compatible force field for the sulfamate anion group that is present in the glucosamine sugar to complete the heparin and heparan sulfate force field. The new topology and parameters reproduce the available experimental structural properties of heparin-like fragments. The simulations show that the oligosaccharides quickly bind the IFN-γ C-termini and reduce their solvent accessible surface area.

  6. Inhibition of cell adhesion by high molecular weight kininogen

    PubMed Central

    1992-01-01

    An anti-cell adhesion globulin was purified from human plasma by heparin-affinity chromatography. The purified globulin inhibited spreading of osteosarcoma and melanoma cells on vitronectin, and of endothelial cells, platelets, and mononuclear blood cells on vitronectin or fibrinogen. It did not inhibit cell spreading on fibronectin. The protein had the strongest antiadhesive effect when preadsorbed onto the otherwise adhesive surfaces. Amino acid sequence analysis revealed that the globulin is cleaved (kinin-free) high molecular weight kininogen (HKa). Globulin fractions from normal plasma immunodepleted of high molecular weight kininogen (HK) or from an individual deficient of HK lacked adhesive activity. Uncleaved single- chain HK preadsorbed at neutral pH, HKa preadsorbed at pH greater than 8.0, and HKa degraded further to release its histidine-rich domain had little anti-adhesive activity. These results indicate that the cationic histidine-rich domain is critical for anti-adhesive activity and is somehow mobilized upon cleavage. Vitronectin was not displaced from the surface by HKa. Thus, cleavage of HK by kallikrein results in both release of bradykinin, a potent vasoactive and growth-promoting peptide, and formation of a potent anti-adhesive protein. PMID:1370494

  7. [Heparin-induced thrombocytopenia: recent data].

    PubMed

    Gruel, Y; Rollin, J; Leroux, D; Pouplard, C

    2014-03-01

    Despite less frequent, heparin-induced thrombocytopenia (HIT) remains a severe complication of treatment with heparin, and is important to diagnose and manage appropriately. HIT results from an atypical immune response to heparin, with the synthesis of IgG antibodies specific to heparin-modified platelet factor 4 (PF4) which activate platelets, leukocytes and the endothelium. This activation explains that low platelet count is associated with thrombotic events in 50% of patients. The diagnosis of HIT is sometimes evoked because of atypical manifestations (i.e. cutaneous necrosis, amnesia, hypotension or dyspnea following intravenous injection of heparin). Biological assays are always necessary to confirm HIT in case of clinical suspicion, and specific rapid tests are now available for detecting anti-PF4 antibodies. However, their specificity is poor and functional assays such as serotonin release assay or platelet aggregation test are often necessary. Argatroban that is a direct antithrombin drug can be used in patients with severe renal failure and will be preferred to danaparoid sodium in this situation. Fondaparinux is not licensed for treating confirmed HIT and can only be used in case of suspicion. The early detection of HIT is based on the monitoring of platelet count recommended in surgical patients receiving a low molecular weight heparin and in all patients treated with unfractionated heparin. PMID:24074968

  8. Microdialysis unit for molecular weight separation

    SciTech Connect

    Smith, R.D.; Liu, C.

    1999-09-21

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  9. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  10. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    PubMed

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment. PMID:26484394

  11. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    PubMed

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.

  12. Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro.

    PubMed

    Layman, John M; Ramirez, Sean M; Green, Matthew D; Long, Timothy E

    2009-05-11

    Establishing clear structure-property-transfection relationships is a critical step in the development of clinically relevant polymers for nonviral gene therapy. In this study, we determined the influence of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) molecular weight on cytotoxicity, DNA binding, and in vitro plasmid DNA delivery efficiency in human brain microvascular endothelial cells (HBMEC). Conventional free radical polymerization was used to synthesize PDMAEMA with weight-average molecular weights ranging from 43,000 to 915,000 g/mol. MTT and LDH assays revealed that lower molecular weight PDMAEMA (M(w) = 43,000 g/mol) was slightly less toxic than higher molecular weights (M(w) > 112,000 g/mol) and that the primary mode of toxicity was cellular membrane destabilization. An electrophoretic gel shift assay revealed that all PDMAEMA molecular weights completely bound with plasmid DNA. However, heparin competitive binding experiments revealed that higher molecular weight PDMAEMA (M(w) = 915,000 g/mol) had a greater binding affinity toward plasmid DNA than lower molecular weight PDMAEMA (M(w) = 43,000 g/mol). The molecular weight of PDMAEMA was found to have a dramatic influence on transfection efficiency, and luciferase reporter gene expression increased as a function of increasing molecular weight. However, cellular uptake of polyplexes was determined to be insensitive to PDMAEMA molecular weight. In addition, our data did not correlate polyplex size with transfection efficiency. Collectively, our data suggested that the intracellular fate of the polyplexes, which involves endosomal release and DNase resistance, is more important to overall transfection efficiency than barriers to entry, such as polyplex size.

  13. Agents for the treatment of heparin-induced thrombocytopenia.

    PubMed

    Warkentin, Theodore E

    2010-08-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated adverse drug effect characterized by platelet activation, hypercoagulability, and increased risk of thrombosis, both venous and arterial. A diagnosis of HIT usually signifies that heparin products, including unfractionated and low-molecular-weight heparin, are contraindicated. Although it is uncertain whether heparin continuation really worsens clinical outcomes, it is clear that vitamin K antagonists such as warfarin do worsen outcomes, as they promote microvascular thrombosis, with the potential for limb amputation (venous limb gangrene). Thus, alternative nonheparin anticoagulants are at the forefront of HIT therapy. This review proposes that alternative anticoagulants (danaparoid, fondaparinux) that share certain properties of heparin-namely its irreversible antithrombin-mediated inhibition of factor Xa-and that have relatively long half-lives, have several advantages in the therapy for HIT over short-acting agents that inhibit thrombin directly (recombinant hirudin, argatroban, and bivalirudin). PMID:20659659

  14. Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography.

    PubMed

    Saravanan, R; Shanmugam, A

    2010-03-01

    The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500-7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.

  15. Heparin-induced thrombocytopenia with abdominal aortic stent-graft acute thrombosis.

    PubMed

    Canaud, Ludovic; Hireche, Kheira; Marty-Ané, Charles; Alric, Pierre

    2013-08-01

    We report a case of heparin-induced thrombocytopenia in a patient on low molecular weight heparin bridge therapy who developed acute abdominal aortic stent-graft thrombosis 1 week after uncomplicated endovascular abdominal aortic aneurysm repair. The diagnosis was confirmed by a computed tomographic scan of the abdomen. The patient was successfully treated by conversion to open repair. The postoperative course was marked by subacute left limb ischemia related to an in vivo cross-reactivity of danaparoid with the heparin immune complex. To our knowledge, this is the first case report of heparin-induced thrombocytopenia with acute abdominal aortic stent-graft thrombosis. PMID:23711968

  16. High molecular weight glycosaminoglycans in AA type amyloid fibril extracts from human liver.

    PubMed Central

    Magnus, J H; Kolset, S O; Husby, G

    1991-01-01

    Glycosaminoglycans have previously been identified in extracts of AA type hepatic amyloid fibril from a patient with amyloidosis associated with juvenile rheumatoid arthritis. The macromolecular properties of these polysaccharides are described here in more detail. By gel filtration and ion exchange chromatography glycosaminoglycans in the form of high molecular weight free chains were shown to coisolate with water extracted amyloid fibrils. About 60% of these were characterised as galactosamines (chondroitin sulphate/dermatan sulphate), whereas the remaining 40% consisted of N-sulphated glucosamines (heparin/heparan sulphate). The amyloid associated glycosaminoglycans were not part of intact proteoglycans in the fibril extracts. PMID:1888198

  17. Heparin-induced thrombocytopenia: real-world issues.

    PubMed

    Linkins, Lori-Ann; Warkentin, Theodore E

    2011-09-01

    Heparin-induced thrombocytopenia (HIT) is a prothrombotic drug reaction caused by platelet-activating antibodies. HIT sera often activate platelets without needing heparin-such heparin-"independent" platelet activation can be associated with HIT beginning or worsening despite stopping heparin ("delayed-onset HIT"). We address important issues in HIT diagnosis and therapy, using a recent cohort of HIT patients to illustrate influences of heparin type; triggers for HIT investigation; serological features of heparin-independent platelet activation; and treatment. In our cohort of recent HIT cases ( N = 13), low-molecular-weight heparin (dalteparin) was a common causative agent ( N = 8, 62%); most patients were diagnosed after HIT-thrombosis had occurred; and danaparoid was the most frequently selected treatment. Heparin-independent platelet activation was common (7/13 [54%]) and predicted slower platelet count recovery (>1 week) among evaluable patients (5/5 vs 1/6; P = 0.015). In our experience with argatroban-treated patients, HIT-associated consumptive coagulopathy confounds anticoagulant monitoring. Our observations provide guidance on practical aspects of HIT diagnosis and management. PMID:22102268

  18. [Delayed-type hypersensitivity to heparin: diagnosis and therapeutic management].

    PubMed

    Nosbaum, A; Pralong, P; Rozieres, A; Dargaud, Y; Nicolas, J-F; Bérard, F

    2012-05-01

    Heparin is widely used as an anticoagulant and is indicated in the prevention and treatment of thromboembolic disorders. Heparin-induced delayed-type hypersensitivity presents as eczematous lesions, either at the injection site or generally, and affects 7.5% of patients on heparin. This poses diagnostic and therapeutic issues, since an alternative anticoagulant treatment is essential and the risk of cross-reactivity may be as high as 80%, depending on the type of heparin used. If delayed-type hypersensitivity is suspected, heparin-induced thrombocytopenia must first be ruled out, and heparin should be stopped. Fondaparinux is currently the first-line alternative, with a risk of cross-reactivity estimated at only 10%. The switch from a low-molecular-weight heparin (LMWH) to another LMWH is no longer recommended. The use of unfractionated heparin, danaparoid or hirudin may be warranted in the event of recurrence with fondaparinux, and an immuno-allergological work-up is needed to specify the exact profile of cross-allergies. PMID:22578340

  19. The multiple complexes formed by the interaction of platelet factor 4 with heparin.

    PubMed Central

    Bock, P E; Luscombe, M; Marshall, S E; Pepper, D S; Holbrook, J J

    1980-01-01

    The anisotropy of the fluorescence of dansyl (5-dimethylaminonaphthalene-1- sulphonyl) groups covalently attached to human platelet factor 4 was used to detect the macromolecular compounds formed when the factor was mixed with heparin. At low heparin/protein ratios a very-high-molecular-weight compound (1) was formed that dissociated to give a smaller compound (2) when excess heparin was added. 2. A large complex was also detected as a precipitate that formed at high protein concentrations in chloride buffer. It contained 15.7% (w/w) polysaccharide, equivalent to four or five heparin tetrasaccharide units per protein tetramer. In this complex, more than one molecule of protein binds to each heparin molecule of molecular weight greater than about 6 X 10(3).3. The stability of these complexes varied with pH, salt concentration and the chain length of the heparin. The limit complexes found in excess of the larger heparins consisted of only one heparin molecule per protein tetramer, and the failure to observe complexes with four heparin molecules/protein tetramer is discussed. PMID:7283972

  20. Heparin in malignant glioma: review of preclinical studies and clinical results.

    PubMed

    Schnoor, Rosalie; Maas, Sybren L N; Broekman, Marike L D

    2015-09-01

    Glioblastoma multiforme (GBM) is the most common primary brain tumor that is invariably lethal. Novel treatments are desperately needed. In various cancers, heparin and its low molecular weight derivatives (LMWHs), commonly used for the prevention and treatment of thrombosis, have shown therapeutic potential. Here we systematically review preclinical and clinical studies of heparin and LMWHs as anti-tumor agents in GBM. Even though the number of studies is limited, there is suggestive evidence that heparin may have various effects on GBM. These effects include the inhibition of tumor growth and angiogenesis in vitro and in vivo, and the blocking of uptake of extracellular vesicles. However, heparin can also block the uptake of (potential) anti-tumor agents. Clinical studies suggest a non-significant trend of prolonged survival of LMWH treated GBM patients, with some evidence of increased major bleedings. Heparin mimetics lacking anticoagulant effect are therefore a potential alternative to heparin/LMWH and are discussed as well.

  1. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis

    DOE PAGES

    Wall, Jonathan; Martin, Emily B.; Richey, Tina; Stuckey, Alan C.; Macy, Sallie; Wooliver, Craig; Williams, Angela; Foster, James S.; McWilliams-Koeppen, Penney; Uberbacher, Ed; et al

    2015-04-27

    Amyloid is a complex pathologic matrix comprised principally of para-crystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloidoses are rare (~3500 new cases per year in the US); thus, routine diagnosis is often challenging, and effective treatment options are limited, resulting in high morbidity and mortality rates. Glycosaminoglycans contribute inextricably to the formation of amyloid fibrils and foster the deposition of amyloid in tissues. Those present in amyloid deposits are biochemically and electrochemically distinct from glycosaminoglycans found in the plasma membrane and extracellular matrices of healthy tissues due to the presence of a high degree of heparin-like hypersulfation. We havemore » exploited this unique property and evaluated heparin-reactive peptides, such as p5+14. Herein we show efficacious detection of murine systemic amyloid in vivo by using molecular imaging, and the specific targeting of the peptide to major forms of human amyloid in tissue sections. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients; thus, providing a novel technique for prognostication, patient stratification, and monitoring response to therapy.« less

  2. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis

    SciTech Connect

    Wall, Jonathan; Martin, Emily B.; Richey, Tina; Stuckey, Alan C.; Macy, Sallie; Wooliver, Craig; Williams, Angela; Foster, James S.; McWilliams-Koeppen, Penney; Uberbacher, Ed; Cheng, Xiaolin; Kennel, Stephen J.

    2015-04-27

    Amyloid is a complex pathologic matrix comprised principally of para-crystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloidoses are rare (~3500 new cases per year in the US); thus, routine diagnosis is often challenging, and effective treatment options are limited, resulting in high morbidity and mortality rates. Glycosaminoglycans contribute inextricably to the formation of amyloid fibrils and foster the deposition of amyloid in tissues. Those present in amyloid deposits are biochemically and electrochemically distinct from glycosaminoglycans found in the plasma membrane and extracellular matrices of healthy tissues due to the presence of a high degree of heparin-like hypersulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14. Herein we show efficacious detection of murine systemic amyloid in vivo by using molecular imaging, and the specific targeting of the peptide to major forms of human amyloid in tissue sections. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients; thus, providing a novel technique for prognostication, patient stratification, and monitoring response to therapy.

  3. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  4. Inhibitory Effects of Medium Molecular Weight Heparinyl Amino Acid Derivatives on Ischemic Paw Edema in Mice.

    PubMed

    Takeda, Seiichi; Toda, Takao; Nakamura, Kazuki

    2016-01-01

    We investigated the radical-scavenging effects of heparin (HE), medium molecular weight heparinyl phenylalanine (MHF), and medium molecular weight heparinyl leucine (MHL) using ischemic paw edema in mice. We also examined the activated partial thromboplastin time (APTT) of mice that were administered these compounds as an index of their side-effects. HE had a preventative effect and significant reduced ischemic paw edema. However, its effect was not dose-dependent and the dose-response curve was bell-shaped. The effective dose of HE also exhibited a prolonged APTT. Pretreatment using MHF and MHL were effective against ischemic paw edema without a prolonged APTT. Remarkably, the action of MHF was not only preventively, but also therapeutically active. These results suggest that MHF and MHL are superior to HE as safe radical scavengers in vivo. PMID:27381605

  5. Profile of low molecular weight tinzaparin sodium for anticoagulation during hemodialysis.

    PubMed

    Al-Saran, Khalid A; Sabry, Alaa; Taha, Moammer; Ghafour, Mamdouh Abdul; Al Fawzan, Fawzan

    2010-01-01

    Low-molecular-weight heparin (LMWH) has been suggested as providing safe, efficient, convenient, and possibly more cost-effective anticoagulation for hemodialysis (HD) than unfractionated heparin (UFH) with a single bolus dose at the start of hemodialysis effectively prevents clot formation in the dialyzer and bubble trap with fewer side-effects and possible benefits on uremic dyslipidemia. In this study, we compared the safety, clinical efficacy, and cost effectiveness of tinzaparin sodium (Innohep) with unfractionated heparin (UFH) in 23 chronic HD patients; their extracorporeal anticoagulant protocol consisted of UFH was switched to tinzaparin for a period of 6 months. Clinical clotting (grade 1-4) was evaluated by visual inspection after blood draining of the air trap every hour and the dialyzer after each session. Anticoagulation with tinzaparin sodium resulted in less frequent dialyzer and air-trap clotting compared to UFH (P= 001 and 0.04 respectively). Over 24 weeks, we observed no alteration in the serum lipid profile of the patients. There was a statistically significant improvement in the dialysis single pool Kt/V after 6 months of tinzaparin use (1.40 + or - 0.28 for tinzaparin versus 1.23 + or - 0.28 for heparin) without any modification in the hemodialysis prescription. The total cost for 24 weeks use of tinzaparin sodium was 23% more expensive compared to that for UFH. We conclude that a single bolus of Tinzaparin sodium injection at the start of the dialysis session was more effective and convenient in our patients than UFH, but at a higher total cost. Furthermore, at least on the short term, there was no observed benefit on the lipid profile.

  6. Reducing the hospital burden of heparin-induced thrombocytopenia: impact of an avoid-heparin program.

    PubMed

    McGowan, Kelly E; Makari, Joy; Diamantouros, Artemis; Bucci, Claudia; Rempel, Peter; Selby, Rita; Geerts, William

    2016-04-21

    Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction occurring in up to 5% of patients exposed to unfractionated heparin (UFH). We examined the impact of a hospital-wide strategy for avoiding heparin on the incidence of HIT, HIT with thrombosis (HITT), and HIT-related costs. The Avoid-Heparin Initiative, implemented at a tertiary care hospital in Toronto, Ontario, Canada, since 2006, involved replacing UFH with low-molecular-weight heparin (LMWH) for prophylactic and therapeutic indications. Consecutive cases with suspected HIT from 2003 through 2012 were reviewed. Rates of suspected HIT, adjudicated HIT, and HITT, along with HIT-related expenditures were compared in the pre-intervention (2003-2005) and the avoid-heparin (2007-2012) phases. The annual rate of suspected HIT decreased 42%, from 85.5 per 10 000 admissions in the pre-intervention phase to 49.0 per 10 000 admissions in the avoid-heparin phase ( ITALIC! P< .001). The annual rate of patients with a positive HIT assay decreased 63% from 16.5 to 6.1 per 10 000 admissions ( ITALIC! P< .001), adjudicated HIT decreased 79% from 10.7 to 2.2 per 10 000 admissions ( ITALIC! P< .001), and HITT decreased 91% from 4.6 to 0.4 per 10 000 admissions ( ITALIC! P< .001). Hospital HIT-related expenditures decreased by $266 938 per year in the avoid-heparin phase. To the best of our knowledge, this is the first study demonstrating the success and feasibility of a hospital-wide HIT prevention strategy.

  7. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  8. Hyphenated techniques for the analysis of heparin and heparan sulfate

    PubMed Central

    Yang, Bo; Solakyildirim, Kemal; Chang, Yuqing

    2011-01-01

    The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate. PMID:20853165

  9. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  10. [GOOD PLANNING PRACTICE IN PRECLINICAL AND CLINICAL STUDIES OF UNFRACTIONATED AND FRACTIONATED HEPARINS IN RUSSIA AS THE BASIS OF SAFE AND EFFECTIVE ANTICOAGULATION THERAPY].

    PubMed

    Gavrishina, E V; Dobrovolskii, A V; Niyazov, R R; Romodanovskii, D P; Vasil'ev, A N

    2015-01-01

    General principles of appropriate strategies for preclinical and clinical development of unfractionated and low-molecular-weight heparins and demonstration of their biosimilarity to corresponding reference medicinal products are provided. Demonstration of the biosimilarity of heparin-containing medicinal products constitutes the basis for their efficacy and safety during anticoagulation therapy. The main quality, safety, and efficacy characteristics of heparin products are described and the extent of non-clinical and clinical investigations necessary prior to drug marketing authorization are considered. PMID:27017700

  11. Thromboembolic prophylaxis with danaparoïd (Orgaran) in a high-thrombosis-risk pregnant woman with a history of heparin-induced thrombocytopenia (HIT) and Widal's disease.

    PubMed

    Macchi, L; Sarfati, R; Guicheteau, M; Chamlian, V; Pourrat, O; Gruel, Y; Magnin, G; Brizard, A; Boinot, C

    2000-10-01

    There is no consensus concerning thromboembolic prophylaxis in high-risk pregnant women with a previous history of heparin-induced thrombocytopenia. An alternative anticoagulant therapy is danaparoïd, whereas unfractioned and low-molecular-weight heparin therapy is contraindicated. We report a case of successful thrombosis prophylaxis using danaparoïd in a high-thrombosis-risk pregnant woman with a history of heparin-induced thrombocytopenia during a previous pregnancy and Widal's disease. PMID:11030522

  12. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  13. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; et al

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  14. Pinpointing the putative heparin/sialic acid-binding residues in the 'sushi' domain 7 of factor H: a molecular modeling study.

    PubMed

    Ranganathan, S; Male, D A; Ormsby, R J; Giannakis, E; Gordon, D L

    2000-01-01

    Factor H, a secretory glycoprotein comprising 20 short consensus repeat (SCR) or 'sushi' domains of about 60 amino acids each, is a regulator of the complement system. The complement-regulatory functions of factor H are targeted by its binding to polyanions such as heparin/sialic acid, involving SCRs 7 and 20. Recently, the SCR 7 heparin-binding site was shown to be co-localized with the Streptococcus Group A M protein binding site on factor H (T.K. Blackmore et al., Infect. Immun. 66, 1427 (1998)). Using sequence analysis of all heparin-binding domains of factor H and its closest homologues, molecular modeling of SCRs 6 and 7, and surface electrostatic potential studies, the residues implicated in heparin/sialic acid binding to SCR 7 have been localized to four regions of sequence space containing stretches of basic as well as histidine residues. The heparin-binding site is spatially compact and lies near the interface between SCRs 6 and 7, with residues in the interdomain linker playing a significant role.

  15. Heparin-induced thrombocytopenia type II on hemodialysis: switch to danaparoid.

    PubMed

    Neuhaus, T J; Goetschel, P; Schmugge, M; Leumann, E

    2000-08-01

    We report two pediatric patients with end-stage renal failure who developed heparin-induced thrombocytopenia type II (HIT II) on hemodialysis (HD). Both developed acute respiratory distress and chest pain within 30 min of initiating the 5th HD session. The platelets dropped during HD from 168 to 38x10(9)/l and from 248 to 109x10(9)/l, respectively. Marked clots were observed in the dialyzers. Substitution of heparin with the low molecular weight heparin dalteparin had no effect. Switching from anticoagulation to the heparinoid danaparoid resulted in immediate disappearance of all adverse effects, and further long-term HD was uneventful. HIT II was diagnosed clinically; heparin-induced platelet activation test (HIPA) and serum IgG, IgA, and IgM to heparin-platelet factor 4 complexes (HPF4) were both negative. We conclude that HIT II may occur in children on HD. HIT II is essentially a clinical diagnosis, as HIPA and antibodies to HPF4 are not always positive. Once HIT II is suspected, heparin (and low-molecular-weight heparins) should be stopped immediately. Long-term anticoagulation with danaparoid is a valuable option for patients on HD. PMID:10955913

  16. Heparin-induced thrombocytopenia: a review of concepts regarding a dangerous adverse drug reaction.

    PubMed

    Junqueira, Daniela Rezende Garcia; Carvalho, Maria das Graças; Perini, Edson

    2013-01-01

    Heparin is a natural agent with antithrombotic action, commercially available for therapeutic use as unfractionated heparin and low molecular weight heparin. Heparin-induced thrombocytopenia (HIT) is a serious adverse reaction to heparin that promotes antibody-mediated platelet activation. HIT is defined as a relative reduction in platelet count of 50% (even when the platelet count at its lowest level is above>150 x 10(9)/L) occurring within five to 14 days after initiation of the therapy. Thrombocytopenia is the main feature that directs the clinical suspicion of the reaction and the increased risk of thromboembolic complications is the most important and paradoxical consequence. The diagnosis is a delicate issue, and requires a combination of clinical probability and laboratory tests for the detection of platelet activation induced by HIT antibodies. The absolute risk of HIT has been estimated between 1% and 5% under treatment with unfractionated heparin, and less than 1% with low molecular weight heparin. However, high-quality evidence about the risk of HIT from randomized clinical trials is scarce. In addition, information on the frequency of HIT in developing countries is not widely available. This review aims to provide a better understanding of the key features of this reaction and updated information on its frequency to health professionals and other interested parties. Knowledge, familiarity, and access to therapeutic options for the treatment of this adverse reaction are mandatory to minimize the associated risks, improving patient safety.

  17. Recovery of petroleum with chemically treated high molecular weight polymers

    SciTech Connect

    Gibb, C.L.; Rhudy, J.S.

    1980-11-18

    Plugging of reservoirs with high molecular weight polymers, e.g. Partially hydrolyzed polyacrylamide, is overcome by chemically treating a polymer having an excessively high average molecular weight prior to injection into a reservoir with an oxidizing chemical, e.g. sodium hypochlorite, and thereafter incorporating a reducing chemical, e.g., sodium sulfite, to stop degradation of the polymer when a desired lower average molecular weight and flooding characteristics are attained.

  18. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  19. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.

    PubMed

    Välimäki, Salla; Khakalo, Alexey; Ora, Ari; Johansson, Leena-Sisko; Rojas, Orlando J; Kostiainen, Mauri A

    2016-09-12

    Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents. PMID:27477891

  20. Heparins: process-related physico-chemical and compositional characteristics, fingerprints and impurities.

    PubMed

    Liverani, Lino; Mascellani, Giuseppe; Spelta, Franco

    2009-11-01

    During the past 25 years, heparin extraction and purification processes have changed. The results of these changes are reflected by the continuous increase in potency of the International Standard for heparin. This increase is due not only to a higher purity, but also to a number of changes in the physico-chemical characteristics of heparin. For long time, all these changes have been disregarded as non-critical by regulatory authorities. Heparin marketing authorisation was reviewed only two years ago and Pharmacopoeia monographs were reviewed just for the addition of new tests, mainly aimed at tackling the oversulfated chondroitin sulfate (OSCS) crisis. Currently, heparin monographs are again under revision. Such changes, different for each manufacturer, have caused a further increase in the heterogeneity of individual batches of heparin. This review aims at showing that chemical, physical and biological characteristics of heparin (such as disaccharide composition, amount of low sulfated and high sulfated sequences, molecular weight profiles [MW], activities, structural artifacts, fingerprints and glycosaminoglycans impurities) are all process-dependent and may significantly vary when different processes are used to minimise the content of dermatan sulfate. The wide heterogeneity of the physico-chemical characteristics of currently marketed heparin and the lack of suitable and shareable reference standards for the identification/quantification of process-related impurities caused, and are still causing, heated debates among scientific institutions, companies and authorities. PMID:19888518

  1. Heparinization during percutaneous cardiac catheterization in children.

    PubMed

    Netz, H; Madu, B; Röhner, G

    1987-01-01

    The effect of heparin on blood clotting was studied by measuring the activated clotting time (ACT) in 120 infants and children with congenital heart disease after a single intravenous bolus of 100 IU heparin/kg body weight. Before heparinization, infants and children with cyanotic heart disease showed signs of hypocoagulation. Heparin bolus led to a threefold increase of ACT after 15 min. After 1 h, the ACT was still two times the normal value. Any further administration of heparin may be based on ACT monitoring.

  2. Synthetic heparin pentasaccharide depolymerization by heparinase I: molecular and biological implications.

    PubMed

    Daud, A N; Ahsan, A; Iqbal, O; Walenga, J M; Silver, P J; Ahmad, S; Fareed, J

    2001-01-01

    A synthetic pentasaccharide (SR90107/ ORG31540) representing the antithrombin III (ATIII) binding sequence in heparin is under clinical development for the prophylaxis and management of venous thromboembolism. This pentasaccharide exhibits potent anti-factor Xa (AXa) effects (>750 IU/mg) and does not exhibit any anti-factor IIa (AIIa) activity. Previous reports have suggested that synthetic heparin pentasaccharides are resistant to the digestive effects of heparinase I. To investigate the effect of heparinase I on the AXa activity of pentasaccharide SR90107/ORG31540, graded concentrations (1.25-100 microg/ml) were incubated with a fixed amount of heparinase I (0.1 U/ml). Heparinase I produced a strong neutralizing effect on this pentasaccharide, as measured by AXa activity. This observation led to further studies where high performance liquid chromatography (HPLC) analysis was employed to determine the potential breakdown products of the pentasaccharide. The experiment with the pentasaccharide included incubation (37 degrees C) at 1 mg/ml and exposure to graded concentrations of heparinase I (0.125-1 U/ml). After 30 min of incubation, the enzymatic activity was stopped by heat treatment and the mixture was analyzed using high performance size exclusion chromatography (HPSEC). Heparinase I concentration-dependent cleavage of the pentasaccharide was evident. The breakdown products exhibited a mass of 1,034 d and 743 d, respectively, suggesting the generation of a trisaccharide and a disaccharide moiety. The extinction of a disaccharide moiety in the UV region was high, indicating the presence of a double bond in this molecule. These data clearly suggest that pentasaccharide SR90107/ORG31540 is digestible by heparinase I into its two components. Furthermore, these data support the hypothesis that heparinase I can be used as a neutralizing agent for pentasaccharide overdose. Additionally, a highly methylated analog of the previously mentioned synthetic pentasaccharide

  3. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  4. Pharmacokinetics and Pharmacodynamics of Oral Heparin Solid Dosage Form in Healthy Human Subjects

    PubMed Central

    Mousa, Shaker A.; Zhang, Fuming; Aljada, Ahmad; Chaturvedi, Seema; Takieddin, Majde; Zhang, Haifeng; Chi, Lianli; Castelli, M. Cristina; Friedman, Kristen; Goldberg, Michael M.; Linhardt, Robert J.

    2014-01-01

    The present investigation determined the molecular structure and the pharmacokinetic and pharmacodynamic profiles of oral unfractionated heparin containing oral absorption enhancer sodium N-[8-(2-hydroxybenzoyl) amino]caprylate, salcaprozate sodium (SNAC) and assessed the safety and tolerability of the orally dosed heparin solid dosage form versus other routes. Sixteen healthy men were included in this single-dose, 3-way crossover, randomized, open-label study. Disaccharide compositional analysis was performed using capillary high-performance liquid chromatography with electrospray ionization mass spectrometry detection. The pharmacodynamics of heparin were obtained from analysis of plasma anti–factor Xa, anti–factor IIa, activated partial thromboplastin time, and total tissue factor pathway inhibitor data. The molecular weight properties and the disaccharide composition of orally administered unfractionated heparin/SNAC and parenterally administered unfractionated heparin are identical and consistent with the starting pharmaceutical standard heparin. Furthermore, the anti–factor Xa/anti–factor IIa ratio achieved is of approximately 1:1. This is the first true pharmacokinetic study to measure the chemical compositions of heparin administered by different routes. PMID:18048572

  5. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. PMID:26794765

  6. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest.

  7. Alternative diagnosis to heparin-induced thrombocytopenia in two critically ill patients despite a positive PF4/heparin-antibody test

    PubMed Central

    Hron, Gregor; Knutson, Folke; Thiele, Thomas; Althaus, Karina; Busemann, Christoph; Friesecke, Sigrun; Greinacher, Andreas

    2013-01-01

    Thrombocytopenia can cause diagnostic challenges in patients who have received heparin. Heparin-induced thrombocytopenia (HIT) is often considered in the differential diagnosis, and a positive screening can be mistaken as confirmation of the disorder. We present two patients who both received low-molecular-weight heparin for several days. In the first patient, clinical judgment rejected the suspicion of HIT despite a positive screening assay, and treatment for the alternative diagnosis of post-transfusion purpura was correctly initiated. In the second patient, the inaccurate diagnosis HIT was pursued due to a positive screening assay, while the alternative diagnosis of drug-dependent thrombocytopenia caused by piperacillin/tazobactam was rejected. This resulted in re-exposure to piperacillin/tazobactam which caused a second episode of severe thrombocytopenia. A positive screening assay for platelet factor 4/heparin-antibody should be verified by a functional assay, especially in patients with low pretest probability for HIT. PMID:24102149

  8. Free volume variation with molecular weight of polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Hinkley, Jeffrey A.; St.clair, Terry L.; Jensen, Brian J.

    1992-01-01

    Free volume measurements were made in several molecular weight fractions of two different geometries of poly(arylene ether ketone)s. Free volumes were measured using positron lifetime spectroscopy. It has been observed that the free volume cell size V(sub f) varies with the molecular weight M of the test samples according to an equation of the form V(sub f) = AM(B), where A and B are constants. The molecular weights computed from the free volume cell sizes are in good agreement with the values measured by gel permeation chromatography.

  9. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  10. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  11. [Long-term low molecular weight heparin protection during pregnancy for the recurrent fetal loss].

    PubMed

    Hajsmanová, Z; Slechtová, J; Sigutová, P; Ulcová-Gallová, Z

    2008-10-01

    Recurrent fetal loss affects 1 to 5% women of the fertile age all over the world. Pathogenesis of recurrent early or late fetal loss remains unclear and therefore the LMHW administration during pregnancy has not been sorted out so far. Our trial deals with a cohort of 51 pregnant women with recurrent fetal loss in their personal history treated by long-term administration of LMWHs which was compared with a cohort of healthy women LMWHs untreated. 91% effectiveness of a long-term LMWH protection means in fact 43 liveborn babies delivered without any complications during pregnancy and delivery to 47 women - 30 of these women were primiparas.

  12. [Thrombocytopenia induced by heparin. Diagnosis, treatment, physiopathology: current concepts].

    PubMed

    Gruel, Y; Drouet, L

    1986-01-01

    Iatrogenic thrombocytopenia is a rare, but severe complication of treatments with heparin and heparinoids. Mean temporary thrombocytopenia failing to show any complications are usually diagnosed as quite different from acute and delayed thrombocytopenia of which severity depends mainly on thrombotic symptoms demonstrated in 65 p. 100 of cases; the initial evolution of an average thrombocytopenia is not easy to diagnose; it may as well exist a connection between the two diseases, from a physiopathogenic point of view. The diagnosis of severe thrombocytopenia depends:--clinically, on the initial data, delayed as compared with the heparin treatment beginning and existence of arterial and/or venous thrombosis;--biologically, by demonstrating an aggregating activity for platelets in presence of heparin, in the patient plasma. Such an activity requires the suppression of standard heparinotherapy as well as the choice of substitutive anticoagulant treatment in case of evolutive thrombosis. Low molecular weight heparins are prescribed only if in vitro tests of platelet aggregation with the patient's plasma are negative. Antivitamins K are to be used as soon as possible alone or combined with heparin fractions. Antiaggregants are prescribed alone, above all in case of isolated thrombocytopenia and combined with AVK. Treatment of thrombotic complications depends on surgical disobstruction if arterial thrombosis, and use of fibrinolytics if pulmonary embolisms. The acute reaction of some thrombocytopenia to heparin as well as therapeutic difficulties demonstrate the efficiency of an early diagnosis performed thanks to systematic platelet numerations during the first 15 days of a treatment with heparin, as well as to the prevention along with systematic association with aspirin, especially if replaced with AVK.

  13. Molecular-Weight-Controlled, End-Capped Polybenzimidazoles

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1993-01-01

    Novel molecular-weight-controlled end-capped poly(arylene ether benzimidazole)s (PAEBI's) prepared by nucleophilic displacement reaction of di(hydroxyl)benzimidazole monomers with activated aromatic dihalides. Polymers prepared at various molecular weights by upsetting stoichiometry of monomers and end-capped with monohydroxybenzimidazole. Exhibit favorable physical and mechanical properties, improved solubility in polar aprotic solvents and better compression moldability. Potential applications as adhesives, coatings, films, fibers, membranes, moldings, and composite matrix resins.

  14. Mechanical prophylaxis is a heparin-independent risk for anti-platelet factor 4/heparin antibody formation after orthopedic surgery.

    PubMed

    Bito, Seiji; Miyata, Shigeki; Migita, Kiyoshi; Nakamura, Mashio; Shinohara, Kazuhito; Sato, Tomotaro; Tonai, Takeharu; Shimizu, Motoyuki; Shibata, Yasuhiro; Kishi, Kazuhiko; Kubota, Chikara; Nakahara, Shinnosuke; Mori, Toshihito; Ikeda, Kazuo; Ota, Shusuke; Minamizaki, Takeshi; Yamada, Shigeru; Shiota, Naofumi; Kamei, Masataka; Motokawa, Satoru

    2016-02-25

    Platelet-activating antibodies, which recognize platelet factor 4 (PF4)/heparin complexes, induce spontaneous heparin-induced thrombocytopenia (HIT) syndrome or fondaparinux-associated HIT without exposure to unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). This condition mostly occurs after major orthopedic surgery, implying that surgery itself could trigger this immune response, although the mechanism is unclear. To investigate how surgery may do so, we performed a multicenter, prospective study of 2069 patients who underwent total knee arthroplasty (TKA) or hip arthroplasty. Approximately half of the patients received postoperative thromboprophylaxis with UFH, LMWH, or fondaparinux. The other half received only mechanical thromboprophylaxis, including dynamic (intermittent plantar or pneumatic compression device), static (graduated compression stockings [GCSs]), or both. We measured anti-PF4/heparin immunoglobulins G, A, and M before and 10 days after surgery using an immunoassay. Multivariate analysis revealed that dynamic mechanical thromboprophylaxis (DMT) was an independent risk factor for seroconversion (odds ratio [OR], 2.01; 95% confidence interval [CI], 1.34-3.02; P = .001), which was confirmed with propensity-score matching (OR, 1.99; 95% CI, 1.17-3.37; P = .018). For TKA, the seroconversion rates in patients treated with DMT but no anticoagulation and in patients treated with UFH or LMWH without DMT were similar, but significantly higher than in patients treated with only GCSs. The proportion of patients with ≥1.4 optical density units appeared to be higher among those treated with any anticoagulant plus DMT than among those not treated with DMT. Our study suggests that DMT increases risk of an anti-PF4/heparin immune response, even without heparin exposure. This trial was registered to www.umin.ac.jp/ctr as #UMIN000001366. PMID:26659923

  15. Mechanical prophylaxis is a heparin-independent risk for anti-platelet factor 4/heparin antibody formation after orthopedic surgery.

    PubMed

    Bito, Seiji; Miyata, Shigeki; Migita, Kiyoshi; Nakamura, Mashio; Shinohara, Kazuhito; Sato, Tomotaro; Tonai, Takeharu; Shimizu, Motoyuki; Shibata, Yasuhiro; Kishi, Kazuhiko; Kubota, Chikara; Nakahara, Shinnosuke; Mori, Toshihito; Ikeda, Kazuo; Ota, Shusuke; Minamizaki, Takeshi; Yamada, Shigeru; Shiota, Naofumi; Kamei, Masataka; Motokawa, Satoru

    2016-02-25

    Platelet-activating antibodies, which recognize platelet factor 4 (PF4)/heparin complexes, induce spontaneous heparin-induced thrombocytopenia (HIT) syndrome or fondaparinux-associated HIT without exposure to unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). This condition mostly occurs after major orthopedic surgery, implying that surgery itself could trigger this immune response, although the mechanism is unclear. To investigate how surgery may do so, we performed a multicenter, prospective study of 2069 patients who underwent total knee arthroplasty (TKA) or hip arthroplasty. Approximately half of the patients received postoperative thromboprophylaxis with UFH, LMWH, or fondaparinux. The other half received only mechanical thromboprophylaxis, including dynamic (intermittent plantar or pneumatic compression device), static (graduated compression stockings [GCSs]), or both. We measured anti-PF4/heparin immunoglobulins G, A, and M before and 10 days after surgery using an immunoassay. Multivariate analysis revealed that dynamic mechanical thromboprophylaxis (DMT) was an independent risk factor for seroconversion (odds ratio [OR], 2.01; 95% confidence interval [CI], 1.34-3.02; P = .001), which was confirmed with propensity-score matching (OR, 1.99; 95% CI, 1.17-3.37; P = .018). For TKA, the seroconversion rates in patients treated with DMT but no anticoagulation and in patients treated with UFH or LMWH without DMT were similar, but significantly higher than in patients treated with only GCSs. The proportion of patients with ≥1.4 optical density units appeared to be higher among those treated with any anticoagulant plus DMT than among those not treated with DMT. Our study suggests that DMT increases risk of an anti-PF4/heparin immune response, even without heparin exposure. This trial was registered to www.umin.ac.jp/ctr as #UMIN000001366.

  16. Heparin-induced thrombocytopenia with iliacofemoropopliteal thrombosis in a patient operated for colorectal carcinoma liver metastases.

    PubMed

    Vucelić, Dragica; Antonijević, Nebojsa; Galun, Danijel; Bulajić, Predrag; Basarić, Dragan; Milićević, Miroslav

    2011-01-01

    We report a case of heparin-induced thrombocytopenia thrombosis (HITT) syndrome in a patient prophylactically treated with low molecular weight heparin. A 66-year-old men underwent radiofrequency-assisted partial liver resection for colorectal carcinoma liver metastases a year-and-a-half after he had been operated for rectal cancer. In the postoperative period, patient was prophilactically treated with reviparin sodium. On the 8th postoperative day, the platelet count decreased by more than 50% without clinical signs of thrombosis. HITT syndrome was suspected on the 19th postoperative day, after iliacofemoropopliteal thrombosis had developed, and related diagnosis was supported by the strongly positive particle gel agglutination technique immunoassay. Heparin was withdrawn and alternative anticoagulant, danaparoid sodium, was introduced in therapeutic doses. Despite delayed recognition, favorable clinical outcome was achieved. HITT syndrome should be considered with priority among the possible causes of thrombocytopenia in a surgical patient on heparin. PMID:22519199

  17. Specific inhibition of secreted NRG1 types I-II by heparin enhances Schwann Cell myelination.

    PubMed

    Eshed-Eisenbach, Yael; Gordon, Aaron; Sukhanov, Natalya; Peles, Elior

    2016-07-01

    Primary cultures of mixed neuron and Schwann cells prepared from dorsal root ganglia (DRG) are extensively used as a model to study myelination. These dissociated DRG cultures have the particular advantage of bypassing the difficulty in purifying mouse Schwann cells, which is often required when using mutant mice. However, the drawback of this experimental system is that it yields low amounts of myelin. Here we report a simple and efficient method to enhance myelination in vitro. We show that the addition of heparin or low molecular weight heparin to mixed DRG cultures markedly increases Schwann cells myelination. The myelin promoting activity of heparin results from specific inhibition of the soluble immunoglobulin (Ig)-containing isoforms of neuregulin 1 (i.e., NRG1 types I and II) that negatively regulates myelination. Heparin supplement provides a robust and reproducible method to increase myelination in a simple and commonly used culture system. GLIA 2016;64:1227-1234.

  18. Heparin induced thrombocytopenia in critically ill: Diagnostic dilemmas and management conundrums

    PubMed Central

    Gupta, Sachin; Tiruvoipati, Ravindranath; Green, Cameron; Botha, John; Tran, Huy

    2015-01-01

    Thrombocytopenia is often noted in critically ill patients. While there are many reasons for thrombocytopenia, the use of heparin and its derivatives is increasingly noted to be associated with thrombocytopenia. Heparin induced thrombocytopenia syndrome (HITS) is a distinct entity that is characterised by the occurrence of thrombocytopenia in conjunction with thrombotic manifestations after exposure to unfractionated heparin or low molecular weight heparin. HITS is an immunologic disorder mediated by antibodies to heparin-platelet factor 4 (PF4) complex. HITS is an uncommon cause of thrombocytopenia. Reported incidence of HITS in patients exposed to heparin varies from 0.2% to up to 5%. HITS is rare in ICU populations, with estimates varying from 0.39%-0.48%. It is a complex problem which may cause diagnostic dilemmas and management conundrum. The diagnosis of HITS centers around detection of antibodies against PF4-heparin complexes. Immunoassays performed by most pathology laboratories detect the presence of antibodies, but do not reveal whether the antibodies are pathological. Platelet activation assays demonstrate the presence of clinically relevant antibodies, but only a minority of laboratories conduct them. Several anticoagulants are used in management of HITS. In this review we discuss the incidence, pathogenesis, diagnosis and management of HITS. PMID:26261772

  19. Increased thromboxane production in women with a history of venous thromboembolic event: effect of heparins.

    PubMed

    Kaaja, R; Pettilä, V; Leinonen, P; Ylikorkala, O

    2001-09-01

    We investigated the production of prostacyclin and thromboxane in pregnant women with a previous venous thromboembolic event before, during and after the use of unfractionated heparin and low molecular weight heparin (dalteparin). Twenty women were studied before starting heparin prophylaxis (before 20 weeks of gestation), during heparin prophylaxis (at 30 weeks of gestation) and after heparin prophylaxis (16 weeks after delivery). Ten pregnant women with no history of thromboembolism were studied as the control group. Urinary output of the stable metabolite of prostacyclin (2,3-dinor-6-keto-PGF1alpha) and that of thromboxane A2 (2,3-dinor-TxB2), as well as a number of markers of thrombophilia were measured and expressed as mean (+/-SEM). Women with a history of thromboembolism were characterized by normal prostacyclin production but elevated thromboxane production (44.0 +/- 4.1 versus 19.0 +/- 3.6 ng/mmol creatinine, P < 0.001) at 12 weeks of pregnancy. Heparin prophylaxis (regardless of the type) had abolished elevated thromboxane concentrations at 30 weeks of gestation. Four months after delivery, thromboxane dominance had returned (25.2 +/- 3.5 versus 13.6 +/- 2.1 ng/mmol creatinine, P < 0.01). The presence of hereditary thrombophilia (9/20) was not associated with any changes in prostanoid concentrations. Thus, women with a history of venous thromboembolic events have thromboxane dominance during and after pregnancy, but this dominance can be eliminated through the use of heparins. PMID:11552994

  20. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  1. Heparin Characterization: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Jones, Christopher J.; Beni, Szabolcs; Limtiaco, John F. K.; Langeslay, Derek J.; Larive, Cynthia K.

    2011-07-01

    Although heparin is an important and widely prescribed pharmaceutical anticoagulant, its high degree of sequence microheterogeneity and size polydispersity make molecular-level characterization challenging. Unlike nucleic acids and proteins that are biosynthesized through template-driven assembly processes, heparin and the related glycosaminoglycan heparan sulfate are actively remodeled during biosynthesis through a series of enzymatic reactions that lead to variable levels of O- and N-sulfonation and uronic acid epimers. As summarized in this review, heparin sequence information is determined through a bottom-up approach that relies on depolymerization reactions, size- and charge-based separations, and sensitive mass spectrometric and nuclear magnetic resonance experiments to determine the structural identity of component oligosaccharides. The structure-elucidation process, along with its challenges and opportunities for future analytical improvements, is reviewed and illustrated for a heparin-derived hexasaccharide.

  2. The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding.

    PubMed

    Kingsley, Robert A; Keestra, A Marijke; de Zoete, Marcel R; Bäumler, Andreas J

    2004-04-01

    Introduction of Salmonella enterica serotype Typhimurium into food products results from its ability to persist in the intestine of healthy livestock by mechanisms that are poorly understood. The non-fimbrial adhesin ShdA is a fibronectin binding protein required for persistent intestinal carriage of S. Typhimurium. We further investigated the molecular mechanism of ShdA-mediated intestinal persistence by determining the binding-site of this receptor in fibronectin. Analysis of ShdA binding to fibronectin proteolytic fragments and to recombinant fibronectin fusion proteins identified the (13)FnIII repeat module of the Hep-2 domain as the primary binding site for this adhesin. The (13)FnIII repeat module of fibronectin contains a cationic cradle formed by six basic residues (R6, R7, R9, R23, K25 and R54) that is a high affinity heparin-binding site conserved among fibronectin sequences from frogs to man. Binding of ShdA to the (13)FnIII repeat module of fibronectin and to a second extracellular matrix protein, Collagen I, could be inhibited by heparin. Furthermore, binding of ShdA to the Hep-2 domain was sensitive to the ionic buffer strength, suggesting that binding involved ionic interactions. We therefore determined whether amino acid substitutions of basic residues in the cationic cradle of the Hep-2 domain that inhibit heparin binding also abrogate binding of ShdA. Combined substitution of R6S and R7S strongly reduced ShdA binding to (13)FnIII. These data suggest that ShdA binds the Hep-2 domain of fibronectin by a mechanism that may mimic binding of the host polysaccharide heparin. PMID:15066025

  3. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  4. Microbial detection with low molecular weight RNA.

    PubMed

    Kourentzi, K D; Fox, G E; Willson, R C

    2001-12-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  5. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism.

    PubMed

    Smythe, Maureen A; Priziola, Jennifer; Dobesh, Paul P; Wirth, Diane; Cuker, Adam; Wittkowsky, Ann K

    2016-01-01

    Venous thromboembolism (VTE) is a serious and often fatal medical condition with an increasing incidence. Despite the changing landscape of VTE treatment with the introduction of the new direct oral anticoagulants many uncertainties remain regarding the optimal use of traditional parenteral agents. This manuscript, initiated by the Anticoagulation Forum, provides clinical guidance based on existing guidelines and consensus expert opinion where guidelines are lacking. This specific chapter addresses the practical management of heparins including low molecular weight heparins and fondaparinux. For each anticoagulant a list of the most common practice related questions were created. Each question was addressed using a brief focused literature review followed by a multidisciplinary consensus guidance recommendation. Issues addressed included initial anticoagulant dosing recommendations, recommended baseline laboratory monitoring, managing dose adjustments, evidence to support a relationship between laboratory tests and meaningful clinical outcomes, special patient populations including extremes of weight and renal impairment, duration of necessary parenteral therapy during the transition to oral therapy, candidates for outpatient treatment where appropriate and management of over-anticoagulation and adverse effects including bleeding and heparin induced thrombocytopenia. This article concludes with a concise table of clinical management questions and guidance recommendations to provide a quick reference for the practical management of heparin, low molecular weight heparin and fondaparinux.

  6. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  7. [Heparin-induced thrombocytopenia (HIT). Importance for anesthesia and intensive care].

    PubMed

    Kleinschmidt, S; Seyfert, U T

    1999-11-01

    For many decades, heparins have been used successfully for prophylaxis and treatment of thromboembolic complications world-wide. Although heparin-induced thrombocytopenia (HIT Type II) is a well-known adverse effect of heparin therapy, thromboembolic complications during heparin therapy are rarely diagnosed exactly to be related to HIT. At present an immunologic etiology of HIT by generation of multimodal immune complexes against a neo antigen of heparin and platelet factor 4 is equivocally accepted. The incidence of HIT seems to be related to the type of heparin (unfractioned/low molecular weight) or other underlying risks such as peripheral occlusive vessel disease. Mortality and complications resulting from HIT is reported to be about 20-30% each. For diagnosis of HIT Type II, clinical observation and simultaneous laboratory testing are essential. Discontinuation of heparin is a simple and essential manoeuvre, and anticoagulation has to be continued by alternative drugs. The heparinoid danaparoid-sodium and the thrombin inhibitor recombinant hirudin have been used successfully world-wide for treatment in many patients with HIT Type II including cardiopulmonary bypass surgery or renal replacement procedures. Furthermore, other therapeutical alternatives (e.g. immunoglobulins, prostaglandines) exist. Randomised controlled studies have to evaluate which drug has to be preferred in the future including risk/benefit ratio. The need of supplementary surgical procedures (e.g. embolectomy) depends on the individual clinical status. The patients have to be informed in detail about their underlying disease and further deleterious consequences of re-exposition with heparin. HIT should be recorded in an emergency certificate and the national Committee on Drugs should be informed about this severe side effect of heparin therapy.

  8. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  9. Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations

    PubMed Central

    Qinna, Nidal A.; Karwi, Qutuba G.; Al-Jbour, Nawzat; Al-Remawi, Mayyas A.; Alhussainy, Tawfiq M.; Al-So’ud, Khaldoun A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  10. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-27

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.

  11. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  12. Adhesion and friction of PDMS networks: molecular weight effects.

    PubMed

    Galliano, A; Bistac, S; Schultz, J

    2003-09-15

    The objective of this work is to find relations between adherence and friction behaviors of elastomer networks. The chosen approach is based on the parallel study of the initial molecular weight (i.e., the degree of cross-linking) dependence of both adherence and friction. The polymers used are cross-linked polydimethylsiloxane (PDMS) and the substrate is a smooth glass plate. The experimental procedure uses both friction (pin on disk tribometer) and adhesion (tack test) measurements, associated with surface analysis and mechanical and rheological characterizations. Tack results show that high molecular weight PDMS exhibits the greater adherence energy. This can be explained by the role of both chain length and free and pendant chains: more numerous and longer free chains favor the substrate wetting (at a molecular scale) and increases the energy dissipation during separation (extraction and reptation mechanisms). However, friction results indicate a higher friction resistance for low molecular weight PDMS. This result could be quite surprising. An explanation based on interfacial sliding properties of free and pendant chains can be proposed. Elsewhere, for the lower molecular weight polymer, elastic contact present during friction is able to act as a forced wetting, constraining the network and consequently leading to a greater energy dissipation.

  13. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  14. Heparins modulate the IFN-γ-induced production of chemokines in human breast cancer cells.

    PubMed

    Fluhr, Herbert; Seitz, Tina; Zygmunt, Marek

    2013-01-01

    Heparins seem to improve survival in patients with advanced malignancies independently of their anticoagulatory function. As the treatment options in advanced and metastatic breast cancer are still very limited, heparins might be an interesting addition to the existing systemic therapies. The interferon (IFN)-γ-inducible chemokines CXCL9 and CXCL10 play an essential role in the regulation of the immune milieu in malignant tumours, thereby being interesting targets for an immunological intervention. We therefore wanted to test whether heparins have an impact on the chemokines CXCL9 and CXCL10 as well as the IFN-γ signalling in human breast cancer cells in vitro. The well-established cell lines BT-474, MCF-7, SK-BR-3 and MDA-MB-231 were incubated with IFN-γ, unfractionated heparin (UFH), different low molecular weight heparins (LMWHs) and the heparin-related polyanions danaparoid and dextran sulphate. The production of CXCL9 and CXCL10 was measured by ELISA and real-time RT-PCR, the phosphorylation of signal transducer and activator of transcription (STAT) 1 was detected by an in-cell western assay and the amount of cellular bound IFN-γ was analysed by a high sensitivity ELISA. We observed that IFN-γ induced CXCL9 and CXCL10 production in MCF-7, SK-BR-3 and MDA-MB-231 cells but not in BT-474. UFH dose dependently inhibited the effect of IFN-γ on the secretion and expression of CXCL9 and CXCL10. LMWHs and heparin-related compounds differentially modulated IFN-γ-effects-the results depended on their molecular size and charge, but were independent of their anticoagulatory properties. As a reason for these heparin effects, we could show that the IFN-γ-induced phosphorylation of STAT1 was modulated by heparins, caused by an interaction with the cellular binding of IFN-γ. In conclusion, these results support the significance of the immunomodulatory properties of heparins independently of their classical anticoagulatory function. Heparin-derived sulphated

  15. The use of danaparoid to manage coagulopathy in a neurosurgical patient with heparin-induced thrombocytopenia type II and intracerebral haemorrhage.

    PubMed

    Hertle, Daniel N; Hähnel, Stefan; Richter, Götz M; Unterberg, Andreas; Sakowitz, Oliver W; Kiening, Karl L

    2011-02-01

    This study presents a case of bifrontal intracerebral haemorrhage in a patient with heparin-induced thrombocytopenia type II (HIT II). HIT II was induced by treatment with low-molecular-weight heparin for recurrent deep vein thrombosis caused by essential thrombocytosis and accompanied by hepatic thromboembolism. This patient was treated with platelet substitution and neurosurgical haematoma evacuation. Anticoagulation with 2500 units danaparoid per day was sufficient for therapy of thrombosis and no rebleeding occurred. PMID:20707682

  16. Heparin penetration into and permeation through human skin from aqueous and liposomal formulations in vitro.

    PubMed

    Betz, G; Nowbakht, P; Imboden, R; Imanidis, G

    2001-10-01

    The transport of unfractionated (UH) and low molecular weight Heparin (LMWH) in human skin was investigated in vitro using heat separated epidermal membrane and dermis and the effect of liposomal formulations with Phospholipon(R) 80 (PL80) and Sphingomyelin (SM) was assessed. The distribution of Heparin within skin tissue was studied by the tape stripping method. Heparin concentrations were measured with a biological assay. Transepidermal water loss was determined to characterize barrier properties of skin. No consistent permeation of Heparin through epidermal membrane was detected. Penetration into the epidermal membrane was for LMWH significantly greater than for UH. Accumulation of UH was largely restricted to the outermost layers of the stratum corneum while LMWH penetrated into deeper epidermal layers. UH penetration into epidermis was detected for the PL80 liposomal formulation only. The extent of LMWH penetration was independent of the formulation, LMWH, however, showed a trend to accumulate in deeper epidermal layers for the PL80 compared to the aqueous formulation. Thus, molecular weight and liposomal formulations influenced the penetration pattern of Heparin in the epidermis. It can not be concluded whether the concentration of LMWH achieved at the blood capillaries is sufficient to exert a pharmacological effect. UH permeated readily through dermis irrespectively of formulation and its accumulation in the dermis was significantly enhanced and its lag time of permeation increased in the presence of SM liposomes.

  17. Heparin-induced thrombocytopenia in the pediatric population: a review of current literature.

    PubMed

    Vakil, Niyati H; Kanaan, Abir O; Donovan, Jennifer L

    2012-01-01

    Heparin-induced thrombocytopenia is a rare and serious reaction to unfractionated heparin and low-molecular-weight heparins in children. Quick recognition, discontinuation of heparin, and subsequent treatment with an alternative anticoagulant are essential steps to prevent serious complications such as thrombus and limb amputation. The purpose of this review is to describe the clinical features of heparin-induced thrombocytopenia in children and to summarize the data available for its management. This paper summarizes data and relates the use of direct thrombin inhibitors with clinical outcomes. A literature search was conducted with Ovid, using the key terms argatroban, bivalirudin, hirulog, danaparoid, lepirudin, direct thrombin inhibitor, heparin-induced thrombocytopenia, thrombosis, warfarin, and fondaparinux. Articles were excluded if they were classified as editorials, review articles, or conference abstracts or if they involved patients 18 years of age or older or described disease states not related to thrombosis. Nineteen articles containing 33 case reports were identified and evaluated for this review. Of the 33 cases, 14, 10, 4, and 2 cases described the use of lepirudin, danaparoid, argatroban, and bivalirudin, respectively. Two cases did not report the type of anticoagulant used, and 1 case used aspirin. The most commonly reported complication was bleeding. PMID:23118656

  18. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    PubMed

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases. PMID:27447003

  19. Massive Pulmonary Embolism in a Patient with Heparin Induced Thrombocytopenia: Successful Treatment with Dabigatran

    PubMed Central

    Bircan, Haci Ahmet; Alanoglu, Emine Guchan

    2016-01-01

    Heparin induced thrombocytopenia (HIT) is a rare, potentially fatal, immune-mediated complication of heparin therapy, associated with thrombosis and thrombocytopenia. In this study, a successful dabigatran administration in a case with massive pulmonary thromboembolism (mPTE) and HIT is presented. 57 years-old female, who was receiving low molecular weight heparin (LMWH) (0.4 mL once a daily, S.C. for 11 days) due to total knee replacement, was referred to our clinic with the hypotension and syncope attacks. Her echocardiography and pulmonary CT angiography findings were consistent with mPTE. We detected a serious decrease in her platelet count highly suggestive for HIT (plt: 54×103/µL). LMWH was discontinued and dabigatran was started (150 mg twice daily). After platelet count increased over 150×103/μL, dabigatran was switched to warfarin. Since heparin is widely used in medicine, all physicians need to be aware of this life threatening complication of heparin. Replacing heparin with an alternative anticoagulant such as dabigatran may become a life-saving strategy especially in case of HIT complicated with mPTE. PMID:27026768

  20. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs

    PubMed Central

    Tovar, Ana M. F.; Santos, Gustavo R. C.; Capillé, Nina V.; Piquet, Adriana A.; Glauser, Bianca F.; Pereira, Mariana S.; Vilanova, Eduardo; Mourão, Paulo A. S.

    2016-01-01

    Heparins extracted from different animal sources have been conventionally considered effective anticoagulant and antithrombotic agents despite of their pharmacological dissimilarities. We performed herein a systematic analysis on the physicochemical properties, disaccharide composition, in vitro anticoagulant potency and in vivo antithrombotic and bleeding effects of several batches of pharmaceutical grade heparins obtained from porcine intestine, bovine intestine and bovine lung. Each of these three heparin types unambiguously presented differences in their chemical structures, physicochemical properties and/or haemostatic effects. We also prepared derivatives of these heparins with similar molecular weight differing exclusively in their disaccharide composition. The derivatives from porcine intestinal and bovine lung heparins were structurally more similar with each other and hence presented close anticoagulant activities whereas the derivative from bovine intestinal heparin had a higher proportion of 6-desulfated α-glucosamine units and about half anticoagulant activity. Our findings reasonably indicate that pharmaceutical preparations of heparin from different animal sources constitute distinct drugs, thus requiring specific regulatory rules and therapeutic evaluations. PMID:27752111

  1. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis

    PubMed Central

    Sindrewicz, Paulina; Hughes, Ashley J.; French, Neil S.; Lian, Lu-Yun; Yates, Edwin A.; Pritchard, D. Mark; Rhodes, Jonathan M.; Turnbull, Jeremy E.; Yu, Lu-Gang

    2015-01-01

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs. PMID:26160844

  2. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis.

    PubMed

    Duckworth, Carrie A; Guimond, Scott E; Sindrewicz, Paulina; Hughes, Ashley J; French, Neil S; Lian, Lu-Yun; Yates, Edwin A; Pritchard, D Mark; Rhodes, Jonathan M; Turnbull, Jeremy E; Yu, Lu-Gang

    2015-09-15

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs. PMID:26160844

  3. Effects of Heparin and Enoxaparin on APP Processing and Aβ Production in Primary Cortical Neurons from Tg2576 Mice

    PubMed Central

    Cui, Hao; Hung, Amos C.; Klaver, David W.; Suzuki, Toshiharu; Freeman, Craig; Narkowicz, Christian; Jacobson, Glenn A.; Small, David H.

    2011-01-01

    Background Alzheimer's disease (AD) is caused by accumulation of Aβ, which is produced through sequential cleavage of β-amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE1) and γ-secretase. Enoxaparin, a low molecular weight form of the glycosaminoglycan (GAG) heparin, has been reported to lower Aβ plaque deposition and improve cognitive function in AD transgenic mice. Methodology/Principal Findings We examined whether heparin and enoxaparin influence APP processing and inhibit Aβ production in primary cortical cell cultures. Heparin and enoxaparin were incubated with primary cortical cells derived from Tg2576 mice, and the level of APP and proteolytic products of APP (sAPPα, C99, C83 and Aβ) was measured by western blotting. Treatment of the cells with heparin or enoxaparin had no significant effect on the level of total APP. However, both GAGs decreased the level of C99 and C83, and inhibited sAPPα and Aβ secretion. Heparin also decreased the level of β-secretase (BACE1) and α-secretase (ADAM10). In contrast, heparin had no effect on the level of ADAM17. Conclusions/Significance The data indicate that heparin and enoxaparin decrease APP processing via both α- and β-secretase pathways. The possibility that GAGs may be beneficial for the treatment of AD needs further study. PMID:21829577

  4. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis.

    PubMed

    Duckworth, Carrie A; Guimond, Scott E; Sindrewicz, Paulina; Hughes, Ashley J; French, Neil S; Lian, Lu-Yun; Yates, Edwin A; Pritchard, D Mark; Rhodes, Jonathan M; Turnbull, Jeremy E; Yu, Lu-Gang

    2015-09-15

    Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs.

  5. Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application

    NASA Astrophysics Data System (ADS)

    Liu, Shao Pu; Luo, Hong Qun; Xu, Hong; Li, Nian Bing

    2005-03-01

    Binding of heparin with a cationic surfactant such as cetyldimethyl benzylammonium chloride (CDBAC), tetradecyldimethyl benzylammonium chloride (Zeph), cetylpyridinium bromide (CPB), tetradecane pyridinium bromide (TPB) and cetyltrimethylammonium bromide (CTAB) in a near-neutral medium can result in a significant enhancement of resonance Rayleigh scattering (RRS) intensities. The results showed that the reaction conditions and RRS spectral characteristics of these reactions are similar, but their sensitivities are obviously different. Among them, the sensitivity of CDBAC with an aryl and large molecular weight is the highest, while that of CTAB without aryl and with small molecular weight is the lowest. The detection limit for heparin of the former is 11 ng ml -1 while that of the latter is 33 ng ml -1. The method has better selectivity and was applied to the determination of trace amounts of heparin in sodium heparin injection samples with satisfactory results. Furthermore, it is discovered that the RRS intensity is related to the structure and molecular weight of the cationic surfactant.

  6. Anti-Inflammatory Effects of Heparin and Its Derivatives: A Systematic Review

    PubMed Central

    Mousavi, Sarah; Moradi, Mandana; Khorshidahmad, Tina; Motamedi, Maryam

    2015-01-01

    Background. Heparin, used clinically as an anticoagulant, also has anti-inflammatory properties. The purpose of this systematic review was to provide a comprehensive review regarding the efficacy and safety of heparin and its derivatives as anti-inflammatory agents. Methods. We searched the following databases up to March 2012: Pub Med, Scopus, Web of Science, Ovid, Elsevier, and Google Scholar using combination of Mesh terms. Randomized Clinical Trials (RCTs) and trials with quasi-experimental design in clinical setting published in English were included. Quality assessments of RCTs were performed using Jadad score and Consolidated Standards of Reporting Trials (CONSORT) checklist. Results. A total of 280 relevant studies were reviewed and 57 studies met the inclusion criteria. Among them 48 studies were RCTs. About 65% of articles had score of 3 and higher according to Jadad score. Twelve studies had a quality score > 40% according to CONSORT items. Asthma (n = 7), inflammatory bowel disease (n = 5), cardiopulmonary bypass (n = 8), and cataract surgery (n = 6) were the most studied disease condition. Forty studies use unfractionated heparin (UFH) for intervention; the remaining studies use low molecular weight heparin (LMWH). Conclusion. Despite the conflicting results, heparin seems to be a safe and effective anti-inflammatory agent; although it is shown that heparin can decrease the level of inflammatory biomarkers and improves patient conditions, still more data from larger rigorously designed studies are needed to support use of heparin as an anti-inflammatory agent in clinical setting. However, because of the association between inflammation, atherogenesis, thrombogenesis, and cell proliferation, heparin and related compounds with pleiotropic effects may have greater therapeutic efficacy than compounds acting against a single target. PMID:26064103

  7. Heparin regulates B6FS cell motility through a FAK/actin cytoskeleton axis

    PubMed Central

    Voudouri, Kallirroi; Nikitovic, Dragana; Berdiaki, Aikaterini; Papachristou, Dionysios J.; Tsiaoussis, John; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Tzanakakis, George N.

    2016-01-01

    Soft tissue sarcomas are rare, heterogeneous tumors of mesenchymal origin with an aggressive behavior. Heparin is a mixture of heavily sulfated, linear glycosaminoglycan (GAG) chains, which participate in the regulation of various cell biological functions. Heparin is considered to have significant anticancer capabilities, although the mechanisms involved have not been fully defined. In the present study, the effects of unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) on B6FS fibrosarcoma cell motility were examined. Both preparations of heparin were shown to both enhance B6FS cell adhesion (p<0.01 and p<0.05), and migration (p<0.05), the maximal effect being evident at the concentration of 10 µg/ml. The utilization of FAK-deficient cells demonstrated that the participation of FAK was obligatory for heparin-dependent fibrosarcoma cell adhesion (p<0.05). The results of confocal microscopy indicated that heparin was taken up by the B6FS cells, and that UFH and LMWH induced F-actin polymerization. Heparitinase digestion demonstrated that the endogenous heparan sulfate (HS) chains did not affect the motility of the B6FS cells (p>0.05, not significant). In conclusion, both UFH and LMWH, through a FAK/actin cytoskeleton axis, promoted the adhesion and migration of B6FS fibrosarcoma cells. Thus, our findings indicate that the responsiveness of fibrosarcoma cells to the exogenous heparin/HS content of the cancer microenvironment may play a role in their ability to become mobile and metastasize. PMID:27572115

  8. Recent Developments in Low Molecular Weight Complement Inhibitors

    PubMed Central

    Qu, Hongchang; Ricklin, Daniel; Lambris, John D.

    2009-01-01

    As a key part of the innate immune system, complement plays an important role not only in defending invading pathogens but also in many other biological processes. Inappropriate or excessive activation of complement has been linked to many autoimmune, inflammatory, and neurodegenerative diseases, as well as ischemia-reperfusion injury and cancer. A wide array of low molecular weight complement inhibitors has been developed to target various components of the complement cascade. Their efficacy has been demonstrated in numerous in vitro and in vivo experiments. Though none of these inhibitors has reached the market so far, some of them have entered clinical trials and displayed promising results. This review provides a brief overview of the currently developed low molecular weight complement inhibitors, including short peptides and synthetic small molecules, with an emphasis on those targeting components C1 and C3, and the anaphylatoxin receptors. PMID:19800693

  9. Ultra-High-Molecular-Weight Silphenylene/Siloxane Elastomers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1989-01-01

    Elastomers enhance thermal and mechancial properties. Capable of performing in extreme thermal/oxidative environments and having molecular weights above 10 to the sixth power prepared and analyzed in laboratory experiments. Made of methylvinylsilphenylene-siloxane terpolymers, new materials amenable to conventional silicone-processing technology. Similarly formulated commercial methyl-vinyl silicones, vulcanized elastomers exhibit enhance thermal/oxidative stability and equivalent or superior mechanical properties.

  10. Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution.

    PubMed

    Gentekos, Dillon T; Dupuis, Lauren N; Fors, Brett P

    2016-02-17

    The breadth of the molecular weight distributions (MWD) of polymers influences their physical properties; however, no synthetic methods allow precise control of the exact shape and composition of a distribution. We report a modular strategy that enables deterministic control over polymer MWD through temporal regulation of initiation in nitroxide-mediated polymerization reactions. This approach is applicable to any controlled polymerization that uses a discrete initiator, and it allows the use of MWD composition as a parameter to tune material properties.

  11. Production of chemicals from methanol. I. Low molecular weight olefins

    SciTech Connect

    Kaeding, W.W.; Butter, S.A.

    1980-01-01

    Methanol has been converted to water and hydrocarbons, with up to 70% selectivity to C/sub 2/-C/sub 4/ olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with phosphorus compounds. Ethylene is proposed as the initial hydrocarbon produced. Evidence for the alkylation of olefins with methanol or methyl ether over these catalysts to produce higher molecular weight olefins is presented. 2 figures, 5 tables.

  12. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  13. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium

    PubMed Central

    Zhu, Yi; Hu, Jianguo; Yu, Tinghe; Ren, Yan; Hu, Lina

    2016-01-01

    Background Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman’s syndrome. Material/Methods Endometrial fibrosis in a mouse model of Asherman’s syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. Results The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. Conclusions Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions. PMID:27670361

  14. A novel mammalian high-molecular-weight aminopeptidase.

    PubMed

    Erbeznik, H; Hersh, L B

    1997-08-01

    Studies with the human lymphoma U937 cell line revealed the presence of two soluble aminopeptidase activities. Using specific antisera one of these was identified as the puromycin-specific aminopeptidase, while the other appeared to be a novel approximately 200-kDa activity. The kinetic properties of this high-molecular-weight aminopeptidase, referred to as Ap200, were similar to those of the puromycin-sensitive aminopeptidase, but showed quantitative differences. Ap200 is relatively insensitive to inhibition by both puromycin, K(i) = 27 microM, and bestatin, K(i) = 1.6 microM. Among the synthetic beta-naphthylamides, Ap200 is more specific for alanine-beta-naphthylamide compared to the puromycin-sensitive aminopeptidase. Similarly, this enzyme cleaves a more limited number of physiological peptides exhibiting a preference for the enkephalins. Ammonium sulfate, but not sodium chloride at the same ionic strength, was able to dissociate the high-molecular-weight aminopeptidase to a approximately 100-kDa active form. The high-molecular-weight aminopeptidase is found as a low abundant protein in a number of tissues including intestine, kidney, liver, lung, muscle, spleen, and testes, but could not be detected in adrenal, heart, or brain. Thus, it has a tissue distribution which differs from the puromycin-sensitive aminopeptidase.

  15. Use and Safety of Unfractionated Heparin for Anticoagulation During Maintenance Hemodialysis

    PubMed Central

    Shen, Jenny I.; Winkelmayer, Wolfgang C.

    2014-01-01

    Anticoagulation is essential to hemodialysis, and unfractionated heparin (UFH) is the most commonly used anticoagulant in the United States. However, there is no universally accepted standard for its administration in long-term hemodialysis. Dosage schedules vary and include weight-based protocols and low-dose protocols for those at high risk of bleeding, as well as regional anticoagulation with heparin and heparin-coated dialyzers. Adjustments are based largely on clinical signs of under- and overanticoagulation. Risks of UFH use include bleeding, heparin-induced thrombocytopenia, hypertriglyceridemia, anaphylaxis, and possibly bone mineral disease, hyperkalemia, and catheter-associated sepsis. Alternative anticoagulants include low-molecular-weight heparin, direct thrombin inhibitors, heparinoids, and citrate. Anticoagulant-free hemodialysis and peritoneal dialysis also are potential substitutes. However, some of these alternative treatments are not as available as or are more costly than UFH, are dependent on country and health care system, and present dosing challenges. When properly monitored, UFH is a relatively safe and economical choice for anticoagulation in long-term hemodialysis for most patients. PMID:22560830

  16. Structure, subunit composition, and molecular weight of RD-114 RNA.

    PubMed Central

    Kung, H J; Bailey, J M; Davidson, N; Nicolson, M O; McAllister, R M

    1975-01-01

    The properties and subunit composition of the RNA extracted from RD-114 virions have been studied. The RNA extracted from the virion has a sedimentation coefficient of 52S in a nondenaturing aqueous electrolyte. The estimated molecular weight by sedimentation in nondenaturing and weakly denaturing media is in the range 5.7 X 10(6) to 7.0 X 10(6). By electron microscopy, under moderately denaturing conditions, the 52S molecule is seen to be an extended single strand with a contour length of about 4.0 mum corresponding to a molecular weight of 5.74 X 10(6). It contains two characteristic secondary structure features: (i) a central Y- or T-shaped structure (the rabbit ears) with a molecular weight of 0.3 X 10(6), (ii) two symmetreically disposed loops on each side of and at equal distance from the center. The 52S molecule consists of two half-size molecules, with molecular weight 2.8 X 10(6), joined together within the central rabbit ears feature. Melting of the rabbit ears with concomitant dissociation of the 52S molecule into subunits, has been caused by either one of two strongly denaturing treatments: incubation in a mixture of CH3HgOH and glyoxal at room temperature, or thermal dissociation in a urea-formamide solvent. When half-size molecules are quenched from denaturing temperatures, a new off-center secondary structure feature termed the branch-like structure is seen. The dissociation behavior of the 52S complex and the molecular weight of the subunits have been confirmed by gel electrophoresis studies. The loop structures melt at fairly low temperatures; the dissociation of the 52S molecule into its two subunits occurs at a higher temperature corresponding to a base composition of about 63% guanosine plus cytosine. Polyadenylic acid mapping by electron microscopy shows that the 52S molecule contains two polyadenylic acid segments, one at each end. It thus appears that 52S RD-114 RNA consists of two 2.8 X 10(6) dalton subunits, each with a characteristic

  17. Dabigatran approaching the realm of heparin-induced thrombocytopenia

    PubMed Central

    Ho, Patricia J

    2016-01-01

    Heparin-induced thrombocytopenia (HIT) is a serious, immune mediated complication of exposure to unfractionated or low-molecular-weight heparin. Though rare, it is a condition associated with high morbidity and mortality that requires immediate change to alternative anticoagulants for the prevention of life-threatening thrombosis. The direct thrombin inhibitors lepirudin and argatroban are currently licensed for the treatment of HIT. Dabigatran, a novel oral anticoagulant (NOAC) with a similar mechanism of action and effective use in other indications, has recently been proposed as another therapeutic option in cases of HIT. This review serves as an introduction to using dabigatran for this purpose, detailing the clinical aspects of its administration, evidence of its performance compared to other anticoagulants, and the preliminary reports of HIT successfully treated with dabigatran. As the literature on this develops, it will need to include clinical trials that directly evaluate dabigatran against the other NOACs and current treatment options. PMID:27382551

  18. Heparin-derived heparan sulfate mimics that modulate inflammation and cancer

    PubMed Central

    Casu, Benito; Naggi, Annamaria; Torri, Giangiacomo

    2011-01-01

    The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of

  19. [Heparin-induced thrombocytopenia].

    PubMed

    Franchini, Massimo; Veneri, Dino

    2005-09-01

    Heparin-induced thrombocytopenia is a serious and underestimated adverse drug effect. We briefly discuss the main features of heparin-induced thrombocytopenia, particularly analyzing the most recent advances in the pathophysiology, diagnosis and treatment of this syndrome.

  20. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  1. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior.

  2. [The effect of low molecular weight substances on the human skin. Molecular mechanisms and their consequences].

    PubMed

    Merk, H F; Baron, J M

    2004-12-01

    Interactions between low molecular weight compounds with cells of the skin result in reactions with different proteins which enable the uptake, metabolism and efflux of these compounds. It is unlikely, that small molecular weight compounds can achieve pharmacological concentrations within cells by diffusion alone. The pattern of influx proteins of keratinocytes is different from that of hepatocytes. If the balance between these systems is disturbed, the skin may become unable to function as a protective organ which can result in diseases including cancer or-more frequently-allergic contact dermatitis. Recent investigations of the sensitization to fragrances and p-phenylenediamine are discussed. An improved understanding of the metabolism of low molecular weight compounds can lead to new therapeutic strategies. One example is the introduction of photodynamic therapy with topical applied porphyrin precursors.

  3. Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy.

    PubMed

    Schneider, S W; Lärmer, J; Henderson, R M; Oberleithner, H

    1998-02-01

    Proteins are usually identified by their molecular weights, and atomic force microscopy (AFM) produces images of single molecules in three dimensions. We have used AFM to measure the molecular volumes of a number of proteins and to determine any correlation with their known molecular weights. We used native proteins (the TATA-binding protein Tbp, a fusion protein of glutathione-S-transferase and the renal potassium channel protein ROMK1, the immunoglobulins IgG and IgM, and the vasodilator-stimulated phosphoprotein VASP) and also denatured proteins (the red blood cell proteins actin, Band 3 and spectrin separated by SDS-gel electrophoresis and isolated from nitrocellulose). Proteins studied had molecular weights between 38 and 900 kDa and were imaged attached to a mica substrate. We found that molecular weight increased with an increasing molecular volume (correlation coefficient = 0.994). Thus, the molecular volumes measured with AFM compare well with the calculated volumes of the individual proteins. The degree of resolution achieved (lateral 5 nm, vertical 0.2 nm) depended upon the firm attachment of the proteins to the mica. This was aided by coating the mica with suitable detergent and by imaging using the AFM tapping mode which minimizes any lateral force applied to the protein. We conclude that single (native and denatured) proteins can be imaged by AFM in three dimensions and identified by their specific molecular volumes. This new approach permits detection of the number of monomers of a homomultimeric protein and study of single proteins under physiological conditions at the molecular level.

  4. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  5. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-01

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  6. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  7. The factor IXa heparin-binding exosite is a cofactor interactive site: mechanism for antithrombin-independent inhibition of intrinsic tenase by heparin.

    PubMed

    Yuan, Qiu-Ping; Walke, Erik N; Sheehan, John P

    2005-03-01

    Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A > R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A > R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.

  8. Synthesis of high molecular weight PEO using non-metal initiators

    DOEpatents

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  9. Ice Nucleation by High Molecular Weight Organic Compounds

    NASA Astrophysics Data System (ADS)

    Cantrell, W.

    2003-12-01

    Deep convection in the tropics is frequently associated with biomass burning. Recent work has suggested that the size of ice crystals in the anvils of tropical cumulonimbus clouds may be affected by biomass burning, though the mechanism for such an effect is uncertain (Sherwood, 2002). We will present results of an investigation of the role that high molecular weight organic compounds, known to be produced in biomass burning (Elias et al., 1999), may play in tropical cirrus anvils through heterogeneous nucleation of ice. In particular, we examine the mechanisms underlying heterogeneous nucleation of ice by films of long chain alcohols by studying the interaction of the alcohols and water/ice using temperature controlled, Attenuated Total Reflection - Fourier Transform Infrared spectroscopy. The mechanisms are interpreted in the context of recent criticisms of some aspects of classical nucleation theory (Seeley and Seidler, 2001; Oxtoby, 1998). References V. Elias, B. Simoneit, A. Pereira, J. Cabral, and J. Cardoso, Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry. Environ. Sci. Tecnol., 33, 2369-2376, 1999. D. Oxtoby, Nucleation of first-order phase transitions. Acc. Chem. Res., 31, 91-97, 1998. L. Seeley and G. Seidler, Preactivation in the nucleation of ice by Langmuir films of aliphatic alcohols. J. Chem. Phys., 114, 10464-10470, 2001. S. Sherwood, Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 1051-1063, 2002.

  10. Controlling silk fibroin microspheres via molecular weight distribution.

    PubMed

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4-KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength>0.7 M and pH>7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications.

  11. Incorporation of small molecular weight active agents into polymeric components.

    PubMed

    Iconomopoulou, Sofia M; Kallitsis, Joannis K; Voyiatzis, George A

    2008-01-01

    The incorporation of small molecular weight active agents into polymeric matrixes bearing controlled release characteristics represents an interesting strategy with numerous useful applications. Antimicrobials, biocides, fungicides or drugs, encapsulated into erodible or non-erodible polymeric micro-spheres, micro-capsules and micro-shells or/and embedded into continuous polymeric matrixes, are controlled released either by particular degradation routes or/and by specific stimuli. Cross-linking, curing or micro-porosity generating agents acting during polymerization impart additional controlled encapsulation characteristics to the active substances. Release modulating agents, like retardants or carrier materials used as vehicles are often encapsulated into microspheres or dispersed within polymeric compositions for the controlled introduction of an active agent into a liquid-based medium. The aim of this review is to reveal relevant strategies reported in recent patents on the encapsulation or incorporation of low molecular weight active agents into the matrix of polymers bearing controlled release characteristics. The inventions described implicate the formation of both erodible and non erodible polymer microparticles that contain active ingredients. Modification of polymer matrix and inorganic porous carriers represent pertinent major strategies that have been also developed and patented.

  12. Low molecular weight Abeta induces collapse of endoplasmic reticulum.

    PubMed

    Lai, Cora Sau-Wan; Preisler, Julie; Baum, Larry; Lee, Daniel Hong-Seng; Ng, Ho-Keung; Hugon, Jacques; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-05-01

    The endoplasmic reticulum (ER) is a dynamic multifunction organelle that is responsible for Ca(2+) homeostasis, protein folding, post-translational modification, protein degradation, and transportation of nascent proteins. Disruption of ER architecture might affect the normal physiology of the cell. In yeast, expansion of the ER is observed under unfolded protein response (UPR) and subsequently induces autophagy initiated from the ER. Here, we found that soluble low molecular weight of Abeta disrupted the anchoring between ER and microtubules (MT) and induced collapse of ER. In addition, it decreased the stability of MT. Subsequently, low molecular weight Abeta triggered autophagy and enhanced lysosomal degradation, as shown by electron microscopy and live-cell imaging. Dysfunction of ER can be further proved in postmortem AD brain and transgenic mice bearing APP Swedish mutation by immunohistochemical analysis of calreticulin. Treatment with Taxol, a MT-stabilizing agent, could partially inhibit collapse of the ER and induction of autophagy. The results show that Abeta-induced disruption of MT can affect the architecture of the ER. Collapse/aggregation of the ER may play an important role in Abeta peptide-triggered neurodegenerative processes.

  13. LARC-TPI 1500 series controlled molecular weight polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald; St. Clair, Terry; Burks, Harold; Gautreaux, Carol; Yamaguchi, Akihiro

    1990-01-01

    LARC-TPI, a linear high temperature thermoplastic polyimide, was developed several years ago at NASA Langley Research Center. This material has been commercialized by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan, as a varnish and powder. More recently, a melt-extruded film of a controlled molecular weight of this same polymer has been supplied to NASA Langley Research Center for evaluation. This new form, called LARC-TPI 1500 series, has been prepared in three molecular weights - high, medium and low flow polymers. The subject of this investigation deals with the rheological properties of the high and medium flow powders and the adhesive properties of the medium flow melt-extruded film. Rheological studies indicate that the high and medium flow forms of the polymer fall in the flow range of injection moldable materials. Adhesive data generated on the medium flow extruded film shows this form to be well suited for structural adhesive bonding. The data are as good or better than that for LARC-TPI data of previous studies.

  14. Cost-utility of enoxaparin compared with unfractionated heparin in unstable coronary artery disease

    PubMed Central

    Nicholson, Tricia; McGuire, Alistair; Milne, Ruairidh

    2001-01-01

    Background Low molecular weight heparins hold several advantages over unfractionated heparin including convenience of administration. Enoxaparin is one such heparin licensed in the UK for use in unstable coronary artery disease (unstable stable angina and non-Q wave myocardial infarction). In these patients, two large randomised controlled trials and their meta-analysis showed small benefits for enoxaparin over unfractionated heparin at 30–43 days and potentially at one year. We found no relevant published full economic evaluations, only cost studies, one of which was conducted in the UK. The other studies, from the US, Canada and France, are difficult to interpret since their resource use and costs may not reflect UK practice. Methods We aimed to compare the benefits and costs of short-term treatment (two to eight days) with enoxaparin and unfractionated heparin in unstable coronary artery disease. We used published data sources to estimate the incremental cost per quality adjusted life year (QALY), adopting a NHS perspective and using 1998 prices. Results The base case was a 0.013 QALY gain and net cost saving of £317 per person treated with enoxaparin instead of unfractionated heparin. All but one sensitivity analysis showed net savings and QALY gains, the exception (the worst case) being a cost per QALY of £3,305. Best cases were a £495 saving and 0.013 QALY gain, or a £317 saving and 0.014 QALY gain per person. Conclusions Enoxaparin appears cost saving compared with unfractionated heparin in patients with unstable coronary artery disease. However, cost implications depend on local revascularisation practice. PMID:11701090

  15. Heparin for clearance of peripherally inserted central venous catheter in newborns: an in vitro study

    PubMed Central

    Balaminut, Talita; Venturini, Danielle; da Silva, Valéria Costa Evangelista; Rossetto, Edilaine Giovanini; Zani, Adriana Valongo

    2015-01-01

    Objective: To compare the efficacy of two concentrations of heparin to clear the lumen of in vitro clotted neonatal peripherally inserted central catheters (PICCs). Methods: This is an in vitro, experimental quantitative study of 76 neonatal 2.0-Fr PICCs coagulated in vitro. The catheters were divided into two groups of 38 PICCs each. In both groups an infusion of low molecular weight heparin was administered with a dose of 25IU/mL for Group 1 and 50IU/mL for Group 2. The negative pressure technique was applied to the catheters of both groups at 5, 15 and 30min and at 4h to test their permeability. Kaplan-Meier survival analysis was used to verify the outcome of the groups according to time intervals. Results: The comparison between both groups in the first 5min showed that more catheters from Group 2 were cleared compared to Group 1 (57.9 vs. 21.1%, respectively). Kaplan-Meier survival analysis showed that less time was needed to clear catheters treated with 50IU/mL of heparin (p<0.001). Conclusions: The use of low molecular weight heparin at a concentration of 50IU/mL was more effective in restoring the permeability of neonatal PICCs occluded in vitro by a clot, and the use of this concentration is within the safety margin indicated by scientific literature. PMID:26116325

  16. Impact of molecular weight in four-branched star vectors with narrow molecular weight distribution on gene delivery efficiency.

    PubMed

    Nemoto, Yasushi; Borovkov, Alexey; Zhou, Yue-Min; Takewa, Yoshiaki; Tatsumi, Eisuke; Nakayama, Yasuhide

    2009-12-01

    A series of star-shaped cationic polymers, termed star vectors (SVs), has been developed as effective nonviral gene delivery carriers. In this study, we separated SVs into several fractions having different molecular weights with very narrow molecular weight distributions in order to examine in detail the influence of the molecular weight of the SVs on the gene transfection efficiency. As a model compound for several types of SVs, 4-branched poly(N,N-dimethylaminopropyl acrylamide) having a molecular weight (M(n)) of approximately 35 kDa and polydispersity of 1.6 was prepared by iniferter-based radical polymerization. The SVs were separated using size-exclusion chromatography to obtain seven fractions having M(n) ranging from 27 kDa to 73 kDa with polydispersity ranging from 1.1 to 1.2. All the fractionated SVs have similar pH of 10.2-10.4 and were able to interact with and condense luciferase-encoding plasmid deoxyribonucleic acid (DNA) to yield SV/DNA polyplexes. A water-soluble tetrazolium-1 (WST) assay showed that all SVs had minimal cellular cytotoxicity under an N/P charge ratio of 10. The critical micellar concentration decreased with an increase in the M(n) of the fractionated SVs; however, the particle size of the polyplexes, exclusion activity of ethidium bromide, and zeta-potential of the polyplexes increased. An in vitro evaluation using COS-1 cells at an N/P ratio of 10 showed that transfection activity increased almost linearly with M(n). The highest transfection activity was obtained for SVs with the highest M(n) (73 kDa), which was over 7 times that for the SVs with the lowest M(n) (27 kDa), the nonfractionated original SV, or PEI standard. The transfection efficiency was more correlated with the amphiphilicity or hydrophobicity of the SVs and the surface potential and condensate density of the polyplexes than with the particle size.

  17. Homonymous hemianopia caused by occipital lobe infarction in heparin-induced thrombocytopenia and thrombosis syndrome.

    PubMed

    Mizrachi, Iris Ben-Bassat; Schmaier, Alvin H; Trobe, Jonathan D

    2005-09-01

    A 73-year-old woman developed mental confusion and finger pain after treatment with enoxaparin following arthroplasty. A platelet count was 163,000/microL. Because digital embolism was suspected, she was emergently treated with heparin and recombinant tissue plasminogen activator (rTPA). During rTPA infusion, she reported sudden hemifield loss, so the infusion was aborted. Brain CT disclosed a non-hemorrhagic occipital infarct. Platelets had fallen to 63,000 over eight days, and antibodies against a complex of heparin and platelet factor 4 were detected. These findings led to the diagnosis of heparin-induced thrombocytopenia and thrombosis syndrome (HITTS), an immune-mediated disorder in which venous and arterial thromboses occur. Right lower extremity deep venous thromboses were later diagnosed, and an MRI disclosed multiple cerebral infarcts of recent onset but different ages. Previous reports have documented brain arterial strokes in HITTS, mostly in the distribution of the middle cerebral artery, but clinical documentation is sparse, and there have been no imaging reports. This is the first report to document the clinical and imaging features of a HITTS stroke and the first to describe a stroke presumptively caused by a low molecular weight heparin. It emphasizes that HITTS may cause stroke even when the platelet count is normal. Diagnosis of HITTS should prompt immediate cessation of heparin treatment and substitution of a direct thrombin inhibitor or fondaparinux.

  18. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500. (b) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols if its mean molecular weight is 350 or higher and no more than 0.5 percent total by weight of ethylene and diethylene glycols if its...

  19. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  20. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application.

  1. Expression of low molecular weight proteins in patients with leukaemia.

    PubMed

    Sheikh, N; Abid, R; Qureshi, A W; Basheer, T

    2012-06-01

    The current study is conducted to observe the differences in the level of low molecular weight proteins in the sera of patients with leukaemia in comparison to healthy subjects (control group). The sera of patients with leukaemia showed 15 peaks in the densitometric curve in comparison to the seven peaks of the controls. The peaks in the experimental samples that coincide with those in the control were of 134.14, 113.15, 76.06, 63.25, 48.07, 22.85 and 16.47 kDa molecular weights, respectively. Most of the new peaks appeared between the proteins of molecular weight 36-29 kDa in the experimental groups. Mean density of the 134.14 kDa protein band showed an increase in the protein in experimental groups I and II only whereas 113.15 and 22.85 kDa protein were increased in all experimental groups of patients with leukaemia. The expression of 76.06 and 63.25 kDa protein fraction was downregulated in the patients with leukaemia. A decline in the level of the protein of 48.07 kDa was observed in patients with leukaemia except in group I. Unlike the other protein fractions, the level of the protein of 16.47 kDa was significantly (p < 0.05) increased with a maximum density in group II. Intergroup experimental) comparison revealed an increasing pattern of 95.44 and 89.21 kDa with maximum level in group III sera. However the protein fractions of 38.07 and 34.94 kDa varied in the serum with maximum density in Group IV Protein fractions of 32.92 and 31.24 kDa were expressed in all age groups of patients with leukaemia with a maximum density in group III whereas the percentage densities of 14.42 and 13.56 kDa protein were quite different. This preliminary study will provide a basis to study the role of different proteins in patients with leukaemia.

  2. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  3. Inhibition of Helicobacter pylori adhesion to Kato III cells by intact and low molecular weight acharan sulfate.

    PubMed

    Sim, Joon-Soo; Hahn, Bum-Soo; Im, A-Rang; Park, Youmie; Shin, Ji-Eun; Bae, Eun-Ah; Kim, Dong-Hyun; Kim, Yeong Shik

    2011-08-01

    We investigated the inhibitory activity of glycosaminoglycans (GAGs) in terms of growth, adhesion, and VacA vacuolation of Helicobacter pylori. Intact acharan sulfate (AS, MW:114 kDa) potently inhibited H. pylori adhesion to Kato III cells with IC(50) value of 1.4 mg/mL, while other GAGs did not show any inhibitory activity except for heparin which is a well-known inhibitor of H. pylori adhesion. To investigate whether low molecular weight acharan sulfate (LMWAS) can inhibit H. pylori adhesion, we performed chemical depolymerization of AS by radical reactions to obtain LMWAS. Its physicochemical properties were characterized by high-performance size exclusion chromatography (HPSEC), agarose gel electrophoresis, disaccharide compositional analysis after digestion with heparinase II, and (1)H-NMR spectroscopy. The most potent molecular size of LMWAS was 3 kDa with IC(50) value of 32 μg/mL, which is 44-fold more potent than intact AS. These results suggest that AS as well as other GAGs can be chemically depolymerized by free radicals and LMWAS compared to intact AS can be applied as a pharmaceutical candidate in order to inhibit H. pylori adhesion to Kato III cells. PMID:21744069

  4. Molecular Weight and Charge Density Asymmetry in Polyelectrolyte Complexation

    NASA Astrophysics Data System (ADS)

    Audus, Debra; Fredrickson, Glenn; Duechs, Dominik

    2009-03-01

    We investigate the phase diagram of oppositely charged polymers in a good solvent using a field-theoretic model. Mean-field solutions fail to predict the experimentally observed macroscopic phase separation into a solvent-rich phase and a dense liquid aggregate of polymers - a ``complex coacervate.'' We therefore study the model within a one-loop approximation, which accounts for Gaussian fluctuations in electrostatic and chemical potentials. Our particular focus is the effect of molecular weight, ionic strength, and charge asymmetry on the phase envelope. A set of dimensionless parameters is identified that dictate the size and shape of the two-phase region. Our results should be helpful in guiding experimental studies of coacervation.

  5. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  6. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  7. Low-molecular-weight xylanase from Trichoderma viride

    SciTech Connect

    Ujiie, M.; Roy, C.; Yaguchi, M. )

    1991-06-01

    An endo-1,4-{beta}-xylanase (1,4-{beta}-D-xylan xylanohydrolase, EC 3.2.1.8) has been isolated from a commercial proparation of Trichoderma viride. The molecular weight was 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the pI value was 9.3. The xylanase was a true xylanase without cellulase activity. When the N-terminal amino acid sequence of thew first 50 residues was compared with that of a xylanase from Schizophyllum commune, strong evidence for homology was found, with more than 50% amino acid identity. T. viride xylanase also possessed extensive identity with a proposed amino-terminal consensus sequence of xylanases from bacteria.

  8. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  9. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  10. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  11. Gels and foams from ultrahigh molecular weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A.; Tillotson, T.

    1988-07-01

    Ultrahigh molecular weight polyethylene (UHMW PE) foams with densities from 0.04 to 0.2 g/cm{sup 3} have routinely been made in our laboratory. First, an entangled solution of UHMW PE is made. Then, the solution is geled by cooling to crystallize the PE. The gel is later dried to a foam by critical point drying. Viscometry and cloud point measurements were used to determine the gelatin point and the critical gelatin concentrations. Polarized light microscopy and differential scanning calorimetry were used to investigate the effects of cooling rate on the gel, while the effects of cooling rate on the foam were investigated via x-ray diffraction and scanning electron microscopy. We found that rapid cooling of 5 wt % UHMW PE/tetralin solutions to {minus}10{degree}c yielded small, uniform structure at the expense of crystallinity and strength; cooling over three days yielded spherulitic structure with strength. 5 refs., 3 figs.

  12. Gels and foams from ultrahigh-molecular-weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A. )

    1990-01-01

    Crystallization-gelation of ultrahigh-molecular-weight polyethylene (UHMW PE) was used to make stiff gels that were supercritically dried to make low-density, small-cell-size foams. The effects of solvent and cooling conditions on gelation and morphology were investigated. X-ray diffractometry showed that the size of the crystalline lamellae in the finished foam decreased with increased cooling rate for foams made from UHMW PE in tetralin, but not in dodecane or decalin. This difference may be attributable to the greater expansion of the polyethylene chain in tetralin than in dodecane, as revealed by viscometry. However, the superstructure of the foam, which includes the pore sizes and homogeneity, was found to be affected by solvent as well as by cooling conditions.

  13. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  14. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight.

  15. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  16. Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE)

    NASA Astrophysics Data System (ADS)

    El-Domiaty, A.; El-Fadaly, M.; Nassef, A. Es.

    2002-10-01

    The wear of ultrahigh molecular weight polyethylene (UHMWPE) bearing against 316 stainless steel or cobalt chromium (Co-Cr) alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate were determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting 2 3 million cycles, the equivalent of several years use of a prosthesis. Wear was determined by the weight loss of the polyethylene (PE) specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental methods provided accurate reproducible measurement of PE wear. The long-term wear rates were proportional to load and sliding distance. Although the PE wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies formed a comparison basis for the subsequent evaluation of potentially superior materials for prosthetic joints.

  17. Stable isotopic analysis of porcine, bovine, and ovine heparins.

    PubMed

    Jasper, John P; Zhang, Fuming; Poe, Russell B; Linhardt, Robert J

    2015-02-01

    The assessment of provenance of heparin is becoming a major concern for the pharmaceutical industry and its regulatory bodies. Batch-specific [carbon (δ(13) C), nitrogen (δ(15) N), oxygen (δ(18) O), sulfur (δ(34) S), and hydrogen (δD)] stable isotopic compositions of five different animal-derived heparins were performed. Measurements readily allowed their differentiation into groups and/or subgroups based on their isotopic provenance. Principle component analysis showed that a bivariate plot of δ(13) C and δ(18) O is the best single, bivariate plot that results in the maximum discrimination ability when only two stable isotopes are used to describe the variation in the data set. Stable isotopic analyses revealed that (1) stable isotope measurements on these highly sulfated polysaccharide (molecular weight ∼15 kDa) natural products ("biologics") were feasible; (2) in bivariate plots, the δ(13) C versus δ(18) O plot reveals a well-defined relationship for source differentiation of hogs raised in the United States from hogs raised in Europe and China; (3) the δD versus δ(18) O plot revealed the most well-defined relationship for source differentiation based on the hydrologic environmental isotopes of water (D/H and (18) O/(16) O); and (4) the δ(15) N versus δ(18) O and δ(34) S versus δ(18) O relationships are both very similar, possibly reflecting the food sources used by the different heparin producers. PMID:25186630

  18. Stable isotopic analysis of porcine, bovine, and ovine heparins.

    PubMed

    Jasper, John P; Zhang, Fuming; Poe, Russell B; Linhardt, Robert J

    2015-02-01

    The assessment of provenance of heparin is becoming a major concern for the pharmaceutical industry and its regulatory bodies. Batch-specific [carbon (δ(13) C), nitrogen (δ(15) N), oxygen (δ(18) O), sulfur (δ(34) S), and hydrogen (δD)] stable isotopic compositions of five different animal-derived heparins were performed. Measurements readily allowed their differentiation into groups and/or subgroups based on their isotopic provenance. Principle component analysis showed that a bivariate plot of δ(13) C and δ(18) O is the best single, bivariate plot that results in the maximum discrimination ability when only two stable isotopes are used to describe the variation in the data set. Stable isotopic analyses revealed that (1) stable isotope measurements on these highly sulfated polysaccharide (molecular weight ∼15 kDa) natural products ("biologics") were feasible; (2) in bivariate plots, the δ(13) C versus δ(18) O plot reveals a well-defined relationship for source differentiation of hogs raised in the United States from hogs raised in Europe and China; (3) the δD versus δ(18) O plot revealed the most well-defined relationship for source differentiation based on the hydrologic environmental isotopes of water (D/H and (18) O/(16) O); and (4) the δ(15) N versus δ(18) O and δ(34) S versus δ(18) O relationships are both very similar, possibly reflecting the food sources used by the different heparin producers.

  19. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  20. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  1. Molecular weight enlargement--a molecular approach to continuous homogeneous catalysis.

    PubMed

    Janssen, Michèle; Müller, Christian; Vogt, Dieter

    2010-09-28

    Molecular weight enlargement (MWE) is an attractive method for homogeneous catalyst recycling. Applications of MWE in combination with either catalyst precipitation or nanofiltration have demonstrated their great potential as a method for process intensification in homogeneous catalysis. Selected, recent advances in MWE in combination with catalyst recovery are discussed, together with their implication for future developments. These examples demonstrate that this strategy is applicable in many different homogeneously catalyzed transformations.

  2. Optimization of parameters for coverage of low molecular weight proteins.

    PubMed

    Müller, Stephan A; Kohajda, Tibor; Findeiss, Sven; Stadler, Peter F; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin; Kalkhof, Stefan

    2010-12-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  3. Kinetics of Formation of Molecular Weight Distribution of Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Komar, Lyudmila A.; Kondyurin, Alexey; Svistkov, Alexander L.

    Curing of epoxy matrix prepreg in free space environment is a complex problem. A simulation of the chemical reaction, evaporation and radiation effects in the matrix is a way to understand and predict the curing process. We have developed a mathematical apparatus of the epoxy resin kinetics in term of molecular weight distribution (MWD), which includes the polymerization mechanism of bifunctional epoxy and sixfunctional triethylenetetraamine (TETA) molecules. The mathematical model for a number of molecules with the mass m at time t is based on the following equation $ beta(t,m)=m_{am} / m sum(6}_{i=0) alpha(am) _i (t,m)+ m_{ep} / m sum(2}_{i=0) alpha(ep) _i (t,m), where m_{am} and m_{ep} are the masses of one amine block and one epoxy block, respectively; alpha^{am}_i (t,m) is the MWD near the TETA blocks with the chemical bonds i at time t for the mass values m>0; alpha_i^{ep}(t,m) is the MWD parameters of the epoxy blocks with chemical bonds i at time t for the mass values m>0. For the distribution densities alpha^{am}_i (t,m) and alpha_i^{ep}(t,m), we propose the differential system of equations, which has been solved by applying boundary conditions which are based on the results of chromatography and infrared spectroscopy measurements of the epoxy matrix having different concentration of the hardener. For the initial MWD we accept a Gaussian distribution with parameters alpha^{am}_0 (t,m_1) =146 amu, alpha_0^{ep}(t,m_1) =340 amu and alpha_1^{ep}(t,m_1) =624 amu. Dispersion of the molecular weight for the initial distribution equals to 25 amu. A portion of TETA molecules in the fraction was 25%, and the portion of epoxy molecules with i=0 and i=1 was 67.5% and 7.5%$, respectively. Solutions were obtained at mass step equals to 5 amu and at time step equals to 0.25 min over the interval from 0 to 500 min. The model gives a full kinetic of MWD during the curing reaction. The study is supported by the RFBR (grants N 12-08-00970-a and N 14-08-96011-r-ural-a).

  4. Prophylactic use of danaparoid in high-risk pregnancy with heparin-induced thrombocytopaenia-positive skin reaction.

    PubMed

    Myers, Bethan; Westby, John; Strong, Jane

    2003-07-01

    We describe a case where danaparoid was used prophylactically in a high-risk twin pregnancy following the development of heparin-allergy while on prophylactic dalteparin. Danaparoid was substituted for dalteparin at 20 weeks of pregnancy following the development of a severe skin reaction while on the low molecular weight heparin. Although there was no significant fall in platelet count, an aggregation assay for heparin-induced thrombocytopaenia was positive. The skin lesions rapidly resolved following the change to subcutaneous danaparoid. Delivery was by emergency caesarian section at 35 weeks under a general anaesthetic, as a dose of danaparoid had been given 6 h prior to delivery. A sample of breast milk showed no anti-activated factor X activity. Danaparoid was continued post-delivery until the patient was fully warfarinized. To our knowledge, there are no previous reports of the use of danaparoid in this setting. PMID:12851535

  5. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-01

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  6. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-01

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  7. Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery

    PubMed Central

    Liu, Chengchu; Zhu, Qing; Wu, Wenhui; Xu, Xiaolin; Wang, Xiaoyu; Gao, Shen; Liu, Kehai

    2012-01-01

    Background Chitosan shows particularly high biocompatibility and fairly low cytotoxicity. However, chitosan is insoluble at physiological pH. Moreover, it lacks charge, so shows poor transfection. In order to develop a new type of gene vector with high transfection efficiency and low cytotoxicity, amphiphilic chitosan was synthesized and linked with low-molecular weight polyethylenimine (PEI). Methods We first synthesized amphiphilic chitosan – N-octyl-N-quatenary chitosan (OTMCS), then prepared degradable PEI derivates by cross-linking low-molecular weight PEI with amphiphilic chitosan to produce a new polymeric gene vector (OTMCS–PEI). The new gene vector was characterized by various physicochemical methods. We also determined its cytotoxicity and gene transfecton efficiency in vitro and in vivo. Results The vector showed controlled degradation. It was very stable and showed excellent buffering capacity. The particle sizes of the OTMCS–PEI/DNA complexes were around 150–200 nm with proper zeta potentials from 10 mV to 30 mV. The polymer could protect plasmid DNA from being digested by DNase I at a concentration of 2.25 U DNase I/μg DNA. Furthermore, they were resistant to dissociation induced by 50% fetal bovine serum and 1100 μg/mL sodium heparin. OTMCS–PEI revealed lower cytotoxicity, even at higher doses. Compared with PEI 25 KDa, the OTMCS–PEI/DNA complexes also showed higher transfection efficiency in vitro and in vivo. Conclusion OTMCS–PEI was a potential candidate as a safe and efficient gene vector for gene therapy. PMID:23071395

  8. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine.

    PubMed

    Sun, Wenxiu; Saldaña, Marleny D A; Fan, Liyan; Zhao, Yujia; Dong, Tungalag; Jin, Ye; Zhang, Ji

    2016-03-01

    One-step self-assembly was used to prepare pH-sensitive lappaconitine-loaded low-molecular-weight heparin (LMWH-LA) and to demonstrate that the sulfur group promotes dissolution and has synergistic effect on the analgesic property of lappaconitine (LA). The LMWH-LA was characterized in terms of releasing behavior, pH-sensitivity, analgesic activity and anticoagulation property. The drug loading level of LA in low-molecular-weight heparin (LMWH) reached 24.3% (w/w). The LA, self-assembled in LMWH, released faster in an acidic environment than that in neutral or alkaline environments. Analgesic experiments showed that the LMWH-LA had earlier onset time and longer duration than the LA. Compared with LMWH, the LMWH-LA can reduce clotting time more effectively. These results suggest that the LMWH is a good template and has great potential to achieve synergistic effect of LA. In addition, similar macromolecular structure can be used as a new natural polymeric carrier for loading hydrophobic alkaloids.

  9. Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights

    PubMed Central

    Li, Weibin; Chung, Hoyong; Daeffler, Christopher; Johnson, Jeremiah A.; Grubbs, Robert H.

    2012-01-01

    To address the practical issues of polymer molecular weight determination, the first accurate polymer weight-average molecular weight determination method in diverse living/controlled polymerization via DOSY (diffusion-ordered NMR spectroscopy) is reported. Based on the linear correlation between the logarithm of diffusion coefficient (log D) and the molecular weights (log Mw), external calibration curves were created to give predictions of molecular weights of narrowly-dispersed polymers. This method was successfully applied to atom transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT), and ring-opening metathesis polymerization (ROMP), with weight-average molecular weights given by this method closely correlated to those obtained from GPC measurement. PMID:23335819

  10. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    PubMed

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  11. Composition and molecular weight distribution of carob germ protein fractions.

    PubMed

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  12. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  13. Mean Molecular Weight Gradients in Proto-Jupiter

    NASA Astrophysics Data System (ADS)

    Helled, R.; Bodenheimer, P.; Rosenberg, E. D.; Podolak, M.; Lozovsky, M.

    2015-12-01

    The distribution of heavy elements in Jupiter cannot be directly measured, and must be inferred from structure models. Typically, structure models assume that Jupiter is fully convective with the heavy elements being uniformly distributed. However, in the case of layered-convection there is a gradient in the distribution of heavy elements which affects the temperature profile of the planet, and as a result also its derived composition. We simulate the formation of Jupiter and investigate whether mean molecular weight gradients that can lead to layered-convection are created. We show that planetesimal accretion naturally leads to compositional gradients in the region above the core. It is shown that after about 10^5 years the core of Jupiter is hot and is surrounded by layers that consist mostly heavy-elements but also some hydrogen and helium. As a result, Jupiter's core mass is expected to be 2-5 M_Earth with no sharp transition between the core and the envelope. These findings are important for the interpretation of Juno data and for linking giant planet internal structure with origins.

  14. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  15. Photoelectrical characterization of a new low molecular weight compound

    NASA Astrophysics Data System (ADS)

    Siderov, V.; Dobrikov, G. H.; Zhivkov, I.; Dobrikov, G. M.; Georgiev, Y.; Yordanov, R.; Honova, J.; Weiter, M.

    2014-12-01

    Photoelectrical characterization of a newly synthesized low molecular weight compound was carried out. 1,8-naphtalimide (chemical formula C32H34N4O5S) was originally synthesized and analyzed by NMR spectroscopy. Thin films were deposited in vacuum on commercially pre-patterned ITO covered glass substrates and the samples were prepared in clean room environment. The films deposited were characterized by SEM. Photoelectrical characteristics of the samples prepared were estimated by dark current-voltage measurement, spectral dependence of the photoconductivity and measurement under exposure with light, produced by solar simulator. Finally electroluminescence measurements were performed. It was found that the samples exhibit diode behaviour. The low values characterizing photovoltaic parameters obtained could be connected with the relative higher series resistance (Rseries). The predominant influence of Rseries is assumed as the relative high photoluminescence, measured from solution should be related to a relatively strong charge carrier photogeneration. This result is supported by electroluminescent measurement. Another reason for the low values of the photovoltaic parameters measured could be the non-optimized film thickness leading to a non-optimal light absorption and increased charge carrier recombination. The assumption for the predominant influence of Rseries is supported by the electroluminescent measurements.

  16. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

  17. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-01

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods.

  18. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-01

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  19. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  20. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-01-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application. PMID:26732018

  1. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites

    NASA Astrophysics Data System (ADS)

    Porras, A.; Tellez, J.; Casas-Rodriguez, J. P.

    2012-08-01

    Ultra high molecular weight polyethylene (UHMWPE) fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE) fibre reinforced composites were characterized using the End Notch Flexural (ENF) test. Critical strain energy release rate was obtained from the load - deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  2. Antiaging activity of low molecular weight peptide from Paphia undulate

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  3. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages

    PubMed Central

    Zheng, Bin; Wen, Zheng-Shun; Huang, Yun-Juan; Xia, Mei-Sheng; Xiang, Xing-Wei; Qu, You-Le

    2016-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines. PMID:27657093

  4. Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering.

    PubMed

    Pavlov, Georges; Finet, Stéphanie; Tatarenko, Karine; Korneeva, Evgueniya; Ebel, Christine

    2003-08-01

    The hydrodynamic characteristics of heparin fractions in a 0.2 M NaCl solution have been determined. Experimental values varied over the following ranges: the sedimentation coefficient (at 20.0 degrees C), 1.3molecular weights in the range 3.9heparin molecule, ML, was determined using the theory of hydrodynamic properties of a weakly bending rod, giving ML=570 +/- 50 g nm(-1) mol(-1). The equilibrium rigidity, Kuhn segment length (A=9 +/- 2 nm) and hydrodynamic diameter (d=0.9 +/- 0.1 nm) of heparin were evaluated on the basis of the worm-like coil theory without the excluded volume effect, using the combination of hydrodynamic data obtained from fractions of different sizes. Small-angle X-ray scattering for three heparin fractions allowed an estimate for the cross-sectional radius of gyration as 0.43 nm; from the evolution with the macromolecule contour length of the radius of gyration, a value for the Kuhn segment length of 9 +/- 1 nm was obtained. A good correlation is thus observed for the conformational parameters of heparin from hydrodynamic and X-ray scattering data. These values describe heparin as a semi-rigid polymer, with an equilibrium rigidity that is essentially determined by a structural component, the electrostatic contribution being negligible in 0.2 M NaCl. PMID:12844240

  5. Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering.

    PubMed

    Pavlov, Georges; Finet, Stéphanie; Tatarenko, Karine; Korneeva, Evgueniya; Ebel, Christine

    2003-08-01

    The hydrodynamic characteristics of heparin fractions in a 0.2 M NaCl solution have been determined. Experimental values varied over the following ranges: the sedimentation coefficient (at 20.0 degrees C), 1.3molecular weights in the range 3.9heparin molecule, ML, was determined using the theory of hydrodynamic properties of a weakly bending rod, giving ML=570 +/- 50 g nm(-1) mol(-1). The equilibrium rigidity, Kuhn segment length (A=9 +/- 2 nm) and hydrodynamic diameter (d=0.9 +/- 0.1 nm) of heparin were evaluated on the basis of the worm-like coil theory without the excluded volume effect, using the combination of hydrodynamic data obtained from fractions of different sizes. Small-angle X-ray scattering for three heparin fractions allowed an estimate for the cross-sectional radius of gyration as 0.43 nm; from the evolution with the macromolecule contour length of the radius of gyration, a value for the Kuhn segment length of 9 +/- 1 nm was obtained. A good correlation is thus observed for the conformational parameters of heparin from hydrodynamic and X-ray scattering data. These values describe heparin as a semi-rigid polymer, with an equilibrium rigidity that is essentially determined by a structural component, the electrostatic contribution being negligible in 0.2 M NaCl.

  6. Post-dilution hemodiafiltration with a heparin-grafted polyacrylonitrile membrane.

    PubMed

    Frascà, Giovanni M; Sagripanti, Sibilla; D'Arezzo, Mario; Oliva, Simonetta; Francioso, Angelo; Mosconi, Giovanni; Zambianchi, Loretta; Sopranzi, Franco; Boggi, Rolando; Fattori, Laura; Rigotti, Angelo; Maldini, Laura; Gattiani, Andrea; Del Rosso, Goffredo; Federico, Antonio; Da Lio, Lidia; Ferrante, Luigi

    2015-04-01

    The aim of this multicenter, prospective study was to explore the possibility of carrying out routine sessions of post-dilution hemodiafiltration with a polyacrylonitrile membrane grafted with heparin (HeprAN) and reduced anticoagulation. Forty-four patients from eight centers were included in the study and treated by means of post-dilution on-line hemodiafiltration with automatic control of TMP, according to three different modalities tested consecutively: phase 1, polyethersulfone filter primed with heparinized saline and anticoagulated with continuous infusion of unfractionated heparin 1000/h; phase 2, HeprAN membrane filter primed with saline without heparin. Anticoagulation: a 1000-unit bolus of unfractionated heparin at the start of session followed by a second one at the end of the second dialysis hour; phase 3, same filter and priming procedure as in phase 2; anticoagulation with nadroparin calcium at the beginning of treatment. Partial or massive clotting of the dialyzer occurred in less than 1% of sessions in phase 1; 10% and 7% in phase 2; and 1% and 2% in phase 3. Clotting limited to the drip chambers was observed in 13%, 34% and 12%, respectively. The study of coagulation parameters showed a better profile when low-molecular weight heparin (LMWH) was used in association with HeprAN membrane, while the generation of TAT complexes did not differ from that observed with the standard anticoagulation modality used in phase 1. Our results suggest that the HeprAN membrane can be used safely in routine post-dilution hemodiafiltration with reduced doses of LMWH. PMID:25257219

  7. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents.

  8. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  9. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  10. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.

    PubMed

    Loo, Say Chye Joachim; Tan, Hui Tong; Ooi, Chui Ping; Boey, Yin Chiang Freddy

    2006-05-01

    The purpose of this study is to examine the hydrolytic degradation of electron beam irradiated ring-opening polymerized (ROP) poly(l-lactide) (PLLA-ir) and non-irradiated melt polycondensation polymerized poly(l-lactic acid) (PLLA-pc). It was observed that irradiation increases the hydrolytic degradation rate constant for ROP PLLA. This was due to a more hydrophilic PLLA-ir, as a result of irradiation. The degradation rate constants (k) of PLLA-ir samples were also found to be similar, regardless of the radiation dose, and an empirically formulated equation relating hydrolytic degradation time span to radiation dose was derived. The k value for PLLA-pc was observed to be lower than that for PLLA-ir, though the latter had a higher molecular weight. This was due to the difference in degradation mechanism, in which PLLA-ir undergoes end group scission, through a back- biting mechanism, during hydrolysis and thus a faster hydrolysis rate. Electron beam irradiation, though accelerates the degradation of PLLA, has been shown to be useful in accurately controlling the hydrolytic time span of PLLA. This method of controlling the hydrolytic degradation time was by far an easier task than through melt polycondensation polymerization. This would allow PLLA to be used for drug delivery purposes or as a temporary implant that requires a moderate time span (3-6 months). PMID:16701888

  11. Reductions with lithium in low molecular weight amines and ethylenediamine

    PubMed

    Garst; Dolby; Esfandiari; Fedoruk; Chamberlain; Avey

    2000-10-20

    Reductions of several types of compounds with lithium and ethylenediamine using low molecular weight amines as solvent are described. In all cases 1 mol of ethylenediamine or N, N'-dimethylethylenediamine per gram-atom of lithium was used. In some cases it was beneficial to add an alcohol as a proton donor. These reaction conditions were applied to the debenzylation of N-benzylamide and lactams which are refractory to hydrogenolysis with hydrogen and a catalyst. N-Benzylpilolactam 2, synthesized from pilocarpine hydrochloride in refluxing benzylamine, was debenzylated in good yield using 10 gram-atoms of lithium per mole (10 Li/mol) of 2 in n-propylamine. The debenzylation of N-benzyl-N-methyldecanoic acid amide, 4 (6 Li/mol), in t-butylamine/N, N'-dimethylethylenediamine gave N-methyldecanoic acid amide 6 in 70% yield. Alternatively, reduction of 4 (7 Li/mol) in t-butanol/n-propylamine/ethylenediamine gave n-decanal 12 in 36% yield. Using the same conditions, thioanisole, 1-adamantane-p-toluenesulfonamide, and 1-adamantane methyl p-toluenesulfonate were reduced with 3, 7, and 7.2 Li/mol of compound to give thiophenol (74%), adamantamine (91%), and 1-adamantane methanol (75%), respectively. In this solvent system naphthalene and 3-methyl-2-cyclohexene-1-one were reduced to isotetralin (74%) and 3-methyl cyclohexanone (quantitative) with 5 and 2.2 Li/mol of starting compound, respectively. Oximes and O-methyloximes were reduced to their corresponding amines using 5 and 8 Li/mol of compound, respectively. Anisole was also reduced to 1-methoxy-1,4-cyclohexadiene with 2.5 Li/mol of anisole. Undecanenitrile was reduced to undecylamine with 8.6 Li/mol. Additionally, a base-catalyzed formation of imidazolines from a nitrile and ethylenediamine was also explored.

  12. Respiratory clearance of aerosolized radioactive solutes of varying molecular weight

    SciTech Connect

    Huchon, G.J.; Montgomery, A.B.; Lipavsky, A.; Hoeffel, J.M.; Murray, J.F.

    1987-05-01

    To determine the influence of varying molecular weight (mol wt) on respiratory clearance of aerosolized solutes, we studied eight radiopharmaceuticals, each administered to four dogs: sodium /sup 99m/Tc pertechnetate (TcO4), /sup 99m/Tc glucoheptonate ((/sup 99m/Tc)GH), 51Cr-ethylenedinitrotetraacetate ((51Cr)EDTA), /sup 99m/Tc diethylenetriaminepentaacetate ((99mTc) DTPA), /sup 111/In diethylenetriaminepentaacetate ((/sup 111/In)DTPA), /sup 67/Ga desferoxaminemesylate ((/sup 67/Ga)DFOM), /sup 99m/Tc dextran ((/sup 99m/Tc)DX) and /sup 111/In transferrin ((/sup 111/In)TF). After aerosolization (0.8 m MMD, 2.4 GSD), clearance was determined for 30 min and then corrected by intravenous injection for nonairspace radioactivity. In-TF clearance (0.11 +/- 0.10%/min) was lower than TcO4 (6.32 +/- 0.62%/min), (/sup 99m/Tc)GH (1.50 +/- 0.37%/min), (/sup 51/Cr)EDTA (2.38 +/- 1.02%/min), (/sup 99m/Tc)DTPA (3.51 +/- 0.40%/min), (/sup 111/In)DTPA (2.35 +/- 0.42%/min), (/sup 67/Ga) DFOM (1.99 +/- 0.49%/min) and (/sup 99m/Tc)DX (1.81 +/- 0.75%/min) clearances (p less than 0.001). TcO4 clearance was higher than others (p less than 0.001). Technetium binding to DX was unsatisfactory; aerosolization caused unbinding from DTPA. We conclude that respiratory clearance of large mol wt solutes within 30 min is negligible and, that clearance of molecules between 347-5099 daltons differs greatly, suggesting that binding and/or intrapulmonary retention affect transfer.

  13. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  14. Fabrication of PP-g-PEGMA-g-heparin and its hemocompatibility: From protein adsorption to anticoagulant tendency

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Jiang, Wei; shi, Qiang; Zhao, Jie; Yin, Jinghua; Stagnaro, Paola

    2012-05-01

    We described a two-step process to fabricate the heparinized polypropylene (PP) film using cyanuric chloride (CC) as a trifunctional reagent and poly (ethylene glycol) methacrylate (PEGMA) as a spacer. The modified PP films were characterized by attenuated total reflectance FT-IR and X-ray photoelectron spectroscopy; the content of PEGMA and heparin were determined by gravimetric method and a toluidine blue assay, respectively. For the PP-g-PEGMA films, it was found that small size protein BSA tended to adsorb on the surface of low molecular weight monomer grafted PP, whereas big spindle-shaped fibrinogen tended to adsorb on the surface of high molecular weight monomer grafted PP. We gave a definition of anti-protein adsorptive factor r with two model proteins, albumin and fibrinogen. The results by platelet adhesion and plasma recalcification time (PRT) experiments indicated that the factor r could be used to quantitatively evaluate the anticoagulant tendency of PP-g-PEGMA modified films. For the PP-g-PEGMA-g-heparin modified films, the surface was proved to have a high bioactivity by the adsorption of AT III assay and very low platelet adhesion. It indicated that immobilization of heparin on the PP film with PEGMA as a spacer was an effective way to improve the hemocompatibility of PP.

  15. Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells.

    PubMed Central

    Visentin, G P; Ford, S E; Scott, J P; Aster, R H

    1994-01-01

    Heparin-induced thrombocytopenia/thrombosis (HITP) is thought to be mediated by immunoglobulins that activate platelets in the presence of pharmacologic concentrations of heparin, but the molecular basis for this relatively common and often serious complication of heparin therapy has not been established. We found that plasma from each of 12 patients with HITP contained high titer (> or = 1:200) antibodies that reacted with immobilized complexes of heparin and platelet factor 4 (PF4), a heparin-binding protein contained in platelet alpha-granules. Recombinant human PF4 behaved similarly to PF4 isolated from platelets in this assay system. Complexes formed at an apparent heparin/PF4 molecular ratio of approximately 1:2 (fresh heparin) and approximately 1:12 (outdated heparin) were most effective in binding antibody. Immune complexes consisting of PF4, heparin, and antibody reacted with resting platelets; this interaction was inhibited by a monoclonal antibody specific for the Fc gamma RII receptor and by excess heparin. Human umbilical vein endothelial cells, known to express heparin-like glycosaminoglycan molecules on their surface, were recognized by antibody in the presence of PF4 alone; this reaction was inhibited by excess heparin, but not by anti-Fc gamma RII. Antibodies reactive with heparin/PF4 were not found in normal plasma, but IgG and IgM antibodies were detected at dilutions of 1:10 (IgG) and 1:50 (IgM) in 3 of 50 patients (6%) with other types of immune thrombocytopenia. These findings indicate that antibodies associated with HITP react with PF4 complexed with heparin in solution or with glycosaminoglycan molecules on the surface of endothelial cells and provide the basis for a new hypothesis to explain the development of thrombocytopenia with thrombosis or disseminated intravascular coagulation in patients sensitive to heparin. PMID:8282825

  16. [Set up of a protocol for heparin use in special patients].

    PubMed

    Manresa Ramón, N; Nájera Pérez, Ma D; Page del Pozo, Ma Ángeles; Sánchez Martínez, I; Sánchez Catalicio, Ma del M; Roldán Schilling, V

    2014-04-01

    Low-molecular weight (LMW) heparins bring a series of advantages as compared to non-fractionated heparin (NFH), such as safety, efficacy, bioavailability, fewer monitoring, and persistent anti-coagulant response. There exist, however, a concern about their use in particular patients that may require a special control, such as those with renal failure, age over 75 years, obesity, and pregnancy. The aim of this study was the set up between the department of Pharmacy, Hematology, and Internal Medicine of a consensus protocol for the follow-up ad monitoring of LMWH in patients requiring a special control. For this purpose, we carried out a bibliographical review of the different heparins used under de above mentioned conditions. Based on the evidence available and the consensus among the members of the working group, we established a protocol that contained recommendations on prophylaxis, management and monitoring by means of the determination of anti-Xa factor. Besides, we included some clues on the therapeutic figures of anti-Xa and administration schedules for obtaining anti-Xa values within the range. Enoxaparin was the selected heparin given the evidence and its availability at our center.

  17. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  18. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  19. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  20. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  1. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  2. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  3. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  4. Low molecular weight proteinuria in Chinese herbs nephropathy.

    PubMed

    Kabanda, A; Jadoul, M; Lauwerys, R; Bernard, A; van Ypersele de Strihou, C

    1995-11-01

    Urinary excretion of five low molecular weight proteins (LMWP) [beta 2-microglobulin (beta 2m), cystatin C (cyst C), Clara cell protein (CC16), retinol-binding protein (RBP) and alpha 1-microglobulin (alpha 1m)], albumin and N-acetyl-beta-D-glucosaminidase (NAG) were quantified in 16 patients who followed a weight reduction program which included Chinese herbs, which have been incriminated in the genesis of Chinese herbs nephropathy (CHN). An additional group of four patients transplanted for CHN were investigated. Urinary data were obtained for comparison purpose in five groups of proteinuric patients: two groups with normal serum creatinine (SCr) and glomerular albuminura [12 patients with diabetes mellitus and microalbuminuria (DN), 10 patients with primary nephrotic syndrome (NS)]; two groups with normal SCr and toxic nephropathy [6 patients with analgesic (AN), 9 patients with cadmium nephropathy (CdN)]; and one group of seven patients with glomerular diseases and increased SCr (GN). Patients were classified according to serum level S beta 2m to take into account the possibility of overflow proteinuria at S beta 2m > or = 5 mg/liter. Three patients (CHN0) with a S beta 2m < 5 mg/liter, had a normal urinary protein pattern including NAG and a normal S beta 2m. Eight patients (CHN1) with a S beta 2m < 5 mg/liter had various abnormalities of their urinary protein pattern. In four of them (CHN1a) only beta 2m, RBP and CC16 were increased while total proteinuria and SCr were normal. In the other four (CHN1b and c) albumin, cyst C, alpha 1m and NAG were also elevated, while total proteinuria and SCr were moderately raised. Five patients (CHN2) with a S beta 2m > or = 5 mg/liter had a markedly increased excretion of all LMWP, albumin and NAG (CHN1 vs. CHN2, P < 0.05) as well as a further increase in total proteinuria and SCr. The urinary LMWP/albumin concentration ratio was strikingly higher in CHN patients than in patients with glomerular albuminuria (CHN1 vs. DN

  5. Characteristics of tissue distribution of various polysaccharides as drug carriers: influences of molecular weight and anionic charge on tumor targeting.

    PubMed

    Sugahara, S; Okuno, S; Yano, T; Hamana, H; Inoue, K

    2001-05-01

    Using the Walker 256 model for carcinosarcoma-bearing rats, we intravenously administered 5 polysaccharide carriers with various molecular weights (MWs) and electric charges and tested for their plasma and tissue distribution. Two carriers, carboxymethylated-D-manno-D-glucan (CMMG) and CMdextran (CMDex), showed higher plasma AUC than the other carriers tested, namely, CMchitin (CMCh), N-desulfated N-acetylated heparin (DSH), and hyaluronic acid (HA). This was consistently found to be true over the range of MWs tested. For CMDex, the maximum value of plasma AUC was obtained when the MW exceeded 150 kDa. As for the anionic charge, CMDex (110-180 kDa) with a degree of substitution (DS) of the CM groups ranging from 0.2 to 0.6, showed maximum plasma AUC values. Twenty-four hours after administration, the concentration of CMDex (180-250 kDa; DS: 0.6-1.2) in tumors was more than 3% of dose/g--approximately 10-fold higher than those observed with CMCh, DSH and HA. Doxorubicin (DXR) was bound to these carriers via a peptide spacer, GlyGlyPheGly (GGFG), to give carrier-GGFG-DXR conjugates (DXR content: 4.2-7.0 (w/w)%), and the antitumor effects of these conjugates were tested with Walker 256 carcinosarcoma-bearing rats by monitoring the tumor weights after a single intravenous injection. Compared with free DXR, CMDex-GGFG-DXR and CMMG-GGFG-DXR conjugates significantly suppressed tumor growth, while the CMCh-GGFG-DXR, DSH-GGFG-DXR, and HA-GGFG-DXR conjugates in a similar comparison showed weak tumor growth inhibition. These findings suggest that the antitumor effect of the carrier-DXR conjugates was related to the extent with which the carriers accumulated in the tumors.

  6. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  7. Bacterial degradation of high molecular-weight polynuclear aromatic hydrocarbons

    SciTech Connect

    Ye, D.; Siddiqi, A.; Kumar, S.; Sikka, H.C.

    1995-12-31

    The ability of Pseudomonas paucimobilis, strain EPA 505 (a soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth) to metabolize a variety of high molecular-weight polynuclear aromatic hydrocarbons (PAHs) was investigated. After 16 hours of incubation with 10 ppm of a PAH, a resting cell suspension (1 mg wet cells/ml) of P. paucimobilis grown on fluoranthene degraded 80.0, 72.9, 31.5, 33.3, 12.5, and 7.8% of pyrene, benz[a]anthracene (B[a]A), chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), and dibenz[a,h]anthracene (DB[a,h]A), respectively. No degradation of dibenz[a,1]pyrene was detected under these conditions. Studies with [7-{sup 14}C]B[a]P and [5,6,11,12-{sup 14}C]chrysene showed that after 48 hours of incubation, the cells degraded nearly 28 and 42% of {sup 14}C-B[a]P and {sup 14}C-chrysene to {sup 14} C0{sub 2}, respectively, suggesting that the bacterium is able to metabolize B[a]P and chrysene via ring cleavage. No evolution of {sup 14}CO{sub 2} was detected from cultures incubated with [4,5,9,10{sup 14}C]pyrene or [1,2,3,4,4a,4bU-{sup 14}C]dibenz[a,1]pyrene. The degradation of B[a]P with P. paucimobilis significantly reduced the mutagenic activity associated with the hydrocarbon. The addition of 5 ppm of B[a]A, chrysene, fluoranthene, or DB[a,h]A to the incubation medium containing 5 ppm B[a]P had no effect on the degradation of B[a]P by P. paucimobilis. The data suggest that P. paucimobilis, strain EPA 505 may be useful for remediation of PAH-contaminated sites.

  8. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  9. Large Molecular Weight Polymer Solar Cells with Strong Chain Alignment Created by Nanoimprint Lithography.

    PubMed

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2016-03-23

    In this work, strong chain alignment in large molecular weight polymer solar cells is for the first time demonstrated by nanoimprint lithography (NIL). The polymer crystallizations in nonimprinted thin films and imprinted nanogratings with different molecular weight poly(3-hexylthiophene-2,5-diyl) (P3HT) are compared. We first observe that the chain alignment is favored by medium molecular weight (Mn = 25 kDa) P3HT for nonimprinted thin films. However, NIL allows large molecular weight P3HT (>40 kDa) to organize more strongly, which has been desired for efficient charge transport but is difficult to achieve through any other technique. Consequently P3HT/[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) solar cells with large molecular weight P3HT nanogratings show a high power conversion efficiency of 4.4%, which is among the best reported P3HT/PCBM photovoltaics devices.

  10. [Heparin-induced thrombocytopenia].

    PubMed

    Thiele, T; Althaus, K; Greinacher, A

    2010-09-01

    Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction that carries an increased risk of thromboembolic complications. HIT is caused by platelet-activating antibodies directed against a complex of platelet factor 4 (PF4) and heparin. HIT typically manifests in the second week after initiation of heparin therapy with a platelet count reduction of more than 50% of the highest level after the start of heparin administration as well as thromboembolic events. The clinical probability can be calculated by the 4 T's score. The laboratory diagnosis of HIT is based on confirmation of PF4/heparin antibodies or on functional tests that provide evidence of heparin-dependent platelet-activating antibodies. A low 4 T's score and negative HIT test virtually rule out the presence of HIT. Patients with acute HIT require anticoagulation with a compatible anticoagulant in a therapeutic dose. The drugs currently available for this include the direct thrombin inhibitors argatroban, lepirudin, bivalirudin, and desirudin and the indirect factor Xa inhibitors danaparoid and fondaparinux. PMID:20694716

  11. Optical properties of polycarbonate/styrene-co-acrylonitrile blends: effects of molecular weight of the matrix.

    PubMed

    Yi, Ping; Xiong, Ying; Guo, Shaoyun

    2015-12-01

    In this paper, the effects of the molecular weight of a polycarbonate (PC) matrix on the phase morphology and optical properties of a PC/styrene-co-acrylonitrile (SAN) blend were investigated. A scanning electron microscope is used to analyze the phase morphology of the blends, and Mie scattering theory is used to analyze the changing laws of the optical properties of PC/SAN blends with the increasing of PC molecular weight. Results show that the average particle diameter is not strongly changed with different PC molecular weight because the values of the viscosity ratios are very close to each other. But it is obvious that the number of large particles gradually reduced while small particles (especially d<2  μm) significantly increased with the increasing of PC molecular weight. And the increase in small particles will result in an increase in backward scattering so the transmittance of PC/SAN blends decreases with the increase of PC molecular weight. However, the balance of the scattering coefficients and the number concentration of particles eventually lead to the haze of the blends being very close, despite having different PC molecular weights. Meanwhile, the photographs of scattering patterns indicate that the PC/SAN blends whose component weight ratios are fixed at 70:30 have excellent antiglare properties, despite the changes in molecular weight of the PC matrix.

  12. Influence of molecular-weight polydispersity on the glass transition of polymers.

    PubMed

    Li, Shu-Jia; Xie, Shi-Jie; Li, Yan-Chun; Qian, Hu-Jun; Lu, Zhong-Yuan

    2016-01-01

    It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.

  13. Developer molecular size dependence of pattern formation of polymer type electron beam resists with various molecular weights

    NASA Astrophysics Data System (ADS)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Ochiai, Shunsuke; Hoshino, Ryoichi; Kawata, Atsushi

    2016-05-01

    The sensitivity and the resolution are affected by not only the nature of the resist such as a chemical structure and a molecular weight but also the developing process such as a developer molecular size. Exposure characteristics of positive-tone polymer resists having various molecular weights (Mw's) ranging from 60 k to 500 k are investigated using different ester solvents as a developer. The line-and-space (L/S) patterns are exposed by the electron beam writing system with an acceleration voltage of 50 kV and the samples are developed by amyl acetate, hexyl acetate and heptyl acetate. The pattern shape becomes better and the surface of the resist also becomes smoother with increasing developer molecular size, though the exposure dose required for the formation of the L/S pattern increases. The dose margin of pattern formation is also wider in all the resists having the different molecular weights. The dissolution in the unexposed portions of the 60k-Mw resist for heptyl acetate is reduced significantly compared with those for amyl acetate and hexyl acetate. The improvement of the pattern shape and the increasing of dose margin are remarkable in the low molecular weight resist. The 3σ of line width roughness tends to be smaller in the higher molecular weight resist and with the larger molecular size developer. Exposure experiment of the 35 nm pitch pattern using the 500k-Mw resist developed at the room temperature is presented.

  14. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  15. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  16. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    PubMed

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  17. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  18. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages.

    PubMed

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-09-30

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.

  19. Bovine and porcine heparins: different drugs with similar effects on human haemodialysis

    PubMed Central

    2013-01-01

    Background Heparins from porcine and bovine intestinal mucosa differ in their structure and also in their effects on coagulation, thrombosis and bleeding. However, they are used as undistinguishable drugs. Methods We compared bovine and porcine intestinal heparin administered to patients undergoing a particular protocol of haemodialysis. We compared plasma concentrations of these two drugs and also evaluated how they affect patients and the dialyzer used. Results Compared with porcine heparin, bovine heparin achieved only 76% of the maximum plasma concentration as IU mL-1. This observation is consistent with the activities observed in the respective pharmaceutical preparations. When the plasma concentrations were expressed on weight basis, bovine heparin achieved a maximum concentration 1.5 fold higher than porcine heparin. The reduced anticoagulant activity and higher concentration, on weight basis, achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer used. The heparin dose is still in a range, which confers security and safety to the patients. Discussion Despite no apparent difference between bovine and porcine intestinal heparins in the haemodialysis practice, these two types of heparins should be used as distinct drugs due to their differences in structure and biological effects. Conclusions The reduced anticoagulant activity achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer. PMID:23763719

  20. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  1. [Depolymerization of high-molecular-weight chitosan by the enzyme preparation Celloviridine G20x].

    PubMed

    Il'ina, A V; Tkacheva, Iu V; Varlamov, V P

    2002-01-01

    A low-molecular-weight water-soluble chitosan was obtained from high-molecular-weight crab chitosan using the enzyme preparation Celloviridine G20x. Optimum conditions for the enzymatic hydrolysis were designed. The reaction should be performed for 4 h in a sodium-acetate buffer (pH 5.2) at 55 degrees C and the enzyme to substrate ratio of 1:400. Fractional extraction of chitosan hydrolysate by aqueous ethanol (ethanol: distilled water) yielded fractions with molecular weights in the range 3.2-26.4 kDa.

  2. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  3. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.

    PubMed

    Sun, Qian; Xie, Hong-Bin; Chen, Jingwen; Li, Xuehua; Wang, Zhuang; Sheng, Lianxi

    2013-07-01

    As an important part of dissolved organic matter (DOM), low molecular weight organic acids (LOAs) may play a key role in the process for DOM stabilizing carbon nanomaterials (e.g. C60) suspensions in aquatic environment. In addition, both LOAs and C60 have been detected in the troposphere and therefore have a chance to interact with each other in the gaseous phase. However, the mechanism for LOAs-C60 interactions and their environmental implications need further investigations. In this study, molecular dynamics (MD) simulation was employed to investigate the interactions between both neutral and ionic LOAs with C60 in vacuum and water. The results showed that the adsorptions of all LOAs on C60 in energy are favorable, and the aromatic acids have stronger interactions with C60 than the aliphatic acids in vacuum and water. The interaction energies (Eint) of the LOA anions with C60 were weaker than those of their corresponding neutral LOA molecules. The models were also developed to predict and interpret Eint based on the results from MD simulations. Dispersion, induction and hydrophobic interactions were found to be the dominating factor in Eint. These findings indicate that cost-efficient MD simulation can be employed as an important tool to predict the adsorption behavior of LOAs on carbon nanomaterials.

  4. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  5. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  6. Usefulness of Danaparoid sodium in patients with Heparin-induced thrombocytopenia after cardiac surgery

    PubMed Central

    Foroughinia, Farzaneh; Farsad, Fariborz; Gholami, Kheirollah; Ahmadi, Somayeh

    2015-01-01

    Objective: Thrombocytopenia is a common problem in cardiovascular surgery patients. However, heparin-induced thrombocytopenia (HIT) is a rare but life-threatening complication of prophylaxis or treatment with heparin. Prompt management of HIT with an alternative anticoagulant is necessary due to the extreme risk of thrombotic complications. Therefore, we evaluated the effects of danaparoid in the treatment of HIT in patients with cardiac surgery who are at moderate to high risk of HIT. Methods: A prospective observational study involving 418 postcardiac surgery patients who received unfractionated heparin and low-molecular weight heparin was conducted in an educational tertiary cardiac care hospital in Iran. All patients were assessed for HIT type II based on thrombocytopenia and pretest clinical scoring system, the “4T's” score. HIT patients were treated with 1500–2500 units intravenous bolus danaparoid sodium followed by 200–400 units/h for a mean of 5 days. Successful response to danaparoid therapy, defined as augmentation in platelet count and improvement of thrombotic events was assessed in all patients treated with danaparoid. Findings: According to pretest clinical score (4T's), the probability of HIT was high in 14 (3.3%) patients and intermediate in three ones (0.7%). 15 patients with HIT were treated with danaparoid. One death occurred in danaparoid-treated group due to persistent thrombocytopenia. The rest of patients were treated successfully with danaparoid without any major thrombotic complication. Conclusion: According to our data and the previous studies’, HIT can be managed prosperously with danaparoid in postcardiac surgery patients. However, with the absence of any increase in platelet count after 3–5 days of danaparoid therapy and/or the occurrence of a new thrombotic event, danaparoid cross-reactivity with heparin should be suspected. PMID:25984544

  7. Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities.

    PubMed

    Körner, Anna; Larsson, Anette; Andersson, Asa; Piculell, Lennart

    2010-03-01

    The aim of the study was to determine and compare the degree of swelling and the swelling kinetics of poly(ethylene oxide) (PEO) hydrophilic matrix tablets without any additives for matrixes with different molecular weight polydispersities. A wide range of "mixed" polydisperse PEO tablets were obtained by mixing two PEO batches with average molecular weights of 10(5) and 2 x 10(6), respectively. These were compared with "single-batch" tablets with narrower mono-modal molecular weight distributions. A texture analyzer (TA) was used to determine, during the entire dissolution process, the thickness of the "gel" layer, the height of the dry tablet core and the total height of the tablet. The release of polymer from the tablet was also measured using a chromatographic method. Both the swelling histories and the polymer release rates varied strongly with molecular weight and agitation rate, whereas the rate of dissolution of the solid core varied much less with molecular weight. For single-batch and mixed tablets, tuned to give the same release rate, the swelling process was found to be very similar, regardless of the molecular polydispersity (between 1.2 and 8.8). These results support a previously proposed dissolution model with the key assumption of a constant critical viscosity, independent of time or polymer molecular weight, at the surface of the gel layer of a dissolving tablet. PMID:19718760

  8. Heparin induced thrombocytopenia: review.

    PubMed

    Dasararaju, Radhika; Singh, Nirupama; Mehta, Amitkumar

    2013-08-01

    Heparin induced thrombocytopenia (HIT) is a serious, potentially life and limb threatening immune adverse reaction to heparin. IgG antibodies against platelet factor 4 and heparin multimer complexes activate platelets to create a prothrombotic state. ELISA based immunoassay to detect these antibodies is sensitive while serotonin release assay is highly specific but is not widely available. 4T score is a simple score to calculate pre-test probability of HIT. Score < 3 is highly specific to exclude the diagnosis. Alternate anticoagulants like lepirudin, argatroban or danaparoid are recommended in therapeutic dose to treat or prevent thrombotic events in HIT. Increased awareness of this condition among clinicians is important to ensure its early recognition and treatment to avoid serious complications. PMID:23991928

  9. Circulating high molecular weight IgG fibronectin complexes in myeloproliferative disorders.

    PubMed Central

    Baglin, T P; Price, S M; Boughton, B J

    1990-01-01

    The plasma of patients with myeloproliferative diseases was examined by polyethylene glycol (PEG) precipitation, analytical ultracentrifugation, and immunoaffinity chromatography for the presence of high molecular weight complexes of IgG and fibronectin. Abnormal circulating high molecular weight material was identified by ultracentrifugation in all patients. This was precipitated by PEG and was shown by exclusion chromatography to contain IgG in a high molecular weight form. Examination of plasma by immunoaffinity chromatography supported previous evidence for complex formation between IgG and fibronectin. These findings are further evidence that abnormal high molecular weight IgG complexes are a prominent feature of myeloproliferative disorders and implicate IgG fibronectin complex formation. PMID:2318985

  10. In vivo models of occupational asthma due to low molecular weight chemicals

    PubMed Central

    Hayes, J P; Taylor, A J Newman

    1995-01-01

    The aim was to review the development of in vivo models of asthma due to low molecular weight chemicals, in particular, those aspects that may be important to the understanding of occupational asthma in humans. PMID:7663640

  11. Simple nanoparticle-based luminometric method for molecular weight determination of polymeric compounds.

    PubMed

    Pihlasalo, Sari; Virtamo, Maria; Legrand, Nicolas; Hänninen, Pekka; Härmä, Harri

    2014-01-21

    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes.

  12. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Rui; Han, Shu-He; Liu, Zong-Huai; Chen, Yu

    2016-02-01

    The surface chemical functionalization of noble metal nanocrystals is a promising strategy for improving the catalytic/electrocatalytic activity and selectivity of noble metal nanocrystals. In this work, we successfully synthesize the polyallylamine (PAA) with different molecular weight functionalized Pt nanodendrites (Pt-NDs) using a facile hydrothermal reduction method. The morphology and surface composition are investigated by transmission electron microscopy, element map, and thermogravimetric analysis. Furthermore, we detailedly investigate the effect of the molecular weight of PAA on the electrochemical property of the functionalized Pt-NDs. Electrochemical measurements show only low molecular weight PAA functionalized Pt-NDs allow electrolytes to access freely the Pt sites. Meanwhile, the low molecular weight PAA functionalized Pt-NDs show the excellent selectivity and activity for the oxygen reduction reaction in the presence of methanol.

  13. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    SciTech Connect

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of these model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.

  14. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water.

    PubMed

    Ng, Yeap-Hung; di Lena, Fabio; Chai, Christina L L

    2011-06-14

    The preparation of acrylic polymers with predetermined molecular weights using metalloenzymes as catalysts, ascorbic acid as reducing agent and alkyl halides as initiators is reported. The mechanism of polymerization resembles an ARGET ATRP process. PMID:21552589

  15. Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass.

    PubMed

    Esparza-Soto, M; Westerhoff, P K

    2001-01-01

    Two fractions of extracellular polymer substances (EPSs), soluble and readily extractable (RE), were characterised in terms of their molecular weight distributions (MWD) and 3-D excitation-emission-matrix (EEM) fluorescence spectroscopy signatures. The EPS fractions were different: the soluble EPSs were composed mainly of high molecular weight compounds, while the RE EPSs were composed of small molecular weight compounds. Contrary to previous thought, EPS may not be considered only as macromolecular because most organic matter present in both fractions had low molecular weight. Three different fluorophore peaks were identified in the EEM fluorescence spectra. Two peaks were attributed to protein-like fluorophores, and the third to a humic-like fluorophore. Fluorescence signatures were different from other previously published signatures for marine and riverine environments. EEM spectroscopy proved to be a suitable method that may be used to characterise and trace organic matter of bacterial origin in wastewater treatment operations.

  16. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  17. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    PubMed

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-01

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase).

  18. Mild cracking of high-molecular-weight hydrocarbons

    SciTech Connect

    Biouri, B.; Hamdan, F.; Herault, D.

    1985-01-01

    Controlled cracking in the liquid phase of n-hexadecane, 6-methyleicosane, 1-phenyldodecane, and C21-C27 paraffins was studied in a stainless steel microreactor between 350 and 440 C for residence times varyin from 0.5 to 4 h at nitrogen or hydrogen pressures of 20 bar. Cracking occurred according to a molecular mechanism, but its kinetic data such as the order of reaction and the activation energy were similar to those of radical type cracking. The rate of formation of cracked gases was extremely small and the experimental and simulated compositions of the cracked liquids, based on a molecular type scission, agreed very well. This type of cracking is very interesting for visbreaking of heavy oils.

  19. Synthesis and polymerization of bicyclic ketals: a practical route to high-molecular weight polyketals.

    PubMed

    Whiting, Bryan T; Coates, Geoffrey W

    2013-07-31

    Polyketals are an important class of materials for drug delivery to sensitive tissues as they degrade in vivo to nonacidic species. We report the synthesis of high-molecular weight cyclic polyketals by the cationic ring-opening polymerization of bicyclic ketal monomers, which were prepared by the metal-catalyzed rearrangement of epoxy ketones. Three different cyclic polyketals with high molecular weights were synthesized using this protocol.

  20. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides.

    PubMed

    McKenzie, D L; Collard, W T; Rice, K G

    1999-10-01

    In a previous report (M.S. Wadhwa et al. (1997) Bioconjugate Chem. 8, 81-88), we synthesized a panel of polylysine-containing peptides and determined that a minimal repeating lysine chain of 18 residues followed by a tryptophan and an alkylated cysteine residue (AlkCWK18) resulted in the formation of optimal size (78 nm diameter) plasmid DNA condensates that mediated efficient in vitro gene transfer. Shorter polylysine chains produced larger DNA condensates and mediated much lower gene expression while longer lysine chains were equivalent to AlkCWK18. Surprisingly, AlkCWK18 (molecular weight 2672) was a much better gene transfer agent than commercially available low molecular weight polylysine (molecular weight 1000-4000), despite its similar molecular weight. Possible explanations were that the cysteine or tryptophan residue in AlkCWK18 contributed to the DNA binding and the formation of small condensates or that the homogeneity of AlkCWK18 relative to low molecular weight polylysine facilitated optimal condensation. To test these hypotheses, the present study prepared AlkCYK18 and K20 and used these to form DNA condensates and conduct in vitro gene transfer. The results established that DNA condensates prepared with either AlkCYK18 or K20 possessed identical particle size and mediated in vitro gene transfer efficiencies that were indistinguishable from AlkCWK18 DNA condensates, eliminating the possibility of contributions from cysteine or tryptophan. However, a detailed chromatographic and electrospray mass spectrometry analysis of low molecular weight polylysine revealed it to possess a much lower than anticipated average chain length of dp 6. Thus, the short chain length of low molecular weight polylysine explains its inability to form small DNA condensates and mediate efficient gene transfer relative to AlkCWK18 DNA condensates. These experiments further emphasize the need to develop homogenous low molecular weight carrier molecules for nonviral gene delivery.

  1. Production of soluble, high molecular weight phosphorus and its subsequent uptake by stream detritus

    SciTech Connect

    Mulholland, P.J.; Minear, R.A.; Elwood, J.W.

    1987-02-08

    Several studies have demonstrated the importance of nonorthophosphate compounds, including some of relatively high molecular weight, in phosphorus cycling in aquatic ecosystems. This paper reports results from a laboratory study indicating that some of the soluble phosphorus released by microbes associated with coarse and fine detritus in streams is of relatively high molecular weight (>5000 daltons) and that this phosphorus is subsequently utilized, but at rates considerably lower than for orthophosphate.

  2. Intrinsic viscoelasticity in thin high-molecular-weight polymer films.

    PubMed

    Sheng, Xiaoyuan; Wintzenrieth, Frédéric; Thomas, Katherine R; Steiner, Ullrich

    2014-06-01

    The rheology of 44-75-nm-thick polystyrene films were probed by destabilization in an electric field. The non-cross-linked films showed the hallmark of viscoelasiticy; they exhibited elastic behavior at high shear rates and viscous rheology at low shear rates for stationary applied fields. These results are interpreted in terms of surface adhesion of chain segments in contact with the substrate surface, which substantially reduces reptative molecular motion of nearly all chains within the film.

  3. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.

  4. Quantitative Characterization of Heparin Binding to Tau Protein

    PubMed Central

    Zhu, Hai-Li; Fernández, Cristina; Fan, Jun-Bao; Shewmaker, Frank; Chen, Jie; Minton, Allen P.; Liang, Yi

    2010-01-01

    Neurofibrillary tangles, principally composed of bundles of filaments formed by the microtubule-associated protein Tau, are a hallmark of a group of neurodegenerative diseases such as Alzheimer disease. Polyanionic cofactors such as heparin can induce Tau filament formation in vitro. Here we quantitatively characterize the interaction between recombinant human Tau fragment Tau244–372 and heparin (average molecular mass = 7 kDa) as well as heparin-induced fibril formation by using static light scattering, isothermal titration calorimetry, turbidity assays, and transmission electron microscopy. Our data clearly show that at physiological pH, heparin 7K, and human Tau244–372 form a tight 1:1 complex with an equilibrium association constant exceeding 106 m−1 under reducing conditions, triggering Tau fibrillization. In the absence of dithiothreitol, heparin shows a moderate binding affinity (105 m−1) to Tau244–372, similarly triggering Tau fibrillization. Further fibrillization kinetics analyses show that the lag time appears to be approximately invariant up to a molar ratio of 2:1 and then increases at larger ratios of heparin/Tau. The maximum slope representing the apparent rate constant for fibril growth increases sharply with substoichiometric ratios of heparin/Tau and then decreases to some extent with ratios of >1:1. The retarding effect of heparin in excess is attributed to the large increase in ionic strength of the medium arising from free heparin. Together, these results suggest that the formation of the 1:1 complex of Tau monomer and heparin plays an important role in the inducer-mediated Tau filament formation, providing clues to understanding the pathogenesis of neurodegenerative diseases. PMID:19959468

  5. Effect of oxygen and shear stress on molecular weight of hyaluronic acid.

    PubMed

    Duan, Xu-Jie; Yang, Li; Zhang, Xu; Tan, Wen-Song

    2008-04-01

    Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effect on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only (1.22+/-0.02) x 106 Da. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of (2.19+/- 0.05) x 106 Da at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

  6. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex.

    PubMed

    Johnson, Daniel J D; Langdown, Jonathan; Huntington, James A

    2010-01-12

    Factor (f) IXa is a critical enzyme for the formation of stable blood clots, and its deficiency results in hemophilia. The enzyme functions at the confluence of the intrinsic and extrinsic pathways by binding to fVIIIa and rapidly generating fXa. In spite of its importance, little is known about how fIXa recognizes its cofactor, its substrate, or its only known inhibitor, antithrombin (AT). However, it is clear that fIXa requires extensive exosite interactions to present substrates for efficient cleavage. Here we describe the 1.7-A crystal structure of fIXa in its recognition (Michaelis) complex with heparin-activated AT. It represents the highest resolution structure of both proteins and allows us to address several outstanding issues. The structure reveals why the heparin-induced conformational change in AT is required to permit simultaneous active-site and exosite interactions with fIXa and the nature of these interactions. The reactive center loop of AT has evolved to specifically inhibit fIXa, with a P2 Gly so as not to clash with Tyr99 on fIXa, a P4 Ile to fit snugly into the S4 pocket, and a C-terminal extension to exploit a unique wall-like feature of the active-site cleft. Arg150 is at the center of the exosite interface, interacting with AT residues on beta-sheet C. A surprising crystal contact is observed between the heparin pentasaccharide and fIXa, revealing a plausible mode of binding that would allow longer heparin chains to bridge the complex. PMID:20080729

  7. Discharge Characteristics of Low Molecular Weight Solid Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Kumar, P. Naveen; Sasikala, U.; Sekhar, P. Chandra; Achari, V. B. S.; Rao, V. V. R. N.; Sharma, A. K.

    2011-07-01

    Solid polymer electrolytes based on polyethylene glycol (PEG) complexed with sodium chloride (NaCl) at different weight percent ratios were prepared using solution cast technique. Measurement of DC conductivity in the temperature range 303-373 K shows that the conductivity increases with increase in concentration of salt and with increase in temperature. Transference number measurent has been employed to investigate the charge transport in the polymer electrolyte system. This data has shown that the charge transport in the polymer electrolyte system is predominantly due to ions. Using this polymer electrolyte, solid state electrochemical cells have been fabricated. Various cell parameters associated with these cells were evaluated and reported.

  8. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.

    PubMed

    Jia, Xiaolong; Listak, Jessica; Witherspoon, Velencia; Kalu, E Eric; Yang, Xiaoping; Bockstaller, Michael R

    2010-07-20

    A systematic evaluation of the effect of polymer matrix molecular weight on the coarsening kinetics of uniformly dispersed polystyrene-grafted gold nanoparticles is presented. Particle coarsening is found to proceed via three stages (i.e., atomic-diffusion-based Ostwald ripening (OR), particle-migration-based collision-coalescence, and the subsequent reshaping of particle assemblies). The relative significance of each stage and hence the evolution of particle size and shape have been found to depend sensitively upon time, temperature, and the molecular weight of the host polymer. At temperatures close to the matrix glass-transition temperature, Ostwald ripening has been observed to be dominant on all experimental timescales. With increasing annealing temperature, collision coalescence becomes the dominant mode of coarsening, leading to rapid particle growth. The onset of the latter process is found to be increasingly delayed with increasing molecular weight of the polymer host. Particle coalescence is observed to proceed via two fundamental modes (i.e., diffusion-limited aggregation and growth resulting in the formation of fractal particle clusters and the subsequent recrystallization into more spherical monolithic aggregate structures). Interestingly, particle coarsening in high-molecular-weight matrix polymers is found to proceed significantly faster than predicted on the basis of the bulk polymer viscosity; this acceleration is interpreted to be a consequence of the network characteristics of high-molecular-weight polymers by analogy to the phenomenon of nanoviscosity that has been reported in the context of nanoparticle diffusion within high-molecular-weight polymers. PMID:20575544

  9. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  10. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  11. [Molecular weight analysis of physiological proteinuria in newborn infants (author's transl)].

    PubMed

    Thanner, F; Wartha, R; Gekle, D

    1979-03-15

    The physiological protien and glycoprotein excretions in the urine samples of a larger group of newborn infants were separated according to the molecular weights by SDS polyacrylamide gel electrophoresis and compared with the protein excretions of older children. We found higher proportions of albumin, of high molecular weight (MW = molecular weight greater than or equal to 150 000 dt) and of lower molecular weight (MW less than albumin 6800 dt) proteins in the first 24-h urine samples after birth. One week after birth the low molecular weight proteins predominated because there was a substantial decrease in the excretion of albumin and of high molecular weight proteins (MW greater than or equal to 150 000 dt). We compared the patterns of protein excretion of the newborn infants with those of children aged from 2 1/2 to 15 years. These urines samples showed a typical pattern of protein excretion not correlated to the age. These findings express a transitory immaturity of the glomerular filter and of the tubular protein reabsorbing system of the newborn kidney. Apparently, the tubular protein handling normalizes later than the glomerular filtration of proteins.

  12. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    PubMed Central

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  13. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-01

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  14. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  15. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG...′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as articles or components...

  16. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG... Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of...

  17. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG... Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of...

  18. Changing trends in anti-coagulant therapies. Are heparins and oral anti-coagulants challenged?

    PubMed

    Fareed, J; Iqbal, O; Cunanan, J; Demir, M; Wahi, R; Clarke, M; Adiguzel, C; Bick, R

    2008-06-01

    The conventional management of thrombotic and cardiovascular disorders is based on the use of heparin, oral anticoagulants and aspirin. Despite progress in the sciences, these drugs still remain a challenge and mystery. The development of low molecular weight heparins (LMWHS) and the synthesis of heparinomimetics represent a refined use of heparin. Additional drugs will continue to develop. However, none of these drugs will ever match the polypharmacology of heparin. Aspirin still remains the leading drug in the management of thrombotic and cardiovascular disorders. The newer antiplatelet drugs such as adenosine diphosphate receptor inhibitors, GPIIb/IIIa inhibitors and other specific inhibitors have limited effects and have been tested in patients who have already been treated with aspirin. Warfarin provides a convenient and affordable approach in the long-term outpatient management of thrombotic disorders. The optimized use of these drugs still remains the approach of choice to manage thrombotic disorders. The new anticoagulant targets, such as tissue factor, individual clotting factors, recombinant forms of serpins (antithrombin, heparin co-factor II and tissue factor pathway inhibitors), recombinant activated protein C, thrombomodulin and site specific serine proteases inhibitors complexes have also been developed. There is a major thrust on the development of orally bioavailable anti-Xa and IIa agents, which are slated to replace oral anticoagulants. Both the anti-factor Xa and anti-IIa agents have been developed for oral use and have provided impressive clinical results. However, safety concerns related to liver enzyme elevations and thrombosis rebound have been reported with their use. For these reasons, the US Food and Drug Administration did not approve the orally active antithrombin agent Ximelagatran for several indications. The synthetic pentasaccharide (Fondaparinux) has undergone clinical development. Unexpectedly, Fondaparinux also produced major

  19. Stealth nanoparticles coated with heparin as peptide or protein carriers.

    PubMed

    Socha, M; Bartecki, P; Passirani, C; Sapin, A; Damgé, C; Lecompte, T; Barré, J; El Ghazouani, F; Maincent, P

    2009-09-01

    Nanoparticles (prepared from a mixture of polyester and a polycationic polymer) loaded with insulin were prepared by a double emulsion method followed by evaporation solvent. Low molecular weight heparin (LMWH) was bound by electrostatic interactions onto the surface of the particles to confer Stealth properties. These nanoparticles were characterized in vitro (mean diameter, zeta potential, encapsulation efficiency, and release kinetics) and compared with conventional (without LMWH) and unloaded nanoparticles. The pharmacokinetics of insulin were studied after intravenous injection into diabetic rats in the form of Stealth or conventional nanoparticles or as a solution. Stealth nanoparticles allowed an increase in the elimination half-life of insulin, showing that the hydrophilic layer of LMWH was able to limit recognition by the mononuclear phagocytosis system in vivo. However, complement activation studies (CH50) did not reveal significant difference between Stealth and conventional nanoparticles.

  20. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  1. Effect of selective heparin desulfation on preservation of bone morphogenetic protein-2 bioactivity after thermal stress.

    PubMed

    Seto, Song P; Miller, Tobias; Temenoff, Johnna S

    2015-02-18

    Bone morphogenetic protein-2 (BMP-2) plays an important role in bone and cartilage formation and is of interest in regenerative medicine. Heparin can interact electrostatically with BMP-2 and thus has been explored for controlled release and potential stabilization of this growth factor in vivo. However, in its natively sulfated state, heparin has potent anticoagulant properties that may limit its use. Desulfation reduces anticoagulant properties, but may impact heparin's ability to interact and protect BMP-2 from denaturation. The goal of this study was to characterize three selectively desulfated heparin species (N-desulfated (Hep(-N)), 6-O,N-desulfated (Hep(-N,-6O)), and completely desulfated heparin (Hep(-))) and determine if the sulfation level of heparin affected the level of BMP-2 bioactivity after heat treatment at 65 °C. BMP-2 bioactivity was evaluated using the established C2C12 cell assay. The resulting alkaline phosphatase activity data demonstrated that native heparin maintained a significant amount of BMP-2 bioactivity and the effect appeared to be heparin concentration dependent. Although all three had the same molecular charge as determined by zeta potential measurements, desulfated heparin derivatives Hep(-N) and Hep(-N,-6O) were not as effective as native heparin in maintaining BMP-2 bioactivity (only ~35% of original activity remained in both cases). These findings can be used to better select desulfated heparin species that exhibit low anticoagulant activity while extending the half-life of BMP-2 in solution and in delivery systems.

  2. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kirby, Andrew R; Morris, Victor J; Tosh, Susan M

    2011-10-01

    The rheological properties and microstructure of aqueous oat β-glucan solutions varying in molecular weight were investigated. The structural features and molecular weights (MW) were characterized by (13)C NMR spectroscopy and high performance size-exclusion chromatography (HPSEC), respectively. The microstructure of the β-glucans dispersions was also examined by atomic force microscopy (AFM). The samples with β-glucan content between 78 and 86% on a dry weight basis had MW, intrinsic viscosity ([η]) and critical concentration (c*) in the range of 142-2800×10(3)g/mol, 1.7-7.2dl/g and 0.25-1.10g/dl, respectively. The flow and viscoelastic behaviour was highly dependent on MW and on the concentration of the β-glucans dispersions. Pseudoplastic behaviour was exhibited at high concentrations and Newtonian behaviour was evident at low concentrations. At the same concentration, the viscosity was higher for higher MW samples. The Cox-Merz rule was applicable for the lower molecular weight samples at higher concentrations whereas the high molecular weight sample deviated at concentrations greater than 1.0%, w/v. The mechanical spectra with variation of both MW and concentration were typical of entangled biopolymer solutions. AFM images revealed the formation of clusters or aggregates linked via individual polymer chains scattered heterogeneously throughout the system. The aggregate size increased with the molecular weight of the samples investigated and has been linked to the rheological behaviour of the samples.

  3. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas. PMID:17206812

  4. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  5. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    NASA Astrophysics Data System (ADS)

    Satti, Angel J.; Andreucetti, Noemí A.; Ciolino, Andrés E.; Vitale, Cristian; Sarmoria, Claudia; Vallés, Enrique M.

    2010-11-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ( Satti et al., 2008).

  6. Slip of polydisperse polymers: Molecular weight distribution above and below the plane of slip

    NASA Astrophysics Data System (ADS)

    Sabzevari, Seyed Mostafa; Strandman, Satu; Wood-Adams, Paula Marie

    2015-04-01

    When strong slip occurs during the drag flow of highly entangled polybutadienes (PBD) in a sliding plate rheometer equipped with stainless steel parallel plates, a thin film of polymer debris remains on the substrate after the slip. This debris is assumed to be formed by the disentanglement process that occurs in strong slip at a distance of about one molecular size from the plate. In order to evaluate the composition of the debris we collected it with tetrahydrofuran and subjected it to gel permeation chromatography. It was found that the molecular weight distribution (MWD) of the debris is significantly different from that of the bulk. Moreover, in mixtures prepared from long and short PBDs with distinctly different molecular weight distributions, the MWD of the debris was found to be richer in low molecular weight components and leaner in the high molecular weight components compared to the bulk. This information is important since it reveals the compositional difference between the bulk and interfacial layer above and below the plane of slip. The difference in MWD is likely a consequence of the strong slip in which some of long chains are pulled away from the surface-adsorbed chains by the flow leaving a debris lean in the high molecular weight component.

  7. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    PubMed Central

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  8. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  9. [The molecular-weight characteristics of the bacterial lectins and humus components in soil].

    PubMed

    Votselko, S K; Iutinskaia, G A; Kovalenko, E A; Kucheriavaia, N S

    2000-01-01

    A method has been developed to determine the molecular-weight distribution of biologically active substances: bacterial lectins and soil humus compounds. The method based on the simultaneous centrifugation of samples and molecular weight standards in the density gradient of NaCl solutions or combined gradient of NaCl and CsCl solutions permits analysing biologically active substances: lectins, proteins, polysaccharides, protein-polysaccharide complexes, humus compounds in the interval of molecular weight of 13.7 kappa [symbol: see text] a to 2000 kappa [symbol: see text] a. The use of this method in the soil researches makes it possible to study the dynamics of change of molecular parameters of the soil organic matter depending on agrotechnical methods as well as to determine transformation regularities of microbial polysaccharides.

  10. Properties of salt-resistant lipase and lipoprotein lipase purified from human post-heparin plasma.

    PubMed Central

    Ostlund-Lindqvist, A M

    1979-01-01

    Lipoprotein lipase and salt-resistant lipase were isolated from human post-heparin plasma. The proteins of human post-plasma lipoprotein lipase and salt-resistant lipase were identified and demonstrated to be immunologically different. Significant differences between the two enzymes in their relative amino acid composition were demonstrated, which indicates that the two enzymes are different proteins. When analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the enzymes seemed to have monomer molecular weights similar to that of lipoprotein lipase purified from bovine milk. Images Fig. 1. Fig. 3. PMID:113002

  11. Thermodynamic characteristics of the heparin-leucine-CaCl2 system in a diluted physiological solution

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. S.; Belov, G. V.; Rulev, Yu. A.; Semenov, A. N.

    2013-03-01

    Chemical equilibria in aqueous solutions of high-molecular weight heparin (Na4hep) and leucine (HLeu) are calculated through the mathematical modeling of chemical equilibria based on representative experimental pH titration data. In addition, chemical equilibria in the CaCl2-Na4hep-HLeu-H2O-NaCl system in the presence of 0.154M NaCl background electrolyte at a temperature of 37°C in the range of 2.30 ≤ pH ≤ 10.50 and initial concentrations of basic components n × 10-3 M ( n ≤ 4).

  12. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  13. Heparin inhibits the intrinsic tenase complex by interacting with an exosite on factor IXa.

    PubMed

    Sheehan, John P; Kobbervig, Catherine E; Kirkpatrick, Heidi M

    2003-09-30

    The specific molecular target for direct heparin inhibition of factor X activation by intrinsic tenase (factor IXa-factor VIIIa) was investigated. Comparison of size-fractionated oligosaccharides demonstrated that an octasaccharide was sufficient to inhibit intrinsic tenase. Substitution of soluble dihexanoic phosphatidylserine (C6PS) for phospholipid (PL) vesicles demonstrated that inhibition by low-molecular weight heparin (LMWH) was independent of factor IXa-factor VIIIa membrane assembly. LMWH also inhibited factor X activation by the factor IXa-PL complex via a distinct mechanism that required longer oligosaccharides and was independent of substrate concentrations. The apparent affinity of LMWH for the factor IXa-PL complex was higher in the absence of factor VIIIa, suggesting that the cofactor adversely affected the interaction of heparin with factor IXa-phospholipid. LMWH did not interact directly with the active site, as it failed to inhibit chromogenic substrate cleavage by the factor IXa-PL complex. LMWH induced a modest decrease in factor IXa-factor VIIIa affinity [K(D(app))] on PL vesicles that did not account for the inhibition. In contrast, LMWH caused a substantial reduction in factor IXa-factor VIIIa affinity in the presence of C6PS that fully accounted for the inhibition. Factor IXa bound LMWH with significantly higher affinity than factor X by competition solution affinity analysis, and the K(D(app)) for the factor IXa-LMWH complex agreed with the K(I) for inhibition of the factor IXa-PL complex by LMWH. Thus, LMWH binds to an exosite on factor IXa that antagonizes cofactor activity without disrupting factor IXa-factor VIIIa assembly on the PL surface. This exosite may contribute to the clinical efficacy of heparin and represents a novel target for antithrombotic therapy.

  14. An optimal polymerization process for low mean molecular weight HBOC with lower dimer.

    PubMed

    Zhou, Wentao; Li, Shen; Hao, Shasha; Liu, Jiaxin; Wang, Hong; Yang, Chengmin

    2015-06-01

    The new research tried to improve the distribution of molecular weight of Hb-based oxygen carriers (HBOC), a bottleneck of glutaraldehyde (GDA)-polymerization process. The orthogonal experiments were done on the basis of the early study of human placenta Hemoglobin (Hb)-crosslinked-GDA and three factors were selected including the molar ratio of GDA and Hb, Hb concentration, and the rate of the feeding GDA. The optimal match condition of polymerization process prepared for the purpose of lower mean molecular weight, content of super-weight molecule, and the content of dimer. The results showed that the molar ratio of GDA and Hb was the greatest influencing factor on the molecular weight distribution of polymerized-Hb, followed by the Hb concentration, and the last is the rate of feeding GDA. The optimum matching conditions had reached the objective that the mean molecular weight with 155.54 ± 5.79, the content of dimer with 17.23 ± 3.71, and content of super-weight molecule with 0.17 ± 0.09, and the results can be repeated in the 30 times expansion experiments.

  15. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  16. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased.

  17. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate).

    PubMed

    Boesel, Luciano F; Le Meur, Sylvaine; Thöny-Meyer, Linda; Ren, Qun

    2014-11-01

    Poly(4-hydroxybutyrate) (P4HB) is a bacterial polyhydroxyalkanoate with interesting biological and physico-chemical properties for the use in biomedical applications. The synthesis of P4HB through a fermentation process often leads to a polymer with a too high molecular weight, making it difficult to process it further by solvent- or melt-processing. In this work P4HB was degraded to obtain polymers with a molecular weight ranging from 1.5×10(3)g/mol to 1.0×10(6)g/mol by using a method established in our laboratory. We studied the effect of the change in molecular weight on thermal and mechanical properties. The decrease of the molecular weight led to an increase in the degree of crystallinity of the polymer. Regarding the tensile mechanical properties, the molecular weight played a more prominent role than the degree of crystallinity in the evolution of the properties for the different polymer fractions. The method presented herein allows the preparation of polymer fractions with easier processability and still adequate thermal and mechanical properties for biomedical applications.

  18. Anticancer properties of low molecular weight oat beta-glucan – An in vitro study.

    PubMed

    Choromanska, Anna; Kulbacka, Julita; Rembialkowska, Nina; Pilat, Justyna; Oledzki, Remigiusz; Harasym, Joanna; Saczko, Jolanta

    2015-09-01

    Anticancer properties of 1-3, 1-4 oat beta glucan are under intensive investigation now. Antitumor characteristic of fungi and yeast beta-glucans have been widely recognized, but those polysaccharides are mostly insoluble which creates several problems especially in topical formulation. Also high molecular weight oat beta-glucans reveal high viscosity which restricts its application. According to those problems in the current study the antitumor activities of low molecular weight beta-glucan derived from oats were investigated in cancer cells: Me45, A431 and normal HaCaT and murine macrophages P388/D1. The low molecular weight beta-glucan from oat significantly deceased cancer cells viability, while for the normal cells it was non-toxic. It was observed that with the increasing incubation time and the beta-glucan concentration the cancer cells viability significantly deceased. Furthermore for the normal cells the low molecular weight beta-glucan from oat was non-toxic. Immunocytochemical ABC analysis showed that beta-glucan induced strong expression of caspase-12 in both cancer cell lines, while in HaCaT cells ABC reaction was significantly lower and in P388/D1 cell line ABC reaction was negative. Our preliminary studies show strong anti-tumor properties of new low molecular weight beta-glucan from oat and at the same time no toxicity for normal cells.

  19. Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights.

    PubMed

    Chung, Ying-Chien; Li, Yi-He; Chen, Chiing-Chang

    2005-01-01

    Removal of organic compounds, inorganic nutrients, and bacteria from aquaculture wastewaters before discharge cannot only minimize deterioration of receiving water quality, but can also make possible the reuse of the original water in the culture of prawn, fish, and shellfish. In this study, the feasibility of using chitosan, a multifunctional environmentally friendly biopolymer, at different molecular weights to simultaneously remove various pollutants from the discharge of an eel culture pond is evaluated. Experimental results indicated chitosan with a high molecular weight was best at removing turbidity, suspended solids, and biological and chemical oxygen demand (BOD and COD). In contrast, chitosan of a low molecular weight excelled at removing NH3 and PO4(3-) from wastewater. Additionally, chitosan with a high molecular weight did well at eliminating suspended solids of various particle sizes relative to chitosan with a low molecular weight. The best performance of chitosan in removing turbidity, suspended solids, BOD, COD, NH3, PO4(3-), and bacteria was 87.7%, 62.6%, 52.3%, 62.8%, 91.8%, 99.1%, and 99.998% removal, respectively. When chitosan with a high molecular weight was added at 12 mg/L, the quality of treated wastewater successfully complied with government discharge standards. Furthermore, the relatively low bacteria amount in the wastewater after treatment with chitosan was confirmed by both the plate count method and molecular analysis technique. These results indicated that the application of chitosan is feasible in an effort to recycle the effluents of a culture pond.

  20. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  1. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  2. Effect of molecular weight on ion diffusion and transference number in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Timachova, Ksenia; Balsara, Nitash

    2015-03-01

    Solid polymer electrolytes are of great interest for their potential use in high specific energy, solid-state batteries, however, salt transport properties in polymer electrolytes have not been comprehensively addressed over a wide range of molecular weights. Poly(ethylene oxide) (PEO) has been the most widely studied polymer electrolyte due to its high solvation of lithium salts and low glass transition temperature. This study presents measurements of the transport properties of lithium bis(trifluoromethanesulfone)imide (LiTFSI) in PEO at both the high concentration present in functional electrolytes and in the dilute limit for a large range of PEO molecular weights. Individual diffusion coefficients of the Li + and TFSI- ions were measured using pulsed-field gradient nuclear magnetic resonance and the cation transference number was calculated. The diffusion coefficients, transference number, and conductivity as a function of molecular weight and salt concentration provide a complete set of transport properties for PEO.

  3. Molecular weight of DNA from four entomopoxviruses determined by electron microscopy.

    PubMed Central

    Langridge, W H; Roberts, D W

    1977-01-01

    DNA was isolated from entomopoxviruses infected Amsacta moorei and Euxoa auxiliaris (Lepidoptera), Goeldichironomus holoprasinus (Diptera), and Othnonius batesi (Coleoptera) and compared with vertebrate virus DNA (vaccinia). After incubation in Pronase, sodium lauryl sulfate, and deoxycholate, poxvirus preparations shadowed with platinum and palladium revealed subcore particles 45 to 60 nm in diameter. Continued incubation in Pronase resulted in the gradual release of DNA from the particles. Metal-shadowed DNA molecules were photographed in the electron microscope and measured, and the average molecular weights were calculated. Lepidopteran poxvirus DNA (135 X 10(6)) was approximately equal to vaccinia DNA (131.7 X 10(6)) in molecular weight. The molecular weight of dipteran and coleopteran poxvirus DNA (200 X 10(6) to 251 X 10(6)) was approximately 50% greater than vaccinia DNA. Based on the concentration of DNA and protein per virion, Amsacta entomopoxvirus contained 5.7 to 7.7% DNA. Images PMID:833926

  4. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  5. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements. PMID:26428112

  6. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities.

    PubMed

    Sun, Liqin; Wang, Changhai; Shi, Quanjian; Ma, Cuihua

    2009-07-01

    Hermetical microwave was used to degrade Porphyridium cruentum polysaccharides from 2918 to 256.2, 60.66 and 6.55kDa. The antioxidant properties of different molecular weight polysaccharides were evaluated by determining the scavenging ability of free radicals, inhibitory effects on lipid peroxidation in liver homogenates and hemolysis of mouse erythrocytes. Analysis of physicochemical properties confirmed that microwave degradation might not markedly change the chemical components of the polysaccharides. High-molecular-weight polysaccharides from P. cruentum had no obvious antioxidant activity, but low-molecular-weight fragments after degradation exerted an inhibitory effect on oxidative damage. The 6.55-kDa fragment had stronger antioxidant activity than the 60.66 and 256-kDa fragments.

  7. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  8. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.

    PubMed

    Richard, Andrew; Margaritis, Argyrios

    2003-05-01

    Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.

  9. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells.

  10. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. PMID:25078662

  11. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested.

  12. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements.

  13. Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures.

    PubMed

    Díaz-Barrera, Alvaro; Silva, Paulina; Berrios, Julio; Acevedo, Fernando

    2010-12-01

    Alginate production by Azotobacter vinelandii in chemostat cultures was evaluated at different dilution rates (D) and inlet sucrose concentrations of 5 and 20 g l(-1). At the low inlet sucrose concentration, the molecular weight of alginate increased from 800 to 1800 kDa when D increased from 0.05 to 0.10 h(-1), whereas the opposite trend was observed with the high inlet sucrose concentration. This behaviour can be explained by changes in specific sucrose uptake rate. Thus, a decrease in alginate molecular weight was dependent on the specific sucrose uptake rate when this rate was higher than 0.42 g g(-1) h(-1). The manipulation of the D can be used to select the molecular weight of alginate in continuous culture.

  14. Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis.

    PubMed

    Areskogh, Dimitri; Li, Jiebing; Gellerstedt, Göran; Henriksson, Gunnar

    2010-04-12

    Lignosulfonates are by-products from the sulfite pulping process. During this process, lignin is liberated from pulp fibers through sulfonation and washed away. As a consequence, the lignosulfonate molecules contain both hydrophobic and hydrophilic moieties. Lignosulfonates are low-value products with limited performance and are used as such as binders, surfactants, and plasticizers in concrete. Lignosulfonates face strong competition from synthetic petroleum-based plasticizers with superior quality. Therefore, increasing the performance of lignosulfonates is desirable not only from a sustainability point of view but also to expand their usage. One important aspect that describes how well lignosulfonates can act as plasticizers is the molecular weight. In this paper, the molecular weight of four commercial lignosulfonates is increased through oxidation by two laccases without utilization of mediators. Different parameters to obtain maximal molecular weight increase were identified and the technical significance of the experiments is discussed.

  15. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  16. Low-molecular weight metalloproteins in tissues of the narwhal (Monodon monoceros).

    PubMed

    Wagemann, R; Hobden, B

    1986-01-01

    Narwhal (Monodon monoceros) liver and kidney cytosol were fractionated by gel chromatography, anion-exchange chromatography and electrophoresis. Cadmium was associated largely with low molecular weight proteins, while mercury was associated also with high molecular weight proteins, but apparently not because of saturation of the metallothionein mechanism. Eight different electrophoretic bands, four of which were metalloproteins, were found under the "metallothionein" peak. Anion-exchange chromatography yielded five metal peaks while further fractionation on G-50 gave two peaks, one containing almost pure metallothionein (Mt-1) and the other a metalloprotein having twice the molecular weight of metallothionein. Mt-2 was observed, at a much lower concentration than Mt-1, in liver but not kidney. PMID:2874949

  17. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.

    PubMed

    Yu, Jing; Sanyal, Oishi; Izbicki, Andrew P; Lee, Ilsoon

    2015-09-01

    This work focuses on the design of porous polymeric films with nano- and micro-sized pores existing in distinct zones. The porous thin films are fabricated by the post-treatment of layer-by-layer assembled poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayers. In order to improve the processing efficiency, the deposition time is shortened to ≈ 10 s. It is found that fine porous structures can be created even by significantly reducing the processing time. The effect of using polyelectrolytes with widely different molecular weights is also studied. The pore size is increased by using high molecular weight PAH, while high molecular weight PAA minimizes the pore size to nanometer scale. Having gained a precise control over the pore size, layered multiscale porous thin films are further built up with either a microsized porous zone on top of a nanosized porous zone or vice versa.

  18. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  19. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    PubMed

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane. PMID:11091796

  20. Heparin: Past, Present, and Future.

    PubMed

    Oduah, Eziafa I; Linhardt, Robert J; Sharfstein, Susan T

    2016-01-01

    Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007-2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity, separate and distinct from its anticoagulant activity, while other studies indicate a role for heparin in treating inflammation, infertility, and infectious disease. A variety of strategies have been proposed to produce a bioengineered heparin. In this review, we discuss several of these strategies including microbial production, mammalian cell production, and chemoenzymatic modification. We also propose strategies for creating "designer" heparins and heparan-sulfates with various biochemical and physiological properties. PMID:27384570

  1. Heparin: Past, Present, and Future

    PubMed Central

    Oduah, Eziafa I.; Linhardt, Robert J.; Sharfstein, Susan T.

    2016-01-01

    Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007–2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity, separate and distinct from its anticoagulant activity, while other studies indicate a role for heparin in treating inflammation, infertility, and infectious disease. A variety of strategies have been proposed to produce a bioengineered heparin. In this review, we discuss several of these strategies including microbial production, mammalian cell production, and chemoenzymatic modification. We also propose strategies for creating “designer” heparins and heparan-sulfates with various biochemical and physiological properties. PMID:27384570

  2. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    PubMed

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity.

  3. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  4. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  5. The lognormal and gamma distribution models for estimating molecular weight distributions of polymers using PGSE NMR

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Nydén, Magnus; Röding, Magnus

    2016-06-01

    We present comprehensive derivations for the statistical models and methods for the use of pulsed gradient spin echo (PGSE) NMR to characterize the molecular weight distribution of polymers via the well-known scaling law relating diffusion coefficients and molecular weights. We cover the lognormal and gamma distribution models and linear combinations of these distributions. Although the focus is on methodology, we illustrate the use experimentally with three polystyrene samples, comparing the NMR results to gel permeation chromatography (GPC) measurements, test the accuracy and noise-sensitivity on simulated data, and provide code for implementation.

  6. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  7. Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1985-01-01

    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.

  8. Process for producing high quality, high molecular weight microcrystalline wax derived from undewaxed bright stock

    SciTech Connect

    Miller, S.J.

    1986-08-26

    A process is described for preparing high molecular weight microcrystalline wax from a hydrocracked, undewaxed bright stock, comprising: (a) contacting the bright stock with hydrogen in the presence of a catalyst having hydrodenitrification activity under conditions effective to reduce the nitrogen content of the stock to produce a substantially nitrogen-free product; (b) contacting the substantially nitrogen-free product with hydrogen in the presence of a catalyst having hydrogenation activity under mild conditions to produce a wax-containing oil; and (c) solvent dewaxing the wax-containing oil to produce high molecular weight microcrystalline wax.

  9. Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording

    NASA Astrophysics Data System (ADS)

    Solano, Cristina; Martinez-Ponce, Geminiano; Castañeda, Carlos

    2006-07-01

    An analysis of different polyvinyl alcohol films dyed with Malachite Green is presented. Absorbance and diffraction efficiency of holographic gratings are compared, taking as a parameter the molecular weight and hydrolysis degree of the polymer. It is observed that, using the same dye concentration, the absorption coefficient of the films increases as the molecular weight increases. The absorbance of these plates can be modified when exposed to UV light. In addition, it is found that for holographic recording there is an optimal dye-polymer system film.

  10. Quick and easy molecular weight determination with Macintosh computers and public domain image analysis software.

    PubMed

    Seebacher, T; Bade, E G

    1996-10-01

    The program "molecular weights" allows a fast and easy estimation of molecular weights (M(r)), isoelectric point (pI) values and band intensities directly from scanned, polyacrylamide gels, two-dimensional protein patterns and DNA gel images. The image coordinates of M(r) and pI reference standards enable the program to calculate M(r) and pI values in a real time manner for any cursor position. The program requires NIH-Image for Macintosh computers and includes automatic band detection coupled with a densitometric evaluation.

  11. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  12. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures.

    PubMed

    Gao, Wei; Wang, Weifan

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  13. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei; Wang, Weifan

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  14. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  15. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    PubMed

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-01

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  16. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  17. Successful Deep Inferior Epigastric Perforator Flap Harvest despite Preoperative Therapeutic Subcutaneous Heparin Administration into the Abdominal Pannus

    PubMed Central

    Miyagi, Kana; Forouhi, Parto

    2016-01-01

    Abdominal free flaps for microsurgical breast reconstruction are most commonly harvested based on the deep inferior epigastric vessels that supply skin and fat via perforators through the rectus muscle and sheath. Intact perforator anatomy and connections are vital for subsequent optimal flap perfusion and avoidance of necrosis, be it partial or total. The intraflap vessels are delicate and easily damaged and it is generally advised that patients should avoid heparin injection into the abdominal pannus preoperatively as this may compromise the vascular perforators through direct needle laceration, pressure from bruising, haematoma formation, or perforator thrombosis secondary to external compression. We report three cases of successful deep inferior epigastric perforator (DIEP) flap harvest despite patients injecting therapeutic doses of low molecular weight heparin into their abdomens for thrombosed central venous lines (portacaths™) used for administering primary chemotherapy in breast cancer. PMID:27651974

  18. Successful Deep Inferior Epigastric Perforator Flap Harvest despite Preoperative Therapeutic Subcutaneous Heparin Administration into the Abdominal Pannus

    PubMed Central

    Miyagi, Kana; Forouhi, Parto

    2016-01-01

    Abdominal free flaps for microsurgical breast reconstruction are most commonly harvested based on the deep inferior epigastric vessels that supply skin and fat via perforators through the rectus muscle and sheath. Intact perforator anatomy and connections are vital for subsequent optimal flap perfusion and avoidance of necrosis, be it partial or total. The intraflap vessels are delicate and easily damaged and it is generally advised that patients should avoid heparin injection into the abdominal pannus preoperatively as this may compromise the vascular perforators through direct needle laceration, pressure from bruising, haematoma formation, or perforator thrombosis secondary to external compression. We report three cases of successful deep inferior epigastric perforator (DIEP) flap harvest despite patients injecting therapeutic doses of low molecular weight heparin into their abdomens for thrombosed central venous lines (portacaths™) used for administering primary chemotherapy in breast cancer.

  19. Successful Deep Inferior Epigastric Perforator Flap Harvest despite Preoperative Therapeutic Subcutaneous Heparin Administration into the Abdominal Pannus.

    PubMed

    Duncumb, Joseph W; Miyagi, Kana; Forouhi, Parto; Malata, Charles M

    2016-01-01

    Abdominal free flaps for microsurgical breast reconstruction are most commonly harvested based on the deep inferior epigastric vessels that supply skin and fat via perforators through the rectus muscle and sheath. Intact perforator anatomy and connections are vital for subsequent optimal flap perfusion and avoidance of necrosis, be it partial or total. The intraflap vessels are delicate and easily damaged and it is generally advised that patients should avoid heparin injection into the abdominal pannus preoperatively as this may compromise the vascular perforators through direct needle laceration, pressure from bruising, haematoma formation, or perforator thrombosis secondary to external compression. We report three cases of successful deep inferior epigastric perforator (DIEP) flap harvest despite patients injecting therapeutic doses of low molecular weight heparin into their abdomens for thrombosed central venous lines (portacaths™) used for administering primary chemotherapy in breast cancer. PMID:27651974

  20. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  1. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides.

    PubMed

    Mainil-Varlet, P; Curtis, R; Gogolewski, S

    1997-09-01

    The in vivo and in vitro degradation of low-molecular-weight poly(L-lactide), poly(L/D-lactide), and poly (L/DL-lactide) rods was investigated. The low-molecular-weight fast-degrading materials were used to accelerate the degradation process and make the test conditions more critical. In the in vivo study the rods were implanted in the soft tissue of sheep and explanted at 1, 3, 6, and 12 months. In the in vitro experiments the samples were subjected to aging at 37 degrees C in the phosphate buffer using two different modes. In the so-called pseudodynamic mode the aging buffer was regularly replaced if the pH dropped more than 0.5. In the static mode the buffer was not changed over the whole testing period of 52 weeks. The mechanical, molecular, and crystalline properties of the rods were measured and their appearance in the course of aging was evaluated using scanning electron microscopy. It was found that the changes in the mechanical properties of poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide) samples subjected to in vitro degradation tests in both the static and pseudodynamic modes are in good approximation with data obtained from the in vivo study. The pH of the buffer solution had no evident effect on the mechanical properties or the rate of degradation as estimated from the drop in molecular weight of the aged samples. The replacement of the aging buffer to maintain a constant pH at 7.4 does not seem to be critical for the degradation of the polylactides. In vitro degradation tests can be used as a relevant procedure for predicting the in vivo functionality of implants from the polylactides used if the criteria for assessing such a functionality are the changes in mechanical properties and molecular weight.

  2. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules.

    PubMed

    Tsung, M; Burgess, D J

    1997-05-01

    The aims of this study are to optimize conditions for the preparation, stabilization, and harvesting of heparin/gelatin microcapsules prepared by complex coacervation. Microelectrophoresis and dry coacervate weight were used to determine the optimum conditions of pH and ionic strength for maximum heparin/gelatin coacervate yield. Heparin/gelatin microcapsules were formed by complex coacervation in the presence and absence of poly(1-vinyl-2-pyrrolidone) (PVP), which was used as a stabilizer. The microcapsules were collected using a spray-drying technique. Microcapsule particle size was analyzed using an AccuSizer optical sizer. Optimized conditions for maximum coacervate yield were pH 2.6, ionic strength 10 mM, and a 1:2 heparin/gelatin A ratio. PVP stabilized the heparin/gelatin coacervate droplets and reduced droplet aggregation during spray-drying. The mean particle diameter of the spray-dried coacervate droplets was lower in the presence of PVP and was unaffected by PVP concentration (in the range 0.5-2.0% w/w). Heparin/gelatin microcapsules, prepared under conditions optimized for maximum coacervate yield, were stabilized without the use of chemical cross-linking agents. Stabilization was achieved by a combination of the addition of PVP and spray-drying.

  3. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells.

    PubMed

    Gunes, Aysim; Iscan, Evin; Topel, Hande; Avci, Sanem Tercan; Gumustekin, Mukaddes; Erdal, Esra; Atabey, Nese

    2015-08-01

    Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.

  4. Effect of mahlep on molecular weight distribution of cookie flour gluten proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...

  5. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  6. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    PubMed

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability.

  7. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  8. Improved isolation protocol to detect high molecular weight polysaccharide structures of Campylobacter jejuni.

    PubMed

    Kovács, Judit K; Felső, Péter; Emődy, Levente; Schneider, György; Kocsis, Béla

    2014-12-01

    Simple detection of high molecular weight, LPS-like structures of Campylobacter jejuni is still an unsolved problem. A phenol-free extraction method for the detection of HMW polysaccharide was developed without the need for Western blot. This method provides a reliable technique for large-scale screening and comparative characterization study of different isolates.

  9. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    EPA Science Inventory

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  10. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    PubMed

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability. PMID:27455549

  11. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  12. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  13. Effect of chitosan molecular weight on rheological behavious of chitosan modified nanoclay at highly hydrated state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...

  14. DETERMINATION OF CERTAIN AMINO ACIDS IN CHYMOTRYPSINOGEN, AND ITS MOLECULAR WEIGHT

    PubMed Central

    Brand, Erwin; Kassell, Beatrice

    1941-01-01

    1. A preparation of chymotrypsinogen, obtained from Dr. M. Kunitz, was analyzed for sulfur, the sulfur amino acids, tyrosine, and tryptophane. 2. The protein sulfur of chymotrypsinogen was accounted for as methionine, cysteine, and cystine. 3. A method is presented for calculating the minimum molecular weight of a protein from the distribution of the sulfur amino acids. In the case of chymotrypsinogen, the calculated minimum molecular weight was found to be the actual molecular weight. 4. The molecular weight of chymotrypsinogen is 36,700 by amino acid analysis as compared to 36,000 by osmotic pressure measurements of Kunitz and Northrop. Chymotrypsinogen contains per mol 17 atoms of sulfur, 3 residues of methionine, 4 of cysteine, 10 of half-cystine (i.e. 5 S—S linkages), 6 of tyrosine, and 10 of tryptophane. 5. The tryptophane content of chymotrypsinogen (5.51 per cent) is the highest of any protein so far on record. 6. Chymotrypsinogen contains no reactive SH groups, although it yields cysteine on hydrolysis. This may be due either to preformed but unreactive SH groups or to S—X groups. The term S—X group is used to denote the substitution of the sulfhydryl hydrogen by a constituent X; hydrolysis yields SH groups: S—X + HOH = SH + X—OH. PMID:19873262

  15. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  16. Morphology Evolution of Molecular Weight Dependent P3HT: PCBM Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Chen, Dian; Briseno, Alejandro; Russell, Thomas

    2011-03-01

    Effective strategies to maximize the performance of bulk heterojunction (BHJ) photovoltaic devices have to be developed and understood to realize their full potential. In BHJ solar cells, the morphology of the active layer is a critical issue to improve device efficiency. In this work, we choose poly(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) system to study the morphology evolution. Different molecular weight P3HTs were synthesized by using Grignard Metathesis (GRIM)~method. In device optimization, polymer with a molecular weight between 20k-30k shows the highest efficiency. It was observed that the as-spun P3HT: PCBM (1:1) blends do not have high order by GISAXS. Within a few seconds of thermal annealing at 150& circ; the crystallinity of P3HT increaased substantially and the polymer chains adopted an edge-on orientation. An-bicontinous morphology was also developed within this short thermal treatment. The in situ GISAXS experiment showed that P3HT of high molecular weight was more easily crystallized from a slowly evaporated chlorobenzene solution and their edge-on orientation is much more obvious than for the lower molecular weight P3HTs. DSC was used to study the thermal properties of P3HTs and P3HT: PCBM blend. The χ of P3HT-PCBM was also calculated by using melting point depression method.

  17. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  18. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.

    PubMed

    Milanovic, Jovana; Schiehser, Sonja; Milanovic, Predrag; Potthast, Antje; Kostic, Mirjana

    2013-10-15

    The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2',6,6'-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42-9.67 mmol NaClO/g fiber) after modification times of 1h or longer.

  19. Broadening the polyethylene molecular weight distribution by controlling the hydrogen concentration and catalyst feed rates.

    PubMed

    Ali, Emad M; Ali, Mohammad Al-haj

    2010-01-01

    This paper discusses the control of an industrial gas-phase polyethylene reactor to produce a desired molecular weight distribution (MWD) of the polymer. The controller objective is to regulate online the entire molecular weight distribution by either manipulating the hydrogen content inside the reactor or coordinating the feed rates of two different types of catalysts. In this work, the molecular weight distribution is modeled as a function of the reaction kinetics and hydrogen to monomer ratio. Nonlinear model predictive controller (NLMPC) algorithm is used to maintain the desired molecular weight distribution online. The closed-loop simulations indicated the effectiveness of NLMPC to achieve its goal even in the presence of modeling errors. Moreover, the results showed that, altering the hydrogen concentration solely can produce the required polymer quality provided that an efficient mechanism is available to readily alter the hydrogen composition. Alternatively, the desired MWD can also be guaranteed with proper manipulation of the catalyst feed rates while the other process inputs are kept constant.

  20. High-molecular-weight polymers for protein crystallization: poly-gamma-glutamic acid-based precipitants.

    PubMed

    Hu, Ting Chou; Korczyńska, Justyna; Smith, David K; Brzozowski, Andrzej Marek

    2008-09-01

    Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-gamma-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of approximately 400 kDa and PGA-HM (high molecular weight) of >1,000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  1. Deviation from mean-field behavior in a low molecular weight critical polymer blend

    NASA Astrophysics Data System (ADS)

    Hair, D. W.; Hobbie, E. K.; Nakatani, A. I.; Han, C. C.

    1992-06-01

    A deviation from mean-field behavior is observed in the static susceptibility and correlation length measured with small angle neutron scattering as a function of temperature near the phase boundary of a relatively low molecular weight critical polymer mixture. The possibility of a fluctuation influenced crossover from mean-field to nonmean-field behavior is considered.

  2. Polyacrylamide Molecular Weight and Phosphogypsum Effects on Infiltration and Erosion in Semi-Arid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  3. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  4. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  5. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  6. Mental retardation in mucopolysaccharidoses correlates with high molecular weight urinary heparan sulphate derived glucosamine.

    PubMed

    Coppa, G V; Gabrielli, O; Zampini, L; Maccari, F; Mantovani, V; Galeazzi, T; Santoro, L; Padella, L; Marchesiello, R L; Galeotti, F; Volpi, N

    2015-12-01

    Mucopolysaccharidoses (MPS) are characterized by mental retardation constantly present in the severe forms of Hurler (MPS I), Hunter (MPS II) and Sanfilippo (MPS III) diseases. On the contrary, mental retardation is absent in Morquio (MPS IV) and Maroteaux-Lamy (MPS VI) diseases and absent or only minimal in the attenuated forms of MPS I, II and III. Considering that MPS patients affected by mental disease accumulate heparan sulfate (HS) due to specific enzymatic defects, we hypothesized a possible correlation between urinary HS-derived glucosamine (GlcN) accumulated in tissues and excreted in biological fluids and mental retardation. 83 healthy subjects were found to excrete HS in the form of fragments due to the activity of catabolic enzymes that are absent or impaired in MPS patients. On the contrary, urinary HS in 44 patients was observed to be composed of high molecular weight polymer and fragments of various lengths depending on MPS types. On this basis we correlated mental retardation with GlcN belonging to high and low molecular weight HS. We demonstrate a positive relationship between the accumulation of high molecular weight HS and mental retardation in MPS severe compared to attenuated forms. This is also supported by the consideration that accumulation of other GAGs different from HS, as in MPS IV and MPS VI, and low molecular weight HS fragments do not impact on central nervous system disease.

  7. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, they have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in different environments and (2) identify any genetic and environmental effects on tho...

  8. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle.

    PubMed Central

    Carney, I T; Curtis, C G; Kay, J K; Birket, N

    1980-01-01

    1. Rat intestinal smooth muscle was shown to contain endogenous inhibitory activity towards the neutral trypsin-like muscle proteinase described previously [Beynon & Kay (1978) Biochem. J. 173, 291--298]. 2. Comtamination of the muscle tissue by mucosal, blood and pancreatic inhibitors was shown to be unlikely. 3. The inhibitory activity was resolved into high- and low-molecular-weight components. 4. The low-molecular-weight component was purified to homogeneity. It has a molecular weight of approx. 9000 and was stable over the pH range 3--11. 5. It inhibited the muscle proteinase competitively (Ki congruent to t microM), but had no effect on any of the other proteinases tested. 6. Leupeptin also inhibited the muscle proteinase competitively (Ki congruent to 0.3 microM), whereas the low-molecular weight proteins gastrin, glucagon and insulin B-chain had very little effect. 7. A role for a weakly binding inhibitor in modulating the influence of the neutral proteinase on intracellular protein degradation is considered. Images Fig. 4. PMID:7396824

  9. Synthesis and structural study of two new heparin-like hexasaccharides.

    PubMed

    Lucas, Ricardo; Angulo, Jesús; Nieto, Pedro M; Martín-Lomas, Manuel

    2003-07-01

    Two new heparin-like hexasaccharides, 5 and 6, have been synthesised using a convergent block strategy and their solution conformations have been determined by NMR spectroscopy and molecular modelling. Both hexasaccharides contain the basic structural motif of the regular region of heparin but with negative charge distributions which have been designed to get insight into the mechanism of fibroblast growth factors (FGFs) activation.

  10. Pharmacokinetics of heparin and related polysaccharides

    SciTech Connect

    Boneu, B.; Dol, F.; Caranobe, C.; Sie, P.; Houin, G.

    1989-01-01

    The pharmacodynamic profile of standard heparin (SH), a low molecular weight derivative (CY 216) and of dermatan sulfate (DS), a new potential antithrombotic drug, was investigated in the rabbit over a large range of doses. After bolus i.v. injection of low doses, the biological activity of SH disappeared exponentially; however, its half-life was prolonged when the dose injected increased, and over 158 micrograms/kg (100 anti-factor Xa U/kg) the biological activity disappeared as a concave-convex curve. CY 216 disappeared more slowly than SH at low doses but faster than SH at higher doses. More than 90% of the DS biological activity present 1 minute after the i.v. injection disappeared exponentially without dose-dependent effects. Increasing doses of the three drugs were then delivered for 5 h under continuous infusions. Below 500 micrograms/kg/h the DS and CY 216 plateau concentrations were higher than that of SH while above this dose the SH concentration was higher than that of DS and CY 216. These observations may be explained by the results of pharmacokinetics experiments where /sup 125/I-labeled compounds were delivered by bolus i.v. injection in association with increasing doses of their unlabeled counterparts. For SH there was a 10-fold difference between the half-life of the lower dose (32 micrograms/kg or 5 anti-factor Xa U/kg) and that of the higher dose (3200 micrograms/kg); it was demonstrated that the half-life of SH continuously shortened as its plasma concentration decreased. In contrast the CY 216 and DS half-lives were very close, independent of the dose delivered, and therefore longer than that of SH at low doses and shorter than that of SH at higher doses.

  11. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  12. Emerging therapy options in heparin-induced thrombocytopenia.

    PubMed

    Chaudhary, Ranjit K; Khanal, Nabin; Giri, Smith; Pathak, Ranjan; Bhatt, Vijaya R

    2014-01-01

    Heparin-induced thrombocytopenia (HIT) is a life and limb-threatening thrombotic complication of heparin, which is the result of platelet activation by anti-PF4/heparin antibodies. With lepirudin and danaparoid no longer available in the US, treatment options are limited to argatroban, fondaparinux (off-label use) and bivalirudin (for patients undergoing percutaneous coronary intervention). Both argatroban and bivalirudin are parenteral drugs and require close monitoring and hospitalization. Fondaparinux is contraindicated in patients with significant renal impairment and is associated with a small risk of HIT. Anticoagulants approved for thromboprophylaxis and management of thromboembolic conditions such as rivaroxaban, dabigatran, and apixaban have fixed oral dose, rapid onset of action and does not require monitoring. These novel agents do not interact with anti-PF4/heparin antibody and offer attractive therapy options for HIT. Their utility in HIT has been supported by a few clinical reports, however, larger studies are needed before they can be utilized in clinical practice. Therapeutic plasma exchange has been utilized with some success in patients with HIT, who need heparin reexposure for cardiac surgery but their safety and efficacy needs further exploration. 2-O, 3-O desulfated heparin, which lacks any anticoagulant effect, has been shown to reduce the development of HIT in murine models. Finally, novel targets based on the molecular pathogenesis of HIT are being studied for therapeutic drug development. We hope that the availability of novel therapies in the future will expand the options available for the management of HIT. PMID:25374012

  13. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill.

    PubMed

    Hernández-Lauzardo, A N; Bautista-Baños, S; Velázquez-Del Valle, M G; Méndez-Montealvo, M G; Sánchez-Rivera, M M; Bello-Pérez, L A

    2008-09-01

    Determination of the molecular weight of three types of chitosan was carried out by HPSEC-RI. The effect of low, medium and high molecular weight chitosan was evaluated on development of three isolates of Rhizopus stolonifer. Image analysis and electronic microscopy observations were done in spores of this fungus. Germination of R. stolonifer in potato dextrose broth with chitosan was also evaluated. Results pointed out that the low molecular weight chitosan was more effective for inhibition of mycelial growth while the high molecular weight chitosan affected spore shape, sporulation and germination. Studies of scanning and transmission electron microscopy revealed numerous and deeper ridge ornamentations of the chitosan-treated spore.

  14. Exposure characterizations of polymer type electron beam resists with various molecular weights for next-generation photomask

    NASA Astrophysics Data System (ADS)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Hoshino, Ryoichi; Kawata, Atsushi

    2015-10-01

    Higher resolution is eagerly requested to the electron beam resist for the next generation photomask production as well as higher sensitivity. The performance of a polymer resist is mainly characterized by its chemical structure and molecular weight. Positive tone polymer resists with various molecular weights ranging from 60 k to 500 k are synthesized and the molecular weight dependence on exposure characteristics is examined by fabricating line-and-space patterns. The molecular weight dependence of sensitivity for amyl acetate developer is small in the molecular weight range in this study. In a low molecular weight resist, the cross-section profile of the resist pattern becomes rounder and then the disconnections are observed in the 20-nm line-and-space pattern. Although the pattern width change by changing the exposure dose for each resist is quite similar, the exposure dose margin of pattern formation becomes wider with the higher molecular weight. The line width roughness is smaller in a high molecular weight resist than in a low molecular weight resist. The shift amount of the pattern width from the design value for various line-and-space patterns and the dry etching resistance to CF4 plasma are also presented.

  15. Interaction of Heparins and Dextran Sulfates with a Mesoscopic Protein Nanopore

    PubMed Central

    Teixeira, Luciana R.; Merzlyak, Petr G.; Valeva, Angela; Krasilnikov, Oleg V.

    2009-01-01

    Abstract A mechanism of how polyanions influence the channel formed by Staphylococcus aureus α-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC50, nearly 104-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the ζ-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca2+-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of α-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers. PMID:19948118

  16. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high perfor