Science.gov

Sample records for molecular weight human

  1. A high molecular weight antifertility factor from human seminal plasma.

    PubMed

    Reddy, J M; Stark, R A; Zaneveld, L J

    1979-11-01

    The presence of a high molecular weight antifertility factor in human seminal plasma was established. The factor can be precipitated by centrifugation at 104 000 g. Its activity is maximal when the protein concentration reaches 150 micrograms/10(5) spermatozoa using the mouse in-vitro fertilization assay as the test system. The factor is heat labile but its activity is not affected by dialysis. It prevents the penetration of the spermatozoa through the layers surrounding the egg but has no effect on the fusion of the spermatozoa with the vitelline membrane. The factor is only partly removed from spermatozoa by washing but is completely dispersed when the spermatozoa are incubated in capacitation medium. The pellet that is precipitated from the seminal plasma does not contain any particles or vesicles. However, it is significantly contaminated with low molecular weight material. This material includes the acrosin inhibitor which is present in large enough quantities to hinder fertilization. Washing the pellet twice with H2O removes these low molecular weight compounds, as indicated by the absence of the acrosin inhibitor, but has no effect on the antifertility properties of the pellet. Therefore, before further study or purification of the factor, it is essential that the pellet is washed such low molecular weight material. The washed pellet consists of at least 7 components as judged by disc gel electrophoresis.

  2. Low molecular weight silicones particularly facilitate human serum albumin denaturation.

    PubMed

    Nayef, Lamees M; Khan, Madiha F; Brook, Michael A

    2015-04-01

    There is a market trend towards the administration of therapeutic proteins using sterilized, pre-filled glass syringes lubricated with silicone oil. It has been widely reported that initially clear solutions of proteins can become turbid during transport and storage, with unclear outcomes with respect to bioefficacy. While the basic processes of interactions of proteins with hydrophobic entities, leading to denaturation and aggregation, are increasingly well understood, the apparently random occurrence of such processes in syringes is not. To better understand the parameters that may be responsible for this change, we report the systematic examination of a series of factors that can affect the behavior of the protein human serum albumin (HSA) when in contact with silicone oil in water. Fluorescence spectroscopy showed that greater mixing times and greater concentrations of silicones (polydimethylsiloxane (PDMS)), especially lower molecular weight hydrophobic silicones like octamethyltetracyclosiloxane (D4), were associated with increased protein denaturation. The turbidity of HSA solutions, due to the formation both of silicone oil-in-water (O/W) emulsions and protein aggregates, was also facilitated by the presence of D4. A series of mixtures of silicone oils, all of which exhibited a viscosity of 1000 cSt but which were comprised of different silicone constituents, clearly showed a correlation between the presence of lower molecular silicones and enhanced solution turbidity. While the addition of a non-ionic silicone-polyether surfactant led to greater turbidity by increasing the number of stabilized oil droplets, it was not accompanied by protein denaturation. These results are consistent with HSA denaturation and subsequent aggregation as a consequence of contact particularly with low molecular weight, hydrophobic silicones that are more mobile, leading to more efficient protein/silicone contact.

  3. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  4. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy.

    PubMed

    Essendoubi, M; Gobinet, C; Reynaud, R; Angiboust, J F; Manfait, M; Piot, O

    2016-02-01

    Topical delivery of molecules into the human skin is one of the main issues in dermatology and cosmetology. Several techniques were developed to study molecules penetration into the human skin. Although widely accepted, the conventional methods such as Franz diffusion cells are unable to provide the accurate localization of actives in the skin layers. A different approach based on Raman spectroscopy has been proposed to follow-up the permeation of actives. It presents a high molecular specificity to distinguish exogenous molecules from skin constituents. Raman micro-imaging was applied to monitor the skin penetration of hyaluronic acids (HA) of different molecular weights. The first step, was the spectral characterization of these HA. After, we have determined spectral features of HA by which they can be detected in the skin. In the second part, transverse skin sections were realized and spectral images were recorded. Our results show a difference of skin permeation of the three HA. Indeed, HA with low molecular weight (20-300 kDa) passes through the stratum corneum in contrast of the impermeability of high molecular weight HA (1000-1400 kDa). Raman spectroscopy represents an analytical, non-destructive, and dynamic method to evaluate the permeation of actives in the skin layers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells

    PubMed Central

    Ye, J; Wu, H; Wu, Y; Wang, C; Zhang, H; Shi, X; Yang, J

    2012-01-01

    Purpose To investigate the toxic effects of ethylenediaminetetraacetic acid disodium salt (EDTA), a corneal penetration enhancer in topical ophthalmic formulations, on DNA in human corneal epithelial cells (HCEs), and to investigate whether the effect induced by EDTA can be inhibited by high molecular weight hyaluronan (HA). Methods Cells were exposed to EDTA in concentrations ranging from 0.00001 to 0.01% for 60 min, or 30 min high molecular weight HA pretreatment followed by EDTA treatment. The cell viability was measured by the MTT test. Cell apoptosis was determined with annexin V staining by flow cytometry. The DNA single- and double-strand breaks of HCEs were examined by alkaline comet assay and by immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci, respectively. Reactive oxygen species (ROS) production was assessed by the fluorescent probe, 2′, 7′-dichlorodihydrofluorescein diacetate. Results EDTA exhibited no adverse effect on cell viability and did not induce cell apoptosis in human corneal epithelial cells at concentrations lower than 0.01%. However, a significant increase of DNA single- and double-strand breaks was observed in a dose-dependent manner with all the concentrations of EDTA tested in HCEs. In addition, EDTA treatment led to elevated ROS generation. Moreover, 30 min preincubation with high molecular weight HA significantly decreased EDTA-induced ROS generation and DNA damage. Conclusions EDTA could induce DNA damage in HCEs, probably through oxidative stress. Furthermore, high molecular weight HA was an effective protective agent that had antioxidant properties and decreased DNA damage induced by EDTA. PMID:22595911

  6. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Brachet, Guillaume; Duong, Romain; Sojinrin, Tobiloba; Respaud, Renaud; Aubrey, Nicolas; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2016-10-01

    Vibrational spectroscopic techniques can detect small variations in molecular content, linked with disease, showing promise for screening and early diagnosis. Biological fluids, particularly blood serum, are potentially valuable for diagnosis purposes. The so-called Low Molecular Weight Fraction (LMWF) contains the associated peptidome and metabolome and has been identified as potentially the most relevant molecular population for disease-associated biomarker research. Although vibrational spectroscopy can deliver a specific chemical fingerprint of the samples, the High Molecular Weight Fraction (HMWF), composed of the most abundant serum proteins, strongly dominates the response and ultimately makes the detection of minor spectral variations a challenging task. Spectroscopic detection of potential serum biomarkers present at relatively low concentrations can be improved using pre-analytical depletion of the HMWF. In the present study, human serum fractionation by centrifugal filtration was used prior to analysis by Attenuated Total Reflection infrared spectroscopy. Using a model sample based on glycine spiked serum, it is demonstrated that the screening of the LMWF can be applied to quantify blinded concentrations up to 50 times lower. Moreover, the approach is easily transferable to different bodily fluids which would support the development of more efficient and suitable clinical protocols exploring vibrational spectroscopy based ex-vivo diagnostic tools. Revealing serum LMWF for spectral serological diagnostic applications.

  7. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.

    PubMed

    Kabasawa, I; Watanabe, M; Kimura, M

    1983-01-01

    Four low molecular weight proteins (i.e. beta s, gamma H, gamma L1 & gamma L2 crystallins) were separated from the human cataractous lens cortex using gel filtration and chromatofocusing. Each of these four crystallins possessed its own subfractions in the pH gradient between 7.4 and 4.0 by chromatofocusing procedures. Analyses of the chromatofocusing patterns have further characterized the four crystallins. Polyacrylamide gel electrophoresis of these crystallin subfractions showed the possible separation of the heterogeneous protein bands.

  8. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    PubMed

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  9. Purification and properties of molecular-weight variants of human placental alkaline phosphatase

    PubMed Central

    Ghosh, Nimai K.; Fishman, William H.

    1968-01-01

    1. Alkaline phosphatase of human placenta was purified by a procedure involving homogenization with tris buffer, pH8·6, extraction with butanol, ammonium sulphate fractionation, exposure to heat, ethanol fractionation, gel filtration, triethylaminoethylcellulose anion-exchange chromatography, continuous curtain electrophoresis on paper and equilibrium dialysis. Methods for both laboratory-scale and large-scale preparation were devised. 2. Two major molecular-weight variants designated A and B were separated by molecular sieving with Sephadex G-200 and variant A was purified 4000-fold. 3. Variant B, which comes off the Sephadex G-200 column before variant A, is the electrophoretically slower-moving species on starch gel and is quite heterogeneous. 4. Purified variant A was fairly homogeneous on the basis of electrophoretic studies on starch gel and Sephadex gel, ultracentrifugation and immunodiffusion. 5. The respective molecular weights for variants A and B were 70000 and over 200000 on the basis of sucrose-density-gradient ultracentrifugation. Variant A exhibited a sedimentation coefficient of 4·2s. 6. Crystalline variant B could be converted into fast-moving variant A and vice versa. 7. Kinetic studies indicated no difference between the two variants. These include linear rates of hydrolysis, pH optimum, Michaelis constants and uncompetitive stereospecific l-phenylalanine inhibition. 8. The amino acid compositions of variants A and B and of placental albumin were determined. ImagesFig. 3.Fig. 5.Fig. 7.Fig. 8.Fig. 9. PMID:4970595

  10. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we employ top-down mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  11. Small molecular weight proteins/peptides present in the in vivo formed human acquired enamel pellicle.

    PubMed

    Siqueira, Walter L; Oppenheim, Frank G

    2009-05-01

    The aim of this study was to investigate the type and the nature of peptides present in the in vivo formed human acquired enamel pellicle. Pellicle material was collected from 10 volunteers and subjected to sample preparations consisting of centrifugal filtration using a 10 kDa molecular weight cut-off membrane and high-resolution gel filtration chromatography. The fractions containing peptides <10 kDa obtained by both methods were analyzed by LC-ESI-MS/MS. 78 natural pellicle peptides with molecular weights ranging from 766.9 Da to 3981.4 Da were identified originating from 29 different proteins. The number of peptides present in acquired enamel pellicle appears to be large and this is likely to enhance the functional spectrum of this protein film. The presence of small peptides in pellicle may be functionally important since structure/function studies of many salivary proteins have shown that specific domains within these native proteins retain or even exhibit enhanced biological activities. The data present the basis for determining the precise function of these pellicle peptides and for gaining insights into the role pellicle plays in the oral cavity.

  12. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells.

    PubMed

    Weijers, E M; van Wijhe, M H; Joosten, L; Horrevoets, A J G; de Maat, M P M; van Hinsbergh, V W M; Koolwijk, P

    2010-12-01

    Fibrin is a temporary matrix that not only seals a wound, but also provides a temporary matrix structure for invading cells during wound healing. Two naturally occurring fibrinogen variants, high molecular weight (HMW) and low molecular weight (LMW) fibrinogen, display different properties in supporting angiogenesis in vivo and in vitro. This study was aimed at investigating the functional characteristics and molecular mechanisms of human microvascular endothelial cells (HMVECs) cultured on HMW and LMW fibrin matrices. HMVECs on HMW fibrin matrices showed increased proliferation and tube formation as compared with their counterparts on unfractionated and LMW fibrin. Degradation of HMW fibrin was markedly enhanced by the presence of HMVECs, that of LMW fibrin was enhanced only slightly. However, the expression levels of fibrinolysis-regulating proteins and integrins were similar. Subsequent microarray analysis revealed that the expression of 377 genes differed significantly between HMVECs cultured on HMW fibrin and those cultured on LMW fibrin. Among these genes, UNC5B, DLL4 and the DLL4-Notch downstream targets Hey1, Hey2 and Hes1 showed increased expression in HMVECs on LMW fibrin. However, pharmacologic and genetic (DLL4 small interfering RNA) inhibition of DLL4-Notch signaling blunted rather than enhanced proliferation and tube formation by HMVECs on both fibrin variants. Heterogeneity in naturally occurring fibrinogen strongly influences endothelial cell proliferation and tube formation, and causes alterations in gene expression, including that of DLL4-Notch. The higher fibrinolytic sensitivity of HMW fibrin in the presence of HMVECs contributes to increased tube formation. Although the expression of DLL4-Notch was altered, it did not explain the enhanced tube formation in HMW fibrin. This study provides new perspectives for biological and tissue engineering applications. © 2010 International Society on Thrombosis and Haemostasis.

  13. Citric acid mediates the iron absorption from low molecular weight human milk fractions.

    PubMed

    Palika, Ravindranadh; Mashurabad, Purna Chandra; Kilari, Sreenivasulu; Kasula, Sunanda; Nair, Krishnapillai Madhavan; Raghu, Pullakhandam

    2013-11-20

    Previously, we have demonstrated increased iron absorption from low molecular weight (LMW) human milk whey fractions. In the present study, we investigated the effect of heat denaturation, zinc (a competitor of iron), duodenal cytochrome b (DcytB) antibody neutralization and citrate lyase treatment on LMW human milk fraction (>5 kDa referred as 5kF) induced ferric iron reduction, solubilization, and uptake in Caco-2 cells. Heat denaturation and zinc inhibited the 5kF fraction induced ferric iron reduction. In contrast, zinc but not heat denaturation abrogated the ferric iron solubilization activity. Despite inhibition of ferric iron reduction, iron uptake in Caco-2 cells was similar from both native and heat denatured 5kF fractions. However, iron uptake was higher from native compared to heat denatured 5kF fractions in the cells preincubated with the DcytB antibody. Citrate lyase treatment inhibited the ferric iron reduction, solubilization, and uptake in Caco-2 cells. These findings demonstrate that citric acid present in human milk solubilizes the ferric iron which could be reduced by other heat labile components leading to increased uptake in intestinal cells.

  14. Bioactivity of Variant Molecular Weight Chitosan Against Drug-Resistant Bacteria Isolated from Human Wounds.

    PubMed

    Bano, Ijaz; Arshad, Muhammad; Ghauri, Muhammad Afzal; Yasin, Tariq; Younus, Muhammad

    2017-03-30

    Chitosan available from crab shells is usually of high molecular weight which may result in reduced efficiency for its antibacterial activity. One of the techniques for improving chitosan antibacterial efficiency is reducing its molecular weight. The irradiation of chitosan by gamma radiations is considered to be one of the most effective and widely used methods for improving its antibacterial activity. Chitosan obtained from crab shells was irradiated with gamma radiations at different doses, and effects on chitosan were analyzed by molecular weight determination and Fourier Transform Infrared spectroscopy. Unirradiated and irradiated chitosans were studied for their antibacterial properties against bacterial pathogens, that is, Pseudomonas aeruginosa (SS29), Escherichia coli (SS2, SS9), Proteus mirabilis (SS77), and Staphylococcus aureus (LM15). Studies have shown that irradiation has significantly developed and improved the antibacterial activity of crab shell chitosan. A correlation was found between bacterial metabolites and antibacterial activity by the analysis for 4-hydroxy-2-alkylquinolines and related metabolites of P. aeruginosa (SS29) in the absence and presence of chitosan by liquid chromatography mass spectrometer, exhibiting the suppression of these virulence factors due to chitosan. Antibacterial efficiency of chitosan was found to be molecular weight dependent and applied concentration of the chitosan. The findings suggest on the use of low-molecular weight chitosan as antibacterial agent in pharmaceutical preparations.

  15. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages

    PubMed Central

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-β1–42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-β1–42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  16. Selective fermentation of gentiobiose-derived oligosaccharides by human gut bacteria and influence of molecular weight.

    PubMed

    Sanz, María Luz; Côté, Gregory L; Gibson, Glenn R; Rastall, Robert A

    2006-06-01

    Gentiooligosaccharides and alternansucrase gentiobiose acceptor products were fractionated by their degree of polymerization (DP) on a Bio-Gel P2 column. Fractions were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, and incubated with human faecal bacteria under anaerobic conditions at 37 degrees C. The growth of predominant gut bacteria on the oligosaccharides was evaluated by fluorescence in situ hybridization and a prebiotic index (PI) was calculated. Lower DP gentiooligosaccharides (DP2-3) showed the highest selectivity (PI of 4.89 and 3.40, respectively), whereas DP4-5 alternansucrase gentiobiose acceptor products generated the greatest values (PI of 5.87). The production of short-chain fatty acids was also determined during the time course of the reactions. The mixture of DP6-10 alternansucrase gentiobiose acceptor products generated the highest levels of butyric acid but the lowest levels of lactic acid. Generally, for similar molecular weights, alternansucrase gentiobiose acceptor products gave higher PI values than gentiooligosaccharides.

  17. Activation and function of human Hageman factor. The role of high molecular weight kininogen and prekallikrein.

    PubMed Central

    Meier, H L; Pierce, J V; Colman, R W; Kaplan, A P

    1977-01-01

    The activation and function of surface-bound Hageman factor in human plasma are dependent upon both high molecular weight (HMW) kininogen and prekallikrein. HMW kininogen does not affect the binding of Hageman factor to surfaces, but it enhances the function of surface-bound Hageman factor as assessed by its ability to activate prekallikrein and Factor XI. The initial conversion of prekallikrein to kallikrein by the surface-bound Hageman factor in the presence of HMW kininogen is followed by a rapid enzymatic activation of Hageman factor by kallikrein. The latter interaction is also facilitated by HMW kininogen. Kallikrein therefore functions as an activator of Hageman factor by a positive feedback mechanism and generates most of the activated Hageman factor during brief exposure of plasma to activating surfaces. HMW kininogen is a cofactor in the enzymatic activation of Hageman factor by kallikrein and it also augments the function of the activated Hageman factor generated. The stoichiometry of the Hagman factor interaction with HMW kininogen suggests that it enhances the activity of the active site of Hageman factor. Since HMW kininogen and prekallikrein circulate as a complex, HMW kininogen may also place the prekallikrein in an optimal position for its reciprocal interaction with Hageman factor to proceed. The surface appears to play a passive role upon which bound Hageman factor and the prekallikrein-HMW kininogen complex can interact. PMID:874082

  18. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    PubMed

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research.

  19. Cryoprotective effect of low-molecular-weight hyaluronan on human dermal fibroblast monolayers.

    PubMed

    Ujihira, Masanobu; Iwama, Akira; Aoki, Makie; Aoki, Kanako; Omaki, Sayaka; Goto, Erika; Mabuchi, Kiyoshi

    2010-01-01

    The purpose of this study was to assess the availability of low-molecular-weight (low-MW) hyaluronan (HA) as a cryoprotectant for cellular cryopreservation. To clarify whether low-MW HA is cryoprotective, we evaluated the effect of HA concentration (0-5% w/w) in a cryoprotectant solution on cell membrane integrity after freeze-thaw. A test sample was created using human dermal fibroblast monolayers incubated in a culture dish for 24 h (37 degrees C, 5% CO2). Sodium hyaluronate (MW 3 x 10(4)-5 x 10(4)) dissolved in medium served as the cryoprotectant solution. Samples were immersed in the solution for 2 h at 0-4 degrees C. They were frozen at a cooling rate of 3 degrees C/min from 4 to -80 degrees C, cooled further to below -185 degrees C, and then thawed. Cell membrane integrity after thawing was evaluated using a trypan blue exclusion assay. The sample and freezing procedures were repeated in subsequent experiments, while the conditions of the solution immersion with respect to the sample varied. Next, to clarify whether the cryoprotective action of HA is intra- or extracellular, we performed three experiments. The first studied the dependence of membrane integrity after freeze-thaw on preliminary incubation time (0.75-24 h at 37 degrees C) with a sample immersed in the solution (5% w/w HA). In the second, membrane integrity of thawed samples that were initially frozen in a medium instead of solution, by removing extracellular HA following a preliminary 6-h incubation period, were evaluated. Thirdly, we investigated cellular uptake of fluorescein isothiocyanate-labeled HA (MW 10(5), 1% w/w) after a preliminary 6-h incubation period under fluorescent microscopy (without freeze-thaw). The results show that HA had a cryoprotective effect, and that this cryoprotective action was intracellular. Therefore, low- MW HA proves to be a promising cellular cryoprotectant.

  20. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer.

    PubMed

    Choromanska, Anna; Kulbacka, Julita; Harasym, Joanna; Oledzki, Remigiusz; Szewczyk, Anna; Saczko, Jolanta

    2017-07-29

    Beta-glucans are widely used in treatment, cosmetics, and the food industry. Glucans play a significant role in activation of the immune and antioxidant system and inhibiting tumor proliferation. In the current study the antitumor activities of new high and low molecular weight beta-glucan derived from oats were investigated in two human lung cancer cell line (A549, H69AR) and normal keratinocytes (HaCaT). The effect of high and low molecular weight beta-glucan from oat was evaluated by cellular viability assessment, lipid peroxidation and manganese superoxide dismutase evaluation and cytoskeleton visualisation. Additionally the level of red blood cells hemolysis was performed. Our results indicate strong anti-tumor properties of new beta-glucan from oat and at the same time no toxicity for normal cells.

  1. Ultra-filtration of human serum for improved quantitative analysis of low molecular weight biomarkers using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Blasco, Hélène; Wasselet, Clément; Brachet, Guillaume; Respaud, Renaud; Carvalho, Luis Felipe C S; Bertrand, Dominique; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2017-01-09

    Infrared spectroscopy is a reliable, rapid and cost effective characterisation technique, delivering a molecular finger print of the sample. It is expected that its sensitivity would enable detection of small chemical variations in biological samples associated with disease. ATR-IR is particularly suitable for liquid sample analysis and, although air drying is commonly performed before data collection, just a drop of human serum is enough for screening and early diagnosis. However, the dynamic range of constituent biochemical concentrations in the serum composition remains a limiting factor to the reliability of the technique. Using glucose as a model spike in human serum, it has been demonstrated in the present study that fractionating the serum prior to spectroscopic analysis can considerably improve the precision and accuracy of quantitative models based on the partial least squares regression algorithm. By depleting the abundant high molecular weight proteins, which otherwise dominate the spectral signatures collected, the ability to monitor changes in the concentrations of the low molecular weight constituents is enhanced. The Root Mean Square Error for the Validation set (RMSEV) has been improved by a factor of 5 following human serum processing with an average relative error in the predictive values below 1% being achieved. Moreover, the approach is easily transferable to different bodily fluids, which would support the development of more efficient and suitable clinical protocols for exploration of vibrational spectroscopy based ex vivo diagnostic tools.

  2. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  3. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  4. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.

    PubMed

    Masuda, Katsuyoshi; Koizumi, Ayako; Nakajima, Ken-ichiro; Tanaka, Takaharu; Abe, Keiko; Misaka, Takumi; Ishiguro, Masaji

    2012-01-01

    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2-hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein-coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2-hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling-based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands.

  5. Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    PubMed Central

    Nakajima, Ken-ichiro; Tanaka, Takaharu; Abe, Keiko; Misaka, Takumi; Ishiguro, Masaji

    2012-01-01

    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands. PMID:22536376

  6. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  7. [Microsequencing, analysis of molecular weight and amino acid composition for pyrimidine 5'-nucleotidase I of human erythrocytes].

    PubMed

    Pan, Zhu-Lin; Li, Jin-Ying; Min, Bi-He; Ying, Kang; Zhou, Hong; Xu, Xiao-Ping; Shong, Xian-Min; Han, Feng-Lai; Zhang, Wei-Ping; Zhang, Xian

    2003-02-01

    To further explore the mechanism of congenital pyrimidine 5'-nuleotidase I (P5'N-I) deficiency, on the basis of purification of the protein, the molecular weight and amino acid composition were analysed by mass-spectrograph and amino-acid analyzer, microsequencing and bioinformation analysis of P5'N-I were performed after it was hydrolysed by trypsin. The results showed that three fractions were found in the purified P5'N-I and their molecular weights were 26,952.9, 55,476 and 110,938, respectively. The sequence from one of the peptide fragments was I-E-G-P-T-I-R-Q-I-E. The homologous sequence was not found after comparision with the ten-amino-acid sequence in GenBank by blast procedure. Amino acid analysis indicated that P5'N-I was composed of 18 amino acids at least, and 243 amino acid residues. In conclusion, the enzyme might be an allosteric enzyme, there might be homologous dimer or tetramer in physiological status of normal human erythrocyte, the microsequence could be designed as the probe for fishing the genes of interest. The composition of amino acid might be an important information in determination of its protein primary structure.

  8. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    PubMed

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure.

  9. Inhibition of direct and indirect TLR-mediated activation of human NK cells by low molecular weight dextran sulfate.

    PubMed

    Millard, Anne-Laure; Spirig, Rolf; Mueller, Nicolas J; Seebach, Jörg D; Rieben, Robert

    2010-08-01

    NK cells express toll-like receptors (TLR) that recognize conserved pathogen or damage associated molecular patterns and play a fundamental role in innate immunity. Low molecular weight dextran sulfate (DXS), known to inhibit the complement system, has recently been reported by us to inhibit TLR4-induced maturation of human monocyte-derived dendritic cells (MoDC). In this study, we investigated the capability of DXS to interfere with human NK cell activation triggered directly by TLR2 agonists or indirectly by supernatants of TLR4-activated MoDC. Both TLR2 agonists and supernatants of TLR4-activated MoDC activated NK cells phenotypically, as demonstrated by the analysis of NK cell activation markers (CD56, CD25, CD69, NKp30, NKp44, NKp46, DNAM-1 and NKG2D), and functionally as shown by increased NK cell degranulation (CD107a surface expression) and IFN-gamma secretion. DXS prevented the up-regulation of NK cell activation markers triggered by TLR2 ligands or supernatants of TLR4-activated MoDC and dose-dependently abrogated NK cell degranulation and IFN-gamma secretion. In summary our results suggest that DXS may be a useful reagent to inhibit the direct and indirect TLR-mediated activation of NK cells. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Molecular weight and molecular weight distribution of kraft lignins

    SciTech Connect

    Schmidl, W.; Dong, D.; Fricke, A.L. )

    1990-01-01

    Kraft lignins are the lignin degradation products from kraft pulping. They are complex, heterogeneous polymers with some polar character. The molecular weight of kraft lignins greatly affect the physical properties of black liquors, and are of primary importance in separation from black liquor and in evaluating potential uses. Several purified kraft lignins from slash pine were analyzed for number average molecular weight by vapor pressure osmometry (VPO), for weight average molecular weight by low angle laser light scattering (LALLS), and for the molecular weight distribution by high temperature size exclusion chromatography (SEC). The lignins were run in tetrahydrofuran (THF), N,N-dimethyl formamide (DMF), DMF with 0.1M LiBr, and pyridine at conditions above the Theta temperature. Experimental methods are discussed. The results show that VPO may be used to determine M[sub n] for kraft lignins if the purity of the lignins and the identity of the impurities are known. LALLS can be used to determine M[sub w] for kraft lignins if measurements are made at or above the Theta temperature of the lignin-solvent pair. SEC should be used at temperatures at, or above, the Theta temperature of the lignin-solvent pair. Size separation is highly dependent on the solvent used, and DMF is a much better solvent than THF for high temperature SEC. Future work using moment resolution procedures to derive an accurate calibration curve are also discussed.

  11. Sedimentation studies on human amylin fail to detect low-molecular-weight oligomers.

    PubMed

    Vaiana, Sara M; Ghirlando, Rodolfo; Yau, Wai-Ming; Eaton, William A; Hofrichter, James

    2008-04-01

    Sedimentation velocity experiments show that only monomers coexist with amyloid fibrils of human islet amyloid-polypeptide. No oligomers containing <100 monomers could be detected, suggesting that the putative toxic oligomers are much larger than those found for the Alzheimer's peptide, Abeta(1-42).

  12. Studies of a high molecular weight human melanoma-associated antigen.

    PubMed

    Hellström, I; Garrigues, H J; Cabasco, L; Mosely, G H; Brown, J P; Hellström, K E

    1983-03-01

    Hybridomas were generated by fusing SP2/0 mouse myeloma cells with spleen cells from mice that had been immunized with cultured human melanoma cells. One of the hybridomas secreted a monoclonal IgG1 antibody, 48.7, which binds to a cell surface antigen of cells from human melanomas and compound nevi. The presence of the target antigen in vivo was demonstrated immunohistologically by staining frozen sections of primary and metastatic melanoma by the peroxidase anti-peroxidase technique. Weak staining of some blood vessel cells was also seen, but other normal cells, including skin melanocytes, were unstained, as were cells from other tumor types. Antibody 48.7 immunoprecipitated polypeptides with apparent m.w. on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 250,000 and greater than 400,000.

  13. High molecular weight PEGylation of human pancreatic polypeptide at position 22 improves stability and reduces food intake in mice.

    PubMed

    Thieme, V; Jolly, N; Madsen, A N; Bellmann-Sickert, K; Schwartz, T W; Holst, B; Cox, H M; Beck-Sickinger, A G

    2016-11-01

    Human pancreatic polypeptide (hPP) is known to suppress appetite and food intake, thereby representing a potential therapeutic approach against obesity and associated metabolic disorders. The aim of this study was to improve hPP stability by covalent PEGylation with diverse molecular weight polyethylene glycols (PEGs) at two positions using promising lead structures while maintaining target activity. Modified peptides were synthesized by combined solid-phase and solution-phase peptide synthesis. Their potency was investigated in constitutively expressing human epithelial cells and isolated human colonic mucosa as well as receptor-transfected artificial cell lines. Human blood plasma and porcine liver homogenates were used to examine the in vitro stability of the analogues. The most promising variants were injected s.c. in C57BL/6JRj mice to monitor fasting-induced food intake and bioavailability. In human epithelia and colonic mucosal preparations, activity of the modified hPP peptides depended on the core sequence and latency of the peptides was related to PEG size. Peptides modified with a 22 kDa PEG (PEG22) remained intact in blood plasma and on incubation with liver homogenates for more than 96 h. Finally, hPP2-36 , [K(22) (PEG22)]hPP2-36 and [K(22) (PEG22),Q(34) ]hPP significantly reduced cumulative food intake in mice over 16 h after s.c. administration. Modification with PEG22 at position 22 stabilizes hPP significantly while extending its biological activities and could be used in drug development prospectively. © 2016 The British Pharmacological Society.

  14. Identification of a receptor for high molecular weight human B cell growth factor.

    PubMed

    Ambrus, J L; Jurgensen, C H; Brown, E J; McFarland, P; Fauci, A S

    1988-08-01

    Regulation of the proliferation of human B lymphocytes is under the control of several different signals. Various B cell growth factors (BCGF) have been described including a 60-kDa BCGF called high m.w. BCGF (HMW-BCGF). In this paper we describe a mAb BA5 that blocks the proliferation of normal activated human B lymphocytes in response to HMW-BCGF and does not affect the proliferation of T cells in response to PHA or IL-2. BA5 shows minimum binding to resting B cells, significantly enhanced binding to resting B cells, significantly enhanced binding to activated B cells and essentially no binding to resting or activated T cells. BA5 recognizes a 90-kDa protein from solubilized membranes of activated B cells. 125I-HMW-BCGF cross-linked to its binding site on activated B cells produces a 150-kDa R-protein complex. Unlabeled HMW-BCGF cross-linked to its binding site on activated B cells produces a 150-kDa band recognized by both BA5 and BCGF/1/C2 (a mAb to HMW-BCGF) using Western blotting. Thus, BA5 recognizes a molecule intimately associated with the receptor for HMW-BCGF which includes a binding site for HMW-BCGF. BA5 can be used to explore the role of HMW-BCGF and B cell proliferation in various aspects of human B cell physiology.

  15. High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling

    PubMed Central

    Santiago, Jon-Jon; McNaughton, Leslie J.; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E.; Fandrich, Robert R.; Wigle, Jeffrey T.; Freed, Darren H.; Arora, Rakesh C.; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  16. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    PubMed

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  17. Significance of thrombin-receptors of thrombocytes for the interaction of heparins and low-molecular-weight heparin in human whole blood clotting.

    PubMed

    Harenberg, J; Schuler, M; Zimmermann, R; Heptner, W

    1988-01-01

    We describe in the present paper the results of the influence of normal and low-molecular-weight heparin on the interaction of human fibrinogen and thrombocytes in human whole blood cotting ex vivo. During the coagulation process sequential measurements of fibrinopeptide A reflect fibrin formation and determination of platelet factor 4 indicate activation of thrombocytes. The data show that low-molecular-weight heparin inhibits plasma thrombin generation in vivo for longer than normal heparin and it affects the fibrinogen platelet binding less. There is good evidence that a lonely factor Xa inhibition mediates this anticoagulant mechanism. Therefore, these data favor the hypothesis that antifactor Xa activity prevents indeed blood clotting.

  18. A low-molecular-weight factor in human milk whey promotes iron uptake by Caco-2 cells.

    PubMed

    Etcheverry, Paz; Miller, Dennis D; Glahn, Raymond P

    2004-01-01

    The iron bioavailability of human milk (HM) is substantially greater than that of cow's milk (CM), but the factor responsible for this high bioavailability is unknown. This study evaluated the effects of various HM and CM fractions on iron bioavailability. Milk was separated into fat, casein and whey fractions by ultracentrifugation. Whey was further fractionated by ultrafiltration with a 10-kDa membrane to produce a 10-kDa retentate (10kR) and a 10-kDa filtrate (10kF). Samples were prepared by mixing various combinations of the fractions, bringing the samples to prefractionation weight with minimum essential medium (MEM), and adding iron (10 micro mol/L) as ferrous sulfate. Samples were divided into two aliquots: one was subjected to in vitro digestion, the other was not. Bioavailability was assessed by applying the samples to Caco-2 cell monolayers and incubating for 24 h. Ferritin formation in the cells was used as an index of iron uptake. Removing the fat from undigested HM samples doubled the ferritin formation, but removing the whey or casein had no effect. Results with digested HM samples were similar, except that removing the whey decreased ferritin formation by 48%. Removing the fat from digested CM samples had no effect, but removing the casein doubled the ferritin formation. Removing the 10kF from HM reduced ferritin formation by 60%, but removing the 10kR had no effect. These data suggest that a low-molecular-weight factor (<10 kDa) in human milk enhances iron absorption.

  19. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans.

    PubMed

    Boilard, Eric; Bourgoin, Sylvain G; Bernatchez, Chantale; Poubelle, Patrice E; Surette, Marc E

    2003-06-01

    Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.

  20. Mobilization of Cd from human serum albumin by small molecular weight thiols.

    PubMed

    Morris, Thomas T; Keir, Jennifer L A; Boshart, Steven J; Lobanov, Victor P; Ruhland, Anthony M A; Bahl, Nishita; Gailer, Jürgen

    2014-05-01

    Although the toxic metal Cd is an established human nephrotoxin, little is known about the role that interactions with plasma constitutents play in determining its mammalian target organs. To gain insight, a Cd-human serum albumin (HSA) complex was analyzed on a system consisting of size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using phosphate buffered saline (pH 7.4) as the mobile phase, we investigated the effect of 1-10mM oxidized glutathione (GSSG), l-cysteine (Cys), l-glutathione (GSH), or N-acetyl-l-cysteine (NAC) on the elution of Cd. As expected, GSSG did not mobilize Cd from the Cd-HSA complex up to a concentration of 4mM. With 1.0mM NAC, ∼30% of the injected Cd-HSA complex eluted as such, while the mobilized Cd was lost on the column. With 1.0mM of Cys or GSH, no parent Cd-HSA complex was detected and 88% and 82% of the protein bound Cd eluted close to the elution volume, likely in form of Cd(Cys)2 and a Cd-GSH 1:1 complex. Interestingly, with GSH and NAC concentrations >4.0mM, a Cd double peak was detected, which was rationalized in terms of the elution of a polynuclear Cd complex baseline-separated from a mononuclear Cd complex. In contrast, mobile phases which contained Cys concentrations ≥2mM resulted in the detection of only a single Cd peak, probably Cd(Cys)4. Our results establish SEC-FAAS as a viable tool to probe the mobilization of Cd from binding sites on plasma proteins at near physiological conditions. The detected complexes between Cd and Cys or GSH may be involved in the translocation of Cd to mammalian target organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Human myeloma light chains with increased molecular weight: high frequency among lambda chains.

    PubMed

    Bouvet, J P; Pillot, J; Liacopoulos, P

    1983-04-01

    The discovery of a human myeloma protein comprising a kappa L-chain with an increased mol. wt of 30,000) (Bouvet et. al., 1980) prompted investigations on the incidence of such heavier L-chains among other human myeloma proteins. In 105 samples examined, 34 were found to have L-chains heavier than normal (23,000-24,000), ranging from 25,000 up to 31,000, and five of lighter mol. wt (21,000-22,000). These mol. wt abnormalities were detected by electrophoresis in sodium dodecyl sulfate 10% polyacrylamide gels (SDS-PAGE) after reduction with 2-mercaptoethanol. The mol. wt of three of the heavier kappa or lambda chains was also estimated by filtration through a Sephadex G100 column and by sedimentation equilibrium. All three methods indicated a mol. wt increase of about 15-25% as compared with the usual mol. wt. The distribution of the high mol. wt chains among all L-chains examined was found to be 11 out of 62 kappa chains (17.7%) and 23 out of 43 lambda chains (53%) (P less than 0.001). A preferential association of such L-chains with H-chains producing multiple bands in SDS-PAGE (P less than 0.01) and an association between multiple L-chain and multiple H-chain band (P less than 0.05) were also observed. In contrast, no abnormal L-chain was found in immunoglobulins from normal subjects. Spontaneous degradation of the normal H-chains sometimes yielded fragments of 30,000 mol. wt. These fragments were easily distinguishable from abnormal L-chains. The nature of extra mol. wt in heavy L-chains was investigated for the presence of carbohydrate moiety. Four large and three normal size L-chains were examined for amino-sugar and sialic acid content. A small amount (one residue per molecule) of amino-sugar was detected only in two normal and two heavy L-chains, whereas sialic acid was only found in the heaviest (27,000-30,000) L-chains (Lh) and in small percentage (one or two residues per molecule). Total sugar estimation in one Lh chain indicated a proportion not exceeding

  2. Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism

    SciTech Connect

    Holers, V.M.; Chaplin, D.D.; Leykam, J.F.; Gruner, B.A.; Kumar, V.; Atkinson, J.P.

    1987-04-01

    The human C3b/C4b receptor (CR1) is a M/sub r/ approx. = 200,000 single-chain integral membrane glycoprotein of human erythrocytes and leukocytes. It functions both as a receptor for C3b- and C4b-coated ligands and as a regulator of complement activation. Prior structural studies have defined an unusual molecular weight allelic polymorphism in which the allelic products differ in molecular weight by as much as 90,000. On peripheral blood cells there is codominant expression of CR1 gene products of M/sub r/ 190,000 (A), 220,000 (B), 160,000 (C), and 250,000 (D). Results of prior biosynthetic and tryptic peptide mapping experiments have suggested that the most likely basis for the allelic molecular weight differences if at the polypeptide level. In order to define further the molecular basis for these molecular weight differences, human CR1 was purified to homogeneity, tryptic peptide fragments were isolated by HPLC and sequenced, oligonucleotide probes were prepared, and a CR1 cDNA was identified. A subclone of this CR1 cDNA was used as a probe of RNA blots of Epstein-Barr virus-transformed cell lines expressing the allelic variants. Each allelic variant encodes two distinct transcripts. A mRNA size polymorphism was identified that correlated with the gene product molecular weight polymorphism. This finding, in addition to a prior report of several homologous repeats in CR1, is consistent with the hypothesis that the molecular weight polymorphism is determined at the genomic level and may have been generated by unequal crossing-over.

  3. Rat and human HARE/stabilin-2 are clearance receptors for high- and low-molecular-weight heparins

    PubMed Central

    Harris, Edward N.; Baggenstoss, Bruce A.; Weigel, Paul H.

    2009-01-01

    The human hyaluronic acid (HA) receptor for endocytosis (HARE/stabilin-2) is the primary clearance receptor for systemic HA, chondroitin sulfates, and heparin, but not for heparan sulfate or keratan sulfate (Harris EN, Weigel JA, Weigel PH. J Biol Chem 283: 17341–17350, 2008). HARE is expressed in the sinusoidal endothelial cells (SECs) of liver and lymph nodes where it acts as a scavenger for uptake and degradation of glycosaminoglycans, both as free chains and proteoglycan fragments. Unfractionated heparin (UFH; ∼14 kDa) and low-molecular-weight heparin (LMWH; ∼4 kDa) are commonly used in treatments for thrombosis and cancer and in surgical and dialysis procedures. The reported half-lives of UFH and LMWH in the blood are ∼1 h and 2–6 h, respectively. In this study, we demonstrate that anti-HARE antibodies specifically block the uptake of LMWH and UFH by isolated rat liver SECs and by human 293 cells expressing recombinant human HARE (hHARE). hHARE has a significant affinity (Kd = 10 μM) for LMWH, and higher affinity (Kd = 0.06 μM) for the larger UFH. Rat liver SECs or cells expressing the recombinant 190-kDa HARE isoform internalized both UFH and LMWH, and both heparins cross-compete with each other, suggesting that they share the same binding sites. These cellular results were confirmed in ELISA-like assays using purified soluble 190-hHARE ectodomain. We conclude that both UFH and LMWH are cleared by HARE/Stab2 and that the differences in the affinities of HARE binding to LMWH and UFH likely explain the longer in vivo circulating half-life of LMWH compared with UFH. PMID:19359419

  4. Low Molecular Weight Hyaluronan-Pulsed Human Dendritic Cells Showed Increased Migration Capacity and Induced Resistance to Tumor Chemoattraction

    PubMed Central

    Rizzo, Manglio; Bayo, Juan; Piccioni, Flavia; Malvicini, Mariana; Fiore, Esteban; Peixoto, Estanislao; García, Mariana G.; Aquino, Jorge B.; Gonzalez Campaña, Ariel; Podestá, Gustavo; Terres, Marcelo; Andriani, Oscar; Alaniz, Laura; Mazzolini, Guillermo

    2014-01-01

    We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA –a poorly immunogenic molecule- represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors. PMID:25238610

  5. Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans.

    PubMed

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Strong, Michael J

    2010-01-01

    In the mouse, p190RhoGEF is a low molecular weight neurofilament (NFL) mRNA stability factor that is involved in NF aggregate formation in neurons. A human homologue of this protein has not been described. Our objective was to identify a human homologue of p190RhoGEF, and to determine its interaction with human NFL mRNA. We used sequence homology searches to predict a human homologue (RGNEF), and RT-PCR to determine the expression of mRNA in ALS and neuropathologically normal control tissues. Gel shift assays determined the interaction of RGNEF with human NFL mRNA in vitro, while IP-RT-PCR and gel shift assays were used to confirm the interaction in tissue lysates. We determined that RGNEF is a human homologue of p190RhoGEF, and that its RNA is expressed in both brain and spinal cord. While RGNEF and NFL mRNA interact directly in vitro, interestingly they only appear to interact in ALS lysates and not in controls. These data add another player to the family of NFL mRNA stability regulators, and raise the intriguing possibility that the mechanism by which p190RhoGEF contributes to murine neuronal NF aggregate formation may be important to human ALS NF aggregate formation.

  6. Purification and characterization of a native zinc-binding high molecular weight multiprotein complex from human seminal plasma.

    PubMed

    Yadav, Vikash Kumar; Kumar, Vijay; Chhikara, Nirmal; Kumar, Sanjay; Manral, Pallavi; Kashav, Tara; Saini, Savita; Srinivasan, A; Singh, Sarman; Singh, Tej P; Yadav, Savita

    2011-05-01

    The seminal plasma comprises secretions from various accessory sex glands. During fertilization spermatozoa undergo complex sequences of precisely timed events that are regulated by the activation of different intracellular signaling pathways. The precision and efficacy of these pathways are often influenced by the assembly and interactions of multiprotein complexes, thereby directing the flow of regulatory information. Our knowledge about these protein complexes present in human seminal plasma (HuSP) is limited. Here we report the identification and characterization of a native high molecular weight zinc-binding multiprotein complex from HuSP by utilizing 2-DE followed by MS. Twenty-six proteins representing isoforms and/or fragments of 11 different proteins were found to be assembled in this complex. Prostate-specific antigen, zinc α2-glycoprotein, prostatic acid phosphatase, and prolactin inducible protein were the major proteins of this complex. Dynamic light scattering experiments revealed changes in aggregation pattern accompanied with deviation from physiological pH and in presence of SDS. However, no significant changes were observed in the presence of physiological ligands such as zinc and fructose. The present study will be useful and contribute to guide the future studies performed for elucidation of biological significance of this native complex in HuSP.

  7. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.

    PubMed

    Su, Shih-Ping; McArthur, Jason D; Andrew Aquilina, J

    2010-07-01

    Low molecular weight (LMW) peptides, derived from the breakdown of the major eye lens proteins, the crystallins, accumulate in the human lens with age. These LMW peptides are associated with age-related lens opacity and cataract, with some shown to inhibit the chaperone activity of alpha-crystallin. However, the mechanism(s) giving rise to the production of these peptides, as well as their distribution within the lens, are not well understood. In this study, we have mapped the distribution of these crystallin-derived peptides present in human lenses of different ages using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Our data showed that most of these LMW peptides emerge in the lens at early middle-age, with peptides greater than 1778 Da in mass being confined to the water insoluble fractions, and to a lesser extent the water soluble fractions of older lenses. MALDI-IMS analyses showed that four peptides, derived from alphaA-, alphaB- and gammaS-crystallins, were confined to the lens nuclear fibre cells upon emergence during early middle-age, but were present in both the cortex and nucleus of old lenses. In contrast, another major peptide, derived from the C-terminal breakdown of betaA3-crystallin, was present in the cortical and nuclear regions of both young and old lenses. A comparison between age-matched cataractous and non-cataractous lenses showed no distinct differences in LMW peptide profiles, indicating that although cataract may be a potential consequence caused by the emergence of these peptides, it does not contribute directly to the peptide-generating process. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  8. Honokiol, a low molecular weight natural product, prevents inflammatory response and cartilage matrix degradation in human osteoarthritis chondrocytes.

    PubMed

    Chen, Ying Ju; Tsai, Keh Sung; Chan, Ding Cheng; Lan, Kuo Cheng; Chen, Cheng Feng; Yang, Rong Sen; Liu, Shing Hwa

    2014-04-01

    Proinflammatory cytokine interleukin-1β (IL-1β) stimulates several mediators of cartilage degradation and plays an important role in the pathogenesis of osteoarthritis (OA). Honokiol, a low molecular weight natural product isolated from the Magnolia officinalis, has been shown to possess anti-inflammatory effect. Here, we used an in vitro model of cartilage inflammation to investigate the therapeutic potential of honokiol in OA. Human OA chondrocytes were cultured and pretreated with honokiol (2.5-10 µM) with or without IL-1β (10 ng/ml). Nitric oxide (NO) production was quantified by Griess reagent. Prostaglandin (PG)E2 , metalloproteinase-13 (MMP-13), and interleukin-6 (IL-6) productions were quantified by enzyme-linked immunosorbent assay. The expressions of collagen II, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor κB (NF-κB)-related signaling molecules were determined by Western blotting. Our data showed that IL-1β markedly stimulated the expressions of iNOS and COX-2 and the productions of NO, PGE2 , and IL-6, which could be significantly reversed by honokiol. Honokiol could also suppress the IL-1β-triggered activation of IKK/IκBα/NF-κB signaling pathway. Moreover, honokiol significantly inhibited the IL-1β-induced MMP-13 production and collagen II reduction. Taken together, the present study suggests that honokiol may have a chondroprotective effect and may be a potential therapeutic choice in the treatment of OA patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria.

    PubMed

    Sanz, María Luz; Côté, Gregory L; Gibson, Glenn R; Rastall, Robert A

    2006-12-27

    A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.

  10. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  11. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  12. Effect of molecular weight on polymer processability

    SciTech Connect

    Karg, R.F.

    1983-01-01

    Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.

  13. Molecular weight of barley β-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects.

    PubMed

    Thondre, P S; Shafat, A; Clegg, M E

    2013-12-01

    Barley β-glucan (BG) has been shown to reduce glycaemic response (GR) in some studies. It is hypothesised that this reduction may be a function of its physical properties that delay gastric emptying (GE). The effect of these changes in GR and GE on diet-induced thermogenesis (DIT) is not known. The aim of the present study was to assess the effect of BG of different molecular weights and purities on GR, GE and DIT in healthy subjects. This was a randomised, single-blind, repeated-measures design where fifteen healthy subjects were tested on three occasions following an overnight fast. Following the baseline measurements, the volunteers were fed a soup containing high-molecular-weight BG (HBG), a soup containing low-molecular-weight BG (LBG) or a control soup with no BG (CHO). Following the consumption of the breakfast, GR was measured using finger-prick blood samples, GE was determined using the 13C-octanoic acid breath test and DIT was measured using indirect calorimetry. There was a difference in GR AUC between the soups after 60 min but not after 120 min. The CHO and LBG meals had a greater GR than the HBG meal. There were differences in all GE time points, with the HBG meal having the slowest GE time. There was a correlation between the GR and the initial GE times. There were differences in total DIT between the three test meals with the HBG meal having the lowest DIT. The present study indicates that HBG has the ability to delay GE due to increased viscosity, resulting in a decreased GR and DIT.

  14. Mathematical modelling of the transport of low molecular weight solutes across biological membranes. The transport of Leu, His and Glu into human blood platelets.

    PubMed

    Walkowiak, B; Cierniewski, C S

    1988-10-01

    A model describing the transport of low molecular weight solutes across cell membranes is presented. The model accounts for many different systems which may mediate the fluxes of various solutes, for the effect of Na+ ions, and for time dependence of the processes. It generalizes the classical three-parameter equation for transport. Solutions to the model were employed to interprete experimental data obtained for the uptake of DL-leu, L-his and L-glu by human blood platelets.

  15. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  16. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  17. Effect of low molecular weight heparins and fondaparinux upon thrombin generation triggered by human pancreatic cancer cells BXPC3.

    PubMed

    Gerotziafas, Grigoris T; Galea, Vassiliki; Mbemba, Elisabeth; Sassi, Mouna; Roman, Marie-Paule; Khaterchi, Amir; van Dreden, Patrick; Japcowitz, Max; Lotz, Jean Pierre; Bernaudin, Jean Francois; Fareed, Jawed; Hatmi, Mohamed; Elalamy, Ismail

    2014-01-01

    Low molecular weight heparins (LMWHs) and fondaparinux are widely used for prophylaxis and treatment of venous thromboembolic disease in cancer patients. However, the optimization of the antithrombotic treatment especially in patients with adenocarcinoma of the pancreas is a challenging issue. The understanding of the mechanism of action of the LMWHs and fondaparinux in cancer-induced hypercoagulability might help to optimize antithrombotic treatment. To this aim, we investigated the influence of BXPC3 pancreas adenocarcinoma cells on the antithrombotic activity of LMWHs and fondaparinux. Thrombin generation (TG) in normal platelet poor (PPP) and platelet rich plasma (PRP) spiked with clinically relevant concentrations of dalteparin, enoxaparin, nadroparin tinzaparin and fondaparinux was assessed with the Calibrated Automated Thrombogram assay. BXPC3 (5 cells/μl) were added to plasma. The mean rate index (MRI) of the propagation phase of TG and the endogenous thrombin potential (ETP) were analyzed. The IC50 of the studied compounds were determined and compared on the basis of anti-Xa and anti-IIa equivalent units. We demonstrate that the specific antithrombin (AT)-dependent anti-Xa activity of LMWHs and fondaparinux almost selectively inhibits the propagation phase of TG. The synergy between the anti-Xa and anti-IIa activities of LMWHs rather than the selective inhibition of FXa warrants abrogation of TG. The mean molecular weight and anti-Xa/anti-IIa ratio of the AT-dependent agents cannot predict the alteration of their capacity to inhibit TG. Tinzaparin was the most potent inhibitor of TG than the other LMWHs. Enoxaparin was more potent than nadroparin and dalteparin.

  18. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  19. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  20. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  1. Effects of chemical modifications on the surface- and protein-binding properties of the light chain of human high molecular weight kininogen.

    PubMed

    Retzios, A D; Rosenfeld, R; Schiffman, S

    1987-03-05

    The light chain of kallikrein-cleaved human high molecular weight kininogen is solely responsible for its cofactor activity in blood clotting. Sequencing of the NH2-terminal region of the light chain reported herein identified the third kallikrein cleavage site of high molecular weight kininogen as Arg-437. The co-factor activity of high molecular weight kininogen consists of the capacity to bind to negatively charged surfaces and to factor XI or prekallikrein. Chemical modification of the histidines by either photooxidation or ethoxyformic anhydride affected the equivalent of 14-16 of 23 histidines available and resulted in over 90% loss in procoagulant activity. The modified protein had drastically reduced surface- and zinc-binding capacity, but it bound successfully to either factor XI or prekallikrein. In contrast, modification of two carboxyl groups, which led to approximately 80-90% loss of procoagulant activity, seriously compromised protein binding but left surface binding unaffected. All 3 tryptophans were modified at pH 4.0 with N-bromosuccinimide with a 70% reduction in procoagulant activity, but only 1 tryptophan was available for reaction at pH 7.35, resulting in a 50% loss in activity. Tryptophan modification at acidic pH affected protein binding but did not modify surface or zinc binding. Modification of both available tyrosine and 9 of 18 available lysine residues did not have a significant effect on the procoagulant activity of the light chain. These studies indicate that histidines participate in surface binding and that free carboxyl groups and tryptophan side chains are involved in binding of high molecular weight kininogen to other clotting factors.

  2. Measuring molecular weight by atomic force microscopy.

    PubMed

    Sheiko, Sergei S; da Silva, Marcelo; Shirvaniants, David; LaRue, Isaac; Prokhorova, Svetlana; Moeller, Martin; Beers, Kathryn; Matyjaszewski, Krzysztof

    2003-06-04

    Absolute-molecular-weight distribution of cylindrical brush molecules were determined using a combination of the Langmuir Blodget (LB) technique and Atomic Force Microscopy (AFM). The LB technique gives mass density of a monolayer, i.e., mass per unit area, whereas visualization of individual molecules by AFM enables accurate measurements of the molecular density, i.e., number of molecules per unit area. From the ratio of the mass density to the molecular density, one can determine the absolute value for the number average molecular weight. Assuming that the structure of brush molecules is uniform along the backbone, the length distribution should be virtually identical to the molecular weight distribution. Although we used only brush molecules for demonstration purpose, this approach can be applied for a large variety of molecular and colloidal species that can be visualized by a microscopic technique.

  3. Immature human chorionic gonadotropin (hCG) in first trimester placental cells is bound to an ATP-binding protein forming high-molecular-weight hCG.

    PubMed

    Shimojo, M; Sakakibara, R; Ishiguro, M

    1993-07-01

    Human chorionic gonadotropin (hCG) in first trimester placental cells is made up of immature alpha- and beta-subunits containing only N-linked high-mannose sugar chains, which are of 21 kDa for the alpha-subunit and 23 and 19 kDa for the beta-subunit. However, the apparent molecular weight of immature hCG from placental cell extracts has been estimated from gel filtration to be much higher (100-200 kDa; high molecular weight-hCG, HMW-hCG) based on gel filtration than the theoretical value (approximately 44 kDa) of the alpha beta dimer (alpha beta-hCG). We prepared a gel-filtered fraction containing HMW-hCG and investigated treatments for converting it to alpha beta-hCG. We found that the molecular weight of HMW-hCG was decreased to close to that of alpha beta-hCG by treatment with acetone, proteases, or chelating agents. These treatments also shifted the isoelectric point of HMW-hCG from the acidic region (pI = 4-6) to the alkaline (pI = 9-11), approximating to that of alpha beta-hCG. We also found that HMW-hCG, but not acetone-treated HMW-hCG, bound to ATP-agarose resin. These results suggested that the immature alpha beta-hCG molecule in placental cells may be bound to an acidic ATP-binding protein to form HMW-hCG.

  4. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells.

    PubMed

    Albano, Giusy Daniela; Bonanno, Anna; Cavalieri, Luca; Ingrassia, Eleonora; Di Sano, Caterina; Siena, Liboria; Riccobono, Loredana; Gagliardo, Rosalia; Profita, Mirella

    2016-01-01

    IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in an in vitro model of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBα phosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBα phosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation.

  5. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells

    PubMed Central

    Albano, Giusy Daniela; Bonanno, Anna; Cavalieri, Luca; Ingrassia, Eleonora; Di Sano, Caterina; Siena, Liboria; Riccobono, Loredana; Gagliardo, Rosalia; Profita, Mirella

    2016-01-01

    IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in an in vitro model of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBα phosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBα phosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation. PMID:27212811

  6. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  7. Microdialysis unit for molecular weight separation

    SciTech Connect

    Smith, R.D.; Liu, C.

    1999-09-21

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  8. Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates.

    PubMed

    Porubsky, Patrick R; Meneely, Kathleen M; Scott, Emily E

    2008-11-28

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates > 70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 angstroms for an indazole complex and 2.6 angstroms for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr303 within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe478 aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved 216QXXNN220 residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed omega-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  9. Structures of Human Cyctochrome P450 2E1: Insights Into the Binding of Inhibitors And Both Small Molecular Weight And Fatty Acid Substrates

    SciTech Connect

    Porubsky, P.R.; Meneely, K.M.; Scott, E.E.

    2009-05-21

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 {angstrom} for an indazole complex and 2.6 {angstrom} for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr{sup 303} within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe{sup 478} aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved {sup 216}QXXNN{sup 220} residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed {omega}-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  10. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  11. Calcium is involved in formation of high molecular weight adiponectin.

    PubMed

    Banga, Anannya; Bodles, Angela M; Rasouli, Neda; Ranganathan, Gouri; Kern, Philip A; Owens, Randall J

    2008-06-01

    Adiponectin, an adipocyte-specific secretory protein, is known to circulate as different isoforms in the blood stream. Using sucrose gradients and Western blotting on nondenaturing gels, adiponectin isoforms were examined in human serum, plasma, adipose tissue, and cells. The medium from human adipose tissue and human and mouse adipocytes were also examined for changes in isoform formation upon treatment with EGTA. Comparison of adiponectin complexes revealed distinct differences in distribution of high molecular weight (HMW) forms between human serum and plasma, with an apparent difference in molecular weight. Variation in molecular weight suggested a probable dissociation of the HMW isoforms in the presence of EDTA in the plasma. Examination of human serum samples treated with EDTA or EGTA showed a partial dissociation of the HMW isoform, while the addition of excess calcium, but not magnesium, to human plasma resulted in partial restoration of HMW adiponectin. When human adipose tissue-secreted adiponectin was treated with EGTA, there was a decrease in the HMW isoform by 61% (+/- 1.89%) and a corresponding increase in low molecular weight (LMW) and middle molecular weight (MMW) isoforms, compared to untreated samples. Analysis of mouse and human adipocytes also showed a reduction in HMW isoforms with a corresponding increase in MMW and LMW isoforms upon treatment with EGTA. The Simpson-Golabi-Behmel syndrome (SGBS) human adipocyte cell line, which primarily synthesizes LMW isoforms, produced increasing amounts of HMW adiponectin upon treatment with calcium in a dose-dependent manner. These data indicate that calcium promotes the formation of HMW adiponectin, and calcium sequestration decreases HMW adiponectin. Because of the importance of HMW adiponectin in insulin sensitivity, these data demonstrate the importance of assay conditions and sample preparation in the measurement of adiponectin isoforms.

  12. Calcium Is Involved in Formation of High Molecular Weight Adiponectin

    PubMed Central

    Banga, Anannya; Bodies, Angela M.; Rasouli, Neda; Ranganathan, Gouri; Kern, Philip A.

    2008-01-01

    Abstract Background Adiponectin, an adipocyte-specific secretory protein, is known to circulate as different isoforms in the blood stream. Methods Using sucrose gradients and Western blotting on nondenaturing gels, adiponectin isoforms were examined in human serum, plasma, adipose tissue, and cells. The medium from human adipose tissue and human and mouse adipocytes were also examined for changes in isoform formation upon treatment with EGTA. Results Comparison of adiponectin complexes revealed distinct differences in distribution of high molecular weight (HMW) forms between human serum and plasma, with an apparent difference in molecular weight. Variation in molecular weight suggested a probable dissociation of the HMW isoforms in the presence of EDTA in the plasma. Examination of human serum samples treated with EDTA or EGTA showed a partial dissociation of the HMW isoform, while the addition of excess calcium, but not magnesium, to human plasma resulted in partial restoration of HMW adiponectin. When human adipose tissue–secreted adiponectin was treated with EGTA, there was a decrease in the HMW isoform by 61% (± 1.89%) and a corresponding increase in low molecular weight (LMW) and middle molecular weight (MMW) isoforms, compared to untreated samples. Analysis of mouse and human adipocytes also showed a reduction in HMW isoforms with a corresponding increase in MMW and LMW isoforms upon treatment with EGTA. The Simpson-Golabi-Behmel syndrome (SGBS) human adipocyte cell line, which primarily synthesizes LMW isoforms, produced increasing amounts of HMW adiponectin upon treatment with calcium in a dose-dependent manner. Conclusion These data indicate that calcium promotes the formation of HMW adiponectin, and calcium sequestration decreases HMW adiponectin. Because of the importance of HMW adiponectin in insulin sensitivity, these data demonstrate the importance of assay conditions and sample preparation in the measurement of adiponectin isoforms. PMID:18510435

  13. Molecular weight and distribution of ultra-high molecular weight poly (p-phenyleneterephalamide)

    NASA Astrophysics Data System (ADS)

    Kong, H. J.; Ding, X. M.; Qiao, M. M.; Wu, Y.; Yu, M. H.

    2017-06-01

    The measurement of molecular weight (Mw) and distribution for ultra-high molecular weight poly (p-phenyleneterephalamide) (UHMWPPTA) is still a great challenge, because it is hardly dissolved in organic solvents normally to determine its Mw by gel permeation chromatography (GPC). In this paper, n-alkylated PPTAs with different molecular weight (including UHMWPPTA) were prepared by n-alkylation method. As the n-alkylated PPTAs with different length of alkyl chains, they can be dissolved in organic solvents such as tetrahydrofuran (THF). And the longer the alkyl side chains, the solubility is better. Molecular weight and of n-alkylated PPTAs were characterized by GPC with THF as eluent (MWGPC) and distibution was obtained by the weight molecular and number moleculr weight. The molecular weight of PPTA was measured in concentrated sulfuric acid by intrinsic viscosity measurement. The results showed a good linear relationship between them for PPTA with molecular weight from 10900 to 60800, which imply that molecular weight of UHMWPPTA could be measured by the GPC measurement of n-alkylation of PPTA.

  14. Identification of the High Molecular Weight Isoform of Phostensin

    PubMed Central

    Lin, Yu-Shan; Huang, Hsien-Lu; Liu, Wei-Ting; Lin, Ta-Hsien; Huang, Hsien-Bin

    2014-01-01

    Phostensin is encoded by KIAA1949. 5′-RACEanalysis has been used to identify the translation start site of phostensin mRNA, indicating that it encodes 165 amino acids with an apparent molecular weight of 26 kDa on SDS-PAGE. This low-molecular-weight phostensin is present in human peripheral blood mononuclear cells and many leukemic cell lines. Phostensin is a protein phosphatase-1(PP1) binding protein. It also contains one actin-binding motif at its C-terminal region and binds to the pointed ends of actin filaments, modulating actin dynamics. In the current study, a high-molecular-weight phostensin is identified by using immunoprecipitationin combination with a proteomic approach. This new species of phostensin is also encoded by KIAA1949 and consists of 613 amino acids with an apparent molecular weight of 110 kDa on SDS-PAGE. The low-molecular-weight and high-molecular-weight phostensins were named as phostensin-α and phostensin-β, respectively. Although phostensin-α is the C-terminal region of phostensin-β, it is not degraded from phostensin-β. Phostensin-β is capable of associating with PP1 and actin filaments, and is present in many cell lines. PMID:24434620

  15. Identification of the high molecular weight isoform of phostensin.

    PubMed

    Lin, Yu-Shan; Huang, Hsien-Lu; Liu, Wei-Ting; Lin, Ta-Hsien; Huang, Hsien-Bin

    2014-01-15

    Phostensin is encoded by KIAA1949. 5'-RACEanalysis has been used to identify the translation start site of phostensin mRNA, indicating that it encodes 165 amino acids with an apparent molecular weight of 26 kDa on SDS-PAGE. This low-molecular-weight phostensin is present in human peripheral blood mononuclear cells and many leukemic cell lines. Phostensin is a protein phosphatase-1(PP1) binding protein. It also contains one actin-binding motif at its C-terminal region and binds to the pointed ends of actin filaments, modulating actin dynamics. In the current study, a high-molecular-weight phostensin is identified by using immunoprecipitationin combination with a proteomic approach. This new species of phostensin is also encoded by KIAA1949 and consists of 613 amino acids with an apparent molecular weight of 110 kDa on SDS-PAGE. The low-molecular-weight and high-molecular-weight phostensins were named as phostensin-α and phostensin-β, respectively. Although phostensin-α is the C-terminal region of phostensin-β, it is not degraded from phostensin-β. Phostensin-β is capable of associating with PP1 and actin filaments, and is present in many cell lines.

  16. Molecular characteristics of some commercial high-molecular-weight hyaluronans.

    PubMed

    Soltés, L; Mendichi, R; Lath, D; Mach, M; Bakos, D

    2002-10-01

    Commercially available hyaluronan (HA) samples were investigated by the method of size exclusion chromatography (SEC). The fractions eluted from the SEC column were on-line molecularly characterized by using a multi-angle laser light scattering (MALLS) photometer. Along with the SEC-MALLS technique, the high-molecular-weight HA biopolymers were (off-line) analyzed by capillary viscometry.

  17. Glucagon receptor of human liver. Studies of its molecular weight and binding properties, and its ability to activate hepatic adenylyl cyclase of non-obese and obese subjects.

    PubMed Central

    Livingston, J N; Einarsson, K; Backman, L; Ewerth, S; Arner, P

    1985-01-01

    The glucagon receptor and the adenylyl cyclase system of human liver membranes were studied in six non-obese and six obese subjects who had elevated insulin and plasma glucagon levels. Analysis of specific glucagon binding by the method of Scatchard demonstrated a linear (monocomponent) plot with a dissociation constant of 2-3 nM, and the binding at low hormone concentrations was sensitive to guanosine triphosphate (GTP). The molecular weight of the glucagon receptor was 63,000 D as determined by an affinity labeling procedure and sodium dodecyl sulfate gel electrophoresis. Affinity labeling of this structure was specific for glucagon and inhibited by GTP. Glucagon stimulated the production of cyclic adenosine monophosphate (cAMP) by human membranes with half-maximal activation elicited by 6 nM hormone. The human cyclase system required GTP to facilitate an optimal glucagon response. NaF (10 mM) also activated the cyclase system and produced the same magnitude of response as maximum glucagon activation. A comparison of the liver adenylyl cyclase system of non-obese and obese subjects was made using glucagon (5 nM and 1 microM) and NaF (10 mM). No significant differences in cAMP production were noted between the two groups, regardless of the agent used to activate the enzyme. These findings agree with the glucagon binding studies that showed similar amounts of binding activity in the membranes from the two groups. Also, there was no influence of either age or sex of the subjects on the adenylyl cyclase response. In conclusion, human liver membranes contain a glucagon receptor and an adenylyl cyclase system that correspond closely to the well-studied system in animal liver. This system in human obesity is not altered by the approximately twofold elevation in plasma glucagon that occurs in this metabolic disorder. Images PMID:2982913

  18. Human multiple organ-reactive monoclonal autoantibody recognizes growth hormone and a 35,000-molecular weight protein.

    PubMed Central

    Satoh, J; Essani, K; McClintock, P R; Notkins, A L

    1984-01-01

    By fusing peripheral leukocytes from a patient with insulin-dependent diabetes with mouse myeloma cells, a heterohybridoma was isolated that, for over one year, has secreted a human monoclonal autoantibody, designated MOR-h1 (multiple organ-reactive human 1). This antibody reacts with antigens in several endocrine organs including the pituitary, thyroid, stomach, and pancreas. By double immunofluorescence, MOR-h1 was found to react specifically with growth hormone (GH)-containing cells in the anterior pituitary and, by enzyme-linked immunosorbent assay, MOR-h1 was shown to react with both natural and biosynthetic GH. Absorption experiments revealed that GH could remove the capacity of MOR-h1 to react not only with cells in the anterior pituitary, but also with cells in the thyroid, stomach, and pancreas. The demonstration with hyperimmune serum that these organs do not contain GH indicated that MOR-h1 was reacting with a different molecule(s) in these organs. By passing extracts of pituitary, thyroid, and stomach through an MOR-h1 affinity column and analyzing the eluted antigens by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a 35,000-mol wt polypeptide was isolated from each of these organs. In addition, a 21,500-mol wt polypeptide with an electrophoretic mobility identical to purified human GH was isolated from the pituitary, but not the other organs. It is concluded that MOR-h1 reacts with a 35,000-mol wt polypeptide present in the pituitary, thyroid, and stomach and that this antibody also recognizes a determinant on GH. Images PMID:6384271

  19. Human papillomavirus molecular biology.

    PubMed

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High molecular weight poly-gamma-glutamic acid regulates lipid metabolism in rats fed a high-fat diet and humans.

    PubMed

    Park, Ji Ho; Choi, Jae-Chul; Sung, Moon-Hee; Kang, Jae-Heon; Chang, Moon-Jeong

    2011-07-01

    We investigated the effect of high molecular weight polygamma- glutamic acid (hm gamma-PGA) on adiposity and lipid metabolism of rats in the presence of an obesity-inducing diet. Thirty-two Sprague-Dawley rats were fed either a normal-fat (11.4% kcal fat, NFC) or high-fat (51% kcal fat, HFC) diet. After 5 weeks, half of each diet-fed group was treated with hm gamma-PGA (NFP or HFP) for 4 weeks. The HFC group had significantly higher body weight, visceral fat mass, fasting serum levels of total cholesterol, LDL cholesterol, and leptin, and lower serum HDL cholesterol level compared with those of the NFC group (p < 0.05). Treatment with hm gamma-PGA decreased body weight gain and perirenal fat mass (p<0.05), fasting serum total cholesterol, and mRNA expression of glucose-6- phosphate dehydrogenase (G6PD), regardless of dietary fat contents (p < 0.01). However, hm gamma-PGA increased serum HDL cholesterol in the HFC group (p < 0.05). In vitro, 3-hydroxy-3-methylglutaryl coenzyme-A (HMGCoA) reductase activity was suppressed by the addition of hm gamma-PGA. In agreement with observations in animal study, the supplementation of hm gamma-PGA (150 mg/day) to 20 female subjects in an 8-week double-blind, placebocontrolled study resulted in a tendency to decrease total cholesterol and LDL cholesterol concentrations. We thus conclude that dietary supplementation of hm gamma-PGA may act as a hypocholestrolemic agent, secondary to its inhibitor effect on HMG-CoA reductase, and decrease abdominal adiposity by decreasing hepatic lipogenesis. The present study is an important first step in establishing the effect of hm gamma-PGA on cholesterol levels in rats and humans.

  1. Characterization of high molecular weight multimeric states of human haptoglobin and hemoglobin-based oxygen carriers by high-mass MALDI MS.

    PubMed

    Pimenova, Tatiana; Pereira, Claudia P; Schaer, Dominik J; Zenobi, Renato

    2009-04-01

    High-mass MALDI-TOF mass spectrometry (MS) is a novel analytical approach to study large biomolecules and their interactions. It is a powerful alternative method to gel electrophoresis (GE) and size exclusion chromatography (SEC) for obtaining information on the molecular weights of macromolecules and for determining protein complexes. The precision of mass measurements (mass accuracy), high sensitivity, speed of the analysis, and tolerance toward sample heterogeneity are the major features of this MS-based approach. Remarkably, MS provides direct stoichiometric information of macromolecular protein complexes, when noncovalent interactions are stabilized during desorption/ionization by use of chemical cross-linking reagents. In this study, high-mass MALDI-TOF MS was applied to characterize the multimeric state of the human plasma protein haptoglobin (Hp), which is in the mass range of 150-300 kDa. Also, higher order structures of hemoglobin-based oxygen carriers (HBOCs) and their interactions with human haptoglobin were analyzed. These investigations are of clinical importance and contribute to the overall understanding of specific toxicity and clearance of HBOCs.

  2. Average molecular weight of surfactants in aerosols

    NASA Astrophysics Data System (ADS)

    Latif, M. T.; Brimblecombe, P.

    2007-09-01

    Surfactants in atmospheric aerosols determined as methylene blue active substances (MBAS) and ethyl violet active substances (EVAS). The MBAS and EVAS concentrations can be correlated with surface tension as determined by pendant drop analysis. The effect of surface tension was more clearly indicated in fine mode aerosol extracts. The concentration of MBAS and EVAS was determined before and after ultrafiltration analysis using AMICON centrifuge tubes that define a 5000 Da (5 K Da) nominal molecular weight fraction. Overall, MBAS and to a greater extent EVAS predominates in fraction with molecular weight below 5 K Da. In case of aerosols collected in Malaysia the higher molecular fractions tended to be a more predominant. The MBAS and EVAS are correlated with yellow to brown colours in aerosol extracts. Further experiments showed possible sources of surfactants (e.g. petrol soot, diesel soot) in atmospheric aerosols to yield material having molecular size below 5 K Da except for humic acid. The concentration of surfactants from these sources increased after ozone exposure and for humic acids it also general included smaller molecular weight surfactants.

  3. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Thomas, Gregory W.; Rael, Leonard T.; Gersch, Elizabeth D.; Rubinstein, Pablo; Brody, Edward

    2015-01-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in “micromass” culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. Significance This study describes the effect of a biologic currently under development for the treatment of osteoarthritis to induce both

  4. The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells.

    PubMed Central

    Gooding, L R; Aquino, L; Duerksen-Hughes, P J; Day, D; Horton, T M; Yei, S P; Wold, W S

    1991-01-01

    Tumor necrosis factor (TNF) is a multifunctional immunoregulatory protein that is secreted by activated macrophages and is believed to have antiviral activities. We reported earlier that when mouse C3HA fibroblasts are infected with human adenoviruses, the 289R and 243R proteins encoded by region E1A render the cells susceptible to lysis by TNF, and a 14,700-molecular-weight protein (14.7K protein) encoded by region E3 protects the cells against lysis by TNF. We now report that the 19,000-molecular-weight (19K) (176R) protein encoded by the E1B transcription unit can protect human HEL-299 fibroblasts and human ME-180 cervical carcinoma cells against lysis by TNF. This was determined by infecting cells with adenovirus double mutants that lack region E3 and do or do not express the E1B-19K protein and by measuring cytolysis by using a short-term (18-h) 51Cr-release assay. Under these assay conditions, the 51Cr release was specific to TNF and was not a consequence of the cyt phenotype associated with E1B-19K protein-negative mutants. Also, by using virus double mutants that lack E3 in combination with other early regions, we found that E1A, the E1B-55K protein-encoding gene, E3, and E4 are not required to protect HEL-299 cells against TNF cytolysis. Three additional human cancer cell lines (HeLa, HCT8, and RC29) and a simian virus 40-transformed WI38 cell line (VA-13) also required E1B for protection against TNF cytolysis, indicating that the E1B-19K protein is required to protect many if not all human cell types against lysis by TNF when infected by adenovirus. The E1B-19K protein was not able to protect six different adenovirus-infected mouse cell lines against TNF lysis, even though the protein was shown to be efficiently expressed in one of the cell lines. HEL-299 or ME-180 cells infected by a mutant that lacks the E1B-19K protein but retains region E3 were not lysed by TNF, indicating that one or more of the E3 proteins can protect these cells against TNF lysis

  5. Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells.

    PubMed

    Takeuchi, Akihiko; Yamamoto, Yasuhiko; Munesue, Seiichi; Harashima, Ai; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi; Tsuchiya, Hiroyuki

    2013-06-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor and its engagement by ligands such as high mobility group box 1 (HMGB1) is implicated in tumor growth and metastasis. Low molecular weight heparin (LMWH) has an antagonistic effect on the RAGE axis and is also reported to exert an antitumor effect beyond the known activity of anticoagulation. However, the link between the anti-RAGE and antitumor activities of LMWH has not yet to be fully elucidated. In this study, we investigated whether LMWH could inhibit tumor cell proliferation, invasion, and metastasis by blocking the RAGE axis using in vitro and in vivo assay systems. Stably transformed HT1080 human fibrosarcoma cell lines were obtained, including human full-length RAGE-overexpressing (HT1080(RAGE)), RAGE dominant-negative, intracellular tail-deleted RAGE-overexpressing (HT1080(dnRAGE)), and mock-transfected control (HT1080(mock)) cells. Confocal microscopy showed the expression of HMGB1 and RAGE in HT1080 cells. The LMWH significantly inhibited HMGB1-induced NFκB activation through RAGE using an NFκB-dependent luciferase reporter assay and the HT1080 cell lines. Overexpression of RAGE significantly accelerated, but dnRAGE expression attenuated HT1080 cell proliferation and invasion in vitro, along with similar effects on local tumor mass growth and lung metastasis in vivo. Treatment with LMWH significantly inhibited the migration, invasion, tumor formation, and lung metastasis of HT1080(RAGE) cells, but not of HT1080(mock) or HT1080(dnRAGE) cells. In conclusion, this study revealed that RAGE exacerbated the malignant phenotype of human fibrosarcoma cells, and that this exacerbation could be ameliorated by LMWH. It is suggested that LMWH has therapeutic potential in patients with certain types of malignant tumors. © 2013 Japanese Cancer Association.

  6. SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge

    PubMed Central

    Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.

    2014-01-01

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936

  7. SEDFIT-MSTAR: molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge.

    PubMed

    Schuck, Peter; Gillis, Richard B; Besong, Tabot M D; Almutairi, Fahad; Adams, Gary G; Rowe, Arthur J; Harding, Stephen E

    2014-01-07

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure - which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system), a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ-carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in "point" average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution.

  8. Polyarginine Molecular Weight Determines Transfection Efficiency of Calcium Condensed Complexes

    PubMed Central

    Alhakamy, Nabil A.; Berkland, Cory J.

    2014-01-01

    Cell penetrating peptides (CPPs) have been extensively studied in polyelectrolyte complexes as a means to enhance the transfection efficiency of plasmid DNA (pDNA). Increasing the molecular weight of CPPs often enhances gene expression, but poses a risk of increased cytotoxicity and immunogenicity compared to low molecular weight CCPs. Conversely, low molecular weight CPPs typically have low transfection efficiency due to large complex size. Complexes made using low molecular weight CPPs were found to be condensed to a small size by adding calcium. In this study, complexes of low molecular weight polyarginine and pDNA were condensed with calcium. These complexes showed high transfection efficiency and low cytotoxicity in A549 carcinomic human alveolar basal epithelial cells. The relationship between transfection efficiency and polyarginine size (5, 7, 9 or 11 amino acids), polyarginine/pDNA charge ratios, and calcium concentrations were studied. Polyarginine 7 was significantly more effective than other polyarginines under most formulation conditions suggesting a link between cell penetration ability and transfection efficiency. PMID:23534410

  9. Phytochemical Characterization of Low Molecular Weight Constituents from Marshmallow Roots (Althaea officinalis) and Inhibiting Effects of the Aqueous Extract on Human Hyaluronidase-1.

    PubMed

    Sendker, Jandirk; Böker, Ines; Lengers, Isabelle; Brandt, Simone; Jose, Joachim; Stark, Timo; Hofmann, Thomas; Fink, Careen; Abdel-Aziz, Heba; Hensel, Andreas

    2017-02-24

    Extract RE was obtained from the roots of Althaea officinalis in a yield of 8.1%, related to the dried plant material, by extraction with MeOH-H2O (1:1), followed by precipitation with EtOH to remove high molecular weight constituents. Phytochemical investigation of RE revealed the presence of N-phenylpropenoyl-l-amino acid amides 1-5, 8% glycine betaine 6, about 9% total amino acids with proline as the main compound, and about 61% mono- and oligomeric carbohydrates with sucrose as the main compound. Further fractionation revealed the presence of a hypolaetin diglycoside (12) and four hypolaetin glycosides (7-9 and 11) with O-sulfocarbohydrate moieties; additionally, 4'-O-methylisoscutellarein-8-O-β-d-(3″-O-sulfo)glucuronopyranoside (10) and the diglycosylated coumarin haploperoside D (13) were identified. The hypolaetin-O-sulfoglycosides 7-10 are new natural products. RE inhibited the enzymatic activity of surface-displayed human hyaluronidase-1 on Escherichia coli F470 cells with an IC50 of 7.7 mg/mL. RE downregulated mRNA expression of hyal-1 in HaCaT keratinocytes at 125 and 250 μg/mL, respectively. These data contribute to a deeper phytochemical understanding of marshmallow root extracts and to the positive influence of extracts used for therapy of irritated and inflamed buccal tissue and cough.

  10. A supersulfated low-molecular-weight heparin (IK-SSH) increases plasma levels of free and total tissue factor pathway inhibitor after intravenous and subcutaneous administration in humans.

    PubMed

    Kaiser, B; Glusa, E; Hoppensteadt, D A; Breddin, H K; Amiral, J; Fareed, J

    1998-09-01

    Unfractionated as well as low-molecular-weight heparins (LMWH) are known to cause an increase in blood levels of tissue factor pathway inhibitor (TFPI). To study the effect of a newly developed supersulfated LMWH (IK-SSH, Iketon Farmaceutici) on TFPI concentrations in human plasma, the compound was injected into volunteers at doses of 0.14, 0.33 and 0.66 mg/kg intravenously or 0.33, 0.66 and 1.0 mg/kg subcutaneously. At certain known times blood was drawn and plasma levels of both total and free TFPI were measured using enzyme-linked immunosorbent assay methodology. Baseline plasma concentrations of TFPI were 72.2+/-3.1 ng/ml for total and 10.8+/-0.8 ng/ml for free TFPI. Intravenous or subcutaneous injection of IK-SSH led to a strong and long-lasting rise in TFPI levels which were increased more than 5-fold for total TFPI and more than 30-fold for free TFPI. Maximum TFPI levels were reached 5-10 min after intravenous and 60 min after subcutaneous administration. IK-SSH caused prolongation of ex-vivo clotting times in the APTT and Heptest assay, whereas thrombin time was not affected. Anticoagulant actions of IK-SSH showed a significant correlation to plasma concentrations of TFPI and they are thought to be based at least partially on the release of TFPI from vascular sites.

  11. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects.

    PubMed

    Luo, Wei; Ko, Eric; Hsu, Jeff Chi-feng; Wang, Xinhui; Ferrone, Soldano

    2006-05-15

    Human high molecular weight-melanoma associated Ag (HMW-MAA) mimics have been shown to elicit HMW-MAA-specific humoral immune responses that appear to be clinically beneficial. This finding has stimulated interest in characterizing the mechanism(s) underlying the ability of the elicited Abs to exert an anti-tumor effect. To address this question, in the present study, we have generated HMW-MAA-specific Abs by sequentially immunizing rabbits with the peptide P763.74, which mimics the HMW-MAA determinant recognized by mAb 763.74, and with HMW-MAA(+) melanoma cells. HMW-MAA-specific Abs isolated from immunized rabbits mediated cell-dependent cytotoxicity but did not mediate complement-dependent cytotoxicity of HMW-MAA(+) melanoma cells. These Abs also effectively inhibited spreading, migration and Matrigel invasion of HMW-MAA(+) melanoma cells. Besides contributing to our understanding of the role of HMW-MAA in the biology of melanoma cells, these results suggest that both immunological and nonimmunological mechanisms underlie the beneficial clinical effects associated with the induction of HMW-MAA-specific Abs in melanoma patients immunized with a HMW-MAA mimic.

  12. Dose dependency of aflatoxin B/sub 1/ binding on human high molecular weight DNA in the activation of proto-oncogene

    SciTech Connect

    Yang, S.S.; Taub, J.V.; Modali, R.; Vieira, W.; Yasei, P.; Yang, G.C.

    1985-10-01

    The binding of aflatoxin B/sub 1/, AFB/sub 1/, a potent hepatocarcinogen, to various high molecular weight (HMW) DNAs from human normal liver and two liver cancer cell lines, Alexander primary liver carcinoma (PLC) and Mahlavu hepatocellular carcinoma (hHC) and from NIH/3T3 cell have been investigated. The kinetics of AFB/sub 1/ binding to these DNAs showed similar initial rates but the extents of binding to the PLC and hHC DNAs seemed to be slightly higher. Preferential AFB/sub 1/ bindings were identified in both PLC and hHC DNAs compared to normal liver DNA. A critical AFB/sub 1/ binding dosage, ranging 100 to 460 fmole/..mu..g DNA, was found to activate the carcinogenic effect of the Mahlavu hHC HMW DNA, but not normal liver HMW DNA, rendering it capable of inducting focal transformation in NIH/3T3 cell. Excessive AFB/sub 1/ binding on the hHC and PLC HMW DNAs resulted in an over-kill of both cell transformation capability and templating activity of the DNA.

  13. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  14. High molecular weight polyglycerol-based multivalent mannose conjugates.

    PubMed

    Kizhakkedathu, Jayachandran N; Creagh, A Louise; Shenoi, Rajesh A; Rossi, Nicholas A A; Brooks, Donald E; Chan, Timmy; Lam, Jonathan; Dandepally, Srinivasa R; Haynes, Charles A

    2010-10-11

    We report the synthesis and characterization of multivalent mannose conjugates based on high molecular weight hyperbranched polyglycerols (HPG). A range of glycoconjugates were synthesized from high molecular weight HPGs (up to 493 kDa) and varying mannose units (22-303 per HPG). Hemagglutination assays using fresh human red blood cells and concanavalin A (Con A) showed that HPG-mannose conjugates exhibited a large enhancement in the relative potency of conjugates (as high as 40000) along with a significant increment in relative activity per sugar (up to 255). The size of the HPG scaffold and the number of mannose residues per HPG were all shown to influence the enhancement of binding interactions with Con A. Isothermal titration calorimetry (ITC) experiments confirmed the enhanced binding affinity and showed that both molecular size and ligand density play important roles. The enhancement in Con A binding to the high molecular weight HPG-mannose conjugates is due to a combination of inter- and intramolecular mannose binding. A few fold increments in the binding constant were obtained over mannose upon covalent attachment to HPG. The binding enhancement is due to the highly favorable entropic contribution to the multiple interactions of Con A to mannose residues on HPG. The high molecular weight HPG-mannose conjugates showed positive cooperativity in binding to Con A. Although carbohydrate density has less of an effect on functional valency of the conjugate compared to the molecular size, it determines the binding affinity.

  15. Reduction of human melanoma tumor growth in severe combined immunodeficient mice by passive transfer of antibodies induced by a high molecular weight melanoma-associated antigen mimotope vaccine.

    PubMed

    Wagner, Stefan; Krepler, Clemens; Allwardt, Dorothee; Latzka, Julia; Strommer, Sabine; Scheiner, Otto; Pehamberger, Hubert; Wiedermann, Ursula; Hafner, Christine; Breiteneder, Heimo

    2008-12-15

    The high molecular weight melanoma-associated antigen (HMW-MAA) is an attractive target for immunotherapy of malignant melanoma. We have recently generated a vaccine based on the HMW-MAA mimotope 225D9.2+ that was able to induce anti-HMW-MAA antibodies with antitumor activity in vitro. Here, we investigated the antitumor activity of these antibodies in a human melanoma xenotransplant severe combined immunodeficient (SCID) mouse model. Tumors were established by injecting the human melanoma 518A2 cells into C.B.17 SCID/SCID mice. In tumor prevention experiments, 200 microg purified total IgG antibodies were injected intravenously the same day or on day 5 in therapeutic experiments. Antibody administration was repeated every fourth day and tumor volumes were measured. Antibody specificity and tumor infiltration by macrophages were investigated by immunohistochemistry. Within 35 days after cell inoculation, antibody treatment reduced tumor growth up to 40% in the therapeutic and up to 62% in the tumor prevention experiments compared with the control mice. In tumors of all groups, a similar distribution of the HMW-MAA and no differences in infiltration of macrophages were detected by immunohistochemistry. Here, we showed that antibodies induced by the 225D9.2+ mimotope effectively inhibited melanoma tumor growth. Additional mechanisms besides antibody-dependent cell cytotoxicity like disruption of interactions of melanoma cells mediated by extracellular matrix components seem to be involved in tumor growth inhibition. Based on our findings, we suggest that active immunization with this mimotope might be a promising strategy for treatment of melanoma.

  16. Influence of penetration enhancers and molecular weight in antifungals permeation through bovine hoof membranes and prediction of efficacy in human nails.

    PubMed

    Miron, D; Cornelio, R; Troleis, J; Mariath, J; Zimmer, A R; Mayorga, P; Schapoval, E E S

    2014-01-23

    This work aimed to evaluate the effect of different substances on the permeation of geraniol through bovine hoof membranes. Different penetration enhancers were able to increase the permeability up to 25 times compared to control. It was demonstrated that acetilcysteine in association with ascorbic acid increased the permeation, even in acid formulations. In addition, some antifungal drugs were incorporated into a gel formulation of HPMC containing acetylcysteine 5% and ascorbic acid 0.2% and then the permeation coefficient through bovine hoof membranes was evaluated. The relationship between permeability and molecular weight was established for fluconazole, miconazole, terbinafine, butenafine, geraniol and nerol. Geraniol and nerol, the antifungals with lower molecular weight, had the better permeability results. Permeability coefficients for nail plates were estimated and geraniol demonstrated similar or even better efficacy index values against T. rubrum, T. menthagrophytes and M. canis compared with terbinafine and miconazole. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Biophysical Properties and Oxygenation Potential of High-Molecular-Weight Glutaraldehyde-Polymerized Human Hemoglobins Maintained in the Tense and Relaxed Quaternary States

    PubMed Central

    Zhang, Ning; Jia, Yiping; Chen, Guo; Cabrales, Pedro

    2011-01-01

    Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O2 and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O2 to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O2 affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O2 affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O2 to cultured cells/tissues. PMID:20979534

  18. Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells.

    PubMed

    Flebus, Luca; Lombart, François; Sevrin, Chantal; Defraigne, Jean-Olivier; Peters, Pierre; Parhamifar, Ladan; Molin, Daniel G M; Grandfils, Christian

    2015-01-15

    Poly (2-dimethylamino ethylmethacrylate) (PDMAEMA) is an attractive non-degradable polymer studied as nonviral vector for gene delivery but it can be also adopted for delivery of other biopharmaceutical drugs. As a parenteral carrier, the PDMAEMA free form (FF) might interact with tissues and cells. Few data are available on its selective internalization and efflux from cells, while the majority of studies published have followed the distribution of DNA complexed with PDMAEMA. In order to address polycation safety, the first aim was to synthesize by atom transfer radical polymerisation (ATRP) fluorescent labeled PDMAEMA of low molecular weight (Mw) (below 15 kDa), controlling the position and density of fluorescein. The second goal was to analyze the possible difference in uptake and subcellular distribution of this labeled FF polycation between human umbilical vein endothelial cells (HUVEC) and hCMEC/D3 cells. These two cell lines have been chosen in order to detect selectivity towards the blood-brain barrier (BBB). In both cases, polycation was detected along the plasma membrane followed by progressive migration to the peri-nuclear region, where it overlapped with lysosomal structures. The analysis by fluorescence-activated cell sorting (FACS) of the PDMAEMA uptake by hCMEC/D3 cells showed a significant (p<0.05) inhibition (40%) in presence of 2-dexoxy-D-glucose inhibitor, a result supporting an energy-dependence mechanism(s). Cytotoxicity study showed that low Mw PDMAEMA (10 kDa) lead to a minor cytotoxicity compared to the higher ones. As main conclusion this study highlights the similitude in cell trafficking of FF PDMAEMA and data previously reported for PDMAEMA/DNA complexes.

  19. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward

    2015-08-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials.

  20. mRNA expression and protein distribution of fibronectin splice variants and high-molecular weight tenascin-C in different phases of human fracture healing.

    PubMed

    Kilian, O; Dahse, R; Alt, V; Zardi, L; Hentschel, J; Schnettler, R; Kosmehl, H

    2008-08-01

    Fracture healing is a reparative physiological process, which proceeds in stages, each characterized by the predominant tissue in the fracture gap. The tissue matrix is continuously reorganized by cell migration, proliferation, and differentiation. Adhesive proteins such as fibronectin and tenascin transmit information between matrix and cells. As a result of alternative splicing of pre-RNA, EDA + fibronectin, EDB + fibronectin, and high-molecular weight (hm) tenascin-C are generated. By definition, EDB + fibronectin is an oncofetal protein because it is extremely rare in normal adult tissue and plasma, whereas it is expressed in fetal and tumor tissues and during wound healing. In this study, we for the first time describe EDA + fibronectin, EDB + fibronectin, and hm tenascin-C expression in human fracture gap tissue during various stages of differentiation. We demonstrate mRNA expression of all three splice variants in the initial fibrin matrix with upregulation in the enchondral ossification/osteoid and woven bone stages. Of all variants, EDA + fibronectin mRNA has the highest concentration in all stages. For the analysis, we used LightCycler-based relative mRNA quantification and immunohistochemistry. Our data demonstrate that EDA + fibronectin and hm tenascin-C show a diffuse distribution pattern in fracture gap connective tissue, while EDB + fibronectin is focally concentrated in osteoblastic cells at the margins of woven bone. EDA + fibronectin and hm tenascin represent markers for active granulation processes, whereas EDB + fibronectin is specific for cells forming the enchondral and osteoid matrix. The possibility of stimulating fracture healing by EDB + fibronectin-cytokine complexes should be tested in further investigations.

  1. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  2. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.

    PubMed

    Srivastava, K; Chaves, J M; Srivastava, O P; Kirk, M

    2008-10-01

    The purpose of the study was to identify non-covalently held complexes that exist in the water-soluble high molecular weight (WS-HMW) protein fractions of normal human lenses of 20-year-old and 60- to 70-year-old, and in the age-matched 60- to 70-year-old cataractous lenses. The WS protein fractions were prepared from five pooled normal lenses of 20-year-old donors or five pooled lenses of 60- to 70-year-old donors or four pooled cataractous lenses (with nuclear opacity) of 60- to 70-year-old donors. Each WS protein fraction was subjected to size-exclusion chromatography using an Agarose A 5m column to recover the void volume WS-HMW protein fraction. A method known as blue-native polyacrylamide gel electrophoresis (BN-PAGE), which allows the isolation of large multi-protein complexes (MPCs) in their native state for further characterization, was used to separate such complexes from individual WS-HMW protein fractions. The protein species that existed as a complex were excised from a gel and trypsin-digested, and the amino acid sequences of the tryptic fragments analyzed by electrospray tandem mass spectrometry (ES-MS/MS). After the second-dimensional sodium dodecyl sulfate-PAGE during BN-PAGE, protein complexes containing a total of 16, 12, and 24 species with M(r) between 10 and 90 kDa were identified in the HMW protein fractions of normal lenses of 20-year-old, 60- to 70-year-old and cataractous lenses of 60- to 70-year-old donors, respectively. Based on the amino acid sequences of tryptic peptides of individual protein species in the complexes by the ES-MS/MS method, the presence of alpha-, beta-, and gamma-crystallin species along with beaded filament proteins (filensin and phakinin) was observed in the 20-year-old normal lenses. The 60- to 70-year-old normal lenses contained filensin and aldehyde dehydrogenase in addition to the above crystallins. Similarly, the age-matched cataractous lenses also contained the above crystallins and aldehyde dehydrogenase but

  3. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  4. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  5. Low molecular weight melanoidins in coffee brew.

    PubMed

    Bekedam, E Koen; Roos, Ellen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-06-11

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are present in LMw coffee brew material. LMw coffee fractions differing in polarity were obtained by reversed-phase solid phase extraction and their melanoidin, sugar, nitrogen, caffeine, trigonelline, 5-caffeoylquinic acid, quinic acid, caffeic acid, and phenolic groups contents were determined. The sugar composition, the charge properties, and the absorbance at various wavelengths were investigated as well. The majority of the LMw melanoidins were found to have an apolar character, whereas most non-melanoidins have a polar character. The three isolated melanoidin-rich fractions represented 56% of the LMw coffee melanoidins and were free from non-melanoidin components. Spectroscopic analysis revealed that the melanoidins isolated showed similar features as high molecular weight coffee melanoidins. All three melanoidin fractions contained approximately 3% nitrogen, indicating the presence of incorporated amino acids or proteins. Surprisingly, glucose was the main sugar present in these melanoidins, and it was reasoned that sucrose is the most likely source for this glucose within the melanoidin structure. It was also found that LMw melanoidins exposed a negative charge, and this negative charge was inversely proportional to the apolar character of the melanoidins. Phenolic group levels as high as 47% were found, which could be explained by the incorporation of chlorogenic acids in these melanoidins.

  6. The low molecular weight fraction of human serum albumin upregulates COX2, prostaglandin E2, and prostaglandin D2 under inflammatory conditions in osteoarthritic knee synovial fibroblasts.

    PubMed

    Frederick, Elizabeth D; Hausburg, Melissa A; Thomas, Gregory W; Rael, Leonard T; Brody, Edward; Bar-Or, David

    2016-12-01

    The ability to decrease inflammation and promote healing is important in the intervention and management of a variety of disease states, including osteoarthritis of the knee (OAK). Even though cyclooxygenase 2 (COX2) has an established pro-inflammatory role, evidence suggests it is also critical to the resolution that occurs after the initial activation phase of the immune response. In this study, we investigated the effects of the low molecular weight fraction of 5% human serum albumin (LMWF-5A), an agent that has proven to decrease pain and improve function in OAK patients after intra-articular injection, on the expression of COX2 and its downstream products, prostaglandins (PGs). Fibroblast-like synoviocytes from the synovial membrane of OAK patients were treated with LMWF-5A or saline as a control with or without the addition of interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα) to elicit an inflammatory response. Cells were harvested for RNA and protein at 2, 4, 8, 12, and 24 h, and media was collected at 24 h for analysis of secreted products. COX2 mRNA expression was determined by qPCR, and COX2 protein expression was determined by western blot analysis. Levels of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2) in the media were quantified by competitive ELISA. In the presence of either IL-1β or TNFα, LMWF-5A increased the expression of both COX2 mRNA and protein, and this increase was significant compared to that observed with IL-1β- or TNFα-stimulated, saline-treated cells. Downstream of COX2, the levels of PGE2 were increased only in TNFα-stimulated, LMWF-5A-treated cells; however, in both IL-1β- and TNFα-stimulated cells, LMWF-5A increased the release of the anti-inflammatory prostaglandin PGD2. LMWF-5A appears to trigger increased anti-inflammatory PG signaling, and this may be a primary component of its therapeutic mode of action in the treatment of OAK.

  7. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  8. Unexpected molecular weight effect in polymer nanocomposites

    SciTech Connect

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; Dadmun, Mark D.; Mays, Jimmy W.; Sokolov, Alexei P.

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

  9. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; ...

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  10. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats.

    PubMed

    Kawashima, Ryo; Uchida, Masaki; Yamaki, Tsutomu; Ohtake, Kazuo; Hatanaka, Tomomi; Uchida, Hiroyuki; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2016-01-01

    A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled.

  11. Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo.

    PubMed

    Cornish, K; Castillón, J; Scott, D J

    2000-01-01

    In three rubber-producing species, in vitro, the rates of initiation and polymerization and the biopolymer molecular weight produced were affected by the concentration of farnesyl diphosphate (FPP) initiator and isopentenyl diphosphate (IPP) elongation substrate (monomer). Ficus elastica, a low molecular weight-producer in vivo, synthesized rubber polymers approximately twice the molecular weight of those made by Hevea brasiliensis or Parthenium argentatum (which produce high molecular weights in vivo), possibly due to its lower IPP Km. In all species, increasing FPP concentrations increased rubber biosynthetic rate and new molecules initiated but decreased molecular weight by competition with the allylic diphosphate (APP) end of elongating rubber molecules for the APP binding site. Increasing IPP concentrations increased rubber biosynthetic rate and rubber molecular weight, but only when FPP concentrations were below the FPP Km's or where negative cooperativity operated. In conclusion, rubber transferase is not the prime regulator of rubber molecular weight in vivo.

  12. Evaluation of high-molecular weight adiponectin in horses.

    PubMed

    Wooldridge, Anne A; Edwards, Heather Gray; Plaisance, Eric P; Applegate, Rory; Taylor, Debra R; Taintor, Jennifer; Zhong, Qiao; Judd, Robert L

    2012-08-01

    To characterize adiponectin protein complexes in lean and obese horses. 26 lean horses and 18 obese horses. Procedures-Body condition score (BCS) and serum insulin activity were measured for each horse. Denaturing and native western blot analyses were used to evaluate adiponectin complexes in serum. A human ELISA kit was validated and used to quantify high-molecular weight (HMW) complexes. Correlations between variables were made, and HMW values were compared between groups. Adiponectin was present as a multimer consisting of HMW (> 720-kDa), low-molecular weight (180-kDa), and trimeric (90-kDa) complexes in serum. All complexes were qualitatively reduced in obese horses versus lean horses, but the percentage of complexes < 250 kDa was higher in obese versus lean horses. High-molecular weight adiponectin concentration measured via ELISA was negatively correlated with serum insulin activity and BCS and was lower in obese horses (mean ± SD, 3.6 ± 3.9 μg/mL), compared with lean horses (8.0 ± 4.6 μg/mL). HMW adiponectin is measurable via ELISA, and concentration is negatively correlated with BCS and serum insulin activity in horses. A greater understanding of the role of adiponectin in equine metabolism will provide insight into the pathophysiology of metabolic disease conditions.

  13. Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes.

    PubMed

    Goto, Maki; Goto, Atsushi; Morita, Akemi; Deura, Kijo; Sasaki, Satoshi; Aiba, Naomi; Shimbo, Takuro; Terauchi, Yasuo; Miyachi, Motohiko; Noda, Mitsuhiko; Watanabe, Shaw

    2014-02-01

    To evaluate the association between adiponectin complexes (high-molecular-weight [HMW], middle-molecular-weight [MMW], and low-molecular-weight [LMW] adiponectin) and diabetes. We conducted a case-control study, based on a cohort in Saku, Japan. Among 2565 participants, 300 participants with diabetes and 300 matched controls (430 men and 170 women) were analyzed. After adjusting for age, physical activity, hypertension, family history, alcohol use, smoking, and menopausal status, total, HMW, and LMW, but not MMW adiponectin levels were inversely associated with diabetes: total adiponectin, odds ratio comparing the highest with the lowest quartiles, 0.46 (95% confidence interval, 0.25-0.82; P for trend = 0.046); HMW, 0.40 (95%CI, 0.22-0.72; P = 0.046); MMW, 1.04 (95%CI, 0.60-1.77; P = 0.81); and LMW, 0.51 (95%CI, 0.29-0.89; P = 0.01). The associations between total and HMW adiponectin and diabetes attenuated after adjustment for BMI (P = 0.15 and 0.13, respectively), but LMW remained (P = 0.04). When stratified by sex, LMW adiponectin levels were associated with diabetes in men only. None of the associations were significant after adjustment for HOMA-IR. Decreased LMW, total, and HMW adiponectin levels are associated with diabetes. These associations may be secondary to adiposity or insulin resistance. Copyright © 2013 The Obesity Society.

  14. Low molecular weight heparins and heparinoids.

    PubMed

    Eikelboom, John W; Hankey, Graeme J

    2002-10-07

    Several low molecular weight (LMW) heparin preparations, including dalteparin, enoxaparin and nadroparin, as well as the heparinoid danaparoid sodium, are approved for use in Australia. LMW heparins are replacing unfractionated heparin for the prevention and treatment of venous thromboembolism and the treatment of non-ST-segment-elevation acute coronary syndromes. The advantages of LMW heparins over unfractionated heparin include a longer half-life (allowing once-daily or twice-daily subcutaneous dosing), high bioavailability and predictable anticoagulant response (avoiding the need for dose adjustment or laboratory monitoring in most patients), and a low risk of heparin-induced thrombocytopenia and osteoporosis. Laboratory monitoring of LMW heparin therapy should be considered in newborns and children, patients with renal impairment, those who are pregnant, and those at the extremes of bodyweight (eg, < 40 kg or > 100 kg). LMW heparins should: be avoided or used with caution in patients undergoing neuraxial anaesthesia, owing to the potential for epidural haematoma formation; not be used (ie, are contraindicated) in patients with immune heparin-induced thrombocytopenia, as they may cross-react with anti-heparin antibodies. Conventional unfractionated heparin retains a role in the management of patients at high risk of bleeding, undergoing invasive procedures, and patients with renal failure owing to its shorter half-life, reversibility with protamine sulfate, and extrarenal metabolism. The heparinoid danaparoid sodium is effective for the treatment of heparin-induced thrombocytopenia.

  15. The Molecular Weight Distribution of Polymer Samples

    NASA Astrophysics Data System (ADS)

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-07-01

    Introductory polymer courses and textbooks discuss the statistical distribution of chain lengths or molecular weight that exists in polymers and connect the averages and breadth of such distribution with the mechanism of the polymerization, for example, with the degree of advancement or stoichiometry in step-growth polymerization or with the existence of transferences or with the type of termination in chain addition polymerization. To determine averages and breadth of the distribution, the polymer has to be separated from the reaction medium and converted into a "sample". In this process, the shorter chains, which are most soluble, may be lost with the result that the sample is not identical to the original polymer. A student exercise is proposed and developed, in which we calculate the difference between "sample" and original polymer. We use standard material given in the introductory courses or textbooks such that the calculation can be performed easily by the students. The results are discussed to ascertain whether the different distribution of the sample may alter the interpretation of the mechanism by which the original polymer was obtained.

  16. High molecular weight melanoidins from coffee brew.

    PubMed

    Bekedam, E Koen; Schols, Henk A; van Boekel, Martinus A J S; Smit, Gerrit

    2006-10-04

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (K(mix)) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein nitrogen (NPN) content were investigated. Results show that most HMw coffee melanoidins are soluble at high ethanol concentrations. The amino acid composition of the HMw fractions was similar, while 17% (w/w) of the nitrogen was NPN, probably originating from degraded amino acids/proteins and now part of melanoidins. A strong correlation between the melanoidin content, the NPN, and protein content was found. It was concluded that proteins are incorporated into the melanoidins and that the degree of chemical modification, for example, by phenolic groups, determines the solubility of melanoidins in ethanol. Although the existence of covalent interaction between melanoidins and polysaccharides were not proven in this study, the findings suggest that especially arabinogalactan is likely involved in melanoidin formation. Finally, phenolic groups were present in the HMw fraction of coffee, and a correlation was found with the melanoidin concentration.

  17. Biliary excretion in dogs: evidence for a molecular weight threshold.

    PubMed

    Yang, Xinning; Gandhi, Yash A; Morris, Marilyn E

    2010-04-16

    Molecular weight (MW) is known as an important factor of biliary excretion in rats, guinea pigs, rabbits and humans. The objective of this study was to evaluate the relationship between the biliary excretion and MW of drugs in dogs. Data on the percentage of dose excreted into bile as parent drug (PD(b)) in dogs were collected from the literature for 134 compounds. Receiver operating characteristic (ROC) curve analysis was utilized to determine whether a MW threshold exists for PD(b). A MW threshold of 375-400 Da was established for anions in dogs, which is similar with the cutoff value observed in rats (400 Da) but lower than the one in humans (475 Da). No MW threshold was found for cations or cations/neutral compounds. A molecular volume threshold of 300A(3) was also determined for anions in dogs, which corresponds to a MW of 394 Da. In conclusion, our analysis suggested the presence of a MW cutoff for anions in dogs, which may be related with the molecular size of a compound. This represents the first report of the influence of MW or molecular volume as a determinant of biliary excretion for a structurally diverse set of compounds in dogs. 2010 Elsevier B.V. All rights reserved.

  18. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  19. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation.

    PubMed

    Yao, L; Liu, Y; Qiu, Z; Kumar, S; Curran, J E; Blangero, J; Chen, Y; Lehman, D M

    2017-02-01

    loci associated with body weight regulation may share a pattern of developmental regulation. These data support the need to investigate early development to elucidate the human-specific central nervous system pathophysiology underlying obesity susceptibility. © 2017 British Society for Neuroendocrinology.

  20. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  1. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. © 2014 Elsevier Inc. All rights reserved.

  2. Low-molecular-weight polyethylene glycol improves survival in experimental sepsis.

    PubMed

    Ackland, Gareth L; Gutierrez Del Arroyo, Ana; Yao, Song T; Stephens, Robert C; Dyson, Alexander; Klein, Nigel J; Singer, Mervyn; Gourine, Alexander V

    2010-02-01

    For several chronic inflammatory disease states, therapy is enhanced by improving the pharmacokinetic properties of anti-inflammatory drugs through conjugation with polyethylene glycol. We hypothesized that part of the beneficial action of PEGylated drugs may be derived from the anti-inflammatory properties of polyethylene glycol (PEG) itself. Randomized, double-blinded, controlled ex vivo and in vivo laboratory studies. University research laboratories. Human neutrophils and mononuclear cells, macrophage cell line, and adult rats and mice. The effect of PEG (either low-molecular-weight [200-400] or high-molecular-weight [>4000]) was assessed on survival after systemic inflammation induced by lipopolysaccharide or zymosan. The effects of PEG on zymosan, lipopolysaccharide, or streptolysin-induced inflammatory and bioenergetic responses of immune cells were also assessed. Low-molecular-weight PEG reduced inflammatory cytokine expression, pyrexia, and mortality by >50% in both lipopolysaccharide and zymosan models of sepsis. Low-molecular-weight PEG reduced cytokine expression both in vivo and in vitro, and attenuated activation of human neutrophils in response to lipopolysaccharide or zymosan. By contrast, high-molecular-weight PEG conferred less significant survival effects after lipopolysaccharide and zymosan, and it did not exhibit such profound anti-inflammatory effects. Low-molecular-weight PEG attenuated lipopolysaccharide-induced activation of pro-apoptotic pathways (lysophosphatidic acid receptor and caspase-domain signaling) in the livers of endotoxemic rats. Streptolysin-induced necrosis of human neutrophils was reduced by low-molecular-weight PEG, indicating a mechanism that involves coating and/or stabilizing the cellular membrane. Low-molecular-weight PEG preserved human neutrophil responses to septic serum and bioenergetic function in macrophages and neutrophils. PEG is a commonly used, safe, nonimmunogenic molecule possessing hitherto unappreciated

  3. Evaluation of ultrafiltration for determining molecular weight of fulvic acid

    USGS Publications Warehouse

    Aiken, G.R.

    1984-01-01

    Two commonly used ultrafiltration membranes are evaluated for the determination of molecular weights of humic substances. Polyacrylic acids of Mr 2000 and 5000 and two well-characterized fulvic acids are used as standards. Molecular size characteristics of standards, as determined by small-angle X-ray scattering, are presented. Great care in evaluating molecular weight data obtained by ultrafiltration is needed because of broad nominal cutoffs and membrane-solute interactions.

  4. Novel "omics" approach for study of low-abundance, low-molecular-weight components of a complex biological tissue: regional differences between chorionic and basal plates of the human placenta.

    PubMed

    Kedia, Komal; Nichols, Caitlin A; Thulin, Craig D; Graves, Steven W

    2015-11-01

    Tissue proteomics has relied heavily on two-dimensional gel electrophoresis, for protein separation and quantification, then single protein isolation, trypsin digestion, and mass spectrometric protein identification. Such methods are predominantly used for study of high-abundance, full-length proteins. Tissue peptidomics has recently been developed but is still used to study the most highly abundant species, often resulting in observation and identification of dozens of peptides only. Tissue lipidomics is likewise new, and reported studies are limited. We have developed an "omics" approach that enables over 7,000 low-molecular-weight, low-abundance species to be surveyed and have applied this to human placental tissue. Because the placenta is believed to be involved in complications of pregnancy, its proteomic evaluation is of substantial interest. In previous research on the placental proteome, abundant, high-molecular-weight proteins have been studied. Application of large-scale, global proteomics or peptidomics to the placenta have been limited, and would be challenging owing to the anatomic complexity and broad concentration range of proteins in this tissue. In our approach, involving protein depletion, capillary liquid chromatography, and tandem mass spectrometry, we attempted to identify molecular differences between two regions of the same placenta with only slightly different cellular composition. Our analysis revealed 16 species with statistically significant differences between the two regions. Tandem mass spectrometry enabled successful sequencing, or otherwise enabled chemical characterization, of twelve of these. The successful discovery and identification of regional differences between the expression of low-abundance, low-molecular weight biomolecules reveals the potential of our approach.

  5. Low molecular weight (LMW) cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors

    PubMed Central

    Akli, Said; Bui, Tuyen; Wingate, Hannah; Biernacka, Anna; Moulder, Stacy; Tucker, Susan L.; Hunt, Kelly K.; Keyomarsi, Khandan

    2009-01-01

    Purpose Low-molecular-weight cyclin E (LMW-E) in breast cancer cells induces genomic instability, and resistance to inhibition by p21, p27, and fulvestrant therapy. Here, we sought to determine if LMW-E renders breast cancer cells unresponsive to aromatase inhibitors (AI), elucidate the mechanism of such resistance and ascertain if inhibitors of LMW-E associated kinase activity could overcome this resistance. Experimental Design Antiproliferative effects of the AIs, were examined in aromatase-overexpressing MCF-7/Ac1 cells in the presence or absence of full length and LMW-E. Inhibition of LMW cyclin E kinase activity by roscovitine (a CDK inhibitor) was examined in letrozole-unresponsive MCF-7/Ac1 cells. The role of LMW-E and CDK2 in mediating recurrence following AI treatment were also assessed in breast cancer patients. Results Overexpression of LMW-E in postmenopausal patients was associated with a poor prognosis. Letrozole, but not exemestane or anastrozole, mediated a pronounced G1 arrest in MCF-7/Ac1 cells. Androstenedione (AD)-induced G1 exit correlated with increased cyclin E-associated kinase activity and increased CDK2 levels. Letrozole treatment inhibited cyclin E-CDK2 kinase activity by preventing the AD-induced increase in CDK2. LMW-E bypassed this effect and rendered the cells resistant to letrozole inhibition. Roscovitine blocked the AD-induced increase in CDK2 and LMW-E overexpression could not bypass this effect. Lastly, breast cancer patients whose tumor overexpress LMW-E were not responsive to AI treatment. Conclusions Roscovitine treatment can reverse intrinsic or acquired resistance to letrozole due to LMW-E expression in breast cancer cells. These data support clinical investigation of CDK2 inhibitor therapy for postmenopausal women with ER-positive, LMW-E-expressing breast cancer. PMID:20145171

  6. Low-Molecular-Weight Fucoidan Inhibits the Viability and Invasiveness and Triggers Apoptosis in IL-1β-Treated Human Rheumatoid Arthritis Fibroblast Synoviocytes.

    PubMed

    Shu, Zunhua; Shi, Xiaozhe; Nie, Daqing; Guan, Bingyu

    2015-10-01

    Fucoidan is a sulfated polysaccharide found mainly in various species of brown algae and brown seaweed. Here, we investigated the effects of low-molecular-weight (LMW) fucoidan (4 kDa) on interleukin-1beta (IL-1β)-stimulated rheumatoid arthritis fibroblast-like synoviocyte (RAFLS). 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and annexin V/propidium iodide assay were used to assess cell viability and apoptosis, respectively. Transwell assay was performed to evaluate cell invasion. Reverse transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay analysis was done to measure gene expression and secretion. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined by electrophoretic mobility shift assay. LMW fucoidan dose-dependently inhibited the viability and induced apoptosis of IL-1β-treated RAFLS. Fucoidan attenuated IL-1β-induced invasion of RAFLS and decreased the expression and secretion of metalloproteinase (MMP)-1, MMP-3, and MMP-9. Fucoidan suppressed NF-κB binding activity, p65 nuclear translocation, and IκB-α degradation in IL-1β-stimulated RAFLS. Additionally, IL-1β-induced phosphorylation of p38 but not ERK or JNK was significantly impaired by fucoidan treatment. LMW fucoidan reduces the viability, survival, and invasiveness of IL-1β-treated RAFLS, which is associated with inhibition of NF-κB and p38 activation. LMW fucoidan may have therapeutic potential in the treatment of rheumatoid arthritis.

  7. Modeling the relationship between body weight and energy intake: A molecular diffusion-based approach

    PubMed Central

    2012-01-01

    Background Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. Results This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. Conclusions In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms. Reviewers This article was reviewed by Dr. Cabral Balreira (nominated by Dr. Peter Olofsson), Prof. Yang Kuang and Dr. Chao Chen. PMID:22742862

  8. Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro.

    PubMed

    Layman, John M; Ramirez, Sean M; Green, Matthew D; Long, Timothy E

    2009-05-11

    Establishing clear structure-property-transfection relationships is a critical step in the development of clinically relevant polymers for nonviral gene therapy. In this study, we determined the influence of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) molecular weight on cytotoxicity, DNA binding, and in vitro plasmid DNA delivery efficiency in human brain microvascular endothelial cells (HBMEC). Conventional free radical polymerization was used to synthesize PDMAEMA with weight-average molecular weights ranging from 43,000 to 915,000 g/mol. MTT and LDH assays revealed that lower molecular weight PDMAEMA (M(w) = 43,000 g/mol) was slightly less toxic than higher molecular weights (M(w) > 112,000 g/mol) and that the primary mode of toxicity was cellular membrane destabilization. An electrophoretic gel shift assay revealed that all PDMAEMA molecular weights completely bound with plasmid DNA. However, heparin competitive binding experiments revealed that higher molecular weight PDMAEMA (M(w) = 915,000 g/mol) had a greater binding affinity toward plasmid DNA than lower molecular weight PDMAEMA (M(w) = 43,000 g/mol). The molecular weight of PDMAEMA was found to have a dramatic influence on transfection efficiency, and luciferase reporter gene expression increased as a function of increasing molecular weight. However, cellular uptake of polyplexes was determined to be insensitive to PDMAEMA molecular weight. In addition, our data did not correlate polyplex size with transfection efficiency. Collectively, our data suggested that the intracellular fate of the polyplexes, which involves endosomal release and DNase resistance, is more important to overall transfection efficiency than barriers to entry, such as polyplex size.

  9. Free volume model for molecular weights of polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Eftekhari, A.

    1992-01-01

    A free volume model has been developed for determining molecular weights of linear polymers. It is based on the size of free volume cells in two geometries of poly(arylene ether ketone)s. Free volume cell sizes in test samples were measured using positron lifetime spectroscopy. The molecular weights computed from free volume cell sizes are in good agreement with the values measured by gel permeation chromatography, with a low angle laser light scattering photometer as the detector. The model has been further tested on two atactic polystyrene samples, where it predicted the ratio of their molecular weights with reasonable accuracy.

  10. Free volume variation with molecular weight of polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Hinkley, Jeffrey A.; St.clair, Terry L.; Jensen, Brian J.

    1992-01-01

    Free volume measurements were made in several molecular weight fractions of two different geometries of poly(arylene ether ketone)s. Free volumes were measured using positron lifetime spectroscopy. It has been observed that the free volume cell size V(sub f) varies with the molecular weight M of the test samples according to an equation of the form V(sub f) = AM(B), where A and B are constants. The molecular weights computed from the free volume cell sizes are in good agreement with the values measured by gel permeation chromatography.

  11. Free volume model for molecular weights of polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Eftekhari, A.

    1992-01-01

    A free volume model has been developed for determining molecular weights of linear polymers. It is based on the size of free volume cells in two geometries of poly(arylene ether ketone)s. Free volume cell sizes in test samples were measured using positron lifetime spectroscopy. The molecular weights computed from free volume cell sizes are in good agreement with the values measured by gel permeation chromatography, with a low angle laser light scattering photometer as the detector. The model has been further tested on two atactic polystyrene samples, where it predicted the ratio of their molecular weights with reasonable accuracy.

  12. Average protein density is a molecular-weight-dependent function.

    PubMed

    Fischer, Hannes; Polikarpov, Igor; Craievich, Aldo F

    2004-10-01

    The mass density of proteins is a relevant basic biophysical quantity. It is also a useful input parameter, for example, for three-dimensional structure determination by protein crystallography and studies of protein oligomers in solution by analytic ultracentrifugation. We have performed a critical analysis of published, theoretical, and experimental investigations about this issue and concluded that the average density of proteins is not a constant as often assumed. For proteins with a molecular weight below 20 kDa, the average density exhibits a positive deviation that increases for decreasing molecular weight. A simple molecular-weight-depending function is proposed that provides a more accurate estimate of the average protein density.

  13. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E. Michael; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  14. Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

    PubMed

    Cheah, Ker Y; Howarth, Gordon S; Bindon, Keren A; Kennedy, James A; Bastian, Susan E P

    2014-01-01

    Grape seed procyanidins (PC) are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE) have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP) combined with 5-Fluorouracil (5-FU) chemotherapy on the viability of colon cancer cells (Caco-2). SixPC fractions (F1-F6) were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature) and ripe (mature), utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) (MTT) assay. All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05), but F2 and F3 (mDP 2-6) were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining) on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05). Mature seed PC fractions (F1-F4) significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05). Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87%) compared to 5-FU alone (37%). PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4)not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

  15. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  16. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    PubMed

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  17. High Molecular Weight Polymers in the New Chemicals Program

    EPA Pesticide Factsheets

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  18. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  19. A simplified electrophoretic system for determining molecular weights of proteins.

    PubMed

    Manwell, C

    1977-09-01

    Electrophoresis of 31 different proteins in commercially prepared polyacrylamide gradient gels, Gradipore, yields a linear relationship between a hypothetical limiting pore size (the reciprocal of a limiting gel concentration, GL) and the cube root of the mol.wt., over the range 13 500-9000 000. A regression analysis of these data reveals that 98.6% of all variability in 1/GL is explained by the molecular weight, and this degree of accuracy compares favourably with existing methods for the determination of molecular weight by retardation of mobility in polyacrylamide. This new procedure has the additional advantages that molecular-weight standards can be obtained from readily available body fluids or tissue extracts by localizing enzymes and other proteins by standard histochemical methods, and that the same electrophoretic system can be used in determining molecular weights as is used in routine surveys of populations for individual and species variation in protein heterogeneity.

  20. Molecular-Weight-Controlled, End-Capped Polybenzimidazoles

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1993-01-01

    Novel molecular-weight-controlled end-capped poly(arylene ether benzimidazole)s (PAEBI's) prepared by nucleophilic displacement reaction of di(hydroxyl)benzimidazole monomers with activated aromatic dihalides. Polymers prepared at various molecular weights by upsetting stoichiometry of monomers and end-capped with monohydroxybenzimidazole. Exhibit favorable physical and mechanical properties, improved solubility in polar aprotic solvents and better compression moldability. Potential applications as adhesives, coatings, films, fibers, membranes, moldings, and composite matrix resins.

  1. Yeast-leavened oat breads with high or low molecular weight beta-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans.

    PubMed

    Frank, Jan; Sundberg, Birgitta; Kamal-Eldin, Afaf; Vessby, Bengt; Aman, Per

    2004-06-01

    Increased intestinal viscosity appears to be the major mode of action by which dietary oat beta-glucan increases the fecal excretion of bile acids and thereby lowers blood cholesterol concentrations. The objective of this experiment was to investigate whether there is a difference in effects on blood lipids between two yeast-leavened oat bran breads containing beta-glucan (6 g/d) of low or high average molecular weight (HMW) (217 or 797 kDa, respectively). The breads were fed to 22 volunteers (women, n = 11; men, n = 11) in a randomized, double-blind, crossover design. The participants ate one bread for 3 wk as part of their normal diet and switched breads after a 2-wk washout period. Blood samples were drawn from fasting subjects and analyzed for lipids, insulin, glucose, and alpha- and gamma-tocopherol. The two experimental oat breads did not differ in their effects on any of the variables measured. Compared to baseline, however, consumption of HMW bread increased serum insulin by 22.6% (P < 0.03) and decreased blood glucose concentrations by 3.4% (P < 0.05). These results suggest that the molecular weight, when beta-glucan is consumed in oat bran breads as part of the habitual diet, does not play an important physiological role in moderately hypercholesterolemic humans.

  2. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  3. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  4. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Single drop microextraction as a concentrating probe for rapid screening of low molecular weight drugs from human urine in atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-01-01

    The present work reports the development of a new analytical procedure for simple and rapid screening of low molecular weight drugs (<500 Da) from human urine samples by atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) combined with single drop microextraction (SDME). The success of the proposed method is due to the use of methyltrioctylammonium chloride (MTOAC) as additive to avoid the noise arising from the matrix ions (alpha-cyano-4-hydroxycinnamic acid (CHCA)). SDME also aided in alleviating the interferences arising from other matrix ions present in the urine samples prior to AP-MALDI-MS analysis. Factors affecting the extraction efficiency of drugs, such as selection of solvent, stirring speed, extraction time, exposure volume of extraction phase and salt addition, have been optimized. The optimum molar ratio of CHCA/MTOAC that gave the minimum background noise of CHCA ions was 700:1. The limit of detection (LOD) and relative standard deviation (RSD) of the method were in the ranges 0.3-1.6 microM and 7.8-11.4%, respectively. The SDME method was compared with liquid-liquid extraction (LLE) and hollow fiber liquid-phase microextraction (HF-LPME) to evaluate the compatibility of the present method in the extraction of drugs from urine samples. The role of MTOAC as matrix ion signal suppressor and SDME as analyte-separating device in the rapid screening of low molecular weight drugs from human urine samples using AP-MALDI/MS has been reported. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  7. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  8. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  9. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  10. [Low molecular weight heparins. Implications in anesthesia and resuscitation].

    PubMed

    Llau, J V; Hoyas, L; Ezpeleta, J; García-Polit, J; Barberá, M; Santes, M J

    1997-02-01

    Low molecular weight heparins are a group of drugs that have only recently been introduced in clinical practice. The are widely used for prophylaxis in thromboembolic disease and are being employed increasingly to treat established venous thrombosis. One way in which these drugs are often used is for prophylaxis in the perioperative period for patients at high risk of developing venous thromboembolism, and the anesthesiologist must therefore be familiar with the main aspects of this application. We review pharmacological characteristics of these drugs as well as the literature on low molecular weight heparins, stressing points of main interest to the anesthesiologist and intensive care recovery unit specialist, namely adverse effects (mainly bleeding) and the implications that use of low molecular weight heparin will have on choice of anesthetic (in particular the dilemma of whether to use local/regional anesthesia).

  11. Chemoselectivity in the Dehydrocoupling Synthesis of Higher Molecular Weight Polysilanes

    PubMed Central

    Lunzer, Florian; Marschner, Christoph

    2010-01-01

    The Cp2ZrCl2/2 BuLi catalyzed co-polymerization of H2MeSiSiMeH2 and PhSiH3 was compared to the homo-polymerization of H2MeSiSiPhH2. In contrast to the co-polymerization, which gave molecular weights comparable to homo-polymerization of phenylsilane, the reaction of 1-methyl-2-phenyldisilane yielded a partially cross-linked high molecular weight polymer with very broad molecular weight distribution. A higher reactivity of phenyl-substituted silicon atoms compared to methyl-substituted ones was detected. Stoichiometric reactions of some disilanes with the slow dehydropolymerization catalyst CpCp*Hf(Cl)Si(SiMe3)3 gave metal disilanyl intermediates with selectivities that reflect the observed polymerization behavior.

  12. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols.

    PubMed

    Kainthan, Rajesh Kumar; Hester, Samuel R; Levin, Elena; Devine, Dana V; Brooks, Donald Elliott

    2007-11-01

    Low molecular weight hyperbranched polyglycerols are highly water soluble and biocompatible polyether polyols, which can be synthesized in a controlled manner with narrow polydispersity. Recently we reported the synthesis and characterization of very high molecular weight (Mn up to 700,000) and narrowly polydispersed polyglycerols which could be potentially used as alternatives to high generation dendrimers which are difficult to make. A detailed biocompatibility testing of these polymers conducted in vitro is reported here. The in vitro studies include hemocompatibility testing for effects on coagulation (prothrombin time (PT), activated partial thromboplastin time (APTT), plasma recalcification time (PRT), thrombelastograph parameters (TEG)), complement activation, platelet activation, red blood cell aggregation and cytotoxicity. Results from these studies show that these high molecular weight polyglycerols are highly biocompatible and are potential candidates for various applications in nanobiotechnology and in nanomedicine. Moreover these polymers are thermally and oxidatively stable.

  13. The Oligomeric Structure of High Molecular Weight Adiponectin

    PubMed Central

    Suzuki, Shinji; Wilson-Kubalek, Elizabeth M.; Wert, David; Tsao, Tsu-Shuen; Lee, David H.

    2007-01-01

    There is great interest in the structure of adiponectin as its oligomeric state may specify its biological activities. It occurs as a trimer, a hexamer and a high molecular weight complex. Epidemiological data indicates that the high molecular weight form is significant with low serum levels in type 2 diabetics but to date, has not been well-defined. To resolve this issue, characterization of this oligomer from bovine serum and 3T3-L1 adipocytes by sedimentation equilibrium centrifugation and gel electrophoresis respectively, was carried out, revealing that it is octadecameric. Further studies by dynamic light scattering and electron microscopy established that bovine and possibly mouse high molecular weight adiponectin is C1q-like in structure. PMID:17292892

  14. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  15. Average protein density is a molecular-weight-dependent function

    PubMed Central

    Fischer, Hannes; Polikarpov, Igor; Craievich, Aldo F.

    2004-01-01

    The mass density of proteins is a relevant basic biophysical quantity. It is also a useful input parameter, for example, for three-dimensional structure determination by protein crystallography and studies of protein oligomers in solution by analytic ultracentrifugation. We have performed a critical analysis of published, theoretical, and experimental investigations about this issue and concluded that the average density of proteins is not a constant as often assumed. For proteins with a molecular weight below 20 kDa, the average density exhibits a positive deviation that increases for decreasing molecular weight. A simple molecular-weight-depending function is proposed that provides a more accurate estimate of the average protein density. PMID:15388866

  16. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  18. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  19. Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations

    PubMed Central

    Qinna, Nidal A.; Karwi, Qutuba G.; Al-Jbour, Nawzat; Al-Remawi, Mayyas A.; Alhussainy, Tawfiq M.; Al-So’ud, Khaldoun A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  20. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-27

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.

  1. Synthesis of High Molecular Weight Para-Phenylene PBI

    DTIC Science & Technology

    1974-11-01

    give high molecular weight m-phenylene PBI (Reference 7). The polymer was completely soluble in methanesulfonic acid and 98% formic acid . Polymer with...mono- mer is a white crystalline solid which can be quantitatively hydrolized in an acid medium to give the free TAB. Stoichiometric quantities of IX...WEIGHT "PARA"-PHENYLENE PBI TECHNICAL REPORT AFML-TR-74-199 NOVEMBER 1974 Distribution limited to U.S.Government agencies only, test and evaluation

  2. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  3. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  4. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  5. Detection of a low-molecular-weight antigen on melanoma cells by a human antiserum in leukocyte-dependent antibody assays.

    PubMed

    Hersey, P; Murray, E; Werkmeister, J; McCarthy, W H

    1979-10-01

    Biochemical characterization of serologically detected human melanoma antigens was undertaken for the development of immunodiagnostic assays in melanoma. An antiserum from a human melanoma patient, which detected melanoma antigens expressed on a large proportion of different melanoma cells, was used in leucocyte-dependent cytotoxic antibody (LDA) 51Cr-release assays to monitor the purification of melanoma antigens in urea/acetate extracts of lactoperoxidase 125I-labelled melanoma cell membranes. The separation procedures included affinity chromatography on Concanavalin A, gel filtration on porous polyacrylamide beads and preparative isoelectric focusing. The fractions were also monitored by polyacrylamide electrophoresis in sodium dodecyl sulphate and by measurement of beta 2 microglobulin and carcinoembryonic antigen content. The antigens detected by this antiserum appeared to be acidic (pI 3.5) low-mol.-wt glycoproteins of approximately 15,000 daltons which were resistant to heating at 56 degrees C and digestion with neuraminidase, but susceptible to repeated freeze-thawing and trypsin digestion. They did not appear to be related to HLA antigens, beta 2 microglobulin or known foetal antigens. The nature of the antigens detected in these studies is as yet unknown, but they appear similar to those described in the sera and urine of melanoma patients in previous reports. Thes combined results and the frequent expression of these antigens on melanoma cells from different patients suggest that assays to detect this antigen may provide a valuable immunodiagnostic aid in the management of melanoma.

  6. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols.

    PubMed

    Li, Shengju; Ahmed, Lucky; Zhang, Ruina; Pan, Yi; Matsunami, Hiroaki; Burger, Jessica L; Block, Eric; Batista, Victor S; Zhuang, Hanyi

    2016-10-03

    Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH3SCH2SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.

  7. Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30.

    PubMed

    Norris, C E; Brown, M A; Hickey, E; Weber, L A; Hightower, L E

    1997-10-01

    The heat shock response of a fish which inhabits a highly stressful environment (Poeciliopsis lucida, a minnow from river systems of the Sonoran desert in northwestern Mexico) was investigated. Cells derived from this fish exhibited a typical heat shock response when exposed to elevated temperature, synthesizing high levels of 90 kDa, 70 kDa, and 30 kDa heat shock proteins (Hsp90, Hsp70, and Hsp30), as well as lower amounts of other heat shock proteins. Additional small heat shock proteins (sHSPs), including Hsp27, were induced after a prolonged heat shock at a time when synthesis of Hsp70 and Hsp30 was decreasing. Characterization of cDNA clones for hsp27 and hsp30 revealed that both are members of the alpha-crystallin/sHSP superfamily but belong to separate lineages within this gene family. The multiple isoforms of P. lucida Hsp30 appear to be members of a multigene family and are most closely related to salmon and Xenopus Hsp30s. In contrast, Hsp27 is highly similar to mammalian and avian sHSPs; it was synthesized as three isoforms which represented differentially phosphorylated forms of a single polypeptide. In Poeciliopsis, the various sHSPs may each perform a subset of the roles attributed to mammalian sHSPs. The conservation of phosphorylation sites in Hsp27 may indicate an involvement in signal transduction to the actin cytoskeleton. The hsp30 genes appear to have diverged more rapidly than the corresponding hsp27 genes; the various members of the Hsp30 family may function as molecular chaperones and, in this role, may be less evolutionarily constrained. Finally, the presence of these two classes of sHSP in a single taxon indicates that these two lineages arose by gene duplication early in the evolution of vertebrates and raises questions about the fate of homologs of Hsp30 in mammals and of Hsp27 in Xenopus.

  8. Vaccination with a human high molecular weight melanoma-associated antigen mimotope induces a humoral response inhibiting melanoma cell growth in vitro.

    PubMed

    Wagner, Stefan; Hafner, Christine; Allwardt, Dorothee; Jasinska, Joanna; Ferrone, Soldano; Zielinski, Christoph C; Scheiner, Otto; Wiedermann, Ursula; Pehamberger, Hubert; Breiteneder, Heimo

    2005-01-15

    Peptide mimics of a conformational epitope that is recognized by a mAb with antitumor activity are promising candidates for formulations of anticancer vaccines. These mimotope vaccines are able to induce a polyclonal Ab response focused to the determinant of the mAb. Such attempts at cancer immunotherapy are of special interest for malignant melanoma that is highly resistant to chemotherapy and radiotherapy. In this study, we describe for the first time the design and immunogenicity of a vaccine containing a mimotope of the human high m.w. melanoma-associated Ag (HMW-MAA) and the biological potential of the induced Abs. Mimotopes were selected from a pVIII-9mer phage display peptide library with the anti-HMW-MAA mAb 225.28S. The mimotope vaccine was then generated by coupling the most suitable candidate mimotope to tetanus toxoid as an immunogenic carrier. Immunization of rabbits with this vaccine induced a specific humoral immune response directed toward the epitope recognized by the mAb 225.28S on the native HMW-MAA. The induced Abs inhibited the in vitro growth of the melanoma cell line 518A2 up to 62%. In addition, the Abs mediated 26% lysis of 518A2 cells in Ab-dependent cellular cytotoxicity. Our results indicate a possible application of this mimotope vaccine as a novel immunotherapeutic agent for the treatment of malignant melanoma.

  9. Low molecular weight phenolics of grape juice and winemaking byproducts: antioxidant activities and inhibition of oxidation of human low-density lipoprotein cholesterol and DNA strand breakage.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2014-12-17

    Bioactive compounds belonging to phenolic acids, flavonoids, and proanthocyanidins of grape juice and winemaking byproducts were identified and quantified by HPLC-DAD-ESI-MS(n). The concentration of phenolic compounds in different grape cultivars was in the order Tempranillo > Cora > Syrah > Isabel. The insoluble-bound fraction was most prominent, contributing 63 and 79% to the total for Isabel and Tempranillo, respectively. Juice-processing byproducts had a higher content of free than esterified phenolics, but the opposite was noted for winemaking byproducts. Insoluble-bound phenolics were up to 15 and 10 times more effective as antioxidants than those of free and esterified fractions, respectively, as evaluated by the DPPH, ABTS, and H2O2 scavenging activities and reducing power determinations. In general, insoluble-bound phenolics (100 ppm) were more effective in inhibiting copper-induced human LDL-cholesterol oxidation than free and esterified phenolics, exhibiting equal or higher efficacy than catechin. Phenolic extracts from all fractions inhibited peroxyl radical-induced DNA strand breakage. These findings shed further light for future studies and industrial application of grape byproducts, which may focus not only on the soluble phenolics but also on the insoluble-bound fraction.

  10. The Effect of Low Molecular Weight Heparins on Fracture Healing

    PubMed Central

    Kapetanakis, Stylianos; Nastoulis, Evangelos; Demesticha, Theano; Demetriou, Thespis

    2015-01-01

    Venous Thromboembolism is a serious complication in the trauma patient. The most commonly studied and used anticoagulant treatment in prophylaxis of thrombosis is heparin. The prolonged use of unfractionated heparin has been connected with increased incidence of osteoporotic fractures. Low molecular-weight-heparins (LMWHs) have been the golden rule in antithrombotic therapy during the previous two decades as a way to overcome the major drawbacks of unfractioned heparin. However there are few studies reporting the effects of LMWHs on bone repair after fractures. This review presents the studies about the effects of LMWHs on bone biology (bone cells and bone metabolism) and underlying the mechanisms by which LMWHs may impair fracture healing process. The authors’ research based on literature concluded that there are no facts and statistics for the role of LMWHs on fracture healing process in humans and the main body of evidence of their role comes from in vitro and animal studies. Further large clinical studies designed to compare different types of LMWHs, in different dosages and in different patient or animal models are needed for exploring the effects of LMWHs on fracture healing process. PMID:26161162

  11. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    PubMed

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  13. Low-molecular-weight heparins in patients with atrial fibrillation.

    PubMed

    Calvo Romero, J M

    2016-10-27

    In clinical practice, low-molecular-weight heparins are used relatively frequently in patients with atrial fibrillation to prevent embolic events. In this article, it is revised the available evidence in the following clinical situations: rapid onset of anticoagulation, bridging therapy (replacing long-term oral anticoagulant therapy around an invasive procedure) and transesophageal echocardiography-guided cardioversion.

  14. Reduced-molecular-weight derivatives of frost grape polysaccharide

    USDA-ARS?s Scientific Manuscript database

    A new Type II arabinogalactan was recently described as an abundant gum exudate from stems of wild frost grape (Vitus riparia Michx.). Native frost grape polysaccharide (FGP), with an estimated molecular weight of 1.6 ± 0.1 x 107 Da, was progressively and irreversibly modified by heat treatment to r...

  15. Preparation of soybean oil polymers with high molecular weight

    USDA-ARS?s Scientific Manuscript database

    The cationic polymerization of soybean oils was initiated by boron trifluoride diethyl etherate BF3.O(C2H5)2 in supercritical carbon dioxide (scCO2) medium. The resulting polymers had molecular weight ranging from 21,842 to 118,300 g/mol. Nuclear magnetic resonance spectroscopy (NMR) and gel perme...

  16. Molecular weight effect on liquid crystalline gel formation of curdlan.

    PubMed

    Nobe, Masahiro; Kuroda, Naomi; Dobashi, Toshiaki; Yamamoto, Takao; Konno, Akira; Nakata, Mitsuo

    2005-01-01

    Curdlan dissolved in alkaline solution forms a unique gel consisting of liquid crystalline gel (LCG) and amorphous gel (AG) in alternating layers by a dialysis into aqueous calcium chloride. The unique structure has been investigated by measuring the birefringence of the gel Deltan, the ratio q of the thickness of LCG layer delta to the gel radius R, and the calcium content in the gel C(Ca) in a wide range of molecular weights of fractionated Curdlan, as well as unfractionated Curdlan as a control. With increasing molecular weight of Curdlan, Deltan increased and q = delta/R decreased, and both became saturated at high molecular weight. Deltan and q for unfractionated Curdlan were smaller and larger, respectively, than those for fractionated Curdlan. C(Ca) was constant irrespective of molecular weight and its distribution, which means that the abundance of calcium ions per glucose unit in the gel does not depend on the degree of orientation of mesogens. These results suggest that the amorphous phase appears when the size of the Curdlan molecules is larger than the average intermolecular distance, resulting from the random coil to triple helix transformation of Curdlan molecules associated with lowering hydroxide anion concentration in the dialysis process.

  17. Major rectus abdominis hematoma complicating low molecular weight heparin therapy.

    PubMed

    Di Ascenzo, Leonardo; Cassin, Matteo; Driussi, Mauro; Moretti, Michele; Pecoraro, Rosa; Nicolosi, Gian Luigi

    2008-07-01

    The use of low molecular weight heparin sometimes leads to major life threatening complications, such as acute abdominal haemorrhages. We report two cases of major haematoma of rectus abdominis. Computed tomography was very helpful to confirm the diagnosis in these cases.

  18. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain...

  19. Apoptosis-inducing activity of high molecular weight fractions of tea extracts.

    PubMed

    Hayakawa, S; Kimura, T; Saeki, K; Koyama, Y; Aoyagi, Y; Noro, T; Nakamura, Y; Isemura, M

    2001-02-01

    High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.

  20. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity.

    PubMed

    Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya

    2017-04-15

    The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Identification of multiple low molecular weight placental prolactin-like proteins produced by rat trophoblast cells.

    PubMed

    Soares, M J; De, S K; Foster, B A; Julian, J A; Glasser, S R

    1988-01-01

    Rat trophoblast tissue was found to synthesize a number of low molecular weight proteins possessing prolactin-like characteristics. There appear to be at least three proteins that cross-react with antisera to pituitary prolactin. Two of the proteins had a molecular weight of 25,000, similar to ovine pituitary prolactin, and isoelectric points of 6.8 and 7.0. The third immunoreactive protein had a lower molecular weight (23,500), similar in size to human placental lactogen, and a slightly more acidic isoelectric point of 6.75. The molecular weight variants cross-reacted with an antipeptide serum that was generated to a synthetic peptide representing amino acids 150 to 164 of rat placental lactogen-2 (PL-2). Based on this analysis, we consider these proteins to be related to PL-2. Analysis of trophoblast proteins by gel-filtration chromatography resulted in the identification of another trophoblast prolactin. This material eluted earlier than PL-2-related proteins on a gel-filtration column, possessed prolactin-like activity (determined by competition with ovine pituitary prolactin for rabbit mammary gland or rat liver prolactin receptors) but showed limited cross-reactivity with either the antiserum to pituitary prolactin or the antiserum to the PL-2 peptide. We have thus identified multiple low molecular weight trophoblast prolactins, possessing different biochemical and immunological characteristics.

  2. An optimal polymerization process for low mean molecular weight HBOC with lower dimer.

    PubMed

    Zhou, Wentao; Li, Shen; Hao, Shasha; Liu, Jiaxin; Wang, Hong; Yang, Chengmin

    2015-06-01

    The new research tried to improve the distribution of molecular weight of Hb-based oxygen carriers (HBOC), a bottleneck of glutaraldehyde (GDA)-polymerization process. The orthogonal experiments were done on the basis of the early study of human placenta Hemoglobin (Hb)-crosslinked-GDA and three factors were selected including the molar ratio of GDA and Hb, Hb concentration, and the rate of the feeding GDA. The optimal match condition of polymerization process prepared for the purpose of lower mean molecular weight, content of super-weight molecule, and the content of dimer. The results showed that the molar ratio of GDA and Hb was the greatest influencing factor on the molecular weight distribution of polymerized-Hb, followed by the Hb concentration, and the last is the rate of feeding GDA. The optimum matching conditions had reached the objective that the mean molecular weight with 155.54 ± 5.79, the content of dimer with 17.23 ± 3.71, and content of super-weight molecule with 0.17 ± 0.09, and the results can be repeated in the 30 times expansion experiments.

  3. The dynamics of human body weight change.

    PubMed

    Chow, Carson C; Hall, Kevin D

    2008-03-28

    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has important implications for the efficacy of clinical interventions that alter body composition and mass.

  4. The Dynamics of Human Body Weight Change

    PubMed Central

    Chow, Carson C.; Hall, Kevin D.

    2008-01-01

    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has important implications for the efficacy of clinical interventions that alter body composition and mass. PMID:18369435

  5. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Molecular weight characterization of single globular proteins using optical nanotweezers.

    PubMed

    Wheaton, Skyler; Gordon, Reuven

    2015-07-21

    We trap a set of molecular weight standard globular proteins using a double nanohole optical trap. The root mean squared variation of the trapping laser transmission intensity gives a linear dependence with the molecular weight, showing the potential for analysis of globular proteins. The characteristic time of the autocorrelation of the trapping laser intensity variations scales with a -2/3 power dependence with the volume of the particle. A hydrodynamic laser tweezer model is used to explain these dependencies. Since this is a single particle technique that operates in solution and can be used to isolate an individual particle, we believe that it provides an interesting alternative to existing analysis methods and shows promise to expand the capabilities of protein related studies to the single particle level.

  7. A high molecular weight protease in liver cytosol.

    PubMed

    Rose, I A; Warms, J V; Hershko, A

    1979-09-10

    A high molecular weight (greater than 400,000) protease active with [3H]leucine-labeled globin has been found in the postmicrosomal fraction of mouse kidney, brain, heart, spleen, and tumor cells and is most active in liver. The presence in liver was unexpected because liver cytosol is very ineffective in the breakdown of endogenous, labeled proteins. The enzyme has a number of properties that distinguish it from known cathepsins in addition to its high molecular weight. It is most active at pH approximately 7.5. When purified, it is unstable above 20 degrees C and is stabilized by metal chelating agents such as citrate, creatine-P, and glycerate-3-P. It is an -SH protease, but its thermal instability is not affected by 1 mM dithiothreitol. The enzyme is not lysosomal.

  8. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  9. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  10. Streptolysin O: Sedimentation Coefficient and Molecular Weight Determinations

    PubMed Central

    Van Epps, Dennis E.; Andersen, Burton R.

    1969-01-01

    The sedimentation coefficient of streptolysin O as determined by sucrose density gradient ultracentrifugation is 3.7S. An approximate molecular weight of 60,500 was calculated from the sedimentation velocity, and a similar value was obtained by Sephadex gel filtration. There was no measurable difference in the sedimentation coefficient of streptolysin O in either the active or reversibly inactive forms, indicating that there were at most only minor conformational differences between the two forms. PMID:5344112

  11. Ultra-High-Molecular-Weight Silphenylene/Siloxane Elastomers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1989-01-01

    Elastomers enhance thermal and mechancial properties. Capable of performing in extreme thermal/oxidative environments and having molecular weights above 10 to the sixth power prepared and analyzed in laboratory experiments. Made of methylvinylsilphenylene-siloxane terpolymers, new materials amenable to conventional silicone-processing technology. Similarly formulated commercial methyl-vinyl silicones, vulcanized elastomers exhibit enhance thermal/oxidative stability and equivalent or superior mechanical properties.

  12. Trans-scleral iontophoretic delivery of low molecular weight therapeutics.

    PubMed

    Güngör, Sevgi; Delgado-Charro, M Begoña; Ruiz-Perez, Begoña; Schubert, William; Isom, Phil; Moslemy, Peyman; Patane, Michael A; Guy, Richard H

    2010-10-15

    The fundamental understanding of ocular drug delivery using iontophoresis is not at the same level as that for transdermal electrotransport. Research has therefore been undertaken to characterise the electrical properties of the sclera (charge, permselectivity, and isoelectric point (pI)) and to determine the basics of iontophoretic transport of model neutral, cationic, and anionic species (respectively, mannitol, timolol, and dexamethasone phosphate). Like the skin, the sclera supports a net negative charge under physiological pH conditions and has a pI between 3.5 and 4. Equally, the principles of trans-scleral iontophoretic transport of low molecular weight compounds are consistent with those observed for skin. Iontophoretic delivery of timolol and dexamethasone phosphate was proportional to applied current and drug concentration, and trans-scleral iontophoresis in rabbits led to enhanced intraocular levels of these compounds compared to passive delivery. The behaviour of higher molecular weight species such as peptide drugs and other biopharmaceuticals (e.g., proteins and oligonucleotides) has not been fully characterised. Further work has been undertaken, therefore, to examine the trans-scleral iontophoresis of vancomycin, a glycopeptide antibiotic with a relatively high molecular weight of 1448 Da. It was indeed possible to deliver vancomycin by iontophoresis but trans-scleral transport did not increase linearly with either increasing current density or peptide concentration. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Human molecular embryogenesis: an overview.

    PubMed

    Oligny, L L

    2001-01-01

    Molecular embryology is a rapidly evolving field of great complexity. This overview is primarily for the newcomer to this field, in an attempt to demystify the processes by which a human single-celled zygote eventually forms an embryo. Although all embryonic cells share the same genetic information, they differentiate according to the basic plan dictated not only by multiple families of transcription factors to silence some genes and activate others but also through DNA methylation, histone acetylation, and heterochromatinization. Regional expression of various transcription factors causes embryos to establish primary embryonic axes. Once the basic body plan is established, the region-specific diversity becomes progressively finer, and each cell eventually develops a "molecular address" characterized by the expression of specific genes. The overview is divided into two main parts: embryonic cell growth and morphogenesis. At the present time, more is known about the details of molecular regulation of the embryonic growth than about morphogenesis.

  14. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  15. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation.

    PubMed

    Stewart, Maria L; Slavin, Joanne L

    2006-10-01

    Dietary fiber exerts many beneficial physiological effects; however, not all types of dietary fiber display the same effects. Partially hydrolyzed guar gum (PHGG), a lower molecular weight form of guar gum, is more easily incorporated into food, but may have less pronounced physiological effects than the native form. The aim of this study was to identify differences in intestinal fermentability based on the molecular weight of guar gum. Guar gum of four molecular masses (15, 20, 400, and 1,100 kDa) was fermented using a batch in vitro fermentation system. Human fecal inoculum was the source of microbes. The 400-kDa fraction produced the greatest concentrations of total short-chain fatty acid (SCFA) at 8 h and the highest amounts of butyrate at 24 h. At 24 h, the 400-kDa fraction produced more total SCFA and propionate than the 15 kDa, but was not different than 20 kDa or 1,100 kDa fractions. The molecular weight of guar gum was positively correlated with acetate production and negatively correlated with propionate production. This study concludes that 400-kDa guar gum may be optimal for intestinal fermentability. In conclusion, the molecular weight of guar gum affects in vitro fermentability and should be considered when adding to a food or beverage.

  16. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc).

  17. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  18. Intramolecular Hydrogen Bonds in Low-Molecular-Weight Polyethylene Glycol.

    PubMed

    Kozlowska, Mariana; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-18

    We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low-molecular-weight polyethylene glycol (PEG) with two to five repeat subunits. Both red-shifted O-H⋅⋅⋅O and blue-shifting C-H⋅⋅⋅O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used. Car-Parrinello molecular dynamics simulations were used to mimic the structural rearrangements and hydrogen-bond breaking/formation in the PEG molecule at 300 K. The time evolution of the H⋅⋅⋅O bond length and valence angles of the formed hydrogen bonds were fully analyzed. The characteristic hydrogen-bonding patterns of low-molecular-weight PEG were described with an estimation of their lifetime. The theoretical results obtained, in particular the presence of weak C-H⋅⋅⋅O hydrogen bonds, could serve as an explanation of the PEG structural stability in the experimental investigation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior.

  20. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation.

    PubMed

    Rowlands, David S; Wallis, Gareth A; Shaw, Chris; Jentjens, Roy L P G; Jeukendrup, Asker E

    2005-09-01

    To compare the effects of high (HMW) versus low molecular weight (LMW) glucose polymer solutions on the pattern of substrate oxidation during exercise. Eight cyclists (VO(2max): 63 +/- 8 mL.kg(-1).min(-1)) performed three 150-min cycling trials at 64 +/- 5% VO(2max) while ingesting 11.25% HMW (500-750 kg.mol(-1), 21 mOsm.kg(-1)) or LMW (8 kg.mol(-1), 110 mOsm.kg(-1)) solutions providing 1.8 g of carbohydrate per minute, or plain water. Substrate oxidation was determined using stable-isotope methods and indirect calorimetry. Exogenous carbohydrate oxidation rate was not affected by carbohydrate molecular weight (P = 0.89, peak rate: 0.93 x// 1.37 g.min(-1)). There was no effect of carbohydrate molecular weight on endogenous carbohydrate or fat oxidation rates (P = 0.30), plasma free fatty acid (P = 0.14), lactate (P = 0.38), or glucose concentrations (P = 0.98), nor were there any serious gastrointestinal complaints reported for either of the two solutions during exercise. Despite previous reports of faster gastric emptying and glycogen resynthesis suggesting enhanced glucose delivery, a markedly hypotonic HMW glucose polymer solution had no effect on exogenous and endogenous substrate oxidation rates during exercise, relative to a LMW glucose polymer solution. These data are consistent with there being no effect of carbohydrate structure or solution osmolality or viscosity on exogenous glucose oxidation and that ingested glucose polymers can only be oxidized on average up to 1.0 g.min during exercise.

  1. [Sequencing of low-molecular-weight DNA in blood plasma of irradiated rats].

    PubMed

    Vasilieva, I N; Bespalov, V G; Zinkin, V N; Podgornaya, O I

    2015-01-01

    Extracellular low-molecular-weight DNA in blood of irradiated rats was sequenced for the first time. The screening of sequences in the DDBJ database displayed homology of various parts of the rodent genome. Sequences of low-molecular-weight DNA in rat's plasma are enriched with G/C pairs and long interspersed elements relative to rat genome. DNA sequences in blood of rats irradiated at the doses of 8 and 100 Gy have marked distinctions. Data of sequencing of extracellular DNA from normal humans and with pathology were analyzed. DNA sequences of irradiated rats differ from the human ones by a wealth of long interspersed elements. This new knowledge lays the foundation for development of minimally invasive technologies of diagnosing the probability of pathology and controlling the adaptive resources of people in extreme environments.

  2. Low molecular weight fluorescent organogel for fluoride ion detection.

    PubMed

    Rajamalli, P; Prasad, Edamana

    2011-07-15

    The design, synthesis, and the photophysical properties of a Low Molecular Weight Gel (LMWG) based on AB(3) and AB(2) type poly(aryl ether) dendrons with an anthracene chromophore attached through an acylhydrazone linkage are described. The gel is utilized for an efficient 'naked eye' detection of fluoride ions (as low as 0.1 equiv with respect to the gelator concentration), through a reversible gel-sol transition, which is associated with a color change from deep yellow to bright red. © 2011 American Chemical Society

  3. Development of generic low molecular weight heparins: a perspective.

    PubMed

    Fareed, Jawed; Leong, Wendy; Hoppensteadt, Debra A; Jeske, Walter P; Walenga, Jeanine; Bick, Rodger L

    2005-02-01

    It is clear that the introduction of generic versions of low molecular weight heparins (LMWHs) is inevitable; however, it is important that the generic products are manufactured in strict compliance with the manufacturing specification of the branded product. Furthermore, regulatory agencies should require additional data on the chemical biologic, pharmacologic/toxicologic, and dose-response relationship in specific settings. Although there is strong opposition to stop the introduction of these drugs, their development will reduce cost and permit availability to all patients who need them. Some objective guidelines for the proper development of these drugs are needed. Only expert groups and advisory panels to the regulatory bodies can develop these guidelines.

  4. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-08

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  5. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  6. Conformations of low-molecular-weight lignin polymers in water

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  7. Synthesis of high molecular weight PEO using non-metal initiators

    DOEpatents

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  8. Effect of weight loss on high-molecular weight adiponectin in obese children.

    PubMed

    Martos-Moreno, Gabriel Á; Barrios, Vicente; Martínez, Guillermo; Hawkins, Federico; Argente, Jesús

    2010-12-01

    Our aim was to determine the influence of weight reduction on total (T-) and high-molecular weight (HMW-) adiponectin in obese (OB) prepubertal children. Seventy OB prepubertal white patients were followed for 18 months and studied after reducing their BMI by 1 (n = 51) and 2 standard deviation scores (SDS) (n = 21) under conservative treatment, and 6 months after achieving weight loss (n = 44). Body composition dual-energy X-ray absorptiometry (DXA) and serum levels of T- and HMW-adiponectin, resistin, leptin, leptin soluble receptor (sOB-R), tumoral necrosis factor-α and interleukin-6 were determined. The control group consisted of 61 healthy prepubertal children. At diagnosis T-adiponectin was higher (P < 0.01; confidence interval (+0.04) - (+0.15)) and HMW-adiponectin lower (P < 0.001; confidence interval (-0.45) - (-0.21)) in OB children than in controls. A reduction in body fat increased T- and HMW-adiponectin and sOB-R (all P < 0.001) and decreased leptin (P < 0.001) and interleukin-6 levels (P < 0.05). After 6 months of sustained weight reduction a decrease in tumoral necrosis factor-α (P < 0.01) occurred, whereas weight recovery increased leptin (P < 0.001) and decreased T-adiponectin (P < 0.05). HMW-adiponectin levels negatively correlated with homeostasis model assessment (HOMA) index and BMI in the whole cohort (both P < 0.001), as did T-adiponectin levels and HOMA index in OB patients (P < 0.01), but neither T- nor HMW-adiponectin correlated with body fat content (BFC) in OB children. We conclude that the impairment of T- and HMW-adiponectin levels in childhood obesity is different to that in elder OB patients, showing closer relationship with carbohydrate metabolism parameters than with BFC, but increasing their levels after weight loss and in association with metabolic improvement.

  9. WeGET: predicting new genes for molecular systems by weighted co-expression

    PubMed Central

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  10. Depletion of high molecular weight dextran from the red cell surface measured by particle electrophoresis.

    PubMed

    Rad, Samar; Gao, Jie; Meiselman, Herbert J; Baskurt, Oguz K; Neu, Björn

    2009-02-01

    The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biological and biophysical interest, yet the mechanistic details governing the process are still being explored. A depletion model has been proposed for aggregation by the neutral polyglucose dextran and its applicability at high molecular weights has been recently documented. In the present study the depletion of high molecular weight dextrans on the red cell surface was measured as a function of polymer molecular mass (40 kDa-28 MDa), ionic strength (5 and 15 mM NaCl) and polymer concentration (< or =0.9 g/dL). The experimental data clearly indicate an increasing depletion effect with increasing molecular weight: the effects of medium viscosity on RBC mobility were markedly overestimated by the Helmholtz-Smoluchowski relation, with the difference increasing with dextran molecular mass. These results agree with the concept of polymer depletion near the RBC surface and lend strong support to a "depletion model" mechanism for dextran-mediated RBC aggregation. Our findings provide important new insight into polymer-RBC interactions and suggest the usefulness of this model for fundamental studies of cell-cell affinity and for the development of new agents to stabilize or destabilize specific bio-fluids.

  11. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as a... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular weight...

  12. LARC-TPI 1500 series controlled molecular weight polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald; St. Clair, Terry; Burks, Harold; Gautreaux, Carol; Yamaguchi, Akihiro

    1990-01-01

    LARC-TPI, a linear high temperature thermoplastic polyimide, was developed several years ago at NASA Langley Research Center. This material has been commercialized by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan, as a varnish and powder. More recently, a melt-extruded film of a controlled molecular weight of this same polymer has been supplied to NASA Langley Research Center for evaluation. This new form, called LARC-TPI 1500 series, has been prepared in three molecular weights - high, medium and low flow polymers. The subject of this investigation deals with the rheological properties of the high and medium flow powders and the adhesive properties of the medium flow melt-extruded film. Rheological studies indicate that the high and medium flow forms of the polymer fall in the flow range of injection moldable materials. Adhesive data generated on the medium flow extruded film shows this form to be well suited for structural adhesive bonding. The data are as good or better than that for LARC-TPI data of previous studies.

  13. Ice Nucleation by High Molecular Weight Organic Compounds

    NASA Astrophysics Data System (ADS)

    Cantrell, W.

    2003-12-01

    Deep convection in the tropics is frequently associated with biomass burning. Recent work has suggested that the size of ice crystals in the anvils of tropical cumulonimbus clouds may be affected by biomass burning, though the mechanism for such an effect is uncertain (Sherwood, 2002). We will present results of an investigation of the role that high molecular weight organic compounds, known to be produced in biomass burning (Elias et al., 1999), may play in tropical cirrus anvils through heterogeneous nucleation of ice. In particular, we examine the mechanisms underlying heterogeneous nucleation of ice by films of long chain alcohols by studying the interaction of the alcohols and water/ice using temperature controlled, Attenuated Total Reflection - Fourier Transform Infrared spectroscopy. The mechanisms are interpreted in the context of recent criticisms of some aspects of classical nucleation theory (Seeley and Seidler, 2001; Oxtoby, 1998). References V. Elias, B. Simoneit, A. Pereira, J. Cabral, and J. Cardoso, Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry. Environ. Sci. Tecnol., 33, 2369-2376, 1999. D. Oxtoby, Nucleation of first-order phase transitions. Acc. Chem. Res., 31, 91-97, 1998. L. Seeley and G. Seidler, Preactivation in the nucleation of ice by Langmuir films of aliphatic alcohols. J. Chem. Phys., 114, 10464-10470, 2001. S. Sherwood, Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 1051-1063, 2002.

  14. Low molecular weight Abeta induces collapse of endoplasmic reticulum.

    PubMed

    Lai, Cora Sau-Wan; Preisler, Julie; Baum, Larry; Lee, Daniel Hong-Seng; Ng, Ho-Keung; Hugon, Jacques; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-05-01

    The endoplasmic reticulum (ER) is a dynamic multifunction organelle that is responsible for Ca(2+) homeostasis, protein folding, post-translational modification, protein degradation, and transportation of nascent proteins. Disruption of ER architecture might affect the normal physiology of the cell. In yeast, expansion of the ER is observed under unfolded protein response (UPR) and subsequently induces autophagy initiated from the ER. Here, we found that soluble low molecular weight of Abeta disrupted the anchoring between ER and microtubules (MT) and induced collapse of ER. In addition, it decreased the stability of MT. Subsequently, low molecular weight Abeta triggered autophagy and enhanced lysosomal degradation, as shown by electron microscopy and live-cell imaging. Dysfunction of ER can be further proved in postmortem AD brain and transgenic mice bearing APP Swedish mutation by immunohistochemical analysis of calreticulin. Treatment with Taxol, a MT-stabilizing agent, could partially inhibit collapse of the ER and induction of autophagy. The results show that Abeta-induced disruption of MT can affect the architecture of the ER. Collapse/aggregation of the ER may play an important role in Abeta peptide-triggered neurodegenerative processes.

  15. Controlling silk fibroin microspheres via molecular weight distribution.

    PubMed

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4-KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength>0.7 M and pH>7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications.

  16. High-molecular-weight hemolysin of Clostridium tetani.

    PubMed Central

    Mitsui, K; Mitsui, N; Kobashi, K; Hase, J

    1982-01-01

    Clostridium tetani excretes hemolysins of two size classes, a high-molecular-weight hemolysin (HMH), which was eluted near void volume of a Sepharose 6B column, and conventional tetanolysin (molecular weight, approximately 50,000). The total hemolysin activity in the culture supernatant increased sharply with growth of bacteria and remained at a high level during autolysis. The content of HMH, however, decreased from 41% at 4 h of culture to 0.4% at the early stage of autolysis. The cell bodies also exhibited hemolytic activity, 70% of which could be solubilized and separated into HMH and the 50,000 Mr tetanolysin as extracellular hemolysins. The activity ratio of HMH to the total solubilized hemolysins was 0.45, on the average, at 6 h of culture but was 0.23 at the middle of logarithmic growth. Partially purified HMH from both sources appeared as broken pieces of cytoplasmic membranes under an electron microscope. The ratio of proteins to phospholipids in HMH was found to 3.26, a value similar to that in cell membrane. The total cell hemolytic activity decreased by 90 or 75% upon addition of chloramphenicol or anti-tetanolysin serum, respectively, into a 6-h-old culture of bacteria. It is suggested that HMH is a complex of tetanolysin with a membrane fragment and releases the conventional tetanolysin during bacterial culture. Images PMID:7040245

  17. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    PubMed Central

    Maydan, Jason; Thomas, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; Hahn, Kristen; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstrate the ability of Boreal Genomics' Aurora instrument to provide pure, high molecular weight (HMW) DNA 250-1,100 kb in length, ideally suited for optical mapping. The Aurora performs electrophoretic DNA purification within an agarose gel in reusable cartridges, protecting long DNA molecules from shearing forces associated with liquid handling steps common to other purification methods. DNA can be purified directly from intact cells embedded and lysed within an agarose gel, preserving the highest molecular weight DNA possible while achieving exceptional levels of purity. The Aurora delivers DNA in a buffer solution, where DNA can be condensed and protected from shearing during recovery with a pipette. DNA is then returned to its regular coiled state by simple dilution prior to optical mapping. Here we present images showing HMW DNA purification taking place in the Aurora and subsequent images of single DNA molecules on OpGen's Argus® Optical Mapping System. Future work will focus on further optimizing Aurora HMW DNA purification to bias DNA recovery in favor of only the longest molecules in a sample, maximizing the benefits of optical mapping.

  18. Determination of molecular weight distributions in native and pretreated wood.

    PubMed

    Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S

    2015-03-30

    The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impact of molecular weight in four-branched star vectors with narrow molecular weight distribution on gene delivery efficiency.

    PubMed

    Nemoto, Yasushi; Borovkov, Alexey; Zhou, Yue-Min; Takewa, Yoshiaki; Tatsumi, Eisuke; Nakayama, Yasuhide

    2009-12-01

    A series of star-shaped cationic polymers, termed star vectors (SVs), has been developed as effective nonviral gene delivery carriers. In this study, we separated SVs into several fractions having different molecular weights with very narrow molecular weight distributions in order to examine in detail the influence of the molecular weight of the SVs on the gene transfection efficiency. As a model compound for several types of SVs, 4-branched poly(N,N-dimethylaminopropyl acrylamide) having a molecular weight (M(n)) of approximately 35 kDa and polydispersity of 1.6 was prepared by iniferter-based radical polymerization. The SVs were separated using size-exclusion chromatography to obtain seven fractions having M(n) ranging from 27 kDa to 73 kDa with polydispersity ranging from 1.1 to 1.2. All the fractionated SVs have similar pH of 10.2-10.4 and were able to interact with and condense luciferase-encoding plasmid deoxyribonucleic acid (DNA) to yield SV/DNA polyplexes. A water-soluble tetrazolium-1 (WST) assay showed that all SVs had minimal cellular cytotoxicity under an N/P charge ratio of 10. The critical micellar concentration decreased with an increase in the M(n) of the fractionated SVs; however, the particle size of the polyplexes, exclusion activity of ethidium bromide, and zeta-potential of the polyplexes increased. An in vitro evaluation using COS-1 cells at an N/P ratio of 10 showed that transfection activity increased almost linearly with M(n). The highest transfection activity was obtained for SVs with the highest M(n) (73 kDa), which was over 7 times that for the SVs with the lowest M(n) (27 kDa), the nonfractionated original SV, or PEI standard. The transfection efficiency was more correlated with the amphiphilicity or hydrophobicity of the SVs and the surface potential and condensate density of the polyplexes than with the particle size.

  20. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  1. Weight loss in humans in space.

    PubMed

    Matsumoto, Akiko; Storch, Kenneth J; Stolfi, Adrienne; Mohler, Stanley R; Frey, Mary Anne; Stein, T Peter

    2011-06-01

    Bodyweight loss during spaceflight has been observed among astronauts since the early space missions. Considerable mission data has been accumulated, including data from female astronauts, on the many Shuttle and International Space Station missions. The purpose of this study was to investigate the association between observed weight loss during spaceflight and potential covariate factors. We performed a statistical analysis of the association between bodyweight change and plausible clinical and mission covariates, using data obtained from the NASA Longitudinal Study of Astronaut Health (LSAH). We confirmed that spaceflight is associated with weight change (-2.1 +/- 0.1%, N = 514). Prospective predictors of weight loss included: being a first-time astronaut, preflight bodyweight and BMI, routinely performing preflight exercise sessions lasting greater than 1 h, and baseline levels of cholesterol, potassium, and chloride. Severe space motion sickness was significantly associated with greater weight loss. Unexpectedly, a higher number of extravehicular activities per mission protected against weight loss. Mission duration had the strongest association with bodyweight change (-2.4 +/- 0.4% per 100 d in space). On average, space missions are associated with cumulative loss of bodyweight over time. Unless effective countermeasures are implemented, significant weight loss will be a likely outcome in a subset of astronauts as mission durations increase. New predictors of intra-mission bodyweight changes and other associated factors are identified.

  2. Human Mars Mission: Weights and Mass Properties. Pt. 1

    NASA Technical Reports Server (NTRS)

    Brothers, Bobby

    1999-01-01

    This paper presents a final report on The Human Mars Mission Weights and Measures. The topics included in this report are: 1) Trans-Earth Injection Storage Human Mars Mission (HMM) Chemical Design Reference Mission (DRM) v4.0a Weight Breakout; 2) Ascent Stage HMM Chemical DRM v4.0a Weight Breakout; 3) Descent Stages HMM Chemical DRM v4.0a Weight Breakout; 4) Trans-Mars Injection Stages HMM Chemical DRM v4.0a Weight Breakout; 5) Trans-Earth Injection Stage HMM Solar Electric Propulsion (SEP) DRM v4.0a Weight Breakout; 6) Ascent Stage HMM SEP DRM v4.0a Weight Breakout; 7) Descent Stages HMM SEP DRM v4.0a Weight Breakout; 8) Trans-Mars Injection Stages HMM SEP DRM v4.0a Weight Breakout; 9) Crew Taxi Stage HMM SEP DRM v4.0 Weight Breakout; 10)Trans-Earth Injection Stage HMM Nuclear DRM v4.0a Weight Breakout; 11) Ascent Stage HMM Nuclear DRM v4.0a Weight Breakout; 12) Descent Stages HMM Nuclear DRM v4.0a Weight Breakout; 13) Trans-Mars Injection Stages HMM Nuclear DRM v4.0a Weight Breakout; and 14) HMM Mass Properties Coordinate System.

  3. Low-molecular-weight heparin inhibition in classical complement activation pathway during pregnancy.

    PubMed

    Oberkersch, Roxana; Attorresi, Alejandra I; Calabrese, Graciela C

    2010-05-01

    Low-molecular-weight heparin is used clinically for the prevention of pregnancy complications associated with prothrombotic disorders, particularly anti-phospholipid syndrome. Nevertheless, recent studies have suggested that heparin may exert direct effects on the placental trophoblast, independently of its anticoagulant activity. In addition, heparin prevents complement activation in vivo and protects mice from pregnancy complications. The inhibition of the classical complement activation pathway by heparin was analyzed by means of in vitro assays and in pregnant women receiving prophylaxis with therapeutic doses (40 mg/day) of subcutaneous low molecular weight heparin by haemolysis of antibody-sensitized sheep erythrocytes (CH(50) assay). The specific interaction between low-molecular-weight heparin and the C1q subunit of the C1 complex of the complement cascade allowed the isolation of a small subpopulation of heparin ( 8.03+/-1.20 microg %), with an anti-activated factor X activity more than four times greater than the starting material. This subpopulation could be responsible for the in vitro inhibition of the classical complement activation pathway evaluated by the total haemolysis of antibody-sensitized sheep erythrocytes. About 60 microg/ml of low molecular weight heparin was needed to achieve 50% of haemolysis. The detection of the classical complement pathway inhibition in pregnant women treated with heparin required a first activation with aggregated human IgG. We concluded that the interaction between low-molecular-weight heparin and C1q could be relevant not only in the complement-dependent, but also in the complement-independent inflammation mechanisms responsible for the prevention of pregnancy loss. Published by Elsevier Ltd.

  4. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction.

    PubMed

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Azzouna, Rana Ben; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Guludec, Dominique Le; Letourneur, Didier; Chauvierre, Cédric

    2014-09-23

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.

  5. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application.

  6. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  7. Expression of low molecular weight proteins in patients with leukaemia.

    PubMed

    Sheikh, N; Abid, R; Qureshi, A W; Basheer, T

    2012-06-01

    The current study is conducted to observe the differences in the level of low molecular weight proteins in the sera of patients with leukaemia in comparison to healthy subjects (control group). The sera of patients with leukaemia showed 15 peaks in the densitometric curve in comparison to the seven peaks of the controls. The peaks in the experimental samples that coincide with those in the control were of 134.14, 113.15, 76.06, 63.25, 48.07, 22.85 and 16.47 kDa molecular weights, respectively. Most of the new peaks appeared between the proteins of molecular weight 36-29 kDa in the experimental groups. Mean density of the 134.14 kDa protein band showed an increase in the protein in experimental groups I and II only whereas 113.15 and 22.85 kDa protein were increased in all experimental groups of patients with leukaemia. The expression of 76.06 and 63.25 kDa protein fraction was downregulated in the patients with leukaemia. A decline in the level of the protein of 48.07 kDa was observed in patients with leukaemia except in group I. Unlike the other protein fractions, the level of the protein of 16.47 kDa was significantly (p < 0.05) increased with a maximum density in group II. Intergroup experimental) comparison revealed an increasing pattern of 95.44 and 89.21 kDa with maximum level in group III sera. However the protein fractions of 38.07 and 34.94 kDa varied in the serum with maximum density in Group IV Protein fractions of 32.92 and 31.24 kDa were expressed in all age groups of patients with leukaemia with a maximum density in group III whereas the percentage densities of 14.42 and 13.56 kDa protein were quite different. This preliminary study will provide a basis to study the role of different proteins in patients with leukaemia.

  8. Fortification of human milk in very low birth weight infants (VLBW <1500 g birth weight).

    PubMed

    Adamkin, David H; Radmacher, Paula G

    2014-06-01

    The American Academy of Pediatrics supports the feeding of human milk for all infants. Very-low-birth-weight and extremely low-birth-weight infants especially can benefit from the immune and neurodevelopmental effects of human milk. However, human milk alone is nutritionally inadequate for the rapid growth of the very-low-birth-weight infant during a critical window for brain development and requires fortification to meet current recommendations. There are a variety of products, devices, and strategies that can be used to fine tune nutritional support of these very vulnerable infants.

  9. Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates.

    PubMed

    Yang, Jun; Vittori, Natale; Wang, Weiwei; Shi, Yong-Cheng; Hoeflinger, Jennifer L; Miller, Michael J; Pan, Yang

    2017-03-01

    There is interest in novel fibers as potential prebiotics for new and reformulated food products. Two konjac glucomannan (KGM) hydrolysates were developed by enzymatic hydrolysis with (KGMH I) or without (KGMH II) mechanical shear pre-treatment. These were characterized and evaluated as fermentation substrates using five lactobacilli and three bifidobacteria. Enzymatic treatment of native KGM reduced the average molecular weights of supernatant and pellet by ∼3-fold. Additional mechanical shear pre-treatment further reduced supernatant and pellet molecular weights by 5% and 35%, respectively. We postulated that pulverized and depolymerized short-chain KGM would better promote the growth of lactobacilli and bifidobacteria. Most lactobacilli fermented KGM hydrolysates. Lactobacillus acidophilus and Lactobacillus plantarum fermented KGMH I and II better than they fermented inulin. Overall, bifidobacteria were not strong fermenters of KGM hydrolysates. Both pulverization and enzymatic depolymerization significantly affected KGM molecular weight, suggesting that human gastrointestinal bacteria can utilize KGM hydrolysates with reduced weights. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  12. Adsorption of low-molecular-weight sodium polyacrylate on hydroxyapatite.

    PubMed

    Misra, D N

    1993-10-01

    Adsorption of low-molecular-weight sodium polyacrylate from aqueous solution onto synthetic hydroxyapatite was studied at room temperature so that the mechanism of adhesion of polyacrylate cements to tooth mineral could be elucidated. The adsorption isotherm of sodium polyacrylate was Langmuirian in shape and was thus qualitatively different from that of polyacrylic acid (Misra, 1991), which exhibited an adsorption maximum. The self-association of the molecules that probably causes the maximum to occur with polyacrylic acid was effectively absent for the relatively well-ionized, electrostatically repelling polyacrylate ions of the salt. With the adsorption of acrylate ions, the concentration of phosphate ions increased monotonically, while the concentration of calcium ions showed a minimum. The adsorption of sodium polyacrylate was irreversible, as it was for polyacrylic acid.

  13. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  14. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Molecular Weight

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    2011-03-01

    The influence of nanoconfinement on the free radical polymerization of methyl methacrylate is investigated. Nanoporous controlled pore glass (CPG) is used as a nanoconfining matrix for the polymerization. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization using differential scanning calorimetry (DSC). Preliminary results indicate several interesting effects for polymerization in 110 nm diameter pores: the induction time increases under nanoconfinement, the effective reaction rate constant increases, the effective activation energy is unchanged, and the gel effect or autoaccleration occurs at earlier times after induction. The latter result concerning the gel effect is presumably due to the decrease in diffusivity under nanoconfinement which results in a decrease in the termination rate of free radicals. The cause of the longer induction times and accelerated reaction rates just after induction are under investigation. The influence of nanoconfinement on molecular weight will also be examined.

  15. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  16. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  17. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  18. Biological effects of high molecular weight lignin derivatives.

    PubMed

    Pessala, Piia; Schultz, Eija; Kukkola, Jukka; Nakari, Tarja; Knuutinen, Juha; Herve, Sirpa; Paasivirta, Jaakko

    2010-10-01

    A number of high molecular weight (HMW) lignin derivatives possessing varied chemical properties were screened for their biological effects in order to obtain more information on the possible structural features of HMW lignin-related effects. The studied compounds were both commercial and in-house extracted lignin derivatives. Bioassays used include reverse electron transport (RET), Vibrio fischeri, Daphnia magna, and juvenile rainbow trout (Oncorhynchus mykiss) hepatocytes. The studied lignin derivatives inhibited the in vitro systems and luminescence of V. fischeri bacteria to some extent-daphnids were not affected. It seems that, at least in the RET assay, certain pH-dependent functional groups in lignin may be of importance regarding the biological effects.

  19. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  20. Hydrophobic composition based on mixed-molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  1. New cyanopeptide-derived low molecular weight thrombin inhibitors.

    PubMed

    Radau, Gregor; Gebel, Jana; Rauh, Daniel

    2003-08-01

    Thrombosis is the result of defective regulation of the hemostasis system. This cardiovascular disorder may lead to deep vein thrombosis, myocardial infarction, and stroke. The majority of current drug research is focused on finding inhibitors of thrombin - the global player in hemostasis. In our work, we emphasize investigation of the marine environment to yield new lead structures from marine organisms like blue-green algae (cyanobacteria). This article deals with the design, syntheses, and inhibition tests of new low molecular weight thrombin inhibitors utilizing cyanopeptides, the secondary metabolites of cyanobacteria with interesting biological activities, as new lead structures. Starting with aeruginosin 98-B (2) as a lead structure, we have developed and synthesized new, selective acting inhibitors of thrombin (RA-1001 and RA-1002), which are suitable targets for further structure-activity studies.

  2. The low molecular weight proteome of Halobacterium salinarum.

    PubMed

    Klein, Christian; Aivaliotis, Michalis; Olsen, Jesper V; Falb, Michaela; Besir, Hüseyin; Scheffer, Beatrix; Bisle, Birgit; Tebbe, Andreas; Konstantinidis, Kosta; Siedler, Frank; Pfeiffer, Friedhelm; Mann, Matthias; Oesterhelt, Dieter

    2007-04-01

    Systematic investigation of low molecular weight proteins (LMW, below 20 kDa) in the archaeon Halobacterium salinarum resulted in a 6-fold enhancement of the identification rate, reaching 35% of the theoretical proteome in that size range. This was achieved by optimization of common protocols for protein analysis with general applicability. LMW proteins were rapidly and effectively enriched by filter membrane centrifugation followed by tricine SDS-PAGE. Without staining and with significantly shortened digestion protocols, LMW proteins were identified using an FT-ICR mass spectrometer which allows reliable protein identification by MS3 of a single peptide. In addition to a series of technical challenges, small proteins may show low gene expression levels as suggested by their low average codon adaptation index. Twenty functionally uncharacterized proteins contain a characteristic DNA/RNA binding zinc finger motif which underlines the biological relevance of the small proteome and the necessity of their analysis for systems biology.

  3. Receptor mediated cellular uptake of low molecular weight dendritic polyglycerols.

    PubMed

    Calderón, Marcelo; Reichert, Stephanie; Welker, Pia; Licha, Kai; Kratz, Felix; Haag, Rainer

    2014-01-01

    The development of effective polymer-based nanocarriers which are able to target diseased tissues still remains a great challenge in current research. Dendritic polyglycerols have emerged as novel polymeric scaffolds that have demonstrated a great potential for diverse biomedical applications. These architectures have already proven their usefulness in therapeutic approaches related to multivalency, given by the synergy between the nanosized dimensions combined with the high density of functional groups. However, a continuous effort is necessary to modify and tailor polyglycerol architectures to fit the future demands of biomedical applications. The present work deals with the development of a general synthetic strategy that allows the linkage of low molecular weight dendritic polyglycerols to fluorescent dyes and cell targeting ligands. The receptor mediated cellular uptake of the polyglycerol conjugates highlight their potential to acts as new targeted nanocarriers that should be able to decrease non-specific cellular uptake.

  4. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    PubMed

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  5. Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives.

    PubMed

    Xu, Xu; Bi, Decheng; Wan, Min

    2016-01-01

    Alginate is a naturally occurring acidic linear polysaccharide obtained from marine brown seaweed. Low molecular weight structurally diverse derivatives and oligosaccharides derived from alginate have shown various tremendous biological and pharmacological activities. It has been demonstrated that immuno-inflammation is involved in many prevalent human diseases, such as cancer, severe infection and neurodegeneration. Given the activities of marine natural products in the regulation of immune responses, increasing efforts are being made toward the development of lowmolecular- weight natural compounds that aid in the prevention and treatment of immune- and inflammatory-related diseases. In this review, we describe the development of chemical modification and molecular depolymerization methods that modify the physicochemical and biological characteristics of alginate. Additionally, current progress in research on immuno-inflammatory, anti-neurodegenerative and anti-tumor activities of alginate derivatives is highlighted.

  6. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  7. [Anaphylactic reactions to low-molecular weight chemicals].

    PubMed

    Nowak, Daria; Panaszek, Bernard

    2015-02-06

    Low-molecular weight chemicals (haptens) include a large group of chemical compounds occurring in work environment, items of everyday use (cleaning products, clothing, footwear, gloves, furniture), jewelry (earrings, bracelets), drugs, especially in cosmetics. They cause type IV hypersensitive reactions. During the induction phase of delayed-type hypersensitivity, haptens form complexes with skin proteins. After internalization through antigen presenting cells, they are bound to MHC class II molecules. Next, they are exposed against specific T-lymphocytes, what triggers activation of Th1 cells mainly. After repeating exposition to that hapten, during effector phase, Th1 induce production of cytokines affecting non-specific inflammatory cells. Usually, it causes contact dermatitis. However, occasionally incidence of immediate generalized reactions after contact with some kinds of haptens is noticed. A question arises, how the hapten does induce symptoms which are typical for anaphylaxis, and what contributes to amplification of this mechanism. It seems that this phenomenon arises from pathomechanism occurring in contact urticaria syndrome in which an anaphylactic reaction may be caused either by contact of sensitized skin with protein antigens, high-molecular weight allergens, or haptens. One of the hypotheses indicates the leading role of basophiles in this process. Their contact with haptens, may cause to release mediators of immediate allergic reaction (histamine, eicosanoids) and to produce cytokines corresponding to Th2 cells profile. Furthermore, Th17 lymphocytes secreting pro-inflammatory interleukin-17 might be engaged into amplifying hypersensitivity into immediate reactions and regulatory T-cells may play role in the process, due to insufficient control of the activity of effector cells.

  8. Oral delivery of low molecular weight heparin by polyaminomethacrylate coacervates.

    PubMed

    Viehof, Angela; Lamprecht, Alf

    2013-08-01

    Oral bioavailability of low molecular weight heparin (LMWH) can be achieved by several advanced drug delivery approaches. Here, a new preparation method for coacervates (CAs) using non-toxic polyethylene glycol derivates was developed. LMWH were coacervated with polyaminomethacrylates (Eudragit® RL or RS) using polyethylene glycol (PEG) derivatives as non-toxic solvents. CAs were analyzed for their physicochemical properties and pharmacokinetic parameters were determined for different formulations in rabbits. CAs from both polymer types using various PEGs were of irregular shape and had particle sizes of around 40 μm, encapsulation efficiencies of >90%, and complete LMWH in vitro release was obtained within 2 h. In vivo, oral Absorption at doses of 300 IU/kg was rather low (F < 2.5%) while dose increase resulted in a maximum at 600 IU/kg (FRL: 6.0 ± 1.2%; FRS: 5.8 ± 2.5%) and 1,200 IU/kg did not result in higher bioavailability (FRL: 4.6 ± 0.4%; FRS: 4.1 ± 0.8%). CAs were applicable to various LMWH types where the oral availability decreased in the order fondaparinux>enoxaparin>nadroparin>certoparin depending mainly on the molecular weight. CAs prepared by an organic solvent-free method allowed the oral delivery of LMWHs. The therapeutic efficiency and the simple and solvent-free manufacturing process underlines the high potential of this new preparation method.

  9. Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes.

    PubMed

    Bodles, Angela M; Banga, Anannya; Rasouli, Neda; Ono, Fumiyo; Kern, Philip A; Owens, Randall J

    2006-11-01

    Adiponectin is an adipocyte-derived serum protein that plays important roles in energy homeostasis, obesity, and insulin sensitivity. Using sucrose gradients and Western blotting of nondenaturing gels, we examined the adiponectin isoforms secreted from human adipose tissue, human and mouse adipocytes, and cell lines in response to pioglitazone added in vitro. The predominant form secreted from adipose tissue in vitro was the high-molecular-weight (HMW) isoform, with small amounts of low-molecular-weight (LMW) forms present. The addition of pioglitazone (1-3 micromM) in vitro increased the secretion of the HMW isoform, with no significant effect on the other isoforms. Human adipose tissue was also examined for changes in adiponectin mRNA levels upon pioglitazone treatment. No difference was detected, suggesting that the effect of pioglitazone is not at the transcriptional level but, rather, at a posttranscriptional phase of the secretory pathway. Additional experiments were conducted to determine whether adiponectin expression was mechanistically similar in other adipose cells. Examination of primary human adipocytes revealed an increase in intracellular HMW isoform with a decline in LMW forms following pioglitazone treatment, with a corresponding increase in the secreted HMW form. Similar results were observed with primary mouse adipocytes, 3T3-F422A cells, and SGBS human adipocyte cells, although differences in the distribution of HMW and LMW isoforms were apparent between cell types. Although there are differences in isoforms between species, in all cases pioglitazone served to increase the secretion of the HMW form of adiponectin.

  10. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.

    PubMed

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-12-14

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.

  11. The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*

    PubMed Central

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-01-01

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219

  12. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  13. Low-molecular-weight heparin in pediatric patients.

    PubMed

    Sutor, Anton Heinz; Chan, Anthony K C; Massicotte, Patricia

    2004-02-01

    The incidence of thromboembolic events (TEs) in childhood is greatly underestimated. Two age groups account for approximately 70% of TEs in childhood: infants and teenagers. There are several predisposing risk factors for newborns such as small vessels, high hematocrit, and a unique neonatal hemostatic system. Central venous lines contribute to 80% of deep vein thrombosis in newborns. Other risk factors for all children are shock syndromes, trauma, surgery, heart and kidney disease, and acquired or hereditary thrombophilias. The best prophylaxis is to recognize, avoid, and remove risk factors if possible. This is particularly relevant in childhood, where risk factors can be found in the majority of TEs. The serious sequelae of TEs (mortality, and short- and long-term morbidity) require therapeutic intervention. Unfractionated heparin (UFH) has the following disadvantages: age-dependent unpredictable pharmacokinetics, the need for intravenous access for therapy and monitoring, delays in achieving therapeutic ranges, bleeding risk, the risk of heparin-induced thrombocytopenia, and osteoporosis with long-term use. Oral anticoagulants, in addition to some of these disadvantages, show considerable variation by diet (especially if there is a change from breast to bottle feeding), medication, and intercurrent illness. Review of case reports and cohort studies on 728 children treated with low-molecular-weight heparin (LMWH) indicate the following advantages over UFH: minimal monitoring, ease of administration (subcutaneous), and possibly equivalent efficacy and safety. Dose recommendations for pediatric patients cannot be directly extrapolated from those for adult patients. If dosages are calculated according to body weight, infants < 3 months (or < 5 kg) need approximately 50% more LMWH than older children or adults to reach prophylactic or therapeutic anti-factor Xa levels. Further studies are necessary to address the following: the importance of risk factors, the

  14. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  15. Heat-mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2002-08-01

    Here, we report an ultra-rapid method for the transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In this procedure, the electro-transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight proteins (a purified protein, molecular weight protein standards and proteins from a human tissue extract) could be carried out in 10 min for a 0.75-mm, 7% SDS-PAGE gel. For 10% and 12.5% gels (0.75 mm), the corresponding time was 15 min. In the case of 1.5-mm gels, a complete transfer could be carried out in 20 min for 7%, 10% and 12.5% gels. The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. When the heat-mediated transfer method was compared with a conventional transfer protocol, under similar conditions, we found that the latter method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is very rapid, avoids the use of methanol and is particularly useful for the transfer of high molecular weight proteins.

  16. Application of the weibull distribution function to the molecular weight distribution of cellulose

    Treesearch

    A. Broido; Hsiukang Yow

    1977-01-01

    The molecular weight distribution of a linear homologous polymer is usually obtained empirically for any particular sample. Sample-to-sample comparisons are made in terms of the weight- or number-average molecular weights and graphic displays of the distribution curves. Such treatment generally precludes data interpretations in which a distribution can be described in...

  17. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2768 Sorbitol SX850, or equivalent) 12 percent in H2O by weight on 60-80 mesh nonacid washed... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol...

  18. Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome

    PubMed Central

    Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    The advanced properties of mesoporous silica have been demonstrated in applications which include chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the correlation between the harvesting specificity and the physico-chemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery. PMID:20013801

  19. Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome.

    PubMed

    Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro

    2010-02-01

    The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI-TOF-MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.

  20. High molecular weight adiponectin correlates positively with myeloperoxidase in patients with type 2 diabetes mellitus.

    PubMed

    Bobbert, P; Rauch, U; Stratmann, B; Goldin-Lang, P; Antoniak, S; Bobbert, T; Schultheiss, H P; Tschoepe, D

    2008-11-01

    Adiponectin (APN) is present in human plasma as a low molecular weight (LMW), a middle molecular weight (MMW) and a high molecular weight form (HMW). As a support to determine properties such as anti-atherogenic or atherogenic effects, recent clinical studies suppose to determine the ratio of each APN multimer to total APN but not the absolute plasma concentration of APN. In the present study, the correlation of APN and its multimers with myeloperoxidase (MPO), an enzyme with pro-inflammatory properties, was examined in patients with type 2 diabetes mellitus. MPO and APN serum levels were assessed in 49 patients with type 2 diabetes mellitus at the beginning and at the end of an anti-diabetic treatment. After treatment a significant increase in the ratio of HMW to total APN (from 0.43+/-0.16 to 0.59+/-0.14, p<0.05) was found. Before treatment, HMW-APN was correlated positively with MPO (r=0.314, p<0.05). Moreover, a positive correlation was observed between the increased HMW ratio and MPO during treatment (r=0.304, p<0.05). HMW-APN correlates positively with MPO in patients with type 2 diabetes. Therefore, HMW-APN may exert possible pro-inflammatory effects in type 2 diabetes.

  1. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  2. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Optimization of parameters for coverage of low molecular weight proteins

    PubMed Central

    Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin

    2010-01-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  4. Optimization of parameters for coverage of low molecular weight proteins.

    PubMed

    Müller, Stephan A; Kohajda, Tibor; Findeiss, Sven; Stadler, Peter F; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin; Kalkhof, Stefan

    2010-12-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  5. Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans.

    PubMed

    Müller, Manfred J; Enderle, Janna; Bosy-Westphal, Anja

    2016-12-01

    Metabolic adaptation to weight changes relates to body weight control, obesity and malnutrition. Adaptive thermogenesis (AT) refers to changes in resting and non-resting energy expenditure (REE and nREE) which are independent from changes in fat-free mass (FFM) and FFM composition. AT differs in response to changes in energy balance. With negative energy balance, AT is directed towards energy sparing. It relates to a reset of biological defence of body weight and mainly refers to REE. After weight loss, AT of nREE adds to weight maintenance. During overfeeding, energy dissipation is explained by AT of the nREE component only. As to body weight regulation during weight loss, AT relates to two different set points with a settling between them. During early weight loss, the first set is related to depleted glycogen stores associated with the fall in insulin secretion where AT adds to meet brain's energy needs. During maintenance of reduced weight, the second set is related to low leptin levels keeping energy expenditure low to prevent triglyceride stores getting too low which is a risk for some basic biological functions (e.g., reproduction). Innovative topics of AT in humans are on its definition and assessment, its dynamics related to weight loss and its constitutional and neuro-endocrine determinants.

  6. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  7. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  8. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    PubMed

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  9. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  10. Photochemical Preparation of a Novel Low Molecular Weight Heparin

    PubMed Central

    Higashi, Kyohei; Hosoyama, Saori; Ohno, Asami; Masuko, Sayaka; Yang, Bo; Sterner, Eric; Wang, Zhenyu; Linhardt, Robert J.; Toida, Toshihiko

    2011-01-01

    Commercial low molecular weight heparins (LMWHs) are prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical ß-elimination, and enzymatic β-elimination. The disadvantages of these methods are that strong reaction conditions or harsh chemicals are used and these can result in decomposition or modification of saccharide units within the polysaccharide backbone. These side-reactions reduce product quality and yield. Here we show the partial photolysis of unfractionated heparin can be performed in distillated water using titanium dioxide (TiO2). TiO2 is a catalyst that can be easily removed by centrifugation or filtration after the photochemical reaction takes place, resulting in highly pure products. The anticoagulant activity of photodegraded LMWH (pLMWH) is comparable to the most common commercially available LMWHs (i.e., Enoxaparin and Dalteparin). 1H NMR spectra obtained show that pLMWH maintains the same core structure as unfractionated heparin. This photochemical reaction was investigated using liquid chromatography/mass spectrometry (LC/MS) and unlike other processes commonly used to prepare LMWHs, photochemically preparation affords polysaccharide chains of reduced length having both odd and even of saccharide residues. PMID:22205826

  11. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

  12. Protamine reversal of low molecular weight heparin: clinically effective?

    PubMed

    van Veen, Joost J; Maclean, Rhona M; Hampton, Kingsley K; Laidlaw, Stuart; Kitchen, Steve; Toth, Peter; Makris, Mike

    2011-10-01

    Low molecular weight heparins (LMWHs) are frequently used in the prophylaxis or treatment of venous thrombosis, acute coronary syndromes and peri-operative bridging. Major bleeding occurs in 1-4% depending on dose and underlying condition. Protamine is recommended for reversal but only partially reverses the anti-Xa activity and there are very limited data on clinical effectiveness. We retrospectively studied the effect of emergency reversal of LMWH with protamine in actively bleeding patients and patients requiring emergency surgery in our institution. Eighteen patients were identified through haematology referral/pharmacy records of protamine prescriptions between 1998 and 2009. Case notes were checked for the reversal indication, type/dose of LMWH, dose and clinical response to protamine, timing in relation to the last dose of LMWH and anti-Xa levels before and after protamine. All but one patient received enoxaparin. Fourteen were actively bleeding, three required emergency surgery without active bleeding and one had an accidental overdose without bleeding. The three patients requiring surgery had an uneventful procedure. In 12 of 14 patients with active bleeding, protamine could be evaluated. Bleeding stopped in eight. In the four with continuing bleeding, one had an additional coagulopathy. Protamine only partially affected anti-Xa levels. Protamine may be of use in reversing bleeding associated with LMWH but not in all patients. Anti-Xa levels were useful to assess the amount of anticoagulation before protamine administration but unhelpful in assessing its effect. Better reversal agents and methods to monitor LMWH therapy are required.

  13. Using low molecular weight heparin in special patient populations.

    PubMed

    Lim, Wendy

    2010-02-01

    Clinical trials evaluating low molecular weight heparin (LMWH) for the prevention and treatment of venous thromboembolism and acute coronary syndromes have led to their regulatory approval for these indications in the general population. However, certain patient populations have been excluded from these landmark clinical trials, including patients with renal insufficiency, obese patients and pregnant women. In these special populations, data on safety and efficacy is limited and typically based on pharmacokinetic studies often performed in healthy subjects, or small cohort studies which are generally not powered to evaluate clinical outcomes such as bleeding or recurrent thrombosis. Because LMWH is mainly cleared renally, patients with severe renal insufficiency are at risk of LMWH accumulation and increased bleeding risks. In obese patients, there is concern regarding possible overdosing of therapeutic dose LMWH, since LMWH does not distribute in fat tissue. There are also concerns about possible underdosing of prophylactic dose LMWH in obese individuals using the standard fixed doses, particularly in the extremely obese individuals undergoing bariatric surgery. Last, pregnancy poses challenges with regards to the safety of LMWH during pregnancy and use of LMWH around delivery. This review summarizes the existing data in these special populations and proposes general recommendations for practice.

  14. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-01-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application.

  15. Can we differentiate the low-molecular-weight heparins?

    PubMed

    Turpie, A G

    2000-01-01

    The low-molecular-weight heparins (LMWHs) have a number of therapeutic advantages, relative to standard unfractionated heparin (UFH). They are readily bioavailable when injected subcutaneously and can be given in fixed doses, allowing for far simpler administration. Several LMWHs are now commercially available, each demonstrating different physical and chemical properties and different activities in animal models of anticoagulation or hemorrhage. In clinical comparisons with placebo in the treatment of unstable coronary artery disease (UCAD), the LMWHs dalteparin sodium and nadroparin calcium have demonstrated good anticoagulant efficacy. In comparisons with UFH, on the other hand, only enoxaparin has shown superior anticoagulant activity, as reported in the results of the Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q-wave Coronary Events (ESSENCE) and Thrombolysis In Myocardial Infarction (TIMI) 11B trials. However, close scrutiny of the methodology of the clinical trials in UCAD reveals considerable differences in study designs, dosage regimens, duration of administration of active treatments, and the timing and definition of endpoints. Therefore, it would not be scientifically sound to compare results with the different LMWHs based on the current available studies. It is also not possible to draw any conclusions with regard to the relative efficacy of the different LMWHs, since there are no properly-sized comparative data between dalteparin sodium, enoxaparin sodium, and nadroparin calcium.

  16. Low molecular weight heparin use in unexplained recurrent miscarriage

    PubMed Central

    Yuksel, Halide; Kayatas, Semra; Boza, Aysen Telce; Api, Murat; Ertekin, A. Aktug; Cam, Cetin

    2014-01-01

    Objective: The aim of the study was to investigate whether the use of low molecular weight heparin (LMWH) improve live birth rates when compared with control group in patients with unexplained recurrent miscarriages (URM). Methods: In this prospective observational study 150 women with a history of two or more previous unexplained first trimester pregnancy loss who received LMWH; either enoxaparin (n=50), tinzaparin (n=50) or nothing (n=50) were followed for the pregnancy outcome measures. Only the patients who have used standardized dosage of LMWH (4000 IU/day enoxaparin or 3500 IU/day tinzaparin ) were included to the study. The primary end point was the live birth rate and secondary end points were the side effects, late pregnancy complications and neonatal outcome in the study cohorts. Results: Live birth was achieved 85% of the LMWH group and 66% of the control group (p=0.007). According to the subgroup analysis; live birth rates did not differ significantly between the enoxaparin and tinzaparin group (84% and 86%, respectively). Maternal and neonatal side effects were not statistically significant among the study participants. Conclusion: Thromboprophylaxis with LMWH resulted in a improved live-birth rate in patient with 2 or more consecutive unexplained recurrent pregnancy loss. Nevertheless these findings need to be confirmed in larger randomized trials. PMID:25674114

  17. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-07

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods.

  18. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites

    NASA Astrophysics Data System (ADS)

    Porras, A.; Tellez, J.; Casas-Rodriguez, J. P.

    2012-08-01

    Ultra high molecular weight polyethylene (UHMWPE) fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE) fibre reinforced composites were characterized using the End Notch Flexural (ENF) test. Critical strain energy release rate was obtained from the load - deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  19. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  20. Polymer vesicles in vivo: correlations with PEG molecular weight.

    PubMed

    Photos, Peter J; Bacakova, Lucie; Discher, Bohdana; Bates, Frank S; Discher, Dennis E

    2003-07-31

    PEG-modified lipid vesicles have already shown considerable utility in delaying vesicle clearance from the circulation. They are, however, limited in their ability to stably integrate high molar ratios of PEG-lipid due to the high curvature and micellar preference of the very large hydrophilic PEG chain. Polymersomes, by contrast, are vesicles composed entirely of PEG-based block copolymer amphiphiles that are not only more proportionately designed, but also have already been shown to considerably broaden the range of vesicle properties (e.g. stability). Here, polymersomes composed of varying length copolymer chains were injected into rats and found to have in vivo circulation times, tau(1/2), up to about two-fold longer than PEGylated, or Stealth, liposomes. The dependence of tau(1/2) on PEG molecular weight is nonetheless limited by uptake into the liver and spleen-as with liposomes. In vitro incubations of polymersomes in plasma indicate gradual opsonization through plasma protein adsorption, such that, when vesicles are held in an optical trap and presented to a phagocyte, rapid engulfment occurs only after incubation times of similar magnitude to tau(1/2). The stealthiness introduced to liposomes through PEGylation is thus extended here with completely synthetic polymersomes.

  1. Antiaging activity of low molecular weight peptide from Paphia undulate

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  2. Immunostimulatory and antiangiogenic activities of low molecular weight hyaluronic acid.

    PubMed

    Ke, Chunlin; Wang, Di; Sun, Yi; Qiao, Deliang; Ye, Hong; Zeng, Xiaoxiong

    2013-08-01

    The immunostimulatory activities of two low molecular weight hyaluronic acids (LMWHA-1 and LMWHA-2 with MW of 1.45×10(5) and 4.52×10(4) Da, respectively) and HA (MW, 1.05×10(6) Da) were evaluated by using in vitro cell models and in vivo animal models, and their effects on angiogenesis were measured in vivo by using the chick embryo chorioallantoic membrane (CAM) assay. The results demonstrated that LMWHA-1, LMWHA-2 and HA could promote the splenocyte proliferation, increase the activity of acid phosphatase in peritoneal macrophages and strengthen peritoneal macrophages to devour neutral red in vitro in a dose-dependent manner. Furthermore, LMWHA-1 and LMWHA-2 exhibited much stronger immunostimulatory activity than HA. For assay in vivo, LMWHA-1 and LMWHA-2 significantly increased the indices of spleen and thymus, the activity of lysozyme in serum and the swelling rate of earlap in delayed-type hypersensitivity in a dose-dependent manner. In the CAM model, the results showed that LMWHA-1, LMWHA-2 and HA suppressed angiogenesis in chicken embryos. Moreover, LMWHA-1 exhibited higher antiangiogenesis activity than LMWHA-2 and HA. All these results suggested that LMWHA might be a potential natural immunomodulator and a potential candidate compound for antiangiogenic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  4. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-07

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  5. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Dayama, Gargi; Decho, Alan W; Norman, R Sean

    2010-09-01

    Due to the presence of inhibitors such as extracellular polymeric substances (EPSs) and salts, most microbial mat studies have relied on harsh methods of direct DNA extraction that result in DNA fragments too small for large-insert vector cloning. High molecular weight (HMW) DNA is crucial in functional metagenomic studies, because large fragments present greater access to genes of interest. Here we report improved methodologies for extracting HMW DNA from EPS-rich hypersaline microbial mats. The protocol uses a combination of microbial cell separation with mechanical and chemical methods for DNA extraction and purification followed by precipitation with polyethylene glycol (PEG). The protocol yields >2 µg HMW DNA (>48 kb) per gram of mat sample, with A260:280 ratios >1.7. In addition, 16S rRNA gene analysis using denaturing gradient gel electrophoresis and pyrosequencing showed that this protocol extracts representative DNA from microbial mat communities and results in higher overall calculated diversity indices compared with three other standard methods of DNA extraction. Our results show the importance of validating the DNA extraction methods used in metagenomic studies to ensure optimal recovery of microbial richness.

  6. Regulatory considerations for generic or biosimilar low molecular weight heparins.

    PubMed

    García-Arieta, Alfredo; Blázquez, Antonio

    2012-06-01

    The aim of the present paper is to address the legal aspects, technical requirements and possible conditions of use associated to low molecular weight heparin generics and biosimilars that are arriving to the market in United States and the European Union, respectively. To this end the concept of "similar biological medicinal product" that was coined in 2003 by the pharmaceutical legislation of the European Union is compared to the concept of generic in the United States and the concept of generic in the European Union. This different legal basis determines directly the technical requirements to obtain a marketing authorisation. Therefore, the chemical/biological, non-clinical and clinical requirements to demonstrate therapeutic equivalence are different in these two Regulatory Authorities, FDA and EMA. Consequently, the possible conditions of use are different. In the United States the products approved as generics by the FDA are considered interchangeable to the Reference Listed Drug. In contrast, the EMA legislation only deals with the approvability or prescribability of the medicines and it is a national / regional decision of the member States to consider these biosimilar products as interchangeable or not.

  7. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  8. Composition and molecular weight distribution of carob germ protein fractions.

    PubMed

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  9. Generic low-molecular-weight heparins: some practical considerations.

    PubMed

    Fareed, Jawed; Leong, Wendy L; Hoppensteadt, Debra A; Jeske, Walter P; Walenga, Jeanine; Wahi, Raisesh; Bick, Rodger L

    2004-12-01

    It is now widely accepted that various low-molecular-weight heparins (LMWHs) exhibit specific molecular and structural attributes that are determined by the type of manufacturing process used. For example, enoxaparin, which is prepared by benzylation followed by alkaline hydrolysis of unfractionated heparin (UFH), exhibits a double bond at the nonreducing end and the presence of a unique bicyclic structure namely 1,6 anhydromanno glucose or mannose, or both, at the reducing end. Similarly, the other LMWHs, such as dalteparin, nadroparin, tinzaparin, and parnaparin, exhibit specific structural characteristics that may contribute to their own unique biochemical and pharmacological profiles. These unique features may not exhibit any major influence on the routinely determined anti-Xa and anti-IIa activities. However, these may have an impact on the pharmacokinetics and other biological actions such as the interactions with growth factors, blood components, and vascular cells. This is the reason for the initial caution for the noninterchangeability of the anti-Xa adjusted dosing of the different LMWHs. Although the nonanticoagulant biological effects of these drugs are poorly understood at this time, they are now recognized as contributing significantly to the overall therapeutic effects of these drugs. Because some of these drugs have proved to be effective in the management of cancer-associated thrombosis and exhibit improvements in mortality outcome, these LMWHs may also produce several other effects by modulating inflammatory processes, apoptosis, and other regulatory functions related to cellular functions at different levels. Thus, the interactions of these LMWHs with antithrombin and heparin cofactor II are not the only determinants of their biological actions. Release of tissue factor pathway inhibitor (TFPI), regulation of cytokines, nitric oxide, and eicosanoids contribute to their individuality. Such properties are not only dependent on the oligosaccharide

  10. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.

    PubMed

    Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu

    2016-12-11

    This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.

  11. Adenosine 5′-triphosphate–arginine phosphotransferase from lobster muscle. Molecular weight

    PubMed Central

    Virden, R.; Watts, D. C.; Watts, R. L.; Gammack, D. B.; Raper, J. H.

    1966-01-01

    1. The molecular weight of arginine kinase from lobster muscle has been determined by three procedures: ultracentrifuge analysis, gel filtration and density-gradient centrifugation. 2. The three methods give similar results and the best estimate of the molecular weight is 37000. 3. The enzyme does not readily show association–dissociation phenomena. 4. The usefulness of density-gradient centrifugation for determinations of molecular weight is briefly discussed. PMID:5965332

  12. Effect of cross-linking ultrahigh molecular weight polyethylene: Surface molecular orientation and wear characteristics

    SciTech Connect

    Sambasivan, Sharadha; Fischer, Daniel A.; Hsu, Stephen M.

    2007-07-15

    Molecular orientation at the surface layer of cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been examined. Molecular orientation has been shown to affect the wear resistance and surface mechanical properties of UHMWPE under biomechanical loading conditions. This study utilizes a nondestructive synchrotron based soft x-ray technique; near edge x-ray absorption fine structure at the carbon K-edge to examine the degree of surface molecular orientation of UHMWPE subjected to various cross-linking/sterilization techniques as a function of stress and wear. UHMWPE samples prepared under gamma irradiation, ethylene-oxide (EtO) treatment, and electron beam irradiation were worn in a wear tester systematically. Results suggest that the cross-linking resists surface orientation when the samples were under tensile and biomechanical stresses. The molecular orientation in the C-C chains in the polymer showed a monotonic decrease with an increase in gamma irradiation dosage levels. EtO sterilized samples showed more C-C chain orientation than the electron beam irradiated samples, but lower than the 30 kGy gamma irradiated samples. Ordered C-C chains in UHMWPE samples have been associated with more crystallinity or large strain plastic deformation of the polymer. Higher levels of gamma irradiation appear to induce cross-linking of C-C chains and render a polymer with more amorphous phase which resists orientation after wear and imparts wear resistance to the polymer.

  13. Low-Molecular-Weight Plasma Proteome Analysis Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2017-01-01

    While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10(-4) from the four types of plasma samples.

  14. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization.

    PubMed

    Chang, L C; Lee, H F; Yang, Z; Yang, V C

    2001-01-01

    Low molecular weight protamine (LMWP) appears to be a promising solution for heparin neutralization without the protamine-associated catastrophic toxic effects. The feasibility of this hypothesis was proven previously by using a peptide mixture produced from proteolytic digestion of protamine. To further examine the utility of this compound as an ultimate nontoxic protamine substitute, detailed studies on the purification and characterization of LMWP including the precise amino acid sequence, structure-function relationship, and possible mechanism were conducted. A number of LWMP fragments, composed of highly cationic peptides with molecular weights ranging from 700 to 1900 d, were prepared by digestion of native protamine with the protease thermolysin. These fragments were fractionated using a heparin affinity chromatography, and their relative binding strengths toward heparin were elucidated. Five distinct fractions were eluted at NaCl concentration ranging from 0.4 to 1.0 M and were denoted as TDSP1 to TDSP5, in increasing order of eluting ionic strength. Among these 5 fractions, TDSP4 and TDSP5 contained 3 LMWP peptide fragments, and they were found to retain the complete heparin-neutralizing function of protamine. By using a peptide mass spectrometry (MS) fingerprint mapping technique, the amino acid sequences of the microheterogeneous LMWP fragments in all these 5 elution fractions were readily identified. A typical structural scaffold made by arginine clusters in the middle and nonarginine residues at the N-terminal of the peptide sequence was observed for all these LMWP fragments. By aligning the sequences with the potency in heparin neutralization of these LMWP fragments, it was found that retention of potency similar to that of protamine required the presence of at least 2 arginine clusters in the LMWP fragments; such as the sequence of VSRRRRRRGGRRRR seen in the most potent LMWP fraction-TDSP5. The above finding was further validated by using a synthetic

  15. Molecular weight dependence of LB morphology of poly(n-hexyl isocyanate) (PHIC).

    PubMed

    Morioka, Takako; Shibata, Osamu; Kawaguchi, Masami

    2010-12-07

    The morphologies of Langmuir-Blodgett (LB) films of two fractionated poly(n-hexyl isocyanate) (PHIC) and those of their binary mixtures were observed by AFM, together with those of an unfractionated PHIC. The low molecular weight PHIC formed random packing of bundles consisting of rigid rods, while the high molecular weight PHIC formed random packing of bundles consisting of hairy rods. Bundle interpenetration was observed only for the latter in the semidilute regime. In the bilayer region, the area occupied by the PHIC bundles in the upper layer was obviously smaller for the high molecular weight PHIC than for the low molecular weight PHIC, suggesting that the bundles of high molecular weight PHIC more easily interpenetrate than those of low molecular weight PHIC. For the blended films composed of both low and high molecular weight PHICs, the characteristic morphologies of the respective PHIC samples were no longer present. Moreover, the morphologies of the blended films appeared to resemble each other at any molar fraction owing to the ideal miscibility of the low molecular weight and high molecular weight PHICs. The morphologies of the blended films were also similar to that of the unfractionated PHIC film in the dilute regime. In the semidilute regime, the blended films became rounded owing to an increase in bundles interpenetration between PHICs as compared to that in the dilute regime, whereas the morphology of unfractionated PHIC films remained unchanged as compared to that in the dilute regime.

  16. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  18. Molecular weight effects on interfacial properties of linear and ring polymer melts: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Meddah, Chahrazed; Milchev, Andrey; Sabeur, Sid Ahmed; Skvortsov, Alexander M.

    2016-11-01

    Using molecular dynamics simulations, we study and compare the pressure, P, and the surface tension, γ , of linear chains and of ring polymers at the hard walls confining both melts into a slit. We examine the dependence of P and γ on the length (i.e., molecular weight) N of the macromolecules. For linear chains, we find that both pressure and surface tension are inversely proportional to the chain length, P (N ) -P (N →∞ ) ∝N-1,γ (N ) -γ (N →∞ ) ∝N-1 , irrespective of whether the confining planes attract or repel the monomers. In contrast, for melts comprised of cyclic (ring) polymers, neither the pressure nor the surface tension is found to depend on molecular weight N for both kinds of wall-monomer interactions. While other structural properties as, e.g., the probability distributions of trains and loops at impenetrable walls appear quantitatively indistinguishable, we observe an amazing dissimilarity in the probability to find a chain end or a tagged monomer of a ring at a given distance from the wall in both kinds of polymeric melts. In particular, we demonstrate that the conformational equivalence of linear chains in a confined melt to a single chain under conditions of critical adsorption to a planar surface, established two decades ago, does also hold for ring polymers in a melt of linear chains. This analogy does not hold, however, for linear and ring chains in a confined melt of ring chains.

  19. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  20. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  1. Increased production of low molecular weight recombinant proteins in Escherichia coli.

    PubMed Central

    Belagaje, R. M.; Reams, S. G.; Ly, S. C.; Prouty, W. F.

    1997-01-01

    A general method for obtaining high-level production of low molecular weight proteins in Escherichia coli is described. This method is based on the use of a novel Met-Xaa-protein construction which is formed by insertion of a single amino acid residue (preferably Arginine or Lysine) between the N-terminal methionine and the protein of interest. The utility of this method is illustrated by examples for achieving high-level production of human insulin-like growth factor-1, human proinsulin, and their analogs. Furthermore, highly produced insulin-like growth factor-1 derivatives and human proinsulin analogs are converted to their natural sequences by removal of dipeptides with cathepsin C. PMID:9300495

  2. Molecular dynamics study of the molecular weight dependence of surface tensions of normal alkanes and methyl methacrylate oligomers.

    PubMed

    Li, Chunli; Choi, Phillip

    2006-04-06

    Surface tensions (gamma) of normal alkanes and methyl methacrylate (MMA) oligomers at various molecular weights in the low molecular weight range were computed using a newly proposed molecular dynamics (MD) simulation strategy which was developed based on the definition of gamma = ( partial differential U/ partial differential sigma)n,V,S. The MD simulations, even with the use of a generic force field, reproduced the experimentally observed molecular weight dependence of gamma (i.e., gamma proportional Mn(-2/3), where Mn is the number-average molecular weight) for both series of oligomers. Analysis of the data reveals that solvent accessible surface area, one of the key input variables used for the calculation of gamma, exhibits an Mn(2/3) (rather than Mn(1)) dependence. The reason for such dependence is that solvent accessible surface area formed by the chainlike small molecules depends, to a larger extent, on their orientations rather than their size. However, this is not the case for high molecular weight molecules as solvent accessible surface area of such surfaces are determined by the orientations of their segments which are determined by the conformations of the molecules. This may explain why surface tension of polymers experimentally exhibits an Mn(-1) dependence. It is inferred that the corresponding molecular weight dependence of the entropy changes associated with molecules in the low and high molecular weight ranges would be different.

  3. Silver nanoparticles on zeolite surface for laser desorption/ionization mass spectrometry of low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yang, Mengrui; Fujino, Tatsuya

    2013-06-01

    Silver nanoparticles loaded on NH4+-type zeolite, AgNPs-NH4ZSM5, was developed as an inorganic matrix for laser desorption/ionization mass spectrometry of low molecular weight compounds. It was found that AgNPs-NH4ZSM5 could work as an efficient Ag+ donor to ionize analytes and that zeolite worked as a heat bath to prevent the destruction of AgNPs after the photoexcitation. The AgNPs-NH4ZSM5 was applied to laser desorption/ionization mass spectrometry of biologically active substances with low molecular weights including acetylsalicylic acid, L-histidine, glucose, urea, cholesterol, and those in human serum.

  4. Characterization and analysis of the molecular weight of lignin for biorefining studies

    SciTech Connect

    Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn; Naskar, Amit K.; Ragauskas, Arthur J.

    2014-06-04

    The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, and chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.

  5. Low molecular weight heparin loaded pH-sensitive microparticles.

    PubMed

    Meissner, Yvette; Ubrich, Nathalie; El Ghazouani, Fatima; Maincent, Philippe; Lamprecht, Alf

    2007-04-20

    Low molecular weight heparins (LMWH) have shown efficacy in the treatment of inflammatory bowel disease after parenteral administration however risking severe hemorrhagic adverse effects. Therefore, an oral colonic targeted heparin dosage form allowing the release of LMWH directly in the inflamed tissue would be of major interest. Enoxaparin was entrapped into pH-sensitive microspheres using Eudragit P4135F that dissolves at pH>7.2. Particle preparation was based on a double emulsion technique with either solvent extraction or evaporation. In order to increase the entrapment efficacy several preparation parameters were optimized, such as inner phase volume, polymer concentration, stabilization of the internal interface by surfactants. Solvent evaporation led to higher entrapment rates (evaporation: 70.1+/-9.9%; extraction: 46.5+/-6.4%). When increasing the volume of the inner aqueous heparin phase, lower encapsulation rates and larger microspheres ( approximately 100-400 microm) were obtained. Sorbitan monostearate (1.75-28% of the total particle mass) had a stabilizing effect on the primary water/oil emulsion. Indeed, higher encapsulation rates (7%: 78.2+/-3.5%; 14%: 76.4+/-10.1%) and smaller particles ( approximately 120-160 microm) were obtained whereas hexadecyltrimethylammonium bromide destabilized the primary emulsion. Interfacial tension studies at a simulated internal water/oil interface confirmed these results. As expected, in vitro drug release was found to be strongly pH-dependent; LMWH was retained in microspheres at pH<6 (<20% release within 4h) whereas a fast drug release was obtained at pH 7.4. The developed microspheres exhibited a particle size adapted to the needs of inflammatory bowel disease therapy, an efficient LMWH encapsulation, and a pH-controlled drug release. These microspheres represent a promising tool for the selective oral delivery of heparin to the colon, especially interesting in the treatment of inflammatory bowel disease.

  6. [Low molecular weight heparin and non valvular atrial fibrillation].

    PubMed

    Ederhy, S; Di Angelantonio, E; Meuleman, C; Janower, S; Boccara, F; Cohen, A

    2006-12-01

    Low molecular weight heparin (LMWH) are obtained through chemical or enzyme depolymerisation of unfractioned heparins (UFH). LMWHs present several advantages over UFH: they exhibit a smaller interindividual variability of the anticoagulant effect, they have a greater bioavailability, a longer plasma half-life and do not require monitoring of the anticoagulant effect. LMWH have restrictive indications in AF patients, cardioversion (II level C and TEE for ACC/AHA/ESC and 2C for ACCP guidelines) or use as a bridge therapy (IIB, level C for ACC/AHA/ESC). The ACE study (Anticoagulation for cardioversion using enoxaparin), showed a reduction, though not statistically significant, of 42% of the composite end point (embolic event, major bleeding and death) 2.8% under enoxaparin vs. 4.8 % under conventional treatment, relative risk 0.58, CI 95% 0.23-1.46). Other studies, using dalteparin, confirmed that an anticoagulant treatment using LMWH followed by warfarin was at least as good as conventional management. ACUTE II (Assessment of cardioversion using transesophageal echochardiography), a randomized multicenter trial, compared the efficacy and tolerance of enoxaparin (1 mg/kg every 12 hours) and UFH in 155 patients eligible for a TEE-guided cardioversion. These patients were administered LMWH or UFH for 24 hours before TEE or cardioversion. There were no significative differences regarding the incidence of the study end points, in particular stroke and bleeding, and no death occurred. HAEST (Heparin in acute embolic stroke trial), a randomized, placebo-controlled, double blind trial failed to show the LMWH superiority over aspirin in patients with acute ischemic stroke and atrial fibrillation. Finally, LMWH have been proposed as a bridge therapy in patients under chronic VKA prior to surgery or invasive procedures. This strategy resulted in a low rate of thromboembolic events and major bleedings.

  7. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Norman, R Sean

    2011-07-07

    Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging.

  8. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector.

    PubMed

    Hattori, Yoshiyuki; Maitani, Yoshie

    2007-09-01

    Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.

  9. Low molecular weight quaternised chitosan (11): in vitro assessment of absorption enhancing properties.

    PubMed

    Jonker-Venter, C; Snyman, D; Janse van Rensburg, C; Jordaan, E; Schultz, C; Steenekamp, J H; Hamman, J H; Kotzé, A F

    2006-04-01

    N-Trimethyl chitosan chloride (TMC; high molecular weight) and N-trimethyl chitosan oligosaccharide (TMO; low molecular weight) with different degrees of quaternisation were synthesised and evaluated for their absorption enhancing properties across mucosal epithelia. These quaternised chitosan derivatives (0.0625% w/v-0.5% w/v) showed a significant decrease in the transepithelial electrical resistance (TEER) of cultured rabbit tracheal epithelial cell monolayers as compared to the control. The degree of quaternisation and concentration of the compounds influenced the extent of the reduction in TEER. Higher degrees of quaternisation and an increase in the concentration of the compound were associated with a more pronounced reduction in the TEER. The TMO derivatives seemed to be more effective in lowering the TEER of tracheal cell monolayers as compared to the TMC polymers. Ciliary beat frequency (CBF) is the main defence mechanism of the respiratory tract and is therefore a useful parameter in evaluating the toxicity of nasally administered drugs and additives. The effect of the synthesised chitosan derivatives on the CBF of human nasal epithelial cells at pH 7.4 was determined by a method based on an analogue contrast enhancement technique. The TMO oligomers exhibited lower inhibition of the CBF of human nasal epithelial cells compared to that of the TMC polymers. It was proposed that this reduced effect on the CBF is due to the lower viscosity and molecular weight of TMO. However, no acute toxicity was found with any of the synthesised chitosan derivatives by means of the CBF tests conducted in this study.

  10. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases.

  11. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  12. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  13. Effects of aerobic exercise on lipid profiles and high molecular weight adiponectin in Japanese workers.

    PubMed

    Guo, Wei; Kawano, Hiroaki; Piao, Lianhua; Itoh, Nana; Node, Koichi; Sato, Takeshi

    2011-01-01

    The metabolic syndrome is characterized by the accumulation of several metabolic risk factors. It is important to improve physical activity and dietary habits to reduce the risk of cardiovascular disease in humans. The study participants participated in a weekly aerobic exercise program that included a session composed of a brief meeting, warm-up exercises, and primary exercises (low and high impact, stretch, muscle training, and cooling down). To evaluate the effect of this intervention we measured body fat composition, holding power, and quality of life assessment. Blood tests were also carried out before and every 3 months during the study. Of the 37 participants enrolled in the exercise group, 31 (83.8%) completed the 12-week program. The control group consisted of 42 subjects, 36 (85.7%) of whom were available for follow-up at the end of the 12-week study period. In the exercise group, weight, body fat percentage, waist circumference, the World Health Organization quality of life 26 (WHO-QOL 26) score, triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol had improved significantly at the end of three months. The high molecular weight adiponectin concentration of the participants in the exercise group increased during the 9-month period of the study, although this change did not reach statistical significance compared with pre-exercise. Aerobic exercise led to an improvement in body composition and lipid profiles. High molecular weight adiponectin concentrations tended to improve compared with pre-aerobic exercise levels.

  14. Weight references for burned human skeletal remains from Portuguese samples.

    PubMed

    Gonçalves, David; Cunha, Eugénia; Thompson, Tim J U

    2013-09-01

    Weight is often one of the few recoverable data when analyzing human cremains but references are still rare, especially for European populations. Mean weights for skeletal remains were thus documented for Portuguese modern cremations of both recently deceased individuals and dry skeletons, and the effect of age, sex, and the intensity of combustion was investigated using both multivariate and univariate statistics. The cremains from fresh cadavers were significantly heavier than the ones from dry skeletons regardless of sex and age cohort (p < 0.001 to p = 0.003). As expected, males were heavier than females and age had a powerful effect in female skeletal weight. The effect of the intensity of combustion in cremains weight was unclear. These weight references may, in some cases, help estimating the minimum number of individuals, the completeness of the skeletal assemblage, and the sex of an unknown individual.

  15. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  16. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  17. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  18. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  19. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators

    USDA-ARS?s Scientific Manuscript database

    Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators, are interesting soft materials that show great potential for many applications. Previously, we synthesized a series of methyl 4,6-O-benzylidene-a-D...

  20. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  1. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  2. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  3. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean... ethylene and diethylene glycols if its mean molecular weight is below 350, when tested by the analytical... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9...

  4. The Relation Between Molecular Weight of Antigen and Ability to Elicit Passive Cutaneous Anaphylaxis*

    PubMed Central

    Leskowitz, S.; Ovary, Z.

    1962-01-01

    Passive cutaneous anaphylaxis in the guinea pig has been studied with rabbit antibody to a series of antigens of differing molecular weight. The results indicated that at a given antibody level the weight of antigen needed to elicit a reaction increases with its molecular weight. Previous observations have been confirmed that the amount of antigen needed to elicit a reaction at a high level of antibody is less than that required at a lower level. The results suggest that extremely small amounts of small molecular weight antigens might be sufficient to produce anaphylactic symptoms in highly sensitive individuals. PMID:14464304

  5. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution.

    PubMed

    Shih, Yu-Ju; Chang, Yung

    2010-11-16

    This work describes a tunable blood compatibility of zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymers at a wide range of high molecular weights from 50 kDa to 300 kDa controlled with a similar polydispersity via homogeneous free-radical polymerization. The control of molecular weights of polySBMA highly regulates the zwitterionic nonfouling nature to resist the adsorption of plasma proteins, the coagulant of human plasma, and the hemolysis of red blood cells. In this study, the upper critical solution temperatures (UCSTs) and hydrodynamic size of prepared polymers are determined to illustrate the correlations between intermolecular zwitterionic associations and blood compatibility of polySBMA suspension in human blood. The polySBMA exhibited clear shifts of UCSTs in the stimuli-responsive control of solution pH and ionic strength, which were strongly associated with the molecular weights of the prepared polymers. Plasma-protein adsorption onto the polySBMA polymers from single-protein solutions and the complex medium of 100% human plasma were measured by dynamic light scattering to determine the nonfouling stability of polySBMA suspension. It was found that the nonfouling nature as well as hydration capability of polySBMA can be effectively controlled via regulated molecular weights of zwitterionic polymers. This work shows that the polySBMA polymer with an optimized molecular weight of about 135 kDa at physiologic temperature is presented high hydration capability to function the best nonfouling character of anticoagulant activity and antihemolytic activity in human blood. The excellent blood compatibility of zwitterionic polySBMA along with their stimuli-responsive phase behavior in aqueous solution suggests their potential for use in blood-contacting targeted delivery and diagnostic applications.

  6. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules

    PubMed Central

    1977-01-01

    The arrangement of the high molecular weight proteins associated with the walls of reconstituted mammalian brain microtubules has been investigated by electron microscopy of negatively stained preparations. The images are found to be consistent with an arrangement whereby the high molecular weight molecules are spaced 12 tubulin dimers apart, i.e., 960 A, along each protofilament of the microtubule, in agreement with the relative stoichiometry of tubulin and high molecular weight protein. Molecules on neighbouring protofilaments seem to be staggered so that they give rise to a helical superlattice, which can be superimposed on the underlying tubulin lattice. In micrographs of disintegrating tubules there is some indication of lateral interactions between neighbouring high molecular weight molecules. When the microtubules are depolymerized into a mixture of short spirals and rings, the high molecular weight proteins appear to remain attached to their respective protofilaments. PMID:65355

  7. The influence of polyacid molecular weight on some properties of glass-ionomer cements.

    PubMed

    Wilson, A D; Hill, R G; Warrens, C P; Lewis, B G

    1989-02-01

    The influence of the molecular weight of the poly(acrylic acid) component on some properties of glass-ionomer cement has been investigated. The results can be explained by treatment of glass-ionomer cements as thermoplastic composites. Many of the concepts of polymer science can be applied successfully in a qualitative way to these cements, including the ideas of entanglements and reptation. Molecular weight of the polyacid had a pronounced influence on setting rate, acid erosion rate, toughness, fracture toughness, and wear resistance. The chain length of the polyacid was found to be an important parameter in formulation of a cement, and the higher the molecular weight, the better the properties. However, in practice the molecular weight is limited by viscosity, and some balance has to be achieved among concentration, molecular weight, and viscosity.

  8. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  9. Thermal and Mechanical Properties of Polyurethane-Diacetylene Segmented Copolymers. 1. Molecular Weight and Annealing Effects

    DTIC Science & Technology

    1989-05-31

    induced crystallization of the soft segments, the hard segment structure, weight fraction, and state of organization, the degree of phase separation...determined by the local environment of the chain. It is due to this dependence that polydiacetylene- based elastomers exhibit thermochromism and...Weight Determination. Molecular weights were determined on a Waters high pressure liquid chromatograph equipped with two Waters ultrastyragel columns

  10. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.

    PubMed

    Chen, Wendy Yiting; Marcellin, Esteban; Hung, Jacky; Nielsen, Lars Keld

    2009-07-03

    The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other beta-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 +/- 0.1 MDa twice that observed in the wild-type strain, 1.8 +/- 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (rho = 0.84, p = 3 x 10(-5)) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides.

  11. Hyaluronan Molecular Weight Is Controlled by UDP-N-acetylglucosamine Concentration in Streptococcus zooepidemicus*

    PubMed Central

    Chen, Wendy Yiting; Marcellin, Esteban; Hung, Jacky; Nielsen, Lars Keld

    2009-01-01

    The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other β-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 ± 0.1 MDa twice that observed in the wild-type strain, 1.8 ± 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (ρ = 0.84, p = 3 × 10−5) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides. PMID:19451654

  12. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  13. Immunochemical identity of the high and low molecular weight forms of Galapagos marine iguana hemoglobin.

    PubMed

    Higgins, P J

    1978-01-01

    1. Two forms of Galapagos marine iguana methemoglobin, with molecular weights of 140,000 and 70,000 daltons, were identified in iguana RBC lysates by Sephadex G-200 molecular sieve fractionation. 2. The 140,000 dalton ferric hemoglobin was isolated by DEAE-Sephadex A-50 ion-exchange chromatography and found to be pure by electrophoretic and immunological criteria. 3. Immunochemical analyses revealed the high and low molecular weight hemoglobins to be antigenically identical.

  14. Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): Developmental and tissue expression in the rat, and mapping of its human homologue to chromosomes 1 and 22

    SciTech Connect

    Lieberburg, I.; Spinner, N.; Snyder, S.; Anderson, J.; Goldgaber, D.; Smulowitz, M.; Carroll, Z.; Emanuel, B.; Breitner, J.; Rubin, L. )

    1989-04-01

    Neurofilaments (NFs) are the intermediate filaments specific to nervous tissue. Three peptides with apparent molecular masses of approximately 68 (NF-L), 145 (NF-M), and 200 (NF-H) kDa appear to be the major components of NF. The expression of these peptides is specific to nervous tissue and is developmentally regulated. Recently, complete cDNAs encoding NF-L and NF-M, and partial cDNAs encoding NF-H, have been described. To better understand the normal pathophysiology of NFs the authors chose to clone the cDNA encoding the rat NF-H peptide. Using monoclonal antibodies that recognized NF-H, they screened a rat brain {lambda}gt11 library and identified a clone that contained a 2,100-nucleotide cDNA insert representing the carboxyl-terminal portion of the NF-H protein. Levels of NF-H mRNA varied 20-fold among brain regions, with highest levels in pons/medulla, spinal cord, and cerebellum, and lowest levels in olfactory bulb and hypothalamus. Based on these results, the authors infer that half of the developmental increase and most of the interregional variation in the levels of the NF-H mRNA are mediated through message stabilization. Sequence information revealed that the carboxyl-terminal region of the NF-H peptide contained a unique serine-, proline-, alanine-, glutamic acid-, and lysine-rich repeat. Genomic blots revealed a single copy of the gene in the rat genome and two copies in the human genome. In situ hybridizations performed on human chromosomes mapped the NF-H gene to chromosomes 1 and 22.

  15. Selective Suppression of Endothelial Cell Apoptosis by the High Molecular Weight Form of Adiponectin

    PubMed Central

    Kobayashi, Hideki; Ouchi, Noriyuki; Kihara, Shinji; Walsh, Kenneth; Kumada, Masahiro; Abe, Yuki; Funahashi, Tohru; Matsuzawa, Yuji

    2015-01-01

    Adiponectin is an adipocyte-derived, antiatherogenic protein that is present in serum as three isoforms. Total adiponectin levels are decreased in obese or diabetic humans or animal models. This study was designed to elucidate the relative isoform distribution of adiponectin in human disease states and identify the active form of adiponectin toward vascular endothelial cells. The percentage of high molecular weight form (HMW) per total adiponectin was significantly lower in patients with coronary artery disease than control subjects, whereas the hexamer form was similar and the trimer form was significantly higher. During weight reduction in obese subjects, the HMW form increased and the trimer and hexamer forms decreased. Recombinant adiponectin dose-dependently suppressed apoptosis and caspase-3 activity in human umbilical vein endothelial cells (HUVECs). Transduction with dominant-negative AMP-activated protein kinase (AMPK) abolished the suppressive effect of adiponectin on HUVECs. Gel filtration chromatography was used to separate the adiponectin isoforms, and the antiapoptotic effect toward HUVECs was only observed with the HMW form. These data suggest that HMW adiponectin specifically confers the vascular-protective activities of this adipocytokine. PMID:14752031

  16. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  17. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  18. In vitro heterogeneous degradation of alginate and its validation of different molecular weight on blood bio-compatibility.

    PubMed

    Xu, Mengxue; Feng, Chao; Wang, Juan; Lang, Xuqian; Xia, Guixue; Yu, Xiaoping; Ji, Qiuxia; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Chen, Xiguang

    2017-03-01

    In the present work, sodium alginate (ALG) was degraded by heterogeneous phase acid degradation. The molecular weight distribution of ALG after degradation was close to homogenization. Then the blood bio-compatibility of ALG with different molecular weights (ALG-0h 50,075, ALG-0.5h 20,680, ALG-2h 13,170 and ALG-96h 1170 kDa) was evaluated in vitro and vivo. The human umbilical vein endothelial cells were used to assess the cytotoxicity of ALGs, ALG-0.5h and ALG-2h exhibited greater increment in percentage of cell viability comparing with ALG-0h and ALG-96h. With increasing of molecular weight of ALG, the blood clotting time was shortened and the hemolysis rate was slightly decreased. The different degree aggregation of red blood cells (RBCs) was observed in the ALG with different molecular groups and ALG-0h caused a severe aggregation of RBCs. Hematology analysis in vivo behavior after intraperitoneal (i.p.) injection indicated ALG-0h could cause blood solidification. Above results provided a reference for molecular weight selection in different applications.

  19. Molecular evolution of human species D adenoviruses

    PubMed Central

    Robinson, Christopher M.; Seto, Donald; Jones, Morris S.; Dyer, David W.; Chodosh, James

    2011-01-01

    Adenoviruses are medium-sized double stranded DNA viruses that infect vertebrates. Human adenoviruses cause an array of diseases. Currently there are 56 human adenovirus types recognized and characterized within seven species (A-G). Of those types, a majority belongs to species D. In this review, the genomic conservation and diversity are examined amongst human adenoviruses within species D, particularly in contrast to other human adenovirus species. Specifically, homologous recombination is presented as a driving force for the molecular evolution of human adenoviruses and the emergence of new adenovirus pathogens. PMID:21570490

  20. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  1. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation.

    PubMed

    Barros, Frederico; Awika, Joseph; Rooney, Lloyd W

    2014-04-01

    There is a growing interest to increase resistant starch (RS) in foods through natural modification of starch. Sorghum tannins (proanthocyanidins, PAs) were recently reported to interact with starch, increasing RS. However, there is no information about how the molecular weight profile of PAs affects RS formation. This study investigated how different-molecular-weight PAs from sorghum affected RS formation in different starch models. The levels of RS were higher (331-437 mg g(-1)) when high-amylose starch was cooked with phenolic extracts containing mostly high-molecular-weight PAs compared with extracts containing lower-molecular-weight PAs or monomeric catechin (249-285 mg g(-1)). In general, binding capacity of PAs with amylose increased proportionally with molecular weight. For example, the percentage of PAs bound to amylose increased from 45% (PAs with degree of polymerization (DP) = 6) to 94% (polymeric PAs, DP > 10). The results demonstrate that molecular weight of the PAs directly affects their interaction with starch: the higher the molecular weight, the stronger the binding to amylose and the higher the RS formation. Polymeric PAs from sorghum can naturally modify starch by interacting strongly with amylose and are thus most suitable to produce foods with higher RS. © 2013 Society of Chemical Industry.

  2. Effect of polymer molecular weight on nanocomminution of poorly soluble drug.

    PubMed

    Choi, Ji-Yeun; Park, Chul Ho; Lee, Jonghwi

    2008-06-01

    The reduction of particle size to nanometers has been an important tool used for efficient drug delivery. Solid drug nanoparticles can be conveniently prepared by nanocomminution. This process relies on mechanical energy and the selection of a proper polymeric stabilizer. The long chains of polymers provide steric stabilization for drug nanoparticles. In this research, itraconazole and hydroxypropyl cellulose were used to study the effect of the molecular weight of a polymer on particle size reduction. In principle, an increase in molecular weight produces two counteracting effects: a decrease in the diffusion rate of chains and an increase in the physical adsorption of a polymer. The effects of particle size reduction are more pronounced in systems involving smaller molecular weights, and the effects of changing molecular weights disappear with time. Systems of higher molecular weight show larger aggregates in their redispersion after drying. Based on the results of our research, it appears that polymers of smaller molecular weight are more suitable than larger polymers for efficient nanocomminution. This indicates that the kinetic aspects of molecular weight are important.

  3. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity.

    PubMed

    Choi, Jong-il; Kim, Hyun-Joo

    2013-09-12

    Fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities. Recently, it has been reported that low molecular weight fucoidan has the enhanced antioxidant and anticoagulative activities. However, degradation techniques such as enzymolysis and acid hydrolysis for obtaining low molecular weight fucoidan, have the disadvantages such as narrow substrate specificity and unfavorable hydrolysis of side groups, respectively. In this study, low molecular weight fucoidan was prepared by gamma-irradiation. When fucoidan was gamma-irradiated, the molecular weight rapidly dropped to 38 kDa when the sample was irradiated at 10 kGy, then gradually dropped to 7 kDa without the significant elimination of the sulfate groups. Low molecular weight fucoidan had higher cytotoxicity than native fucoidan in cancer cells, such as AGS, MCF-7, and HepG-2. In addition, low molecular weight fucoidan showed higher inhibitory activity of cell transformation, which resulted in higher anticarcinogenicity. This result suggests that low molecular weight fucoidan with enhanced biological activities can be produced by a simple irradiation method without changing the functional groups.

  4. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages.

    PubMed

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-09-30

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.

  5. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  6. Antioxidant activity of high molecular weight chitosan and N,O-quaternized chitosans.

    PubMed

    Wan, Ajun; Xu, Qing; Sun, Yan; Li, Huili

    2013-07-17

    The objective of this study was to evaluate the in vitro antioxidant activity of high molecular weight chitosan based films. Three kinds of water-soluble quaternized chitosans with high molecular weight, namely N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (400-HTCC and 1240-HTCC), N-(2-hydroxyl) propyl-3-triethyl ammonium chitosan chloride (400-HTEC and 1240-HTEC), and O-(2-hydroxyl) propyl-3- trimethyl ammonium chitosan chloride (400-O-HTCC) were prepared from high molecular weight chitosans (400 and 1240 kDa). The in vitro antioxidant activity of a high molecular weight chitosan (1240-CS) and five quaternized chitosans was evaluated and compared as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•), hydroxyl radical (•OH), and superoxide radical (•O2(-)) using established methods, and the effect of the molecular weight, the concentration, the newly generated hydroxyl group, the extra introduced positive charge of quaternary ammonium salt group, etc., on the antioxidant activity of these high molecular weight chitosans is discussed. The data obtained in vitro models exhibited good antioxidant potency and suggested the possibility that high molecular weight chitosan based films could be effectively employed as natural antioxidant materials for application in the field of food and medicine.

  7. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.

  8. Time-dependent failure of amorphous poly-D,L-lactide: influence of molecular weight.

    PubMed

    Söntjens, Serge H M; Engels, Tom A P; Smit, Theo H; Govaert, Leon E

    2012-09-01

    The specific time-dependent deformation response of amorphous poly(lactic acid) (PLA) is known to lead to rapid failure of these materials in load-bearing situations. We have investigated this phenomenon in uniaxial compression on P(L)DLLA samples with various molecular weights. The experiments revealed a strong dependence of the yield stress on the applied strain rate. Lower molecular weights showed identical deformation kinetics as higher molecular weights, albeit at lower stress values. This dependence on molecular weight was incorporated into an Eyring-equation by introducing mobility through a virtual temperature that is shifted by the deviation of the T(g) from T(g,∞). Stress-dependent lifetime of polymer constructs was described by the use of this modified Eyring-equation, combined with a critical plastic strain. This model proves useful in predicting the molecular weight dependence of the time to failure, although it slightly overestimates life time at low stress levels for a material with very low molecular weight. The versatility of the model is demonstrated on e-beam sterilized PLDLLA, where the resulting reduction in molecular weight induces a substantial decrease in lifetime. A single T(g) measurement provides sufficient information to predict the decrease in lifetime.

  9. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review.

    PubMed

    Macuvele, Domingos Lusitâneo Pier; Nones, Janaína; Matsinhe, Jonas V; Lima, Marla M; Soares, Cíntia; Fiori, Márcio A; Riella, Humberto G

    2017-07-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been applied, as a bearing surface in total human joint replacements and artificial bones. UHMWPE has a superior wear resistance, low-friction surface, biological inertness, high levels of strength, creep resistance and low friction coefficient. However, the wear debris generated during the joint motions could cause problem in human implant, such as osteolysis and loosening. For this, several attempts was been made to improve UHMWPE properties and increases safety and biocompatibility in human implants. One of them, include the use of hydroxyapatite (HA), as reinforcement agent to modify the UHMWPE properties and facilitate biological fixation between the implant and the human cells. Recent studies showed that the addition of HA in polymer matrix result in enhancement of mechanical and tribological properties. In addition, it also improves the formation of the actual bond between the material and the living organism since the hydroxyapatite is the major component of the mineral part of the human bone. In this brief review the some properties and characteristic of UHMWPE and HA are described and main processing methods of UHMWPE/HA composites and biocompatibility studies were also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of the kidney in the expression of low molecular weight factors with growth factor activity.

    PubMed

    Jacob, C; Maachi, F; el Farricha, O; Dousset, B; Kessler, M; Belleville, F; Nabet, P

    1993-06-01

    Small molecules of peptidic nature, called low molecular weight growth factors (LMW-GF < 1000 Da) are present in normal human serum ultrafiltrate. They enhance the somatomedin activity as measured by the incorporation of 35SO4 into chick embryo cartilages. On the basis of this in vitro test, LMW-GF activities were measured in serum ultrafiltrates of hemodialyzed patients and renal transplant recipients during the post-transplantation follow-up. LMW-GF activity was always zero in patients with chronic renal failure. It was checked that these results were not due to the presence of low molecular weight somatomedin inhibitors or to the increased sulfate concentration. After successful renal transplantation, the LMW-GF activity of patients ultrafiltrates returned to normal at the same time or before the improvement of renal function. In case of post-transplant complications, a decrease in LMW-GF activity accompanied or even occurred prior to impairment of renal function. In functioning graft, LMW-GF activity reappears rapidly, whereas its normalization is delayed in case of tubular nephropathy or episode of acute rejection. It was suggested that the kidney is involved in LMW-GF molecules production or processing. It could be speculated that LMW-GF activity might be a prognostic factor in renal transplantation.

  11. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans.

    PubMed

    Stauder, Monica; Papetti, Adele; Mascherpa, Dora; Schito, Anna Maria; Gazzani, Gabriella; Pruzzo, Carla; Daglia, Maria

    2010-11-24

    In previous studies we demonstrated that green and roasted coffee contains low molecular weight (LMW) compounds capable of inhibiting the ability of Streptococcus mutans, the major causative agent of human dental caries, to adhere to hydroxyapatite (HA) beads. This study addressed the ability of the whole high molecular weight coffee fraction (cHMW) and of its melanoidin and non-melanoidin components (GFC1-5), applied at concentrations that occur in coffee beverages, to (i) inhibit S. mutans growth; (ii) affect S. mutans sucrose-dependent adhesion to and detachment from saliva-coated HA beads (sHA); and (iii) inhibit biofilm development on microtiter plates. The results indicated that only cHMW is endowed with antimicrobial activity. The cHMW fraction and each of the five GFC components inhibited S. mutans adhesion, the strongest effect being exerted by cHMW (91%) and GFC1 (88%). S. mutans detachment from sHA was four times greater (∼20%) with cHMW and the GFC1 and GFC4 melanoidins than with controls. Finally, biofilm production by S. mutans was completely abolished by cHMW and was reduced by 20% by the melanoidin components GFC2 and GFC4 and by the non-melanoidin component GFC5 compared with controls. Altogether these findings show that coffee beverage contains both LMW compounds and HMW melanoidin and non-melanoidin components with a strong ability to interfere in vitro with the S. mutans traits relevant for cariogenesis.

  12. Hybrid complexes of high and low molecular weight: evaluation using an in vitro model of osteoarthritis.

    PubMed

    Stellavato, A; De Novellis, F; Reale, S; De Rosa, M; Schiraldi, C

    2016-01-01

    Hyaluronan (HA) is central in joint and cartilage functions and to restore synovial fluid viscosity. In patients with osteoarthritis (OA), molecular weight (MW) and concentration of hyaluronic acid (HA) are reduced, diminishing joint lubrication. IL-1β treatment was used to mimic osteoarthritis in a chondrocytes based in vitro model. The aim of our research, using this model and human chondrocytes was to assess the anti-inflammatory effect of H/L-HA hybrid complexes (SINOVIAL-HL®) in comparison with HA at high (H-HA) and low molecular weight (L-HA) separately used, through the evaluation of specific biomarkers involved in cartilage degradation and correlated to osteoarthritis. Specifically, TNF-α and IL-6 mRNA were evaluated by qRT-PCR. Cytokines levels were measured using Bio-plex assays and COMP-2 through immunofluorescence staining and western blot. H/L-HA significantly reduced inflammation biomarkers respect to both L-HA or H-HA separately considered at transcriptional and protein level.

  13. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  14. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.

    PubMed

    Sun, Qian; Xie, Hong-Bin; Chen, Jingwen; Li, Xuehua; Wang, Zhuang; Sheng, Lianxi

    2013-07-01

    As an important part of dissolved organic matter (DOM), low molecular weight organic acids (LOAs) may play a key role in the process for DOM stabilizing carbon nanomaterials (e.g. C60) suspensions in aquatic environment. In addition, both LOAs and C60 have been detected in the troposphere and therefore have a chance to interact with each other in the gaseous phase. However, the mechanism for LOAs-C60 interactions and their environmental implications need further investigations. In this study, molecular dynamics (MD) simulation was employed to investigate the interactions between both neutral and ionic LOAs with C60 in vacuum and water. The results showed that the adsorptions of all LOAs on C60 in energy are favorable, and the aromatic acids have stronger interactions with C60 than the aliphatic acids in vacuum and water. The interaction energies (Eint) of the LOA anions with C60 were weaker than those of their corresponding neutral LOA molecules. The models were also developed to predict and interpret Eint based on the results from MD simulations. Dispersion, induction and hydrophobic interactions were found to be the dominating factor in Eint. These findings indicate that cost-efficient MD simulation can be employed as an important tool to predict the adsorption behavior of LOAs on carbon nanomaterials.

  15. Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis.

    PubMed

    Harding, Stephen E; Gillis, Richard B; Adams, Gary G

    2016-01-01

    Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is a particularly powerful tool when used in conjunction with its sister technique, namely sedimentation velocity. Here, we describe key approaches now available and their application to the characterization of antibodies, polysaccharides and glycoconjugates. We indicate how major complications, such as thermodynamic non-ideality, can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor Don Winzor over several decades of research.

  16. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  17. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, D. C.; Vannucci, R. D.

    1992-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  18. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  19. The Molecular Basis of Human Brain Evolution.

    PubMed

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A two-compartment cell entrapment bioreactor with three different holding times for cells, high and low molecular weight compounds.

    PubMed

    Scholz, M; Hu, W S

    1990-09-01

    A new bioreactor for animal cell cultivation employs two compartments for cells and medium respectively. The two chambers are separated by an ultrafiltration membrane. Cells and solution of collagen or collagen/chitosan mixture were loaded to the cell chamber and were allowed to form gel inside. Contraction of the cell-laden gel occurred subsequently to create a new zone in the cell chamber. In such a bioreactor cells are retained in the reactor, the high molecular product(s) accumulate in the cell chamber, while the small molecular weight nutrients and metabolites are replenished and removed from the medium chamber. By adjusting the flow rates for cell and medium chambers, the resident time for cells, high and low molecular weight components of the system can be manipulated separately. The new bioreactor, in both flat-bed and hollow-fiber configurations, was used to cultivate recombinant human cell, 293, for Protein C production over 60 to 90 days.

  1. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  2. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  3. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds.

    PubMed

    Block, Eric; Batista, Victor S; Matsunami, Hiroaki; Zhuang, Hanyi; Ahmed, Lucky

    2017-05-10

    Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization. Alternative theories of olfaction are described, with evidence favoring the modified "shape" theory. The use of quantum mechanical/molecular modeling (QM/MM), site-directed mutagenesis and saturation-transfer-difference (STD) NMR is discussed, providing support for biological studies of mouse and human receptors, MOR244-3 and OR OR2T11, respectively. Copper is bound at the active site of MOR244-3 by cysteine and histidine, while cysteine, histidine and methionine are involved with OR2T11. The binding pockets of these two receptors are found in different locations in the three-dimensional seven transmembrane models. Another recently deorphaned human olfactory receptor, OR2M3, highly selective for a thiol from onions, and a broadly-tuned thiol receptor, OR1A1, are also discussed. Other topics covered include the effects of nanoparticles and heavy metal toxicants on vertebrate and fish ORs, intranasal zinc products and the loss of smell (anosmia).

  4. Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.

    PubMed

    Hussain, Salik; Ji, Zhaoxia; Taylor, Alexia J; DeGraff, Laura M; George, Margaret; Tucker, Charles J; Chang, Chong Hyun; Li, Ruibin; Bonner, James C; Garantziotis, Stavros

    2016-08-23

    Commercialization of multiwalled carbon nanotubes (MWCNT)-based applications has been hampered by concerns regarding their lung toxicity potential. Hyaluronic acid (HA) is a ubiquitously found polysaccharide, which is anti-inflammatory in its native high molecular weight form. HA-functionalized smart MWCNTs have shown promise as tumor-targeting drug delivery agents and can enhance bone repair and regeneration. However, it is unclear whether HA functionalization could reduce the pulmonary toxicity potential of MWCNTs. Using in vivo and in vitro approaches, we investigated the effectiveness of MWCNT functionalization with HA in increasing nanotube biocompatibility and reducing lung inflammatory and fibrotic effects. We utilized three-dimensional cultures of differentiated primary human bronchial epithelia to translate findings from rodent assays to humans. We found that HA functionalization increased stability and dispersion of MWCNTs and reduced postexposure lung inflammation, fibrosis, and mucus cell metaplasia compared with nonfunctionalized MWCNTs. Cocultures of fully differentiated bronchial epithelial cells (cultivated at air-liquid interface) and human lung fibroblasts (submerged) displayed significant reduction in injury, oxidative stress, as well as pro-inflammatory gene and protein expression after exposure to HA-functionalized MWCNTs compared with MWCNTs alone. In contrast, neither type of nanotubes stimulated cytokine production in primary human alveolar macrophages. In aggregate, our results demonstrate the effectiveness of HA functionalization as a safer design approach to eliminate MWCNT-induced lung injury and suggest that HA functionalization works by reducing MWCNT-induced epithelial injury.

  5. [Preparation and in vitro study of a high molecular weight contrast agent targeting hepatoma cells].

    PubMed

    Yang, Jing; Zeng, Yan; Guo, Da-Jing; Fang, Zheng; Zhao, Jian-Nong; Wang, Zhi-Gang

    2013-01-01

    To prepare a specific high molecular weight polymer contrast agent capable of specifically targeting hepatocarcinoma cells (HCC) and to investigate its affinity in vitro using HepG2 cells. The high molecular weight polymer polylactic-co-glycolic acid (PLAG)-COOH was prepared by the double emulsion technique. PLAG-COOH microbubbles were combined with glypican-3 (GPC3) antibody to generate HCC targeting high molecular polymer ultrasound contrast agents by the carbodiimide method. The affinity for HCC cells was confirmed by measuring attachment to cultured HepG2 cells by flow cytometry and comparing the results with the properties observed for non-targeted high molecular weight polymer ultrasound contrast agents. The average diameter of the targeted high molecular weight polymer ultrasound contrast agents was (800+/-10) nm. In vitro targeting of HepG2 cells showed that many of the targeted high molecular weight polymer ultrasound contrast agents attached tightly to the cell surface and that the GPC3-PLGA has a particularly strong targeting ability. A HCC-specific high molecular contrast agent, GPC3-PLGA, was synthesized and evidenced a strong targeting ability towards HepG2 cells in vitro. This new agent may be exploited to improve diagnosis of liver cancer at the molecular level.

  6. Determination of free inositols and other low molecular weight carbohydrates in vegetables.

    PubMed

    Hernández-Hernández, Oswaldo; Ruiz-Aceituno, Laura; Sanz, María Luz; Martínez-Castro, Isabel

    2011-03-23

    Different low molecular weight carbohydrates including saccharides, polyalcohols, sugar acids, and glycosides have been identified and quantified in different edible vegetables from Asteraceae, Amarantaceae, Amarylidaceae, Brassicaceae, Dioscoreaceae, and Solanaceae families by gas chromatography-mass spectrometry. Apart from glucose, fructose, and sucrose, other saccharides such as sedoheptulose in chicory, spinach, cabbage, purple yam, eggplant, radish, and oak leaf lettuce, rutinose in eggplant skin, and a glycosyl-inositol in spinach have been identified. chiro-Inositol was found in all vegetables of the Asteraceae family (3.1-32.6 mg 100 g(-1)), whereas scyllo-inositol was detected in those of purple yam, eggplant, artichoke, chicory, escarole, and endive (traces-23.2 mg 100 g(-1)). α-Galactosides, kestose, glucaric acid, and glycosyl-glycerols were also identified and quantified in some of the analyzed vegetables. Considering the bioactivity of most of these compounds, mainly chicory leaves, artichokes, lettuces, and purple yam could constitute beneficial sources for human health.

  7. The Potency of Hyaluronan of Different Molecular Weights in the Stimulation of Blood Phagocytes

    PubMed Central

    Safrankova, Barbora; Gajdova, Silvie; Kubala, Lukas

    2010-01-01

    The regulatory functions of glycosaminoglycan hyaluronan (HA) are suggested to be dependent on its molecular weight (MW). Proinflammatory and stimulatory effects are proposed mainly for the low MW HA. However, the complex response of blood phagocytes to HA of different MW is unclear. Herein, the effects of highly purified HA of precisely defined MW (52, 250, and 970 kDa) on human blood phagocytes were tested. All MW HA activated blood phagocytes, including the spontaneous production of ROS, degranulation, and the production of tumor necrosis factor alpha, with low MW HA 52 kDa having the highest potency and high MW HA 970 kDa having the lowest potency. Interestingly, HA inhibited ROS production stimulated by opsonized zymosan particles and, in contrast, potentiated starch-activated ROS production, mostly independent of MW. Data showed a significant effect of HA of different MW on blood phagocytes, including high MW HA. PMID:21403830

  8. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Rui; Han, Shu-He; Liu, Zong-Huai; Chen, Yu

    2016-02-01

    The surface chemical functionalization of noble metal nanocrystals is a promising strategy for improving the catalytic/electrocatalytic activity and selectivity of noble metal nanocrystals. In this work, we successfully synthesize the polyallylamine (PAA) with different molecular weight functionalized Pt nanodendrites (Pt-NDs) using a facile hydrothermal reduction method. The morphology and surface composition are investigated by transmission electron microscopy, element map, and thermogravimetric analysis. Furthermore, we detailedly investigate the effect of the molecular weight of PAA on the electrochemical property of the functionalized Pt-NDs. Electrochemical measurements show only low molecular weight PAA functionalized Pt-NDs allow electrolytes to access freely the Pt sites. Meanwhile, the low molecular weight PAA functionalized Pt-NDs show the excellent selectivity and activity for the oxygen reduction reaction in the presence of methanol.

  9. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  10. Simple nanoparticle-based luminometric method for molecular weight determination of polymeric compounds.

    PubMed

    Pihlasalo, Sari; Virtamo, Maria; Legrand, Nicolas; Hänninen, Pekka; Härmä, Harri

    2014-01-21

    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes.

  11. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  12. Effect of protein molecular weight on the mass transfer in protein mixing

    NASA Astrophysics Data System (ADS)

    Asad, Ahmed; Chai, Chuan; Wu, JiangTao

    2012-03-01

    The mixing of protein solutions with that of precipitating agents is very important in protein crystallization experiments. In this work, the interferometry images were recorded during the mixing of two proteins with different molecular weights: lysozyme of ˜14.6 kDa, trypsin of ˜23.3 kDa and pepsin of ˜34.8 kDa were placed in a Mach-Zehnder interferometer. The protein molecular weight dependence on the competition of the transport process and kinetics at the interface was studied. The concentration profiles of protein solutions were calculated to analyze the mass transfer during the mixing process. It was observed that the mass transfer process is more efficient during the mixing of proteins with higher molecular weights. In addition, the more rapid concentration changes above the interface suggest that convection may dominate the diffusion. The phenomenon of convection is higher in the protein solutions with higher molecular weight.

  13. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    PubMed

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-05

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    SciTech Connect

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of these model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.

  15. LDFF, the large molecular weight DNA fragmentation factor, is responsible for the large molecular weight DNA degradation during apoptosis in Xenopus egg extracts.

    PubMed

    Lu, Zhi Gang; Zhang, Chuan Mao; Zhai, Zhong He

    2004-04-01

    DNA degradation is a biochemical hallmark in apoptosis. It has been demonstrated in many cell types that there are two stages of DNA fragmentation during the apoptotic execution. In the early stage, chromatin DNA is cut into large molecular weight DNA fragments, although the responsible nuclease(s) has not been recognized. In the late stage, the chromatin DNA is cleaved further into short oligonucleosomal fragments by a well-characterized nuclease in apoptosis, the caspase-activated DNase (CAD/DFF40). In this study, we demonstrate that large molecular weight DNA fragmentation also occurs in Xenopus egg extracts in apoptosis. We show that the large molecular weight DNA fragmentation factor (LDFF) is not the Xenopus CAD homolog XCAD. LDFF is activated by caspase-3. The large molecular weight DNA fragmentation activity of LDFF is Mg2+-dependent and Ca2+-independent, can occur in both acidic and neutral pH conditions and can tolerate 45 degrees C treatment. These results indicate that LDFF in Xenopus egg extracts might be a new DNase (or DNases) responsible for the large DNA fragmentation.

  16. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    PubMed

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  17. Development of Gel-Filter Method for High Enrichment of Low-Molecular Weight Proteins from Serum

    PubMed Central

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses. PMID:25723528

  18. Pancreastatin molecular forms in normal human plasma.

    PubMed

    Kitayama, N; Tateishi, K; Funakoshi, A; Miyasaka, K; Shimazoe, T; Kono, A; Iwamoto, N; Matsuoka, Y

    1994-01-01

    Circulating molecular forms with pancreastatin (PST)-like immunoreactivity in plasma from normal subjects were examined. An immunoreactive form corresponding to a human PST-like sequence [human chromogranin-A-(250-301)] (hPST-52) and a larger form (mol wt 15-21 kDa) were detected by gel filtration of plasma from normal subjects. On high performance liquid chromatography, predominant immunoreactive forms coeluted with the three larger forms which were purified from the xenograft of human pancreatic islet cell carcinoma cell line QGP-1N cells and with synthetic hPST-52. The fraction containing larger forms purified from xenograft of QGP-1N cells had biological activity equivalent to that of hPST-52 on the inhibition of pancreatic exocrine secretion. These results suggest that the larger molecular forms as well as hPST-52 may be physiologically important circulating forms of PST in human.

  19. High and low molecular weight hyaluronic acid differentially influence macrophage activation.

    PubMed

    Rayahin, Jamie E; Buhrman, Jason S; Zhang, Yu; Koh, Timothy J; Gemeinhart, Richard A

    2015-07-13

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs.

  20. Estimation of the Molecular Weight between Crosslinks of Crosslinked Semicrystalline Polyolefins

    NASA Astrophysics Data System (ADS)

    Mangnus, Marc A.; Karjala, Teresa P.; Gelfer, Mikhail M.; Hahn, Stephen F.

    2008-07-01

    The molecular weight between crosslinks (MXL) of crosslinked semicrystalline polyolefins, polyethylene in particular, has been estimated from uniaxial tensile tests in the melt state with the Sentmanat Extensional Rheometer (SER). Applying the Mooney-Rivlin equation to these stress-strain data resulted in the determination of an apparent molecular weight between crosslinks. This fast and convenient technique correlates well with the conventional approach where MXL is obtained via the plateau modulus from shear viscosity.

  1. Control of molecular weight distribution in synthesis of poly(2-hydroxyethyl methacrylate) using ultrasonic irradiation.

    PubMed

    Kubo, Masaki; Kondo, Takayuki; Matsui, Hideki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2018-01-01

    Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized using ultrasonic irradiation without any chemical initiator. The effect of the ultrasonic power intensity on the time course of the conversion to polymer, the number average molecular weight, and the polydispersity were investigated in order to synthesize a polymer with a low molecular weight distribution (i.e., low polydispersity). The conversion to polymer increased with time. A higher ultrasonic power intensity resulted in a faster reaction rate. The number average molecular weight increased during the early stage of the reaction and then gradually decreased with time. A higher ultrasonic intensity resulted in a faster degradation rate of the polymer. The polydispersity decreased with time. This was because the degradation rate of a polymer with a higher molecular weight was faster than that of a polymer with a lower molecular weight. A polydispersity below 1.3 was obtained under ultrasonic irradiation. By changing the ultrasonic power intensity during the reaction, the number average molecular weight can be controlled while maintaining low polydispersity. When the ultrasonic irradiation was halted, the reactions stopped and the number average molecular weight and polydispersity did not change. On the basis of the experimental results, a kinetic model for synthesis of PHEMA under ultrasonic irradiation was constructed considering both polymerization and polymer degradation. The kinetic model was in good agreement with the experimental results for the time courses of the conversion to polymer, the number average molecular weight, and the polydispersity for various ultrasonic power intensities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  3. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser.

    PubMed

    Goodwin, D J; Martini, L G; Lawrence, M J

    2016-12-05

    The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydroxethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (<1000nm, as measured by laser diffraction) using wet-bead milling has been investigated. Due to the limited range of CE molecular weights commercially available, the CEs were degraded using ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average molecular weights (Mv) in the range of 236-33kg/mol. All other CEs successfully stabilised nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a series being more likely to result in nanoparticle production than their higher molecular weight counterparts. Unfortunately due to the nature of the ultrasonication process, it was not possible to compare the size of nabumetone particles produced using polymers of identical Mv. There was, however, enough similarity in the Mv of the various polymers to draw the general conclusion that there was no strong correlation between the Mv of the various polymers and their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2kg/mol or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hydroxypropylmethyl polymers of 52 and 38.8kg/mol or less produced nanoparticles. These results suggest that polymer molecular weight is not the only determinant of nanoparticle production and that structure of the polymer is at least as important as its molecular weight. In particular the hydrophobic nature of the CE was thought to be an important factor in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger its interaction

  4. Corner rounding in EUV photoresist: tuning through molecular weight, PAG size, and development time

    SciTech Connect

    Anderson, Christopher; Daggett, Joe; Naulleau, Patrick

    2009-12-31

    In this paper, the corner rounding bias of a commercially available extreme ultraviolet photoresist is monitored as molecular weight, photoacid generator (PAG) size, and development time are varied. These experiments show that PAG size influences corner biasing while molecular weight and development time do not. Large PAGs are shown to exhibit less corner biasing, and in some cases, lower corner rounding, than small PAGs. In addition, heavier resist polymers are shown to exhibit less corner rounding than lighter ones.

  5. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.

  6. Regulation of the clock gene expression in human adipose tissue by weight loss.

    PubMed

    Pivovarova, O; Gögebakan, Ö; Sucher, S; Groth, J; Murahovschi, V; Kessler, K; Osterhoff, M; Rudovich, N; Kramer, A; Pfeiffer, A F H

    2016-06-01

    The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.

  7. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.

    PubMed

    Jia, Xiaolong; Listak, Jessica; Witherspoon, Velencia; Kalu, E Eric; Yang, Xiaoping; Bockstaller, Michael R

    2010-07-20

    A systematic evaluation of the effect of polymer matrix molecular weight on the coarsening kinetics of uniformly dispersed polystyrene-grafted gold nanoparticles is presented. Particle coarsening is found to proceed via three stages (i.e., atomic-diffusion-based Ostwald ripening (OR), particle-migration-based collision-coalescence, and the subsequent reshaping of particle assemblies). The relative significance of each stage and hence the evolution of particle size and shape have been found to depend sensitively upon time, temperature, and the molecular weight of the host polymer. At temperatures close to the matrix glass-transition temperature, Ostwald ripening has been observed to be dominant on all experimental timescales. With increasing annealing temperature, collision coalescence becomes the dominant mode of coarsening, leading to rapid particle growth. The onset of the latter process is found to be increasingly delayed with increasing molecular weight of the polymer host. Particle coalescence is observed to proceed via two fundamental modes (i.e., diffusion-limited aggregation and growth resulting in the formation of fractal particle clusters and the subsequent recrystallization into more spherical monolithic aggregate structures). Interestingly, particle coarsening in high-molecular-weight matrix polymers is found to proceed significantly faster than predicted on the basis of the bulk polymer viscosity; this acceleration is interpreted to be a consequence of the network characteristics of high-molecular-weight polymers by analogy to the phenomenon of nanoviscosity that has been reported in the context of nanoparticle diffusion within high-molecular-weight polymers.

  8. Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films.

    PubMed

    Andersson, Helene; Hjärtstam, Johan; Stading, Mats; von Corswant, Christian; Larsson, Anette

    2013-01-23

    Films of ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be used for extended release coatings in oral formulations. The permeability and microstructure of free EC/HPC films with 30% w/w HPC were studied to investigate effects of EC molecular weight. Phase separation during film spraying and subsequent HPC leaching after immersion in aqueous media cause pore formation in such films. It was found that sprayed films were porous throughout the bulk of the films after water immersion. The molecular weight affected HPC leaching, pore morphology and film permeability; increasing the molecular weight resulted in decreasing permeability. A model to distinguish the major factors contributing to diffusion retardation in porous films showed that the trend in permeability was determined predominantly by factors associated with the geometry and arrangement of pores, independent of the diffusing species. The film with the highest molecular weight did, however, show an additional contribution from pore wall/permeant interactions. In addition, rapid drying and increasing molecular weight resulted in smaller pores, which suggest that phase separation kinetics affects the final microstructure of EC/HPC films. Thus, the molecular weight influences the microstructural features of pores, which are crucial for mass transport in EC/HPC films. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Bleeding following coronary surgery after preoperative low-molecular-weight heparin.

    PubMed

    Myhre, Ulf; Stenseth, Roar; Karevold, Asbjørn; Bjella, Lise; Lingaas, Per Snorre; Olsen, Per Olav; Haaverstad, Rune; Kirkeby-Garstad, Idar; Levang, Olaf Walle

    2004-03-01

    Low-molecular-weight heparin and acetyl salicylic acid have become an established treatment for unstable angina. A retrospective study on our database of one year was carried out to see what impact preoperative low-molecular-weight heparin versus none had on the postoperative course of 473 patients having coronary surgery exclusively. Apart from the fact that the low-molecular-weight heparin patients had a higher New York Heart Association classification and marginally more grafts, longer bypass and cross-clamp time, the preoperative characteristics and surgery of the two groups were similar. The low-molecular-weight heparin group had twice as many (9.7% versus 4.7%) re-operations for bleeding, 46% versus 26% had blood transfusion and 22.3% versus 12.6% plasma transfusion. The postoperative outcome was otherwise similar. Preoperative treatment of unstable angina with low-molecular-weight heparin carries a definite risk of postoperative bleeding. Although this study did not reveal any serious consequences, bleeding, transfusions and re-operations are associated with infections, wound healing problems and death. The indications and length of treatment with low-molecular-weight heparin in unstable angina patients have to be appropriate and the perioperative management of these patients has to address the bleeding tendency.

  10. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography.

    PubMed

    Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan

    2017-08-15

    There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Protein-binding affinity of leucaena condensed tannins of differing molecular weights.

    PubMed

    Huang, Xiao Dan; Liang, Juan Boo; Tan, Hui Yin; Yahya, Rosiyah; Long, Ruijun; Ho, Yin Wan

    2011-10-12

    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.

  12. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    NASA Astrophysics Data System (ADS)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  13. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION... § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as...

  14. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent total by weight of ethylene and diethylene glycols when tested by the analytical methods... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights.... Analytical Method ethylene glycol and diethylene glycol content of polyethylene glycols The analytical method...

  15. Molecular biology of human muscle disease

    SciTech Connect

    Dunne, P.W.; Epstein, H.F. )

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  16. A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Enrione, J.; Diaz-Calderon, P.; Taylor, A. J.; Ubbink, J.; Alam, M. A.

    2012-03-01

    The effects of low molecular weight diluents (namely water and glycerol) on the nanostructure and thermodynamic state of low water content gelatin matrices are explored systematically by combining positron annihilation lifetime spectroscopy (PALS) with calorimetric measurements. Bovine gelatin matrices with a variation in the glycerol content (0-10 wt.%) are equilibrated in a range of water activities (aw = 0.11-0.68, T = 298 K). Both water and glycerol reduce the glass transition temperature, Tg, and the temperature of dissociation of the ordered triple helical segments, Tm, while having no significant effect on the level of re-naturation of the gelatin matrices. Our PALS measurements show that over the concentration range studied, glycerol acts as a packing enhancer and in the glassy state it causes a nonlinear decrease in the average hole size, vh, of the gelatin matrices. Finally, we report complex changes in vh for the gelatin matrices as a function of the increasing level of hydration. At low water contents (Qw ˜ 0.01-0.10), water acts as a plasticizer, causing a systematic increase in vh. Conversely, for water contents higher than Qw ˜ 0.10, vh is found to decrease, as small clusters of water begin to form between the polypeptide chains.

  17. Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits.

    PubMed

    Yaşar, Fatih; Celik, Süeda; Köksel, Hamit

    2003-08-01

    The contribution of the three-dimensional structures of one heptapeptide (PQPQPFP) sequence and one pentapeptide (PQQPY) repeat sequence of alpha/beta-gliadins, one heptapeptide (PQQPFPQ) repeat sequence of gamma-gliadins, two heptapeptide (PQQPPFS and QQQQPVL) repeat motifs of low-molecular-weight (LMW) subunits and a tetrapeptide sequence in polyQ region of S-rich prolamins to their conformations are investigated by using the recently developed multicanonical simulation procedure. Ramachandran plots were prepared and analysed to predict the relative occurrence probabilities of gamma-tutn, gamma-turn, and helical structures. The probability of inverse 7-turn was generally higher than that of beta-turns in all sequences investigated. Occurrence probability of helical structure in the repetitive domain of gliadins was low. Structural predictions of QQQQPVL sequence of LMW-glutenin subunits and QQQQ sequence in the polyQ region of S-rich prolamins indicate the presence of helical structures with the probability of >20%. The probability of helical structure significantly decreased around 100 degrees C.

  18. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  19. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  20. Molecular profiling of human cancer: new opportunities.

    PubMed

    Englert, C R; Petricoin, E F; Krizman, D B; Emmert-Buck, M R

    1999-12-01

    The Human Genome Project will be completed in the near future, providing new opportunities for researchers to better understand human biology. In order to maximize the value of the genetic data, high-throughput molecular analyses will become an essential experimental methodology, allowing global views of gene expression to be produced and examined. As an example, this approach will permit investigators studying cancer to comprehensively examine the genes and gene products whose alterations underlie tumor development and progression. This information will be essential in determining the fundamental causes of human neoplasms as well as having immediate practical value in the development of clinically useful diagnostic markers and therapeutic targets.

  1. Molecular genetics of human lactase deficiencies.

    PubMed

    Järvelä, Irma; Torniainen, Suvi; Kolho, Kaija-Leena

    2009-01-01

    Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.

  2. Molecular Epidemiology of Human Immunodeficiency Virus

    PubMed Central

    2017-01-01

    During the evolution of human immunodeficiency virus (HIV), transmissions between humans and primates resulted in multiple HIV lineages in humans. This evolution has been rapid, giving rise to a complex classification and allowing for worldwide spread and intermixing of subtypes, which has consequently led to dozens of circulating recombinant forms. In the Republic of Korea, 12,522 cases of HIV infection have been reported between 1985, when AIDS was first identified, and 2015. This review focuses on the evolution of HIV infection worldwide and the molecular epidemiologic characteristics of HIV in Korea. PMID:28332348

  3. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.

  4. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery.

    PubMed

    Sajomsang, Warayuth; Gonil, Pattarapond; Ruktanonchai, Uracha Rungsardthong; Petchsangsai, Maleenart; Opanasopit, Praneet; Puttipipatkhachorn, Satit

    2013-01-16

    The aim of this study is to investigate the effects of molecular weight, the pyridinium/trimethyl ammonium (Py/Tr) ratio, the nitrogen atoms (N) in the methylated N-(3-pyridylmethyl) chitosan chloride (M3-PyMeChC)/the phosphorus atoms (P) in DNA (N/P) ratio, and the physicochemical properties of nanopolyplexes on transfection efficiency. The water-soluble chitosan derivative, M3-PyMeChC, was used as a non-viral vector to deliver pEGFP-C2 into human hepatoma (Huh7) cell lines. The results revealed that higher molecular weight M3-PyMeChC was able to form complexes completely with DNA at lower N/P ratios than that with lower molecular weights, which led to higher transfection efficiency. Moreover, the M3-PyMeChC with higher Py/Tr ratios showed superior transfection efficiency at lower Py/Tr ratios at all N/P ratios studied. The highest transfection efficiency for the nanopolyplexes occurred for a molecular weight of 82kDa at a N/P ratio of 5. The results indicated that the hydrophobic effect of pyridinium moiety could enhance gene transfection efficiency, which can be attributed to the dissociation of DNA from nanopolyplexes. High Py/Tr ratios in nanopolyplexes tended to decrease cytotoxicity due to delocalization of positive charge into a pyridine ring while high N/P ratios and molecular weight increased cytotoxicity. Our results showed that the vector was able to spread the positive charge by delocalizing it into a heterocyclic ring, suggesting to a promising approach to mediate higher levels of gene transfection.

  5. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.

    PubMed

    Wang, Xiang; Huang, Lei; Wang, Jin-Feng; Yang, Cheng-Min

    2008-01-01

    A dynamic heterogeneous phase polymerization reaction is found to be efficient for controllable cross-link of hemoglobin with glutaraldehyde. The selective absorption of the immobile phase and asymmetry of protein concentration leads to narrowness of the molecular weight distribution and lowness of the average molecular weight. Using this method, 53% of hemoglobin obtained is intermolecular cross-linked with 12 molecular equivalents of glutaraldehyde. The majority of poly-hemoglobins is in the range of 128 kD to 258 kD.

  6. Polymerization of Kraft lignin via ultrasonication for high-molecular-weight applications.

    PubMed

    Wells, Tyrone; Kosa, Matyas; Ragauskas, Arthur J

    2013-11-01

    Kraft lignin is an inexpensive and abundant byproduct of pulp mills that can be used in the synthesis of adhesives and carbon fibers along with energy production. Some of these material applications favor the utilization of high molecular weight (HMW) lignin. This study investigates the use of ultrasonics as a means to increase the degree of polymerization (DP) of highly purified Kraft lignin. Treated samples were characterized by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, (13)C and (31)P nuclear magnetic resonance (NMR). After 15 min of sustained cavitation, ultrasonicated lignin generated a high molecular-weight fraction (~35%) that had a weight-average molecular weight (Mw) over 450-fold greater than the initial Kraft lignin sample. (13)C-NMR and (31)P-NMR analysis indicated that the highly-polymerized fraction was enriched with C5 condensed phenolic structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  8. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    NASA Astrophysics Data System (ADS)

    Satti, Angel J.; Andreucetti, Noemí A.; Ciolino, Andrés E.; Vitale, Cristian; Sarmoria, Claudia; Vallés, Enrique M.

    2010-11-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ( Satti et al., 2008).

  9. Tyrosine kinase inhibitors - small molecular weight compounds inhibiting EGFR.

    PubMed

    Hegymegi-Barakonyi, Bálint; Eros, Dániel; Szántai-Kis, Csaba; Breza, Nóra; Bánhegyi, Péter; Szabó, Gábor Viktor; Várkondi, Edit; Peták, István; Orfi, László; Kéri, György

    2009-06-01

    Abnormally elevated EGFR kinase activity can lead to various pathological states, including proliferative diseases such as cancer. The development of selective protein kinase inhibitors has become an important area of drug discovery for the potential treatment of a variety of solid tumors such as breast, ovarian and colorectal cancers, NSCLC, and carcinoma of the head and neck. There are three small molecule EGFR kinase inhibitor drugs in clinical use (gefitinib, erlotinib and lapatinib), and several others are currently undergoing clinical development. This review summarizes the development of EGFR kinase inhibitors, and includes descriptions of the binding modes, the importance of a multiple-targets strategy, the effects of sensitizing and resistance mutations in the EGFR, and molecular diagnostic approaches. In addition, the use of target fishing for selectivity profiling, off-target identification and quantitative structure-activity relationship modeling for the prediction of EGFR inhibition is discussed.

  10. Synthetic Glycosides and Glycoconjugates of Low Molecular Weight Natural Products.

    PubMed

    Grynkiewicz, G; Szeja, W

    2016-01-01

    Enzymatically controlled transfer of saccharide moieties constitutes a fundamental biological process, essential for both primary and secondary metabolism. Natural products, including countless glycosides, with a rich tradition of use in ethnopharmacology, remain a prime source of inspiration for medicinal chemistry and molecular pharmacology, but their availability from biological sources is usually scarce, hampering attempts at application for new drug discovery and development. Chemical glycosylation on the other hand, although continuously undergoing sophisticated mechanistic studies, has nevertheless already matured as a set of methods which are able to provide substantial amounts of pure chemical entities: natural glycosides, as well as their congeners and mimics, necessary for the study of biological activity in quality assurance systems and required for drug development by pharmaceutical regulations. The paper presents a review of natural products and their analogues glycosylation, in a set of arbitrary selected examples, supplemented with comments on general advances in chemical glycosylation methodology and their applicability for particular categories of secondary metabolites.

  11. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  12. Slip of polydisperse polymers: Molecular weight distribution above and below the plane of slip

    NASA Astrophysics Data System (ADS)

    Sabzevari, Seyed Mostafa; Strandman, Satu; Wood-Adams, Paula Marie

    2015-04-01

    When strong slip occurs during the drag flow of highly entangled polybutadienes (PBD) in a sliding plate rheometer equipped with stainless steel parallel plates, a thin film of polymer debris remains on the substrate after the slip. This debris is assumed to be formed by the disentanglement process that occurs in strong slip at a distance of about one molecular size from the plate. In order to evaluate the composition of the debris we collected it with tetrahydrofuran and subjected it to gel permeation chromatography. It was found that the molecular weight distribution (MWD) of the debris is significantly different from that of the bulk. Moreover, in mixtures prepared from long and short PBDs with distinctly different molecular weight distributions, the MWD of the debris was found to be richer in low molecular weight components and leaner in the high molecular weight components compared to the bulk. This information is important since it reveals the compositional difference between the bulk and interfacial layer above and below the plane of slip. The difference in MWD is likely a consequence of the strong slip in which some of long chains are pulled away from the surface-adsorbed chains by the flow leaving a debris lean in the high molecular weight component.

  13. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    PubMed Central

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  14. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors.

    PubMed

    Xun, Miao-Miao; Liu, Yan-Hong; Guo, Qian; Zhang, Ji; Zhang, Qin-Fang; Wu, Wan-Xia; Yu, Xiao-Qi

    2014-05-06

    Routine clinical implementation of human gene therapy requires safe and efficient gene delivery methods. Linear biodegradable polyesters with carbon-carbon double bonds are prepared from unsaturated diacids and diols. Subsequent appending of low molecular weight PEI by Michael addition gives target cationic polymers efficiently. Agarose gel retardation and fluorescence quenching assays show that these materials have good DNA binding ability and can completely retard plasmid DNA at weight ratio of 0.8. The formed polyplexes have appropriate sizes around 275 nm and zeta-potential values about +20-35 mV. The cytotoxicities of these polymers assayed by MTT are much lower than that of 25 kDa PEI. In vitro transfection toward 7402, HEK293 and U-2OS cells show that polymer P1 may give dramatically higher transfection efficiency (TE) than 25 kDa PEI, especially in U-2OS cells, suggesting that such polymer might be promising non-viral gene vectors.

  15. Human growth and body weight dynamics: an integrative systems model.

    PubMed

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.

  16. Human Growth and Body Weight Dynamics: An Integrative Systems Model

    PubMed Central

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%–24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations. PMID:25479101

  17. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles.

    PubMed

    Ingram, Joanne Helen; Stone, Martin; Fisher, John; Ingham, Eileen

    2004-08-01

    The response of murine macrophages to clinically relevant polyethylene wear particles generated from different polyethylenes at various time points and volumetric doses in vitro was evaluated. Clinically relevant ultra high molecular weight polyethylene (UHMWPE) wear debris was generated in vitro in a lubricant of RPMI 1640 supplemented with 25% (v/v) foetal calf serum using a multi-directional pin-on-plate wear rig under sterile conditions. Wear debris was cultured with C3H murine peritoneal macrophages at various particle volume (microm(3)): cell number ratios. The secretion of TNF-alpha was determined by ELISA. Initially the effect of molecular weight of UHMWPE was considered. Higher molecular weight GUR415HP was shown to have a lower wear rate than the lower molecular weight GUR1120, however a greater volume of the wear debris produced by the high molecular weight GUR415HP was in the 0.1-1.0 microm size range. Wear debris from GUR415HP produced significant levels of TNF-alpha at a concentration of 1 microm(3)/cell while at least 10 microm(3)/cell of GUR1120 wear debris per cell was needed to produce significant levels of TNF-alpha. Secondly the effects of crosslinking GUR1050 was examined when worn against a scratched counterface. The wear rate of the material was shown to decrease as the level of crosslinking increased. However the materials crosslinked with 5 and 10 Mrad of gamma irradiation produced higher percentages of 0.1-1.0 microm size wear particles than the non-crosslinked material. While the crosslinked material was able to stimulate cells to produce significantly elevated TNF-alpha levels at a particle concentration of just 0.1 microm(3)/cell only concentrations of 10 microm(3)/cell and above of the non-crosslinked wear debris were stimulatory. When the counterface was changed from scratched to smooth the wear rate for all three GUR1050 materials was further reduced. For the first time nanometre size wear particles were observed from polyethylene

  18. Molecular biology of the human brain

    SciTech Connect

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  19. Novel High-Molecular Weight Fucosylated Milk Oligosaccharides Identified in Dairy Streams

    PubMed Central

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B.; Chu, Caroline; German, J. Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called “mother liquor”, and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk. PMID:24810963

  20. Novel high-molecular weight fucosylated milk oligosaccharides identified in dairy streams.

    PubMed

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B; Chu, Caroline; German, J Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called "mother liquor", and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk.

  1. Analyzing the molecular weight distribution in supramolecular polymers.

    PubMed

    Schmid, Stephan A; Abbel, Robert; Schenning, Albertus P H; Meijer, E W; Sijbesma, Rint P; Herz, Laura M

    2009-12-09

    We have investigated the formation process of supramolecular linear polymer chains and its influence on the resulting chain length distribution function. For this purpose, we explored the migration of excitation energy between oligofluorene units coupled together through quadruple hydrogen-bonding groups to form linear chains that are terminated by oligophenylene vinylene end-caps acting as energy traps. The energy transfer dynamics from the main chain to the chain end was monitored experimentally using time-resolved PL spectroscopy and compared to an equivalent Monte Carlo simulation incorporating information on the structure of the chains, the transition transfer rates, and various weight distribution trial functions. We find that the assumption of a Flory distribution of chain lengths leads to excellent agreement between experimental and simulated data for a wide range of end-cap concentrations. On the other hand, both a Poisson function and a simplified assumption of a monodisperse distribution significantly underestimate the presence of long chains in the ensemble. Our results therefore show that supramolecular polymerization is a steplike process equivalent to polycondensation reactions in linear covalent polymers. These findings emphasize that equal reactivity of the supramolecular building blocks leads to a dynamic growth process for the supramolecular chain involving all chain components at all times.

  2. Plasma cholesteryl ester-triglyceride transfer protein. The catalytic domain is a low molecular weight proteolipid.

    PubMed

    Busch, S J; Stuart, W D; Hug, B; Mao, S J; Harmony, J A

    1987-12-25

    The lipid transfer protein complex (LTC) isolated from human plasma by immunoaffinity chromatography transfers cholesteryl esters (CE), triglycerides, and phosphatidylcholine (PC) between lipoproteins in vitro. The molecular weight of this lipid transfer catalyst in sodium dodecyl sulfate-polyacrylamide gels was 65,000. When resolved on a gel filtration column by high performance liquid chromatography (HPLC), LTC was composed of fractions of high (greater than 150,000) to low (18,000) molecular weight, although sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of each fraction revealed bands at Mr 65,000 (major) and 52,000 (minor). The CE and triglyceride transfer activity of the low Mr HPLC fraction (1049 nmol of triglyceride/mg/h and 244 nmol of CE/mg/h) was significantly greater than that of the high Mr HPLC fraction (15-27 nmol of triglyceride/mg/h and 20-30 nmol of CE/mg/h). The PC transfer activity of the HPLC fractions was not determined. LTC proteins were separated by dialysis in acidified chloroform:methanol solution into dialysand and dialysate proteins. The dialysate contained a low Mr proteolipid, designated the catalytic domain Cd, which catalyzed CE and triglyceride transfer at equivalent rates (11.0 versus 9.5 mumol/mg/h, respectively). PC transfer activity was approximately 10% of these levels (1.5 mumol/mg/h). The dialysand consisted of a protein, designated the transfer protein TP, which facilitated CE (3.4 mumol/mg/h) preferentially over triglyceride and PC (1.0 mumol/mg/h) transfer, and a catalytically inactive protein, designated the heparin-binding domain Hd. We propose a model of the LTC protein (based on catalytic activities, monoclonal antibody reactivities, and heparin-binding capacities of the isolated proteins) in which both Hd (approximately 13 kDa) and Cd (approximately 3 kDa) originate from a single lipid transfer protein, TP.

  3. Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity.

    PubMed

    Hendricks, Gilbert L; Hadley, Jill A; Krzysik-Walker, Susan M; Prabhu, K Sandeep; Vasilatos-Younken, Regina; Ramachandran, Ramesh

    2009-07-01

    Adiponectin, a 30-kDa adipokine hormone, circulates as heavy, medium, and light molecular weight isoforms in mammals. Plasma heavy molecular weight (HMW) adiponectin isoform levels are inversely correlated with the incidence of type 2 diabetes in humans. The objectives of the present study were to characterize adiponectin protein and quantify plasma adiponectin levels in chickens, which are naturally hyperglycemic relative to mammals. Using gel filtration column chromatography and Western blot analysis under nonreducing and non-heat-denaturing native conditions, adiponectin in chicken plasma, and adipose tissue is predominantly a multimeric HMW isoform that is larger than 669 kDa mass. Under reducing conditions and heating to 70-100 C, however, a majority of the multimeric adiponectin in chicken plasma and adipose tissue was reduced to oligomeric and/or monomeric forms. Immunoprecipitation and elution under neutral pH preserved the HMW adiponectin multimer, whereas brief exposure to acidic pH led to dissociation of HMW multimer into multiple oligomers. Mass spectrometric analysis of chicken adiponectin revealed the presence of hydroxyproline and differential glycosylation of hydroxylysine residues in the collagenous domain. An enzyme immunoassay was developed and validated for quantifying plasma adiponectin in chickens. Plasma adiponectin levels were found to be significantly lower in 8- compared with 4-wk-old male chickens and inversely related to abdominal fat pad mass. Collectively, our results provide novel evidence that adiponectin in chicken plasma and tissues is predominantly a HMW multimer, suggesting the presence of unique multimerization and stabilization mechanisms in the chicken that favors preponderance of HMW adiponectin over other oligomers.

  4. Urinary excretion of low molecular weight proteins in goats during the neonatal period.

    PubMed

    Ozgo, M; Skrzypczak, W; Drzezdzon, D; Lepczynski, A; Dratwa-Chalupnik, A; Michalek, K; Herosimczyk, A

    2009-10-01

    Urinary protein excretion occurs in neonates of many animal species, as well as in human neonates. However, the incidence, dynamics, and mechanism of proteinuria have not been unambiguously explained. The aims of this study were to investigate into excretion of selected protein fractions of molecular weight less than 69 kDa (LMW), evaluation of intensity and dynamics of changes during the first month of kids' life, and an attempt to explain the causes of neonatal proteinuria. The analysis were carried out on 16 kids of White Improved goats, over the period from birth until 30 days of age, using clearance methods. Urine proteins were separated electrophoretically (SDSPAGE), and their concentration and percentage content was determined by densitometric method with the use of archiving and image analysis software. The proteins found in the urine were grouped as HMW, LMW and albumin. For six fractions of LMW proteins, excretion rates and percentage content of the urinary total LMW protein pool were calculated. It has been demonstrated that neonatal proteinuria in goat kids is associated with a high level of excretion of proteins of lower molecular weight than albumin (69 kDa). A strong dynamics of changes in excretion of particular LMW protein fractions with age was observed, which may imply not only an increased permeability of glomerular filtration barrier, especially over the first days of life, but also a selectivity of reabsorption mechanisms in the nephrons. An increased permeability of glomerular filtration barrier for proteins during the first days of life may represent the adaptive mechanism for removal of protein excess from the organism. The urinary LMW protein pool may also contain proteins resulting from the hydrolysis in the tubular cells.

  5. Synthesis, Biophysical Properties and Pharmacokinetics of Ultrahigh Molecular Weight Tense and Relaxed State Polymerized Bovine Hemoglobins

    PubMed Central

    Buehler, Paul W.; Zhou, Yipin; Cabrales, Pedro; Jia, Yiping; Sun, Guoyong; Harris, David R.; Tsai, Amy; Intaglietta, Marcos; Palmer, Andre F.

    2010-01-01

    Hemoglobin-based oxygen carriers (HBOC) are currently being developed as red blood cell (RBC) substitutes for use in transfusion medicine. Despite significant commercial development, late stage clinical results of polymerized hemoglobin (PolyHb) solutions hamper development. We synthesized two types of PolyHbs with ultrahigh molecular weights: tense (T) state PolyHb (MW = 16.59 MDa and P50 = 41 mm Hg) and relaxed (R) state PolyHb (MW = 26.33 MDa and P50 = 0.66 mm Hg). By maintaining Hb in either the T- or R-state during the polymerization reaction, we were able to synthesize ultrahigh molecular weight PolyHbs in distinct quaternary states with no tetrameric Hb, high viscosity, low colloid osmotic pressure and the ability to maintain O2 dissociation, CO association and NO dioxygenation reactions. The PolyHbs elicited some in vitro RBC aggregation that was less than 6% dextran (500 kDa) but more than 5% human serum albumin. In vitro, T-state PolybHb autoxidized faster than R-state PolybHb as expected from previously reported studies, conversely, when administered to guinea pigs as a 20% exchange transfusion, R-state PolybHb oxidized faster and to a greater extent than T-state PolybHb, suggesting a more complex oxidative processes in vivo. Our findings also demonstrate that T-state PolybHb exhibited a longer circulating half-life, slower clearance and longer systemic exposure time compared to R-state PolybHb. PMID:20149433

  6. Low-Molecular-Weight Protein Tyrosine Phosphatase Predicts Prostate Cancer Outcome by Increasing the Metastatic Potential.

    PubMed

    Ruela-de-Sousa, Roberta R; Hoekstra, Elmer; Hoogland, A Marije; Queiroz, Karla C Souza; Peppelenbosch, Maikel P; Stubbs, Andrew P; Pelizzaro-Rocha, Karin; van Leenders, Geert J L H; Jenster, Guido; Aoyama, Hiroshi; Ferreira, Carmen V; Fuhler, Gwenny M

    2016-04-01

    Low-risk patients suffering from prostate cancer (PCa) are currently placed under active surveillance rather than undergoing radical prostatectomy. However, clear parameters for selecting the right patient for each strategy are not available, and new biomarkers and treatment modalities are needed. Low-molecular-weight protein tyrosine phosphatase (LMWPTP) could present such a target. To correlate expression levels of LMWPTP in primary PCa to clinical outcome, and determine the role of LMWPTP in prostate tumor cell biology. Acid phosphatase 1, soluble (ACP1) expression was analyzed on microarray data sets, which were subsequently used in Ingenuity Pathway Analysis. Immunohistochemistry was performed on a tissue microarray containing material of 481 PCa patients whose clinicopathologic data were recorded. PCa cell line models were used to investigate the role of LMWPTP in cell proliferation, migration, adhesion, and anoikis resistance. The association between LMWPTP expression and clinical and pathologic outcomes was calculated using chi-square correlations and multivariable Cox regression analysis. Functional consequences of LMWPTP overexpression or downregulation were determined using migration and adhesion assays, confocal microscopy, Western blotting, and proliferation assays. LMWPTP expression was significantly increased in human PCa and correlated with earlier recurrence of disease (hazard ratio [HR]:1.99; p<0.001) and reduced patient survival (HR: 1.53; p=0.04). Unbiased Ingenuity analysis comparing cancer and normal prostate suggests migratory propensities in PCa. Indeed, overexpression of LMWPTP increases PCa cell migration, anoikis resistance, and reduces activation of focal adhesion kinase/paxillin, corresponding to decreased adherence. Overexpression of LMWPTP in PCa confers a malignant phenotype with worse clinical outcome. Prospective follow-up should determine the clinical potential of LMWPTP overexpression. These findings implicate low-molecular-weight

  7. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  8. Genetic, molecular and physiological insights into human obesity.

    PubMed

    Farooqi, I Sadaf

    2011-04-01

    Obesity and its associated co-morbidities represent one of the biggest public health challenges facing the western world today. Although environmental factors have driven the recent rise in the prevalence of obesity, the heritability of body weight is high and there is evidence that genetic variation plays a major role in determining the susceptibility to weight gain. Genetic approaches can be used to investigate the mechanisms underlying the regulation of weight and the development of obesity. The discovery that leptin, a hormone that is secreted by adipocytes, could regulate weight through effects on food intake and energy expenditure represented a major breakthrough in our understanding of the molecular components of the systems involved in energy homeostasis. I discuss how the identification of humans with mutations in the genes encoding leptin and its downstream targets has provided insights into the role of leptin responsive pathways in the regulation of body weight, neuroendocrine axes and immunity. © 2011 The Author. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    PubMed

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.

  10. Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy.

    PubMed

    Pan, Huaizhong; Sima, Monika; Yang, Jiyuan; Kopeček, Jindřich

    2013-02-01

    Backbone degradable, linear, multiblock N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (DOX) conjugates are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization followed by chain extension via thiol-ene click reaction. The examination of molecular-weight-dependent antitumor activity toward human ovarian A2780/AD carcinoma in nude mice reveals enhanced activity of multiblock, second-generation, higher molecular weight conjugates when compared with traditional HPMA copolymer-DOX conjugates. The examination of body weight changes during treatment indicates the absence of non-specific adverse effects.

  11. Comparative pharmacodynamic assessment of the antiangiogenesis activity of heparin and low-molecular-weight heparin fractions: structure-function relationship.

    PubMed

    Mousa, Shaker A

    2013-01-01

    Effects of unfractionated heparin and low-molecular-weight heparins (LMWHs) on human microvascular endothelial cell sprouting (tube formation assay) in vitro were determined. Antiangiogenesis efficacy of commercially available LMWHs tinzaparin and enoxaparin in the chick chorioallantoic membrane (CAM) model of growth factor-induced angiogenesis was compared. The LMWH tinzaparin was fractionated into different molecular weight (MW) pools by size exclusion chromatography; they inhibited CAM angiogenesis depending on their MW distribution, with optimal inhibition at 8 to 12 kDa and no inhibition at <2 kDa. Tinzaparin demonstrated greater antiangiogenesis efficacy than enoxaparin (P < .001); these CAM results correlated with the endothelial tube formation assay results (P < .001, tinzaparin vs enoxaparin). These data point to the variable antiangiogenesis efficacy of different LMWHs as a function of MW and perhaps other structural differences. Our hypothesis confirmed a relationship between lower release of tissue factor pathway inhibitor by lower MW fractions of tinzaparin or enoxaparin leading to reduced antiangiogenesis efficacy.

  12. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells.

    PubMed

    Liu, Xin; Hao, Jie-Jie; Zhang, Li-Juan; Zhao, Xia; He, Xiao-Xi; Li, Miao-Miao; Zhao, Xiao-Liang; Wu, Jian-Dong; Qiu, Pei-Ju; Yu, Guang-Li

    2014-10-06

    Low molecular weight and sulfated low molecular weight guluronate (LMG and SLMG) were prepared and hypolipidemic effects were studied in a human hepatocellular carcinoma HepG2 cell line. Both compounds decreased total cholesterol (TC) and triglycerides (TG) and inhibited 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity in HepG2 cells. In general, SLMG had greater effects than LMG. Activation of sterol regulatory element-binding protein 2 (SREBP-2), low density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and AMPK's downstream targets were evidenced by increased phosphorylation of AMPK, HMGCR, and acetyl-CoA-carboxylase (ACC), which decreased HMGRC and ACC activity. We further demonstrated that activated AMPK was linked to down-regulated SREBP-1 and up-regulated cholesterol 7α-hydroxylase (CYP7A1). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Targeting cancer with small-molecular-weight kinase inhibitors.

    PubMed

    Fabbro, Doriano; Cowan-Jacob, Sandra W; Möbitz, Henrik; Martiny-Baron, Georg

    2012-01-01

    Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.

  14. Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration.

    PubMed

    Barbieri, Davide; Yuan, Huipin; Luo, Xiaoman; Farè, Silvia; Grijpma, Dirk W; de Bruijn, Joost D

    2013-12-01

    In bone tissue regeneration, certain polymer and calcium-phosphate-based composites have been reported to enhance some biological surface phenomena, facilitating osteoinduction. Although the crucial role of inorganic fillers in heterotopic bone formation by such materials has been shown, no reports have been published on the potential effects the polymer phase may have. The present work starts from the assumption that the polymer molecular weight regulates the fluid uptake, which determines the hydrolysis rate and the occurrence of biological surface processes. Here, two composites were prepared by extruding two different molecular weight L/D,L-lactide copolymers with calcium phosphate apatite. The lower molecular weight copolymer allowed larger fluid uptake in the composite thereof, which was correlated with a higher capacity to adsorb proteins in vitro. Further, the large fluid absorption led to a quicker composite degradation that generated rougher surfaces and enhanced ion release. Following intramuscular implantation in sheep, only the composite with the lower molecular weight polymer could induce heterotopic bone formation. Besides influencing the biological potential of composites, the molecular weight also regulated their viscoelastic behaviour under cyclic stresses. The results lead to the conclusion that designing biomaterials with appropriate physico-chemical characteristics is crucial for bone tissue regeneration in mechanical load-bearing sites. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate).

    PubMed

    Boesel, Luciano F; Le Meur, Sylvaine; Thöny-Meyer, Linda; Ren, Qun

    2014-11-01

    Poly(4-hydroxybutyrate) (P4HB) is a bacterial polyhydroxyalkanoate with interesting biological and physico-chemical properties for the use in biomedical applications. The synthesis of P4HB through a fermentation process often leads to a polymer with a too high molecular weight, making it difficult to process it further by solvent- or melt-processing. In this work P4HB was degraded to obtain polymers with a molecular weight ranging from 1.5×10(3)g/mol to 1.0×10(6)g/mol by using a method established in our laboratory. We studied the effect of the change in molecular weight on thermal and mechanical properties. The decrease of the molecular weight led to an increase in the degree of crystallinity of the polymer. Regarding the tensile mechanical properties, the molecular weight played a more prominent role than the degree of crystallinity in the evolution of the properties for the different polymer fractions. The method presented herein allows the preparation of polymer fractions with easier processability and still adequate thermal and mechanical properties for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    PubMed

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing.

    PubMed

    Trabucchi, E; Pallotta, S; Morini, M; Corsi, F; Franceschini, R; Casiraghi, A; Pravettoni, A; Foschi, D; Minghetti, P

    2002-01-01

    Hyaluronic acid protects granulation tissue from oxygen free radical damage and stimulates wound healing, but its molecular weight prevents it from permeating the epidermal barrier A low molecular weight hyaluronic acid preparation is able to permeate the skin, but it is unknown whether or not it retains the scavenging effects of oxygen free radicals in granulation tissue. Our experiments were conducted in rats with excisional or incisional wounds. Wound contraction over 11 days and breaking strength on the fifth day were measured. Oxygen free radical production was induced by intraperitoneal administration of two different xenobiotics: phenazine methosulfate and zymosan. The wounds were treated topically with low molecular weight hyaluronic acid (0.2%) cream or placebo. In the incisional wound group, the effects of superoxide dismutase were also determined. Absolute controls received wounds and placebo but no xenobiotics. Wound healing was significantly slower in the xenobiotic group than in the control groups. These effects were strongly reduced by topical administration of low molecular weight hyaluronic acid (0.2%) cream and in incisional wounds by topically injected superoxide dismutase. Low molecular weight hyaluronic acid is effective as the native compound against oxygen free radicals. Its pharmacological effects through transdermal administration should be tested in appropriate models.

  19. Anticancer properties of low molecular weight oat beta-glucan – An in vitro study.

    PubMed

    Choromanska, Anna; Kulbacka, Julita; Rembialkowska, Nina; Pilat, Justyna; Oledzki, Remigiusz; Harasym, Joanna; Saczko, Jolanta

    2015-09-01

    Anticancer properties of 1-3, 1-4 oat beta glucan are under intensive investigation now. Antitumor characteristic of fungi and yeast beta-glucans have been widely recognized, but those polysaccharides are mostly insoluble which creates several problems especially in topical formulation. Also high molecular weight oat beta-glucans reveal high viscosity which restricts its application. According to those problems in the current study the antitumor activities of low molecular weight beta-glucan derived from oats were investigated in cancer cells: Me45, A431 and normal HaCaT and murine macrophages P388/D1. The low molecular weight beta-glucan from oat significantly deceased cancer cells viability, while for the normal cells it was non-toxic. It was observed that with the increasing incubation time and the beta-glucan concentration the cancer cells viability significantly deceased. Furthermore for the normal cells the low molecular weight beta-glucan from oat was non-toxic. Immunocytochemical ABC analysis showed that beta-glucan induced strong expression of caspase-12 in both cancer cell lines, while in HaCaT cells ABC reaction was significantly lower and in P388/D1 cell line ABC reaction was negative. Our preliminary studies show strong anti-tumor properties of new low molecular weight beta-glucan from oat and at the same time no toxicity for normal cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Raoult's law-based method for determination of coal tar average molecular weight

    SciTech Connect

    Brown, D.G.; Gupta, L.; Horace, H.K.; Coleman, A.J.

    2005-08-01

    A Raoult's law-based method for determining the number average molecular weight of coal tars is presented. The method requires data from two-phase coal tar/water equilibrium experiments, which readily are performed in environmental laboratories. An advantage of this method for environmental samples is that it is not impacted by the small amount of inert debris often present in coal tar samples obtained from contaminated sites. Results are presented for 10 coal tars from nine former manufactured gas plants located in the eastern United States. Vapor pressure osmometry (VPO) analysis provided similar average molecular weights to those determined with the Raoult's law-based method, except for one highly viscous coal tar sample. Use of the VPO-based average molecular weight for this coal tar resulted in underprediction of the coal tar constituents' aqueous concentrations. Additionally, one other coal tar was not completely soluble in solvents used for VPO analysis. The results indicate that the Raoult's law-based method is able to provide an average molecular weight that is consistent with the intended application of the data (e.g., modeling the dissolution of coal tar constituents into surrounding waters), and this method can be applied to coal tars that may be incompatible with other commonly used methods for determining average molecular weight, such as vapor pressure osmometry.

  1. PNIPAM chain collapse depends on the molecular weight and grafting density.

    PubMed

    Plunkett, Kyle N; Zhu, Xi; Moore, Jeffrey S; Leckband, Deborah E

    2006-04-25

    This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.

  2. Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce.

    PubMed

    Wang, Xudong; Chen, Xianni; Liu, Shuai; Ge, Xizu

    2010-01-01

    To clarify the effects of molecular weight of dissolved organic matter (DOM) on the toxicity and bioavailability of copper (Cu) to plants, DOM extracted from chicken manure was ultra-filtered into four fractions according to their molecular weights by means of sequential-stage ultrafiltration technique. Lettuce seeds were germinated by being exposed to the solutions containing Cu2+ with or without different fractions of DOM. The concentration of copper in roots, leaves, sprouts and the length of roots were investigated. The results showed that not all fractions of DOM could improve copper availability or toxicity. The fraction of DOM with larger molecular weight more than 1 kDa had higher complexation stability with Cu2+ and caused lower concentration of free Cu2+ ion in the solution of copper plus the fraction, resulting in lower availability and toxicity of copper to lettuce, but the fraction with molecular weight less than 1 kDa had the opposite function. Therefore, the molecular weight of 1 kDa may be the division point to determine DOM to increase or decrease copper availability and toxicity.

  3. Complete Molecular Weight Profiling of Low-Molecular Weight Heparins Using Size Exclusion Chromatography-Ion Suppressor-High-Resolution Mass Spectrometry.

    PubMed

    Zaia, Joseph; Khatri, Kshitij; Klein, Joshua; Shao, Chun; Sheng, Yuewei; Viner, Rosa

    2016-11-01

    Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor. Traditionally, the molecular weight distributions of LMWH preparations have been determined using size exclusion chromatography (SEC) with optical detection. Recent advances in liquid chromatography-mass spectrometry methods have enabled exact mass measurements of heparin saccharides roughly up to degree-of-polymerization 20, leaving the high molecular weight half of the LMWH preparation unassigned. We demonstrate a new LC-MS system capable of determining the exact masses of complete LMWH preparations, up to dp30. This system employed an ion suppressor cell to desalt the chromatographic effluent online prior to the electrospray mass spectrometry source. We expect this new capability will impact the ability to define LMWH mixtures favorably.

  4. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  5. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    USDA-ARS?s Scientific Manuscript database

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  6. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites.

    PubMed

    Mamidi, Narsimha; Leija, Héctor Manuel; Diabb, Jose Manuel; Lopez Romo, Irasema; Hernandez, Diana; Castrejón, Javier Villela; Martinez Romero, Oscar; Barrera, Enrique V; Elias Zúñiga, Alex

    2017-11-01

    The carbon nanotubes were chosen for this study since long, small to medium diameter, and unfunctionalized nanotubes are considered less favorable for nontoxic applications. The intent of the study is to expand the use of CNTs beyond current understood nontoxic means. Multiwall carbon nanotube/ultrahigh molecular weight polyethylene (MWCNT/UHMWPE) nanocomposites were prepared by reinforcing long chain UHMWPE with MWCNTs. These nanocomposites were prepared to study their cytotoxicity assessments with human fibroblast cell lines. Cell adhesion, proliferation, and differentiation were studied with human fibroblast cell lines. In vitro studies revealed good cell viability on the surface of MWCNT/UHMWPE composites even after 72 h. The nanocomposites showed better cell attachment for fibroblasts than pristine UHMWPE. Overall, the results showed that MWCNT/UHMWPE composites displayed good cellular growth and biocompatibility indicating another way CNTs can be nontoxic. These nanocomposites offer nontoxic conditions that can be used in biomedical devices because the long chain UHMWPE is entangled with long MWCNTs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3042-3049, 2017. © 2017 Wiley Periodicals, Inc.

  7. Persistent cutaneous insulin allergy resulting from high-molecular-weight insulin aggregates.

    PubMed

    Ratner, R E; Phillips, T M; Steiner, M

    1990-06-01

    Cutaneous insulin allergy remains a clinical problem despite the use of highly purified human insulins. We used in vitro lymphocyte-transformation studies to examine the reactivity of various insulin formulations in diabetic patients with (n = 4) and without (n = 8) cutaneous allergies. Nonspecific response to concanavalin A demonstrated a greater than 40-fold response in both groups. Control patients did not respond to the addition of commercial insulin preparations (stimulation index [SI] less than 4), whereas allergic patients had an 11-fold response to beef (P less than 0.01), a 10-fold response to pork (P less than 0.01), and a 6-fold response to human (P less than 0.01) insulins. This response was limited to a single insulin manufacturer's preparations and was uniform in all three species tested. Efforts to identify the offending agent revealed no lymphoblast transformation when crystalline insulin was used or when commercial preparations were purified to a single peak by high-performance liquid chromatography (HPLC). Pure crystalline insulin dimers of beef, pork, and human species were tested; control subjects responded with mean SIs of 1.9, 1.9, and 1.8, respectively, whereas allergic patients showed greater reactivity to beef (SI 7.3) and pork (SI 14.8). The lymphoblast-transformation response to crystalline human dimer was dose dependent with mean SIs of 0.9 at low concentration (2.8 ng/ml) and 19.2 at a higher concentration (20.4 ng/ml). The commercial insulin preparations were run on size-exclusion HPLC to determine high-molecular-weight aggregate content. Independent of species, a single manufacturer had products demonstrating aggregate levels 3- to 6-fold higher than those found in other manufacturers' preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Molecular Factors Governing the Liquid and Glassy States Recrystallization of Celecoxib in Binary Mixtures with Excipients of Different Molecular Weights.

    PubMed

    Grzybowska, K; Chmiel, K; Knapik-Kowalczuk, J; Grzybowski, A; Jurkiewicz, K; Paluch, M

    2017-03-08

    Transformation of poorly water-soluble crystalline pharmaceuticals to the amorphous form is one of the most promising strategies to improve their oral bioavailability. Unfortunately, the amorphous drugs are usually thermodynamically unstable and may quickly return to their crystalline form. A very promising way to enhance the physical stability of amorphous drugs is to prepare amorphous compositions of APIs with certain excipients which can be characterized by significantly different molecular weights, such as polymers, acetate saccharides, and other APIs. By using different experimental techniques (broadband dielectric spectroscopy, differential scanning calorimetry, X-ray diffraction) we compare the effect of adding the large molecular weight polymer-polyvinylpyrrolidone (PVP K30)-and the small molecular weight excipient-octaacetylmaltose (acMAL)-on molecular dynamics as well as the tendency to recrystallization of the amorphous celecoxib (CEL) in the amorphous solid dispersions: CEL-PVP and CEL-acMAL. The physical stability investigations of the binary systems were performed in both the supercooled liquid and glassy states. We found that acMAL is a better inhibitor of recrystallization of amorphous CEL than PVP K30 deep in the glassy state (T < Tg). In contrast, PVP K30 is a better crystallization inhibitor of CEL than acMAL in the supercooled liquid state (at T > Tg). We discuss molecular factors governing the recrystallization of amorphous CEL in examined solid dispersions.

  9. Phytochemicals in the Control of Human Appetite and Body Weight

    PubMed Central

    Tucci, Sonia A.

    2010-01-01

    Since obesity has grown to epidemic proportions, its effective management is a very important clinical issue. Despite the great amount of scientific effort that has been put into understanding the mechanisms that lead to overconsumption and overweight, at the moment very few approaches to weight management are effective in the long term. On the other hand, modern society is also affected by the growing incidence of eating disorders on the other side of the spectrum such as anorexia and bulimia nervosa which are equally difficult to treat. This review will try to summarise the main findings available in the literature regarding the effect of plants or plant extracts (phytochemicals) on human appetite and body weight. The majority of plant extracts are not single compounds but rather a mixture of different molecules, therefore their mechanism of action usually targets several systems. In addition, since some cellular receptors tend to be widely distributed, sometimes a single molecule can have a widespread effect. This review will attempt to describe the main phytochemicals that have been suggested to affect the homeostatic mechanisms that influence intake and body weight. Clinical data will be summarised and scientific evidence will be reviewed. PMID:27713277

  10. STUDIES OF HYPERSENSITIVITY TO LOW MOLECULAR WEIGHT SUBSTANCES

    PubMed Central

    Eisen, Herman N.; Belman, Sidney

    1953-01-01

    2,4-dinitrophenylsulfenyl chloride (DSCl) and 2,4-dinitrophenylthiocyanate (DSCN) elicited allergic reactions of the delayed type when applied to the skin of guinea pigs and of human beings who had been sensitized by prior exposure to 2,4-dinitrofluorobenzene (DF). DSCl and DSCN, together with 2,4-dinitrobenzene sulfonate (DSO3), constitute a clearly defined group of allergenic dinitrophenyl compounds in that they all combined with skin protein in vivo through reaction with cysteine or cystine. In vitro, these compounds combine with free SH groups, and with —S—S— groups of hair and epidermis, but not with —S—S— groups of oxidized glutathione or of bovine gamma globulins. DSO3, DSCl, and DSCN did not react with amino groups in vivo, but did react with protein amino groups in vitro at pH values of about 10. Another group of dinitrophenyl compounds (DF, DCl, and DBr) previously had been shown to combine with lysine ε-NH2 groups of epidermal proteins. In the present work it was found that these compounds do not react with the disulfide groups of these proteins, either in vivo or in vitro. Moreover, they did not seem to react with SH groups of viable skin, although they are highly reactive with sulfhydryl in vitro. This apparent discrepancy between reactivity with SH groups in vitro and in vivo may be due to the fact that the chromatographic technique employed was relatively insensitive for the sulfhydryl derivative. When a compound of either group was applied to the skin surface, dinitrophenyl-amino acids were recovered from the epidermis but not from the dermis. The results are discussed from the viewpoint of the epidermal localization of dinitrophenyl-protein conjugates. PMID:13109108

  11. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  12. [Properties and clinical implications of middle molecular weight low substitution hydroxyethyl starch solution].

    PubMed

    Kotake, Yoshifumi

    2014-02-01

    In this review article, the properties and clinical implications of middle molecular weight low substitution hydroxyethyl starch (HES) solution are summarized. This preparation shows larger volume effect and longer duration compared to the currently available low-molecular weight HES solution and will be available in the near future in Japan. Effects on renal function and coagulation system are supposedly dependent on the persistence of larger HES molecule in the body and this middle molecular weight low substitution HES preparation may be advantageous to the older HES preparation due to its rapid metabolism. This preparation has been successfully used in the goal-directed fluid management in the early recovery program after surgery and will offer several advantages in fluid management when introduced in Japan.

  13. Influence of refractive index and molecular weight of alcohol agents on skin optical clearing effect

    NASA Astrophysics Data System (ADS)

    Mao, Zhongzhen; Zheng, Ying; Hu, Yating; Lu, Wei; Luo, Qingming; Zhu, Dan

    2007-02-01

    In order to discuss the relative factors affecting the optical clearing effect of agents on skin tissues, six hydroxy-terminated and saturated alcohols with different refractive index and molecular weight were chosen as the optical clearing agents (OCAs). After being treated by different OCAs, the change of transmitted intensity of porcine skins in vitro was measured by single integrating sphere system. The results showed the optical clearing effects of six OCAs, i.e., glycerol, PEG400, PEG200, 1,3-propylene glycol, 1,4-butanediol and 1-butanol, arranged in the descending order. Based on the above results, the refractive index and molecular weight was further discussed. The optical clearing effect of alcohols has been deduced to have negative correlation with refractive index (r=-0.608), but no correlation with molecular weight (r= 0.008).

  14. Rapid analysis of acylglycerols in low molecular weight milk fat fractions.

    PubMed

    Craven, R J; Lencki, R W

    2007-05-01

    A suitable analytical method was required to facilitate development of an industrial-scale short-path distillation (SPD) process. Short-path distillation produces milk fat distillates (MFD) enriched in low molecular weight milk fat components-viz. free fatty acids, monoacylglycerols, diacylglycerols, cholesterol and low molecular weight triacylglycerols. In this case, solid-phase extraction (SPE) was considered a better alternative than thin-layer chromatography for separating polar and apolar lipid components in MFD samples due to its speed and near-complete recoveries. Solid-phase extraction of MFDs yielded two fractions, both of which are sufficiently pure for subsequent analysis by gas chromatography. This procedure provided rapid and complete chemical characterization (including mass balances) of low-molecular weight milk-fat fractions.

  15. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  16. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments.

  17. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells.

  18. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested.

  19. Low molecular weight chitosan-insulin polyelectrolyte complex: characterization and stability studies.

    PubMed

    Al-Kurdi, Zakieh I; Chowdhry, Babur Z; Leharne, Stephen A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-30

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  20. Ionic Conductivity Trends with Molecular Weight in PEO and PEO-Based Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Teran, Alexander; Mullin, Scott; Wanakule, Nisita; Panday, Ashoutosh; Balsara, Nitash

    2010-03-01

    Poly(ethylene oxide) based polymer electrolytes with lithium bis(trifluoromethane)sulfonamide (LiTFSI) salt remain one of the most promising class of solid polymer electrolyte for rechargeable lithium metal batteries. Among those, poly(styrene-b-ethyleneoxide) (SEO) doped with LiTFSI has been shown to exhibit acceptable levels of conductivity while possessing a sufficiently high modulus to suppress the growth of dendrites. The purpose of this study is to explore the molecular weight dependence on conductivity for the PEO/LiTFSI system to which previous studies have alluded, but never quantified, and contrast this with the observed molecular weight dependence of SEO reported in previous work. Conductivities were measured using AC impedance spectroscopy over a broad range of temperatures and molecular weights beyond those reported in the literature.

  1. Utilization of low-molecular-weight heparin prophylaxis in pediatric and adolescent trauma patients.

    PubMed

    O'Brien, Sarah H; Klima, Jennifer; Gaines, Barbara A; Betz, Sally; Zenati, Mazen S

    2012-01-01

    The objective of this study was to use trauma registry data to describe the number and characteristics of patients 21 years or younger receiving thromboprophylaxis with low-molecular-weight heparin at 2 pediatric and 2 adult level 1 trauma centers. Among 706 patients, the average age was 18.5 years, and 94.6% were hospitalized at adult centers. The most common injuries were lower extremity fractures (35.6%) and head injuries (20.4%). Major bleeding was reported in 3 patients (0.4%), and thrombotic events were reported in 15 patients (2.1%). Despite a lack of scientific evidence, low-molecular-weight heparin prophylaxis is being used in young trauma patients (primarily those 14 years or older). Prospective multicenter studies are needed to accurately describe the risks and benefits of low-molecular-weight heparin prophylaxis in young trauma patients, thereby identifying those who truly benefit from this intervention.

  2. Supramolecular star polymers. Increased molecular weight with decreased polydispersity through self-assembly.

    PubMed

    Todd, Eric M; Zimmerman, Steven C

    2007-11-28

    A ditopic structure containing two heterocyclic DeAP units and programmed to self-assemble is used as an initiation unit for the synthesis of polylactide and polystyrene. The resultant polymers self-assemble into higher molecular weight structures with a lower molecular weight distribution. The largest discrete nanoscale polymeric assembly is proposed to be a hexameric star with a molecular weight of ca. 92.7 kDa. All polymeric assemblies generally exhibit PDI values of 1.3 to 1.5, which are lower than the PDI value of the corresponding polymeric arms. A hexameric assembly is stabilized by 30 hydrogen bonds, including six AADD.DDAA contacts. The hexameric star is formed under conditions that are at least partially controlled by kinetics.

  3. Role of low-molecular-weight heparin in the management of acute coronary syndromes.

    PubMed

    Borja, Javier

    2002-11-01

    In the past few years, several clinical trials with low-molecular-weight heparins in acute coronary syndromes without ST-segment elevation have been published. In the acute phase of treatment, enoxaparin obtained better results than unfractionated heparin, but dalteparin and nadroparin did not. Enoxaparin also obtained better results than tinzaparin. From these results, it can be assumed that the efficacy of enoxaparin is higher than that of dalteparin and nadroparin. However, because low-molecular-weight heparins have not been compared head to head (except in the case of enoxaparin and tinzaparin), and given the differences between studies in patient selection criteria, design, treatment strategies, and efficacy variables, it cannot be concluded that one low-molecular-weight heparin is superior to another in the acute phase of treatment. Prolonged dalteparin treatment suggests a benefit, particularly for patients at high risk (defined as those with high troponin levels), and it can also be useful in patients waiting for invasive procedures.

  4. Properties of different molecular weight sodium lignosulfonate fractions as dispersant of coal-water slurry

    SciTech Connect

    Zhou, M.S.; Qiu, X.Q.; Yang, D.J.; Lou, H.M.

    2006-07-01

    Four purified sodium lignosulfonate (SL) samples with different molecular weights were prepared by fractionation using ultrafiltration. The effect of the molecular weights of SL on the apparent viscosity of coal-water slurry (CWS) was investigated by studying the adsorption amounts and the zeta potentials in the coal-water interface. The results show that the adsorption behavior of the dispersants in the coal-water interface is the key factor to affect the dispersing effect, that the higher adsorption amount and compact adsorption film help reduce the viscosity reduction of CWS, and that the zeta potential is also an important factor influenced by the sulfonic group and carboxy contents of the lignosulfonate molecule. Furthermore, SL with a molecular weight ranging from 10000 to 50000 has both a higher adsorbed amount and zeta potential on the coal surface and the best effect on reducing the viscosity of the coal-water slurry.

  5. Synthesis of controlled, high-molecular weight poly(l-glutamic acid) brush polymers.

    PubMed

    Baumgartner, Ryan; Kuai, Diane; Cheng, Jianjun

    2017-08-22

    We report the synthesis and characterization of high-molecular weight poly(l-glutamic acid) based brush polymers. Utilizing a combination of ring-opening metathesis polymerization of norbornene based monomers and ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride, high-molecular weight γ-benzyl protected poly(l-glutamic acid) brush polymers are synthesized. Controlled and complete deprotection of the benzyl groups using trimethylsilyl iodide resulted in poly(l-glutamic acid) based brush polymers with molecular weights up to 3.6 MDa, which may potentially be used to prepare size-controlled unimolecular polymeric nanomedicine for drug delivery applications. Camptothecin brush poly(l-glutamic acid) conjugates were prepared and their stability, drug release kinetics, and in vitro toxicity were studied.

  6. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  7. Pharmacological effects and clinical applications of ultra low molecular weight heparins.

    PubMed

    Liu, Zhang; Ji, Shengli; Sheng, Juzheng; Wang, Fengshan

    2014-02-01

    Heparin, one of the common anticoagulants, is clinically used to prevent and treat venous thromboembolism (VTE). Though it has been the drug of choice for many advanced medical and surgical procedures with a long history, the adverse events, such as bleeding, heparin-induced thrombocytopenia (HIT), allergic reactions, follow. Therefore, low molecular weight heparins (LMWHs) and ultra low molecular weight heparins (ULMWHs), with lower molecular weights, higher anti-FXa activity, longer half-life times and lower incidence of adverse events than unfractionated heparin (UFH), were researched and developed. Fondaparinux, a chemically synthesized ULMWH of pentasaccharide, has the same antithrombin III (AT-III)-binding sequence as found in UFH and LMWH. In addition, AVE5026 and RO-14, another two ULMWHs, are obtained by selective chemical depolymerization. In this paper, we review the preparation process, pharmacological effects and clinical applications of fondaparinux, AVE5026 and RO-14.

  8. Isolation and function of a low molecular weight protein of mung bean embryonic axes.

    PubMed

    Manickam, A; Carlier, A R

    1980-08-01

    A low molecular weight protein from dry mung bean (Vigna radiata) embryonic axes has been purified to near homogeneity by chromatography on DEAE-cellulose and hydroxylapatite. It shows a molecular weight of about 12,000 in sodium dodecyl sulfate-polyacrylamide gels and a sedimentation coefficient of about 2 S in sucrose gradients. This protein occurs in greater amounts in dry axes than in dry cotyledons, and it dramatically disappears during early germination of the seed. Affinity chromatography tests do not indicate it as a trypsin inhibitor or as a glycoprotein. It is a water-soluble cytoplasmic protein exhibiting an amino acid composition characteristic of storage proteins with a high content of glutamic acid/glutamine. We suggest that it is a low molecular weight storage albumin.

  9. The antineoplastic effect of low-molecular-weight heparins – a literature review

    PubMed Central

    Püsküllüoğlu, Mirosława; Krzemieniecki, Krzysztof

    2013-01-01

    There is some evidence for the antitumor effect of heparins, especially the low-molecular-weight ones. The authors discuss the potential mechanism of this antineoplastic effect and present results from several in vitro and in vivo experiments. The clinical trials concerning the impact of low-molecular-weight heparins on the tumor and on the patients’ survival are described. The objective was to find out if heparins could be administered as an antitumor drug, independently of their anticoagulatory properties. The antitumor role of tissue factor, heparinase, chemokines, stromal proteins, cellular interactions as well as angiogenesis and immunology seems certain. The results of the available studies seem promising but large clinical trials are necessary in order to confirm the antineoplastic effect of the low-molecular-weight heparins and to approve them for standard anticancer treatment. It could be a breakthrough in modern oncology. PMID:23788954

  10. Effect of molecular weight on ion diffusion and transference number in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Timachova, Ksenia; Balsara, Nitash

    2015-03-01

    Solid polymer electrolytes are of great interest for their potential use in high specific energy, solid-state batteries, however, salt transport properties in polymer electrolytes have not been comprehensively addressed over a wide range of molecular weights. Poly(ethylene oxide) (PEO) has been the most widely studied polymer electrolyte due to its high solvation of lithium salts and low glass transition temperature. This study presents measurements of the transport properties of lithium bis(trifluoromethanesulfone)imide (LiTFSI) in PEO at both the high concentration present in functional electrolytes and in the dilute limit for a large range of PEO molecular weights. Individual diffusion coefficients of the Li + and TFSI- ions were measured using pulsed-field gradient nuclear magnetic resonance and the cation transference number was calculated. The diffusion coefficients, transference number, and conductivity as a function of molecular weight and salt concentration provide a complete set of transport properties for PEO.

  11. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  12. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements.

  13. Zwitterionic ring-opening polymerization for the synthesis of high molecular weight cyclic polymers.

    PubMed

    Brown, Hayley A; Waymouth, Robert M

    2013-11-19

    Cyclic polymers are an intriguing class of macromolecules. Because of the constraints of the cyclic topology and the absence of chain ends, the properties of these molecules differ from those of linear polymers in ways that remain poorly understood. Cyclic polymers present formidable synthetic challenges because the entropic penalty of coupling the chain ends grows exponentially with increasing molecular weight. In this Account, we describe recent progress in the application of zwitterionic ring-opening polymerization (ZROP) as a strategy for the synthesis of high molecular weight, cyclic polymers. Zwitterionic ring-opening polymerization involves the addition of neutral organic nucleophiles to strained heterocyclic monomers; under appropriate conditions, cyclization of the resultant macrozwitterions generates cyclic macromolecules. We discuss the mechanistic and kinetic features of these zwitterionic ring-opening reactions and the conditions that influence the efficiency of the initiation, propagation, and cyclization to generate high molecular weight cyclic polymers. N-Heterocyclic carbenes (NHC) are potent nucleophiles and relatively poor leaving groups, two features that are important for the generation of high molecular weight polymers. Investigations of the nature of the monomer and nucleophile have helped researchers understand the factors that govern the reactivity of these systems and their impact on the molecular weight and molecular weight distributions of the resulting cyclic polymers. We focus primarily on ZROP mediated by N-heterocyclic carbene nucleophiles but also discuss zwitterionic polymerizations with amidine, pyridine, and imidazole nucleophiles. The ZROP of N-carboxyanhydrides with N-hetereocyclic carbenes generates a family of functionalized cyclic polypeptoids. We can synthesize gradient lactone copolymers by exploiting differences in relative reactivity present in ZROP that differ from those of traditional metal-mediated polymerizations

  14. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  15. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    PubMed

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-06-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R(2)=0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Luculescu, Catalin-Romeo; Dinescu, Maria; Canulescu, Stela; Schou, Jørgen

    2012-10-01

    In this work, polyethylene glycol (PEG) films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The possibility to tailor the properties of the films by means of polymer molecular weight was explored. The films of PEG of average molecular weights 400 Da, 1450 Da, and 10000 Da (PEG400, PEG1450, and PEG10000) were investigated in vitro, in media similar with those inside the body (phosphate buffer saline PBS with pH 7.4 and blood). The mass of the polymer did not change during this treatment, but the polymer molecular weight was found to strongly influence the films properties and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ˜66 grd for PEG400 to ˜41 grd for PEG1450 and to ˜15 grd for PEG10000. The same trend was observed during immersion of the PEG films in PBS. Before immersion in PBS, the refractive index of the films increased from ˜1.43 for PEG400 to ˜1.48 for PEG1450 and to ˜1.68 for PEG10000. During immersion in PBS the refractive index decreased gradually, but remained higher for the PEG molecules of higher mass. Finally, blood compatibility tests showed that the PEG films of higher molecular weight were most compatible with blood.

  17. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer.

    PubMed

    Jenkins, Courtney L; Meredith, Heather J; Wilker, Jonathan J

    2013-06-12

    Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers.

  18. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    PubMed

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity. © 2015 Wiley Periodicals, Inc.

  19. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.

    PubMed

    Rojruthai, Porntip; Sakdapipanich, Jitladda Tangpakdee; Takahashi, Seiji; Hyegin, Lee; Noike, Motoyoshi; Koyama, Tanetoshi; Tanaka, Yasuyuki

    2010-02-01

    Hevea brasiliensis is one of few higher plants producing the commercial natural rubber used in many significant applications. The biosynthesis of high molecular weight rubber molecules by the higher plants has not been clarified yet. Here, the in vitro rubber biosynthesis was performed by using enzymatically active small rubber particles (SRP) from Hevea. The mechanism of the in vitro rubber synthesis was investigated by the molecular weight distribution (MWD). The highly purified SRP prepared by gel filtration and centrifugation in the presence of Triton((R)) X-100 showed the low isopentenyl diphosphate (IPP) incorporation for the chain extension mechanism of pre-existing rubber. The MWD of in vitro rubber elongated from the pre-existing rubber chains in SRP was analyzed for the first time in the case of H. brasiliensis by incubating without the addition of any initiator. The rubber transferase activity of 70% incorporation of the added IPP (w/w) was obtained when farnesyl diphosphate was present as the allylic diphosphate initiator. The in vitro synthesized rubber showed a typical bimodal MWD of high and low molecular weight fractions in GPC analysis, which was similar to that of the in vivo rubber with peaks at around 10(6) and 10(5) Da or lower. The reaction time independence and dependence of molecular weight of high and low molecular weight fractions, respectively, indicated that the high molecular weight rubber was synthesized from the chain extension of pre-existing rubber molecules whereas the lower one was from the chain elongation of rubber molecules newly synthesized from the added allylic substrates.

  20. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  1. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  2. PURIFICATION AND MOLECULAR WEIGHT DETERMINATION OF CLOSTRIDIUM BOTULINUM TYPE E TOXIN

    PubMed Central

    Gerwing, Julia; Dolman, Claude E.; Reichmann, M. E.; Bains, Hardial S.

    1964-01-01

    Gerwing, Julia (The University of British Columbia, Vancouver, British Columbia, Canada), Claude E. Dolman, M. E. Reichmann, and Hardial S. Bains. Purification and molecular weight determination of Clostridium botulinum type E toxin. J. Bacteriol. 88:216–219. 1964.—A method was developed whereby type E botulinus toxin can be obtained in a highly purified state by elution through acidified diethylaminoethyl-cellulose columns. The material thus isolated appears to be electrophoretically and ultracentrifugally homogeneous. A molecular weight of 18,600 was calculated for the toxin. Images PMID:14197891

  3. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  4. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  5. Extraction of berkelium (IV) by neutral organophosphorus compounds and high molecular weight amines

    SciTech Connect

    Myasoedov, B.F.; Milyukova, M.S.; Malikov, D.A.

    1984-01-01

    The extraction behaviour of berkelium (IV) from inorganic acid solutions using neutral organophosphorus compounds and high molecular weight amines was studied. Distribution coefficients as a function of the nature and concentration of acid, extractant, organic solvent and oxidant were examined. The stoichiometry of Bk(IV) extraction has been studied and the composition of the extracted species has been determined. The data obtained allowed the authors to work out the extraction methods of separation and purification of berkelium from transplutonium elements, rare earths and several fission products using neutral organophosphorus compounds and high molecular weight amines. 8 figures, 2 tables.

  6. Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1985-01-01

    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.

  7. Effect of molecular weight and substitution on tissue uptake of hydroxyethyl starch: a meta-analysis of clinical studies.

    PubMed

    Bellmann, Romuald; Feistritzer, Clemens; Wiedermann, Christian J

    2012-04-01

    Intravenously infused hydroxyethyl starch (HES) can be found in urine, plasma and tissues. HES remaining in plasma and tissues is thought to increase the risk of clinical complications. HES solutions of lower molecular weight and substitution have been developed to increase urinary excretion and reduce plasma persistence. However, their effect on tissue uptake of HES has not been investigated in human subjects. Our objective was to test the hypothesis that lower molecular weight and substitution decrease tissue uptake of HES. Computer searches were performed of MEDLINE; EMBASE; the Cochrane Library; meeting abstract databases in surgery, anaesthesiology and intensive care; ClinicalTrials.gov; and Google. Supplementary sources were reference lists and electronic tables of journal contents. No time period or language restrictions were imposed. Clinical studies were eligible for inclusion in the meta-analysis, if data were reported both for cumulative urinary excretion of HES over 24 hours after infusion and for plasma HES concentration at 24 hours. Data were extracted on 24-hour urinary excretion of HES, 24-hour HES plasma concentration, plasma volume, HES molecular weight and substitution, study design, type and demographics of subjects, indication for fluid infusion, and HES infusion r