Science.gov

Sample records for molecular weight inhibitors

  1. Recent Developments in Low Molecular Weight Complement Inhibitors

    PubMed Central

    Qu, Hongchang; Ricklin, Daniel; Lambris, John D.

    2009-01-01

    As a key part of the innate immune system, complement plays an important role not only in defending invading pathogens but also in many other biological processes. Inappropriate or excessive activation of complement has been linked to many autoimmune, inflammatory, and neurodegenerative diseases, as well as ischemia-reperfusion injury and cancer. A wide array of low molecular weight complement inhibitors has been developed to target various components of the complement cascade. Their efficacy has been demonstrated in numerous in vitro and in vivo experiments. Though none of these inhibitors has reached the market so far, some of them have entered clinical trials and displayed promising results. This review provides a brief overview of the currently developed low molecular weight complement inhibitors, including short peptides and synthetic small molecules, with an emphasis on those targeting components C1 and C3, and the anaphylatoxin receptors. PMID:19800693

  2. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  3. Examination of the change in returning molecular weight obtained during inhibitor squeeze treatments using polyacrylate based inhibitors

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.

    1995-11-01

    Scale inhibitors based on small polyelectrolytes are often employed in oilfield scale prevention treatments. These materials are injected into the near-well formation of producers in a scale inhibitor squeeze treatment. When the well is brought back on production, the objective is for the return concentration level of the inhibitor in the produced brine to be at or above a certain threshold level, C{sub t}. This threshold level is the minimum inhibitor concentration required to prevent the formation of mineral carbonate or sulfate scales in that well. The squeeze lifetime depends strongly on the nature of the interaction between the inhibitor and the formation either through an adsorption or precipitation mechanism. Both adsorption and precipitation processes depend on the molecular weight of the scale inhibitor, as well as on a range of other factors. However, polymeric inhibitor species always display some degree of polydispersity (spread of molecular weight). In this paper, the authors examine the effects of molecular weight on adsorption/desorption phenomena for polyacrylate based inhibitor species. This work shows that, in the inhibitor effluent after a squeeze treatment, the molecular weight of the returning inhibitor may be different from that which was injected. For commercially available polymeric inhibitor species, they demonstrate using core floods that preferential retention of higher molecular weight components occurs and preferential desorption of lower molecular weight components is observed. This leads to a gradation in molecular weight in the return profile, which can lead to increased molecular weight components returning as the inhibitor concentration approaches the threshold level. The significance of this observation to field application of polymeric inhibitor species is discussed.

  4. Targeting cancer with small-molecular-weight kinase inhibitors.

    PubMed

    Fabbro, Doriano; Cowan-Jacob, Sandra W; Möbitz, Henrik; Martiny-Baron, Georg

    2012-01-01

    Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.

  5. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle.

    PubMed Central

    Carney, I T; Curtis, C G; Kay, J K; Birket, N

    1980-01-01

    1. Rat intestinal smooth muscle was shown to contain endogenous inhibitory activity towards the neutral trypsin-like muscle proteinase described previously [Beynon & Kay (1978) Biochem. J. 173, 291--298]. 2. Comtamination of the muscle tissue by mucosal, blood and pancreatic inhibitors was shown to be unlikely. 3. The inhibitory activity was resolved into high- and low-molecular-weight components. 4. The low-molecular-weight component was purified to homogeneity. It has a molecular weight of approx. 9000 and was stable over the pH range 3--11. 5. It inhibited the muscle proteinase competitively (Ki congruent to t microM), but had no effect on any of the other proteinases tested. 6. Leupeptin also inhibited the muscle proteinase competitively (Ki congruent to 0.3 microM), whereas the low-molecular weight proteins gastrin, glucagon and insulin B-chain had very little effect. 7. A role for a weakly binding inhibitor in modulating the influence of the neutral proteinase on intracellular protein degradation is considered. Images Fig. 4. PMID:7396824

  6. Low-molecular-weight inhibitors of NF-κB signalling pathways

    NASA Astrophysics Data System (ADS)

    Dolinnaya, N. G.; Kubareva, Elena A.; Kazanova, E. V.; Zigangirova, N. A.; Naroditsky, B. S.; Gintsburg, A. L.; Oretskaya, Tat'yana S.

    2008-11-01

    The nuclear factor κB (NF-κB) is a transcription factor involved in inducible expression of cellular genes playing a key role in cardiovascular pathologies, carcinogenesis, inflammatory and viral diseases. The review describes the stimuli and processes inducing NF-κB activation and the components of a signalling cascade that could constitute targets for NF-κB inhibition. The molecular action and properties of various low-molecular weight inhibitors aiming to prevent NF-κB activity are summarised.

  7. Low molecular weight inhibitors of Myc-Max interaction and function.

    PubMed

    Yin, Xiaoying; Giap, Christine; Lazo, John S; Prochownik, Edward V

    2003-09-18

    c-Myc is helix-loop-helix-leucine zipper (HLH-ZIP) oncoprotein that is frequently deregulated in human cancers. In order to bind DNA, regulate target gene expression, and function in a biological context, c-Myc must dimerize with another HLH-ZIP protein, Max. A large number of c-Myc target genes have been identified, and many of the encoded proteins are transforming. Such functional redundancy, however, complicates therapeutic strategies aimed at inhibiting any single target gene product. Given this consideration, we have instead attempted to identify ways by which c-Myc itself could be effectively disabled. We have used a yeast two-hybrid approach to identify low-molecular-weight compounds that inhibit c-Myc-Max association. All of the compounds prevented transactivation by c-Myc-Max heterodimers, inhibited cell cycle progression, and prevented the in vitro growth of fibroblasts in a c-Myc-dependent manner. Several of the compounds also inhibited tumor growth in vivo. These results show that the yeast two-hybrid screen is useful for identifying compounds that can be exploited in mammalian cells. More specifically, they provide a means by which structural analogs, based upon these first-generation Myc-Max inhibitors, can be developed to enhance antitumor efficacy.

  8. The effect of molecular weight on the adsorption/desorption characteristics of polymeric scale inhibitors on silica sand and in sandstone cores

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.

    1994-12-31

    A number of polymeric scale inhibitors are currently used for downhole application in oilfield ``squeeze`` treatments. These materials must perform the dual role of inhibiting scale formation at low concentration levels whilst giving acceptably long return curves at the wellbore. Both of these design aspects of polymeric scale inhibitors relate to their adsorption characteristics (either on the growing scale crystal or onto the rock substrate) which, in turn, are functions of the molecular weight of the species. In this paper, the authors examine the effects of inhibitor molecular weight on its adsorption characteristics onto highly quartzitic substrates and they discuss the importance of this factor in governing the dynamics of the inhibitor return curve. The effects of molecular weight on the inhibition efficiency, during both early nucleation and later crystal growth, are also examined. The adsorption/desorption characteristics of three polymeric scale inhibitors, each having a range of molecular weights, are studied in this work: viz. polyacrylate (PAA) and phosphinopolycarboxylate (PPCA) scale inhibitors of weight average molecular weight, M{sub w} < 10,000 g/mol, and polyvinyl sulphonic acid (PVS) inhibitors of M{sub w} < 20,000 g/mol. Using these polymers, the authors show that the preferential adsorption of the higher molecular weight components occurs. Results on the scale inhibition efficiency of barium sulphate, obtained for the same range of polymeric inhibitors, are also presented as functions of molecular weight. The factors required to ensure a long return curve are not necessarily the same as those for efficient inhibition under certain solution conditions (e.g. solution pH). This illustrates the importance of reaching a compromise in terms of molecular weight between inhibition efficiency and squeeze lifetime. The significance of these findings for field squeeze treatments using polymeric inhibitors is discussed. 43 refs.

  9. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors

    PubMed Central

    Frett, Brendan; McConnell, Nick; Smith, Catherine C.; Wang, Yuanxiang; Shah, Neil P.; Li, Hong-yu

    2015-01-01

    The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. PMID:25765758

  10. Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes

    NASA Astrophysics Data System (ADS)

    Yoneda, Yukio; Kuriyama, Kinya

    1980-06-01

    The specific binding of 3H-muscimol to synaptic membrane preparations obtained from the rat brain has been thought to reflect the association of γ-aminobutyric acid (GABA), a potential candidate as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), with its synaptic receptors1,2. Treatment of synaptic membranes with Triton X-100 significantly increases the specific binding of 3H-muscimol2. Several reports also indicate the presence of endogenous substances, such as GABA3, acidic protein4 and phosphatidylethanolamine5, which inhibit Na-independent binding of 3H-GABA in the synaptic membranous fractions from the rat brain. We report here that in the supernatant obtained from Triton-treated synaptic membranes there exists a new type of endogenous inhibitor of 3H-muscimol binding which is apparently different from the inhibitory substances described previously3-5. The new inhibitor has a low molecular weight (MW) and probably originated from neurones rather than glial cells. We have termed this endogenous inhibitor the GABA receptor binding inhibitory factor (GRIF).

  11. Identification of the first low-molecular-weight inhibitors of matriptase-2.

    PubMed

    Sisay, Mihiret Tekeste; Steinmetzer, Torsten; Stirnberg, Marit; Maurer, Eva; Hammami, Maya; Bajorath, Jürgen; Gütschow, Michael

    2010-08-12

    As recently discovered, matriptase-2, a type II transmembrane serine protease, plays a crucial role in body iron homeostasis by down-regulating hepcidin expression, which results in increased iron levels. Thus, matriptase-2 represents a novel target for the development of enzyme inhibitors potentially useful for the treatment of systemic iron overload (hemochromatosis). A comparative three-dimensional model of the catalytic domain of matriptase-2 was generated and utilized for structure-based virtual screening in combination with similarity searching and knowledge-based compound design. Two N-protected dipeptide amides containing a 4-amidinobenzylamide as P1 residue (compounds 1 and 3) were identified as the first small molecule inhibitors of matriptase-2 with K(i) values of 170 and 460 nM, respectively. An inhibitor of the closely related protease matriptase (compound 2, K(i) = 220 nM), with more than 50-fold selectivity over matriptase-2, was also identified. PMID:20684597

  12. Low Molecular Weight Amidoximes that Act as Potent Inhibitors of Lysine-Specific Demethylase 1

    PubMed Central

    Hazeldine, Stuart; Pachaiyappan, Boobalan; Steinbergs, Nora; Nowotarski, Shannon; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.

    2012-01-01

    The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 dysregulation is thought to contribute to the development of cancer. We reported that (bis)guanidines, (bis)biguanides and their urea- and thiourea isosteres are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of small molecule amidoximes that are moderate inhibitors of recombinant LSD1, but that produce dramatic changes in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related protein (SFRP) 2, H-cadherin (HCAD) and transcription factor GATA4. These compounds represent leads for an important new series of drug-like epigenetic modulators with the potential for use as antitumor agents. PMID:22876979

  13. In silico design of low molecular weight protein-protein interaction inhibitors: Overall concept and recent advances.

    PubMed

    Kuenemann, Mélaine A; Sperandio, Olivier; Labbé, Céline M; Lagorce, David; Miteva, Maria A; Villoutreix, Bruno O

    2015-10-01

    Protein-protein interactions (PPIs) are carrying out diverse functions in living systems and are playing a major role in the health and disease states. Low molecular weight (LMW) "drug-like" inhibitors of PPIs would be very valuable not only to enhance our understanding over physiological processes but also for drug discovery endeavors. However, PPIs were deemed intractable by LMW chemicals during many years. But today, with the new experimental and in silico technologies that have been developed, about 50 PPIs have already been inhibited by LMW molecules. Here, we first focus on general concepts about protein-protein interactions, present a consensual view about ligandable pockets at the protein interfaces and the possibilities of using fast and cost effective structure-based virtual screening methods to identify PPI hits. We then discuss the design of compound collections dedicated to PPIs. Recent financial analyses of the field suggest that LMW PPI modulators could be gaining momentum over biologics in the coming years supporting further research in this area.

  14. Low-molecular-weight heparin modulates vein wall fibrotic response in a plasminogen activator inhibitor 1-dependent manner

    PubMed Central

    Obi, Andrea T.; Diaz, Jose A.; Ballard-Lipka, Nicole L.; Roelofs, Karen J.; Farris, Diana M.; Lawrence, Daniel A.; Henke, Peter K.; Wakefield, Thomas W.

    2014-01-01

    Background Treatment with low-molecular-weight heparin (LMWH) favorably alters the vein wall response to deep venous thrombosis (DVT), although the mechanisms remain unclear. Previous studies have suggested that LMWH alters the levels of circulating plasminogen activator inhibitor 1 (PAI-1), a known mediator of fibrosis, and may improve endogenous fibrinolysis. We hypothesized that LMWH favorably alters the vein wall response by binding of PAI-1 and acceleration of fibrinolysis. Methods Wild-type and PAI-1 −/− mice underwent treatment with LMWH after induction of occlusive DVT. Vein wall and plasma were harvested and analyzed by enzyme-linked immunosorbent assay, zymography, real-time polymerase chain reaction, and immunohistochemistry. Results Wild-type mice treated with LMWH exhibited diminished vein wall fibrosis (0.6 ± 0.6 vs 1.4 ± 0.2; P < .01; n = 5) and elevation of circulating PAI-1 (1776 ± 342 vs 567 ± 104 ρg/mL; P < .01; n = 5) compared with untreated controls after occlusive DVT. PAI-1−/− mice treated with LMWH were not similarly protected from fibrosis, despite improved thrombus resolution. Treatment with LMWH was associated with decreased intrathrombus interleukin-lβ (68.6 ± 31.0 vs 223.4 ± 28.9 ρg/mg total protein; P < .01; n = 5) but did not alter inflammatory cell recruitment to the vein wall. PAI-1 −/− mice exhibited significantly elevated intrathrombus (257.2 ± 51.5 vs 4.3 ± 3.8 ρg/mg total protein; n = 5) and vein wall interleukin-13 (187.2 ± 57.6 vs 9.9 ± 1.1 ρg/mg total protein; P < .05; n = 5) as well as vein wall F4/80 positively staining monocytes (53 ± 11 vs 16 ± 2 cells/5 high-power fields; P < .05; n = 4). Conclusions LMWH did not accelerate venous thrombosis resolution but did protect against vein wall fibrosis in a PAI-1-dependent manner in an occlusive DVT model. Lack of PAI-1 correlated with accelerated venous thrombosis resolution but no protection from fibrosis. PAI-1 inhibition as a treatment strategy

  15. Low-molecular-weight dextran derivatives (f-CMDB) enter the nucleus and are better cell-growth inhibitors compared with parent CMDB polymers.

    PubMed

    Bittoun, P; Avramoglou, T; Vassy, J; Crépin, M; Chaubet, F; Fermandjian, S

    1999-12-12

    Carboxymethyldextrans-benzylamide (CMDB) are dextran derivatives that are statistically substituted with carboxymethyl and benzylamide groups. These molecules display a variety of biological effects, one of which is their inhibitory activity against mammary tumor cell growth, both in vitro and in vivo. We and others have previously shown that the effects of CMDB on cell growth are related to their ability to interact with the growth factor FGF-2. The binding modifies the conformation of FGF-2, leading to the suppression of its mitogenic activity. Here, the method previously reported to fragment natural polysaccharide fucans has been applied to CMDB (80,000 g/mol). f-CMDB (fragmented CMDB) of molecular weights from 6000 to 20,000 g/mol were found to be more potent inhibitors of MCF7 mammary tumor cell growth than high-molecular-weight CMDB. Confocal microscopy experiments using CMDB and f-CMDB labeled with the fluorophore DTAF (5-([4,6-dichlorotriazine-2-yl]amino) fluorescein) indicate that only low-molecular-weight f-CMDB penetrate into the nucleus of MCF7 cells. It is thus assumed that the better inhibitory properties demonstrated by f-CMDB, compared with CMDB, are related to their better ability to penetrate the nucleus and interact with nuclear targets, including topoisomerase II. The DNA relaxation properties of the latter are inhibited in vitro by both CMDB and f-CMDB. These findings could help us to develop models of low-molecular-weight oligosaccharide derivatives exhibiting better antiproliferative and antitumor properties.

  16. A suite of modular fluorescence assays interrogate the human immunodeficiency virus glycoprotein-41 coiled coil and assist in determining binding mechanism of low molecular weight fusion inhibitors.

    PubMed

    Gochin, Miriam

    2012-10-01

    Several different segments of the gp41 N-heptad repeat coiled coil have been constructed using N-terminal bipyridyl modification of composite peptides and inducing trimerization by adding ferrous ions. These metallopeptides act as receptors in fluorescence-binding assays with corresponding fluorescently labeled C-peptide probes. The Fe(II) coordination complex quenches C-peptide fluorescence upon binding, and reversal of quenching by a small molecule inhibitor can be used to obtain the inhibitor-binding constant. A total of 10 peptide pairs targeting 25-46 residue segments of the coiled coil were constructed, with C-peptide probes of different lengths and binding affinities. The result is a suite of assays for exploring binding in the mM to nM range to any desired region of the coiled coil, including the hydrophobic pocket (HP), extended regions on either side of the pocket, or a region associated with T20 resistance mutations. These assays are high-throughput ready, and could be used to discover novel compounds binding along various regions of the gp41 coiled coil groove. They were used to evaluate a sub-μM low molecular weight fusion inhibitor, resulting in the finding that the molecule bound specifically to the HP and attained its potency from a low off-rate.

  17. In silico discovery of acylated flavonol monorhamnosides from Eriobotrya japonica as natural, small-molecular weight inhibitors of XIAP BIR3.

    PubMed

    Pfisterer, Petra H; Shen, Chenxi; Nikolovska-Coleska, Zaneta; Schyschka, Lilianna; Schuster, Daniela; Rudy, Anita; Wolber, Gerhard; Vollmar, Angelika M; Rollinger, Judith M; Stuppner, Hermann

    2011-01-15

    Targeting the baculoviral inhibitor of apoptosis proteins repeat (BIR) 3 of X-linked inhibitor of apoptosis proteins (XIAP) represents an innovative strategy for the design of chemosensitizers. Acylated flavonol monorhamnosides (AFMR) from Eriobotrya japonica Lindl. (Rosaceae) were virtually predicted as ligands of the XIAP BIR3 domain by using a previously generated pharmacophore model. From the methanol leaf extract of E. japonica an enriched mixture of AFMR was obtained showing chemosensitizing potential in combination with etoposide in XIAP-overexpressing Jurkat cells. The HPLC-SPE-NMR hyphenated technique facilitated the structure elucidation of three known and two new natural AFMR. The main constituent and virtual hit, kaempferol-3-O-α-l-(2″,4″-di-E-p-coumaroyl)-rhamnoside (3) was isolated from the enriched fraction. Applying a fluorescence polarization based binding assay, 3 was identified as XIAP BIR3 ligand with a dose-dependent affinity (IC₅₀ 10.4 μM). Further, 3 induced apoptosis in XIAP-overexpressing Jurkat cells and activated caspase-9 in combination with etoposide. Docking experiments revealed a major impact of the coumaric acid and sugar moieties of 3 on XIAP BIR3 binding, which was experimentally confirmed. To conclude, this study elucidates 3 as natural, small-molecular weight XIAP BIR3 inhibitor using a combination of in silico and HPLC-SPE-NMR hyphenated techniques.

  18. Structures of Human Cyctochrome P450 2E1: Insights Into the Binding of Inhibitors And Both Small Molecular Weight And Fatty Acid Substrates

    SciTech Connect

    Porubsky, P.R.; Meneely, K.M.; Scott, E.E.

    2009-05-21

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 {angstrom} for an indazole complex and 2.6 {angstrom} for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr{sup 303} within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe{sup 478} aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved {sup 216}QXXNN{sup 220} residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed {omega}-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  19. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  20. A supersulfated low-molecular-weight heparin (IK-SSH) increases plasma levels of free and total tissue factor pathway inhibitor after intravenous and subcutaneous administration in humans.

    PubMed

    Kaiser, B; Glusa, E; Hoppensteadt, D A; Breddin, H K; Amiral, J; Fareed, J

    1998-09-01

    Unfractionated as well as low-molecular-weight heparins (LMWH) are known to cause an increase in blood levels of tissue factor pathway inhibitor (TFPI). To study the effect of a newly developed supersulfated LMWH (IK-SSH, Iketon Farmaceutici) on TFPI concentrations in human plasma, the compound was injected into volunteers at doses of 0.14, 0.33 and 0.66 mg/kg intravenously or 0.33, 0.66 and 1.0 mg/kg subcutaneously. At certain known times blood was drawn and plasma levels of both total and free TFPI were measured using enzyme-linked immunosorbent assay methodology. Baseline plasma concentrations of TFPI were 72.2+/-3.1 ng/ml for total and 10.8+/-0.8 ng/ml for free TFPI. Intravenous or subcutaneous injection of IK-SSH led to a strong and long-lasting rise in TFPI levels which were increased more than 5-fold for total TFPI and more than 30-fold for free TFPI. Maximum TFPI levels were reached 5-10 min after intravenous and 60 min after subcutaneous administration. IK-SSH caused prolongation of ex-vivo clotting times in the APTT and Heptest assay, whereas thrombin time was not affected. Anticoagulant actions of IK-SSH showed a significant correlation to plasma concentrations of TFPI and they are thought to be based at least partially on the release of TFPI from vascular sites.

  1. The antithrombotic effect of synthetic low molecular weight human factor Xa inhibitor, DX-9065a, on He-Ne laser-induced thrombosis in rat mesenteric microvessels.

    PubMed

    Yamashita, T; Tsuji, T; Matsuoka, A; Giddings, J C; Yamamoto, J

    1997-01-01

    The effect of a synthetic low molecular weight factor Xa (FXa) inhibitor, DX9065a, on thrombosis in vivo were examined in a rat animal model using a Helium-Neon (He-Ne) laser method. DX-9065a administered either intravenously or orally promoted anti factor Xa activity in a dose dependent manner. Anti Xa activity was maximal immediately after intravenous injection and persisted for approximately 30 minutes. Inhibitory activity was maximal 15-30 minutes after oral administration and persisted for approximately 90 minutes. Similarly DX-9065a inhibited platelet-rich thrombosis formation in mesenteric arterioles and venules. In these instances inhibition was relatively transient after intravenous injection (10-20 minutes), but persisted for more than 3 hours after oral administration. The minimum effective doses of DX-9065a given intravenously and orally were 3.89 mg/kg and 25.9 mg/kg, respectively. The results confirmed that DX-9065a selectively modulates thrombotic mechanisms, and suggest that development of this synthetic FXa antagonist could constitute an effective intravenous and oral antithrombotic agent. PMID:8983124

  2. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  3. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  4. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  5. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  6. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  7. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  8. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  9. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  10. Discovery of novel low-molecular-weight HIV-1 inhibitors interacting with cyclophilin A using in silico screening and biological evaluations.

    PubMed

    Tian, Yu-Shi; Verathamjamras, Chris; Kawashita, Norihito; Okamoto, Kousuke; Yasunaga, Teruo; Ikuta, Kazuyoshi; Kameoka, Masanori; Takagi, Tatsuya

    2013-01-01

    Cyclophilin A has attracted attention recently as a new target of anti-human immunodeficiency virus type 1 (HIV-1) drugs. However, so far no drug against HIV-1 infection exhibiting this mechanism of action has been approved. To identify new potent candidates for inhibitors, we performed in silico screening of a commercial database of more than 1,300 drug-like compounds by using receptor-based docking studies. The candidates selected from docking studies were subsequently tested using biological assays to assess anti-HIV activities. As a result, two compounds were identified as the most active. Specifically, both exhibited anti-HIV activity against viral replication at a low concentration and relatively low cytotoxicity at the effective concentration inhibiting viral growth by 50%. Further modification of these molecules may lead to the elucidation of potent inhibitors of HIV-1.

  11. Microdialysis unit for molecular weight separation

    SciTech Connect

    Smith, R.D.; Liu, C.

    1999-09-21

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  12. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  13. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  14. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  15. Molecular modeling of auxin transport inhibitors

    SciTech Connect

    Gardner, G.; Black-Schaefer, C.; Bures, M.G. )

    1990-05-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for ({sup 3}H)NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections.

  16. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  17. Interaction of proteases with legume seed inhibitors. Molecular features.

    PubMed

    de Seidl, D S

    1996-12-01

    After having found that raw black beans (Phaseolus vulgaris) were toxic, while the cooked ones constitute the basic diet of the underdeveloped peoples of the world, in the sixties, our research directed by Dr. Jaffé, concentrated mainly around the detection and identification of the heat labile toxic factors in legume seeds. A micromethod for the detection of protease inhibitors (PI) in individual seeds was developed, for the purpose of establishing that the multiple trypsin inhibitors (TI) found in the Cubagua variety were expressions of single seeds and not a mixture of a non homogenous bean lot. Six isoinhibitors were isolated and purified, all of which were "double-headed" and interacted with trypsin (T) and chymotrypsin (CHT) independently and simultaneously, as shown by electrophoresis of their binary and ternary complexes with each and both enzymes. However, their affinity for the enzymes, including elastases, was rather variable, as well as their amino acid composition which consisted of 51 units for inhibitor V, the smallest, and 83 amino acids for inhibitor I, the largest. A low molecular weight protein fraction that inhibited subtilisin (S), but recognized neither T, CHT nor pancreatic elastase was detected in 63 varieties of Phaseolus vulgaris as well as in broad beans (Vicia faba), chick peas (Cicer arietinum), jack beans (Canavalia ensiformis), kidney beans (Vigna aureus), etc., It was absent though, in soybeans (Glycine max), lentils (Lens culinaris), green peas (Pisum sativum), cowpea (Vigna sinensis) and lupine seeds (Lupinus sp). Subtilisin inhibitors (SI) were isolated from black beans, broad beans, chick peas and jack beans. Their Mr is between 8-9KD and they show a rather high stability in the presence of denaturing agents. They are specific toward microbial proteases, in addition to subtilisins, Carlsberg and BPN', they inhibit the alkaline protease from Tritirachium album (Protease K), from Aspergillus oryzae and one isolated from

  18. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  19. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; et al

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  20. Brainstorming: weighted voting prediction of inhibitors for protein targets.

    PubMed

    Plewczynski, Dariusz

    2011-09-01

    The "Brainstorming" approach presented in this paper is a weighted voting method that can improve the quality of predictions generated by several machine learning (ML) methods. First, an ensemble of heterogeneous ML algorithms is trained on available experimental data, then all solutions are gathered and a consensus is built between them. The final prediction is performed using a voting procedure, whereby the vote of each method is weighted according to a quality coefficient calculated using multivariable linear regression (MLR). The MLR optimization procedure is very fast, therefore no additional computational cost is introduced by using this jury approach. Here, brainstorming is applied to selecting actives from large collections of compounds relating to five diverse biological targets of medicinal interest, namely HIV-reverse transcriptase, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, and thrombin. The MDL Drug Data Report (MDDR) database was used for selecting known inhibitors for these protein targets, and experimental data was then used to train a set of machine learning methods. The benchmark dataset (available at http://bio.icm.edu.pl/∼darman/chemoinfo/benchmark.tar.gz ) can be used for further testing of various clustering and machine learning methods when predicting the biological activity of compounds. Depending on the protein target, the overall recall value is raised by at least 20% in comparison to any single machine learning method (including ensemble methods like random forest) and unweighted simple majority voting procedures.

  1. Recovery of petroleum with chemically treated high molecular weight polymers

    SciTech Connect

    Gibb, C.L.; Rhudy, J.S.

    1980-11-18

    Plugging of reservoirs with high molecular weight polymers, e.g. Partially hydrolyzed polyacrylamide, is overcome by chemically treating a polymer having an excessively high average molecular weight prior to injection into a reservoir with an oxidizing chemical, e.g. sodium hypochlorite, and thereafter incorporating a reducing chemical, e.g., sodium sulfite, to stop degradation of the polymer when a desired lower average molecular weight and flooding characteristics are attained.

  2. Molecular mechanism of respiratory syncytial virus fusion inhibitors.

    PubMed

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-02-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  3. Low-molecular-weight heparins and angiogenesis.

    PubMed

    Norrby, Klas

    2006-02-01

    The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are

  4. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  5. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  6. Weight Loss Associated with Cholinesterase Inhibitors In Patients With Dementia in a National Healthcare System

    PubMed Central

    Sheffrin, Meera; Miao, Yinghui; Boscardin, W. John; Steinman, Michael A.

    2016-01-01

    Background/Objectives Inconsistent data from randomized trials suggest cholinesterase inhibitors may cause weight loss. We sought to determine if the initiation of cholinesterase inhibitors is associated with significant weight loss in a real-word clinical setting. Design Retrospective cohort study from 2007-2010, comparing weight loss in patients with dementia newly prescribed cholinesterase inhibitors and patients newly prescribed other chronic medications Setting National Veterans Affairs (VA) data Participants Patients 65 years or older with a diagnosis of dementia who received a new prescription for a cholinesterase inhibitor or other new other chronic medication. Measurements The primary outcome was time to 10 pound weight loss over 12 months. We used propensity score matching patients to control for the likelihood of receiving a cholinesterase inhibitor based on baseline characteristics. Data were analyzed in a priori defined subgroups by age, comorbid burden, and initial weight. Results Of 6,504 patients that met study criteria, 1188 patients started on cholinesterase inhibitors were matched to 2189 patients started on other medications. The propensity-matched cohorts were well balanced on baseline covariates. Patients initiated on cholinesterase inhibitors had a higher risk of weight loss compared to matched controls at 12 months, HR 1.23 (95% CI 1.07 - 1.41). At twelve months, 29.3% of patients on cholinesterase inhibitors had experienced weight loss compared to 22.8% of non-users, corresponding to a number needed to harm of 21.2 (95% CI 12.5 – 71.4) over one year. There were no significant differences across subgroups. Conclusion Patients with dementia started on cholinesterase inhibitors had a higher risk of clinically significant weight loss over a 12-month period compared to matched controls. These results are consistent with the available data from randomized controlled trials. Clinicians should consider the risk of weight loss when prescribing

  7. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. PMID:26794765

  8. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest.

  9. Free volume variation with molecular weight of polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Hinkley, Jeffrey A.; St.clair, Terry L.; Jensen, Brian J.

    1992-01-01

    Free volume measurements were made in several molecular weight fractions of two different geometries of poly(arylene ether ketone)s. Free volumes were measured using positron lifetime spectroscopy. It has been observed that the free volume cell size V(sub f) varies with the molecular weight M of the test samples according to an equation of the form V(sub f) = AM(B), where A and B are constants. The molecular weights computed from the free volume cell sizes are in good agreement with the values measured by gel permeation chromatography.

  10. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  11. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  12. Molecular-Weight-Controlled, End-Capped Polybenzimidazoles

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1993-01-01

    Novel molecular-weight-controlled end-capped poly(arylene ether benzimidazole)s (PAEBI's) prepared by nucleophilic displacement reaction of di(hydroxyl)benzimidazole monomers with activated aromatic dihalides. Polymers prepared at various molecular weights by upsetting stoichiometry of monomers and end-capped with monohydroxybenzimidazole. Exhibit favorable physical and mechanical properties, improved solubility in polar aprotic solvents and better compression moldability. Potential applications as adhesives, coatings, films, fibers, membranes, moldings, and composite matrix resins.

  13. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  14. Molecular breeding of polymerases for resistance to environmental inhibitors.

    PubMed

    Baar, Claudia; d'Abbadie, Marc; Vaisman, Alexandra; Arana, Mercedes E; Hofreiter, Michael; Woodgate, Roger; Kunkel, Thomas A; Holliger, Philipp

    2011-04-01

    Potent inhibitors limit the use of PCR assays in a wide spectrum of specimens. Here, we describe the engineering of polymerases with a broad resistance to complex environmental inhibitors using molecular breeding of eight different polymerase orthologues from the genus Thermus and directed evolution by CSR in the presence of inhibitors. Selecting for resistance to the inhibitory effects of Neomylodon bone powder, we isolated 2D9, a chimeric polymerase comprising sequence elements derived from DNA polymerases from Thermus aquaticus, Thermus oshimai, Thermus thermophilus and Thermus brockianus. 2D9 displayed a striking resistance to a broad spectrum of complex inhibitors of highly divergent composition including humic acid, bone dust, coprolite, peat extract, clay-rich soil, cave sediment and tar. The selected polymerase promises to have utility in PCR-based applications in a wide range of fields including palaeobiology, archaeology, conservation biology, forensic and historic medicine.

  15. Low molecular weight heparin in prevention of perioperative thrombosis.

    PubMed Central

    Leizorovicz, A.; Haugh, M. C.; Chapuis, F. R.; Samama, M. M.; Boissel, J. P.

    1992-01-01

    OBJECTIVE--To determine whether prophylactic treatment with low molecular weight heparin reduces the incidence of thrombosis in patients who have had general or orthopaedic surgery. DESIGN--Meta-analysis of results from 52 randomised, controlled clinical studies (29 in general surgery and 23 in orthopaedic surgery) in which low molecular weight heparin was compared with placebo, dextran, or unfractionated heparin. SUBJECTS--Patients who had had general or orthopaedic surgery. INTERVENTION--Once daily injection of a low molecular weight heparin compared with placebo, dextran, or unfractionated heparin. MAIN OUTCOME MEASURES--Incidence of deep venous thrombosis, pulmonary embolism, major haemorrhages, and death. RESULTS--The results confirm that low molecular weight heparins are more efficacious for the prophylactic treatment of deep venous thrombosis than placebo (common odds ratio 0.31, 95% confidence interval 0.22 to 0.43; p < 0.001) and dextran (0.44, 0.30 to 0.65; p < 0.001). The results suggest that low molecular weight heparins are also more efficacious than unfractionated heparin (0.85, 0.74 to 0.97; p = 0.02), with no significant difference in the incidence of major haemorrhages (1.06, 0.93 to 1.20; p = 0.62). CONCLUSIONS--Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular weight heparin reduces the risk of fatal pulmonary embolism compared with heparin. PMID:1281030

  16. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  17. Microbial detection with low molecular weight RNA.

    PubMed

    Kourentzi, K D; Fox, G E; Willson, R C

    2001-12-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  18. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  19. Inhibition of protein-protein interactions with low molecular weight compounds

    PubMed Central

    Matthews, Marilyn M.; Weber, David J.; Shapiro, Paul S.; Coop, Andrew; MacKerell, Alexander D.

    2010-01-01

    An overview of issues associated with the design and development of low molecular weight inhibitors of protein-protein interactions is presented. Areas discussed include information on the nature of protein-protein interfaces, methods to characterize those interfaces and methods by which that information is applied towards ligand identification and design. Specific examples of the strategy for the identification of inhibitors of protein-protein interactions involving the proteins p56lck kinase, ERK2 and the calcium-binding protein S100B are presented. Physical characterization of the inhibitors identified in those studies shows them to have drug-like and lead-like properties, indicating their potential to be developed into therapeutic agents. PMID:21927717

  20. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  1. Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations

    PubMed Central

    Qinna, Nidal A.; Karwi, Qutuba G.; Al-Jbour, Nawzat; Al-Remawi, Mayyas A.; Alhussainy, Tawfiq M.; Al-So’ud, Khaldoun A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  2. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-03-27

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.

  3. Body Weight Gain and Hyperphagia After Administration of SGLT-2 Inhibitor: A Case Report

    PubMed Central

    Hamamoto, Hiromi; Noda, Mitsuhiko

    2015-01-01

    Patient: Male, 44 Final Diagnosis: Type 2 diabetes Symptoms: Hunger • increased appetite Medication: GLP-1 receptor agonist • SGLT-2 inhibitor Clinical Procedure: — Specialty: Internal Medicine/Diabetology Objective: Unusual or unexpected effect of treatment Background: A detailed description is given of a case we encountered in which unexpectedly marked weight gain occurred following a treatment switch from a GLP-1 receptor agonist to an SGLT-2 inhibitor. Case Report: The patient, a 44-year-old man with type 2 diabetes mellitus, had gained about 10 kg in weight in the previous year. Therefore, metformin was replaced with liraglutide to obtain reduction of body weight. Although the patient lost about 8 kg (7%), during the 18-month period on the medication, the weight loss stabilized; therefore, the treatment was again switched to tofogliflozin to obtain further reduction of body weight. However, the patient reported increasing hunger and an exaggerated appetite from week 3 onward after the start of tofogliflozin, and gained about 9 kg in weight within 2 weeks, associated with a tendency towards increased HbA1c; therefore, tofogliflozin was discontinued. Immediate reinstitution of liraglutide resulted in reduction of the increased appetite, weight, and HbA1c level. Conclusions: Caution should be exercised against hyperphagia and weight gain due to hunger that may occur following discontinuation of a GLP-1 receptor agonist and/or initiation of an SGLT-2 inhibitor. PMID:26638727

  4. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  5. Adhesion and friction of PDMS networks: molecular weight effects.

    PubMed

    Galliano, A; Bistac, S; Schultz, J

    2003-09-15

    The objective of this work is to find relations between adherence and friction behaviors of elastomer networks. The chosen approach is based on the parallel study of the initial molecular weight (i.e., the degree of cross-linking) dependence of both adherence and friction. The polymers used are cross-linked polydimethylsiloxane (PDMS) and the substrate is a smooth glass plate. The experimental procedure uses both friction (pin on disk tribometer) and adhesion (tack test) measurements, associated with surface analysis and mechanical and rheological characterizations. Tack results show that high molecular weight PDMS exhibits the greater adherence energy. This can be explained by the role of both chain length and free and pendant chains: more numerous and longer free chains favor the substrate wetting (at a molecular scale) and increases the energy dissipation during separation (extraction and reptation mechanisms). However, friction results indicate a higher friction resistance for low molecular weight PDMS. This result could be quite surprising. An explanation based on interfacial sliding properties of free and pendant chains can be proposed. Elsewhere, for the lower molecular weight polymer, elastic contact present during friction is able to act as a forced wetting, constraining the network and consequently leading to a greater energy dissipation.

  6. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  7. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity.

    PubMed

    Alsamarah, Abdelaziz; LaCuran, Alecander E; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  8. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  9. Application of Molecular Modeling to Urokinase Inhibitors Development

    PubMed Central

    Sulimov, V. B.; Katkova, E. V.; Oferkin, I. V.; Sulimov, A. V.; Romanov, A. N.; Roschin, A. I.; Beloglazova, I. B.; Plekhanova, O. S.; Tkachuk, V. A.; Sadovnichiy, V. A.

    2014-01-01

    Urokinase-type plasminogen activator (uPA) plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program), postprocessing (DISCORE program), direct generalized docking (FLM program), and the application of the quantum chemical calculations (MOPAC package), search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM. PMID:24967388

  10. Improved low molecular weight Myc-Max inhibitors.

    PubMed

    Wang, Huabo; Hammoudeh, Dalia I; Follis, Ariele Viacava; Reese, Brian E; Lazo, John S; Metallo, Steven J; Prochownik, Edward V

    2007-09-01

    Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy. Compared with the parent structure, these analogues show enhanced growth inhibition of c-Myc-expressing cells in a manner that generally correlates with their ability to disrupt c-Myc-Max association and DNA binding. Furthermore, we show by use of a sensitive fluorescence polarization assay that both 10058-F4 and its active analogues bind specifically to monomeric c-Myc. These studies show that improved Myc-Max compounds can be generated by a directed approach involving deliberate modification of an index compound. They further show that the compounds specifically target c-Myc, which exists in a dynamic and relatively unstructured state with only partial and transient alpha-helical content.

  11. Application of Molecular Modeling to Development of New Factor Xa Inhibitors

    PubMed Central

    Sulimov, Vladimir B.; Gribkova, Irina V.; Kochugaeva, Maria P.; Katkova, Ekaterina V.; Sulimov, Alexey V.; Kutov, Danil C.; Shikhaliev, Khidmet S.; Medvedeva, Svetlana M.; Krysin, Michael Yu.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.

    2015-01-01

    In consequence of the key role of factor Xa in the clotting cascade and absence of its activity in the processes that do not affect coagulation, this protein is an attractive target for development of new blood coagulation inhibitors. Factor Xa is more effective and convenient target for creation of anticoagulants than thrombin, inhibition of which may cause some side effects. This study is aimed at finding new inhibitors of factor Xa by molecular computer modeling including docking SOL and postdocking optimization DISCORE programs. After validation of molecular modeling methods on well-known factor Xa inhibitors the virtual screening of NCI Diversity and Voronezh State University databases of ready-made low molecular weight species has been carried out. Seventeen compounds selected on the basis of modeling results have been tested experimentally in vitro. It has been found that 12 of them showed activity against factor Xa (IC50 = 1.8–40 μM). Based on analysis of the results, the new original compound was synthesized and experimentally verified. It shows activity against factor Xa with IC50 value of 0.7 μM. PMID:26484350

  12. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    PubMed

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin.

  13. Ultra-High-Molecular-Weight Silphenylene/Siloxane Elastomers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1989-01-01

    Elastomers enhance thermal and mechancial properties. Capable of performing in extreme thermal/oxidative environments and having molecular weights above 10 to the sixth power prepared and analyzed in laboratory experiments. Made of methylvinylsilphenylene-siloxane terpolymers, new materials amenable to conventional silicone-processing technology. Similarly formulated commercial methyl-vinyl silicones, vulcanized elastomers exhibit enhance thermal/oxidative stability and equivalent or superior mechanical properties.

  14. Low-molecular-weight heparins: differential characterization/physical characterization.

    PubMed

    Guerrini, Marco; Bisio, Antonella

    2012-01-01

    Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.

  15. Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution.

    PubMed

    Gentekos, Dillon T; Dupuis, Lauren N; Fors, Brett P

    2016-02-17

    The breadth of the molecular weight distributions (MWD) of polymers influences their physical properties; however, no synthetic methods allow precise control of the exact shape and composition of a distribution. We report a modular strategy that enables deterministic control over polymer MWD through temporal regulation of initiation in nitroxide-mediated polymerization reactions. This approach is applicable to any controlled polymerization that uses a discrete initiator, and it allows the use of MWD composition as a parameter to tune material properties.

  16. Production of chemicals from methanol. I. Low molecular weight olefins

    SciTech Connect

    Kaeding, W.W.; Butter, S.A.

    1980-01-01

    Methanol has been converted to water and hydrocarbons, with up to 70% selectivity to C/sub 2/-C/sub 4/ olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with phosphorus compounds. Ethylene is proposed as the initial hydrocarbon produced. Evidence for the alkylation of olefins with methanol or methyl ether over these catalysts to produce higher molecular weight olefins is presented. 2 figures, 5 tables.

  17. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  18. The molecular mechanisms of acquired proteasome inhibitor resistance

    PubMed Central

    Kale, Andrew J.; Moore, Bradley S.

    2012-01-01

    The development of proteasome inhibitors (PIs) has transformed the treatment of multiple myeloma and mantle cell lymphoma. To date, two PIs have been FDA approved, the boronate peptide bortezomib and, most recently, the epoxyketone peptide carfilzomib. However, intrinsic and acquired resistance to PIs, for which the underlying mechanisms are poorly understood, may limit their efficacy. In this perspective, we discuss recent advances in the molecular understanding of PI resistance through acquired bortezomib resistance in human cell lines to evolved saliniosporamide A (marizomib) resistance in nature. Resistance mechanisms discussed include the upregulation of proteasome subunits and mutations of the catalytic β-subunits. Additionally, we explore potential strategies to overcome PI resistance. PMID:22978849

  19. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium

    PubMed Central

    Zhu, Yi; Hu, Jianguo; Yu, Tinghe; Ren, Yan; Hu, Lina

    2016-01-01

    Background Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman’s syndrome. Material/Methods Endometrial fibrosis in a mouse model of Asherman’s syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. Results The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. Conclusions Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions. PMID:27670361

  20. A novel mammalian high-molecular-weight aminopeptidase.

    PubMed

    Erbeznik, H; Hersh, L B

    1997-08-01

    Studies with the human lymphoma U937 cell line revealed the presence of two soluble aminopeptidase activities. Using specific antisera one of these was identified as the puromycin-specific aminopeptidase, while the other appeared to be a novel approximately 200-kDa activity. The kinetic properties of this high-molecular-weight aminopeptidase, referred to as Ap200, were similar to those of the puromycin-sensitive aminopeptidase, but showed quantitative differences. Ap200 is relatively insensitive to inhibition by both puromycin, K(i) = 27 microM, and bestatin, K(i) = 1.6 microM. Among the synthetic beta-naphthylamides, Ap200 is more specific for alanine-beta-naphthylamide compared to the puromycin-sensitive aminopeptidase. Similarly, this enzyme cleaves a more limited number of physiological peptides exhibiting a preference for the enkephalins. Ammonium sulfate, but not sodium chloride at the same ionic strength, was able to dissociate the high-molecular-weight aminopeptidase to a approximately 100-kDa active form. The high-molecular-weight aminopeptidase is found as a low abundant protein in a number of tissues including intestine, kidney, liver, lung, muscle, spleen, and testes, but could not be detected in adrenal, heart, or brain. Thus, it has a tissue distribution which differs from the puromycin-sensitive aminopeptidase.

  1. Structure, subunit composition, and molecular weight of RD-114 RNA.

    PubMed Central

    Kung, H J; Bailey, J M; Davidson, N; Nicolson, M O; McAllister, R M

    1975-01-01

    The properties and subunit composition of the RNA extracted from RD-114 virions have been studied. The RNA extracted from the virion has a sedimentation coefficient of 52S in a nondenaturing aqueous electrolyte. The estimated molecular weight by sedimentation in nondenaturing and weakly denaturing media is in the range 5.7 X 10(6) to 7.0 X 10(6). By electron microscopy, under moderately denaturing conditions, the 52S molecule is seen to be an extended single strand with a contour length of about 4.0 mum corresponding to a molecular weight of 5.74 X 10(6). It contains two characteristic secondary structure features: (i) a central Y- or T-shaped structure (the rabbit ears) with a molecular weight of 0.3 X 10(6), (ii) two symmetreically disposed loops on each side of and at equal distance from the center. The 52S molecule consists of two half-size molecules, with molecular weight 2.8 X 10(6), joined together within the central rabbit ears feature. Melting of the rabbit ears with concomitant dissociation of the 52S molecule into subunits, has been caused by either one of two strongly denaturing treatments: incubation in a mixture of CH3HgOH and glyoxal at room temperature, or thermal dissociation in a urea-formamide solvent. When half-size molecules are quenched from denaturing temperatures, a new off-center secondary structure feature termed the branch-like structure is seen. The dissociation behavior of the 52S complex and the molecular weight of the subunits have been confirmed by gel electrophoresis studies. The loop structures melt at fairly low temperatures; the dissociation of the 52S molecule into its two subunits occurs at a higher temperature corresponding to a base composition of about 63% guanosine plus cytosine. Polyadenylic acid mapping by electron microscopy shows that the 52S molecule contains two polyadenylic acid segments, one at each end. It thus appears that 52S RD-114 RNA consists of two 2.8 X 10(6) dalton subunits, each with a characteristic

  2. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  3. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  4. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin.

    PubMed

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2015-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4-16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  5. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    SciTech Connect

    Mattes, B.R.; Wang, H.L.

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline are disclosed. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15--30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M(w)){gt}120,000, and (M(n)){gt}30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefore. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  6. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  7. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior.

  8. [The effect of low molecular weight substances on the human skin. Molecular mechanisms and their consequences].

    PubMed

    Merk, H F; Baron, J M

    2004-12-01

    Interactions between low molecular weight compounds with cells of the skin result in reactions with different proteins which enable the uptake, metabolism and efflux of these compounds. It is unlikely, that small molecular weight compounds can achieve pharmacological concentrations within cells by diffusion alone. The pattern of influx proteins of keratinocytes is different from that of hepatocytes. If the balance between these systems is disturbed, the skin may become unable to function as a protective organ which can result in diseases including cancer or-more frequently-allergic contact dermatitis. Recent investigations of the sensitization to fragrances and p-phenylenediamine are discussed. An improved understanding of the metabolism of low molecular weight compounds can lead to new therapeutic strategies. One example is the introduction of photodynamic therapy with topical applied porphyrin precursors.

  9. Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy.

    PubMed

    Schneider, S W; Lärmer, J; Henderson, R M; Oberleithner, H

    1998-02-01

    Proteins are usually identified by their molecular weights, and atomic force microscopy (AFM) produces images of single molecules in three dimensions. We have used AFM to measure the molecular volumes of a number of proteins and to determine any correlation with their known molecular weights. We used native proteins (the TATA-binding protein Tbp, a fusion protein of glutathione-S-transferase and the renal potassium channel protein ROMK1, the immunoglobulins IgG and IgM, and the vasodilator-stimulated phosphoprotein VASP) and also denatured proteins (the red blood cell proteins actin, Band 3 and spectrin separated by SDS-gel electrophoresis and isolated from nitrocellulose). Proteins studied had molecular weights between 38 and 900 kDa and were imaged attached to a mica substrate. We found that molecular weight increased with an increasing molecular volume (correlation coefficient = 0.994). Thus, the molecular volumes measured with AFM compare well with the calculated volumes of the individual proteins. The degree of resolution achieved (lateral 5 nm, vertical 0.2 nm) depended upon the firm attachment of the proteins to the mica. This was aided by coating the mica with suitable detergent and by imaging using the AFM tapping mode which minimizes any lateral force applied to the protein. We conclude that single (native and denatured) proteins can be imaged by AFM in three dimensions and identified by their specific molecular volumes. This new approach permits detection of the number of monomers of a homomultimeric protein and study of single proteins under physiological conditions at the molecular level.

  10. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-01

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.

  11. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, Nc=15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  12. Synthesis of high molecular weight PEO using non-metal initiators

    DOEpatents

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  13. Trypsin inhibitor from tamarindus indica L. seeds reduces weight gain and food consumption and increases plasmatic cholecystokinin levels

    PubMed Central

    do Nascimento Campos Ribeiro, Joycellane Alline; Serquiz, Alexandre Coellho; dos Santos Silva, Priscila Fabíola; Barbosa, Patrícia Batista Barra Medeiros; Sampaio, Tarcísio Bruno Montenegro; de Araújo, Raimundo Fernandes; de Oliveira, Adeliana Silva; Machado, Richele Janaina Araújo; Maciel, Bruna Leal Lima; Uchôa, Adriana Ferreira; dos Santos, Elizeu Antunes; de Araújo Morais, Ana Heloneida

    2015-01-01

    OBJECTIVES: Seeds are excellent sources of proteinase inhibitors, some of which may have satietogenic and slimming actions. We evaluated the effect of a trypsin inhibitor from Tamarindus indica L. seeds on weight gain, food consumption and cholecystokinin levels in Wistar rats. METHODS: A trypsin inhibitor from Tamarindus was isolated using ammonium sulfate (30–60%) following precipitation with acetone and was further isolated with Trypsin-Sepharose affinity chromatography. Analyses were conducted to assess the in vivo digestibility, food intake, body weight evolution and cholecystokinin levels in Wistar rats. Histological analyses of organs and biochemical analyses of sera were performed. RESULTS: The trypsin inhibitor from Tamarindus reduced food consumption, thereby reducing weight gain. The in vivo true digestibility was not significantly different between the control and Tamarindus trypsin inhibitor-treated groups. The trypsin inhibitor from Tamarindus did not cause alterations in biochemical parameters or liver, stomach, intestine or pancreas histology. Rats treated with the trypsin inhibitor showed significantly elevated cholecystokinin levels compared with animals receiving casein or water. CONCLUSION: The results indicate that the isolated trypsin inhibitor from Tamarindus reduces weight gain by reducing food consumption, an effect that may be mediated by increased cholecystokinin. Thus, the potential use of this trypsin inhibitor in obesity prevention and/or treatment should be evaluated. PMID:25789523

  14. Ice Nucleation by High Molecular Weight Organic Compounds

    NASA Astrophysics Data System (ADS)

    Cantrell, W.

    2003-12-01

    Deep convection in the tropics is frequently associated with biomass burning. Recent work has suggested that the size of ice crystals in the anvils of tropical cumulonimbus clouds may be affected by biomass burning, though the mechanism for such an effect is uncertain (Sherwood, 2002). We will present results of an investigation of the role that high molecular weight organic compounds, known to be produced in biomass burning (Elias et al., 1999), may play in tropical cirrus anvils through heterogeneous nucleation of ice. In particular, we examine the mechanisms underlying heterogeneous nucleation of ice by films of long chain alcohols by studying the interaction of the alcohols and water/ice using temperature controlled, Attenuated Total Reflection - Fourier Transform Infrared spectroscopy. The mechanisms are interpreted in the context of recent criticisms of some aspects of classical nucleation theory (Seeley and Seidler, 2001; Oxtoby, 1998). References V. Elias, B. Simoneit, A. Pereira, J. Cabral, and J. Cardoso, Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry. Environ. Sci. Tecnol., 33, 2369-2376, 1999. D. Oxtoby, Nucleation of first-order phase transitions. Acc. Chem. Res., 31, 91-97, 1998. L. Seeley and G. Seidler, Preactivation in the nucleation of ice by Langmuir films of aliphatic alcohols. J. Chem. Phys., 114, 10464-10470, 2001. S. Sherwood, Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 1051-1063, 2002.

  15. Controlling silk fibroin microspheres via molecular weight distribution.

    PubMed

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4-KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength>0.7 M and pH>7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications.

  16. Incorporation of small molecular weight active agents into polymeric components.

    PubMed

    Iconomopoulou, Sofia M; Kallitsis, Joannis K; Voyiatzis, George A

    2008-01-01

    The incorporation of small molecular weight active agents into polymeric matrixes bearing controlled release characteristics represents an interesting strategy with numerous useful applications. Antimicrobials, biocides, fungicides or drugs, encapsulated into erodible or non-erodible polymeric micro-spheres, micro-capsules and micro-shells or/and embedded into continuous polymeric matrixes, are controlled released either by particular degradation routes or/and by specific stimuli. Cross-linking, curing or micro-porosity generating agents acting during polymerization impart additional controlled encapsulation characteristics to the active substances. Release modulating agents, like retardants or carrier materials used as vehicles are often encapsulated into microspheres or dispersed within polymeric compositions for the controlled introduction of an active agent into a liquid-based medium. The aim of this review is to reveal relevant strategies reported in recent patents on the encapsulation or incorporation of low molecular weight active agents into the matrix of polymers bearing controlled release characteristics. The inventions described implicate the formation of both erodible and non erodible polymer microparticles that contain active ingredients. Modification of polymer matrix and inorganic porous carriers represent pertinent major strategies that have been also developed and patented.

  17. Low molecular weight Abeta induces collapse of endoplasmic reticulum.

    PubMed

    Lai, Cora Sau-Wan; Preisler, Julie; Baum, Larry; Lee, Daniel Hong-Seng; Ng, Ho-Keung; Hugon, Jacques; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-05-01

    The endoplasmic reticulum (ER) is a dynamic multifunction organelle that is responsible for Ca(2+) homeostasis, protein folding, post-translational modification, protein degradation, and transportation of nascent proteins. Disruption of ER architecture might affect the normal physiology of the cell. In yeast, expansion of the ER is observed under unfolded protein response (UPR) and subsequently induces autophagy initiated from the ER. Here, we found that soluble low molecular weight of Abeta disrupted the anchoring between ER and microtubules (MT) and induced collapse of ER. In addition, it decreased the stability of MT. Subsequently, low molecular weight Abeta triggered autophagy and enhanced lysosomal degradation, as shown by electron microscopy and live-cell imaging. Dysfunction of ER can be further proved in postmortem AD brain and transgenic mice bearing APP Swedish mutation by immunohistochemical analysis of calreticulin. Treatment with Taxol, a MT-stabilizing agent, could partially inhibit collapse of the ER and induction of autophagy. The results show that Abeta-induced disruption of MT can affect the architecture of the ER. Collapse/aggregation of the ER may play an important role in Abeta peptide-triggered neurodegenerative processes.

  18. LARC-TPI 1500 series controlled molecular weight polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald; St. Clair, Terry; Burks, Harold; Gautreaux, Carol; Yamaguchi, Akihiro

    1990-01-01

    LARC-TPI, a linear high temperature thermoplastic polyimide, was developed several years ago at NASA Langley Research Center. This material has been commercialized by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan, as a varnish and powder. More recently, a melt-extruded film of a controlled molecular weight of this same polymer has been supplied to NASA Langley Research Center for evaluation. This new form, called LARC-TPI 1500 series, has been prepared in three molecular weights - high, medium and low flow polymers. The subject of this investigation deals with the rheological properties of the high and medium flow powders and the adhesive properties of the medium flow melt-extruded film. Rheological studies indicate that the high and medium flow forms of the polymer fall in the flow range of injection moldable materials. Adhesive data generated on the medium flow extruded film shows this form to be well suited for structural adhesive bonding. The data are as good or better than that for LARC-TPI data of previous studies.

  19. Inhibition of cell adhesion by high molecular weight kininogen

    PubMed Central

    1992-01-01

    An anti-cell adhesion globulin was purified from human plasma by heparin-affinity chromatography. The purified globulin inhibited spreading of osteosarcoma and melanoma cells on vitronectin, and of endothelial cells, platelets, and mononuclear blood cells on vitronectin or fibrinogen. It did not inhibit cell spreading on fibronectin. The protein had the strongest antiadhesive effect when preadsorbed onto the otherwise adhesive surfaces. Amino acid sequence analysis revealed that the globulin is cleaved (kinin-free) high molecular weight kininogen (HKa). Globulin fractions from normal plasma immunodepleted of high molecular weight kininogen (HK) or from an individual deficient of HK lacked adhesive activity. Uncleaved single- chain HK preadsorbed at neutral pH, HKa preadsorbed at pH greater than 8.0, and HKa degraded further to release its histidine-rich domain had little anti-adhesive activity. These results indicate that the cationic histidine-rich domain is critical for anti-adhesive activity and is somehow mobilized upon cleavage. Vitronectin was not displaced from the surface by HKa. Thus, cleavage of HK by kallikrein results in both release of bradykinin, a potent vasoactive and growth-promoting peptide, and formation of a potent anti-adhesive protein. PMID:1370494

  20. Impact of molecular weight in four-branched star vectors with narrow molecular weight distribution on gene delivery efficiency.

    PubMed

    Nemoto, Yasushi; Borovkov, Alexey; Zhou, Yue-Min; Takewa, Yoshiaki; Tatsumi, Eisuke; Nakayama, Yasuhide

    2009-12-01

    A series of star-shaped cationic polymers, termed star vectors (SVs), has been developed as effective nonviral gene delivery carriers. In this study, we separated SVs into several fractions having different molecular weights with very narrow molecular weight distributions in order to examine in detail the influence of the molecular weight of the SVs on the gene transfection efficiency. As a model compound for several types of SVs, 4-branched poly(N,N-dimethylaminopropyl acrylamide) having a molecular weight (M(n)) of approximately 35 kDa and polydispersity of 1.6 was prepared by iniferter-based radical polymerization. The SVs were separated using size-exclusion chromatography to obtain seven fractions having M(n) ranging from 27 kDa to 73 kDa with polydispersity ranging from 1.1 to 1.2. All the fractionated SVs have similar pH of 10.2-10.4 and were able to interact with and condense luciferase-encoding plasmid deoxyribonucleic acid (DNA) to yield SV/DNA polyplexes. A water-soluble tetrazolium-1 (WST) assay showed that all SVs had minimal cellular cytotoxicity under an N/P charge ratio of 10. The critical micellar concentration decreased with an increase in the M(n) of the fractionated SVs; however, the particle size of the polyplexes, exclusion activity of ethidium bromide, and zeta-potential of the polyplexes increased. An in vitro evaluation using COS-1 cells at an N/P ratio of 10 showed that transfection activity increased almost linearly with M(n). The highest transfection activity was obtained for SVs with the highest M(n) (73 kDa), which was over 7 times that for the SVs with the lowest M(n) (27 kDa), the nonfractionated original SV, or PEI standard. The transfection efficiency was more correlated with the amphiphilicity or hydrophobicity of the SVs and the surface potential and condensate density of the polyplexes than with the particle size.

  1. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500. (b) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols if its mean molecular weight is 350 or higher and no more than 0.5 percent total by weight of ethylene and diethylene glycols if its...

  2. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  3. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application.

  4. Expression of low molecular weight proteins in patients with leukaemia.

    PubMed

    Sheikh, N; Abid, R; Qureshi, A W; Basheer, T

    2012-06-01

    The current study is conducted to observe the differences in the level of low molecular weight proteins in the sera of patients with leukaemia in comparison to healthy subjects (control group). The sera of patients with leukaemia showed 15 peaks in the densitometric curve in comparison to the seven peaks of the controls. The peaks in the experimental samples that coincide with those in the control were of 134.14, 113.15, 76.06, 63.25, 48.07, 22.85 and 16.47 kDa molecular weights, respectively. Most of the new peaks appeared between the proteins of molecular weight 36-29 kDa in the experimental groups. Mean density of the 134.14 kDa protein band showed an increase in the protein in experimental groups I and II only whereas 113.15 and 22.85 kDa protein were increased in all experimental groups of patients with leukaemia. The expression of 76.06 and 63.25 kDa protein fraction was downregulated in the patients with leukaemia. A decline in the level of the protein of 48.07 kDa was observed in patients with leukaemia except in group I. Unlike the other protein fractions, the level of the protein of 16.47 kDa was significantly (p < 0.05) increased with a maximum density in group II. Intergroup experimental) comparison revealed an increasing pattern of 95.44 and 89.21 kDa with maximum level in group III sera. However the protein fractions of 38.07 and 34.94 kDa varied in the serum with maximum density in Group IV Protein fractions of 32.92 and 31.24 kDa were expressed in all age groups of patients with leukaemia with a maximum density in group III whereas the percentage densities of 14.42 and 13.56 kDa protein were quite different. This preliminary study will provide a basis to study the role of different proteins in patients with leukaemia.

  5. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  6. Molecular Weight and Charge Density Asymmetry in Polyelectrolyte Complexation

    NASA Astrophysics Data System (ADS)

    Audus, Debra; Fredrickson, Glenn; Duechs, Dominik

    2009-03-01

    We investigate the phase diagram of oppositely charged polymers in a good solvent using a field-theoretic model. Mean-field solutions fail to predict the experimentally observed macroscopic phase separation into a solvent-rich phase and a dense liquid aggregate of polymers - a ``complex coacervate.'' We therefore study the model within a one-loop approximation, which accounts for Gaussian fluctuations in electrostatic and chemical potentials. Our particular focus is the effect of molecular weight, ionic strength, and charge asymmetry on the phase envelope. A set of dimensionless parameters is identified that dictate the size and shape of the two-phase region. Our results should be helpful in guiding experimental studies of coacervation.

  7. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  8. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  9. Low-molecular-weight xylanase from Trichoderma viride

    SciTech Connect

    Ujiie, M.; Roy, C.; Yaguchi, M. )

    1991-06-01

    An endo-1,4-{beta}-xylanase (1,4-{beta}-D-xylan xylanohydrolase, EC 3.2.1.8) has been isolated from a commercial proparation of Trichoderma viride. The molecular weight was 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the pI value was 9.3. The xylanase was a true xylanase without cellulase activity. When the N-terminal amino acid sequence of thew first 50 residues was compared with that of a xylanase from Schizophyllum commune, strong evidence for homology was found, with more than 50% amino acid identity. T. viride xylanase also possessed extensive identity with a proposed amino-terminal consensus sequence of xylanases from bacteria.

  10. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  11. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  12. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  13. Does low molecular weight heparin shorten term labor?

    PubMed

    Ekman-Ordeberg, Gunvor; Akerud, Anna; Dubicke, Aurelija; Malmström, Anders; Hellgren, Margareta

    2010-01-01

    Dalteparin, a low molecular weight heparin (LMWH), is given to pregnant women with thrombotic disorders. Clinical observations together with the documented changes of heparan sulfate proteoglycans in normal and protracted labor fostered the idea that LMWH shortens delivery time. Labor time was retrospectively determined among nulliparous pregnant women treated with dalteparin because of previous venous thromboembolism (VTE), thrombophilia or acute VTE during current pregnancy. Their labor time was compared to matched untreated controls. The proportion of instrumental deliveries and neonatal outcome was also compared. The dalteparin-treated group showed a significantly (30%) shorter labor time compared to matched controls. Total instrumental deliveries were the same in the two groups but operative intervention due to protracted labor was significantly less common in dalteparin-treated women. There was no difference in neonatal outcome. Dalteparin most likely shortens parturition time and may decrease the number of operative interventions due to protracted labor.

  14. Massive choroidal hemorrhage associated with low molecular weight heparin therapy.

    PubMed

    Neudorfer, M; Leibovitch, I; Goldstein, M; Loewenstein, A

    2002-04-01

    An 84-year-old woman with unstable angina pectoris was treated with subcutaneous enoxaparine (Clexane) for several days before presenting with severe pain and decreased vision in her left eye. The intraocular pressure was 70 mmHg, and fundus examination showed a pigmented choroidal lesion and associated choroidal and retinal detachment. Ultrasonography was consistent with choroidal hemorrhage, and she was diagnosed as having acute glaucoma secondary to massive subchoroidal hemorrhage. Medical control of the intraocular pressure resulted in a significant clinical improvement. Intraocular hemorrhage and angle-closure glaucoma are rare and previously unreported complications in patients treated with low molecular weight heparin. It is important to be aware of this ocular complication as these drugs are so often used. PMID:11943940

  15. Gels and foams from ultrahigh molecular weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A.; Tillotson, T.

    1988-07-01

    Ultrahigh molecular weight polyethylene (UHMW PE) foams with densities from 0.04 to 0.2 g/cm{sup 3} have routinely been made in our laboratory. First, an entangled solution of UHMW PE is made. Then, the solution is geled by cooling to crystallize the PE. The gel is later dried to a foam by critical point drying. Viscometry and cloud point measurements were used to determine the gelatin point and the critical gelatin concentrations. Polarized light microscopy and differential scanning calorimetry were used to investigate the effects of cooling rate on the gel, while the effects of cooling rate on the foam were investigated via x-ray diffraction and scanning electron microscopy. We found that rapid cooling of 5 wt % UHMW PE/tetralin solutions to {minus}10{degree}c yielded small, uniform structure at the expense of crystallinity and strength; cooling over three days yielded spherulitic structure with strength. 5 refs., 3 figs.

  16. Gels and foams from ultrahigh-molecular-weight polyethylene

    SciTech Connect

    Hair, L.M.; Letts, S.A. )

    1990-01-01

    Crystallization-gelation of ultrahigh-molecular-weight polyethylene (UHMW PE) was used to make stiff gels that were supercritically dried to make low-density, small-cell-size foams. The effects of solvent and cooling conditions on gelation and morphology were investigated. X-ray diffractometry showed that the size of the crystalline lamellae in the finished foam decreased with increased cooling rate for foams made from UHMW PE in tetralin, but not in dodecane or decalin. This difference may be attributable to the greater expansion of the polyethylene chain in tetralin than in dodecane, as revealed by viscometry. However, the superstructure of the foam, which includes the pore sizes and homogeneity, was found to be affected by solvent as well as by cooling conditions.

  17. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  18. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight.

  19. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  20. Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE)

    NASA Astrophysics Data System (ADS)

    El-Domiaty, A.; El-Fadaly, M.; Nassef, A. Es.

    2002-10-01

    The wear of ultrahigh molecular weight polyethylene (UHMWPE) bearing against 316 stainless steel or cobalt chromium (Co-Cr) alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate were determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting 2 3 million cycles, the equivalent of several years use of a prosthesis. Wear was determined by the weight loss of the polyethylene (PE) specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental methods provided accurate reproducible measurement of PE wear. The long-term wear rates were proportional to load and sliding distance. Although the PE wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies formed a comparison basis for the subsequent evaluation of potentially superior materials for prosthetic joints.

  1. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  2. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  3. Anti-heparanase activity of ultra-low-molecular-weight heparin produced by physicochemical depolymerization.

    PubMed

    Achour, Oussama; Poupard, Nicolas; Bridiau, Nicolas; Bordenave Juchereau, Stephanie; Sannier, Fredéric; Piot, Jean-Marie; Fruitier Arnaudin, Ingrid; Maugard, Thierry

    2016-01-01

    Heparanase is an endo-β-D-glucuronidase that plays an important role in cancer progression, in particular during tumor angiogenesis and metastasis. Inhibiting this enzyme is considered as one of the most promising approaches in cancer therapy. Heparin is a complex glycoaminoglycan known as a strong inhibitor of heparanase. It is primarily used in clinical practice for its anticoagulant activities, which may not be compatible with its use as anti-angiogenic agent. In this study, we described the production of ultra-low-molecular-weight heparins (ULMWH) by a physicochemical method that consists in a hydrogen peroxide-catalyzed radical hydrolysis assisted by ultrasonic waves. We assessed the structural characteristics, anticoagulant and anti-heparanase activities of the obtained heparin derivatives and compared them with three commercial low-molecular-weight heparins (LMWH), glycol-split non-anticoagulant heparins and heparins produced by enzymatic methods. ULMWH generated by the physicochemical method were characterized by high anti-heparanase and moderate anticoagulant activities. These heparin derivatives might be potential candidates for cancer therapy when a compromise is needed between anti-heparanase and anticoagulant activities.

  4. Association of Proton Pump Inhibitor (PPI) Use with Energy Intake, Physical Activity, and Weight Gain

    PubMed Central

    Czwornog, Jennifer L.; Austin, Gregory L.

    2015-01-01

    Studies suggest proton pump inhibitor (PPI) use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES). Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41). Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02). PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95). PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021) over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure. PMID:26492268

  5. Molecular cloning of a novel multidomain Kunitz-type proteinase inhibitor from the hookworm Ancylostoma caninum.

    PubMed

    Hawdon, John M; Datu, Bennett; Crowell, Melissa

    2003-04-01

    Degenerate oligonucleotide primers derived from conserved serine protease inhibitors were used to amplify a 90-base pair (bp) amplicon from an Ancylostoma caninum adult-stage complementary deoxyribonucleic acid (cDNA) library by polymerase chain reaction (PCR). The amplicon was labeled and used as a probe to screen the library, and a 2,300-bp cDNA clone was identified. The 5' end of the molecule was obtained from adult cDNA by 5'-RACE. The complete sequence named A. caninum Kunitz-type protease inhibitor (Ac-kpi-1) was 2,371 bp and encoded a 759-amino acid open reading frame. The deduced amino acid sequence had a calculated molecular weight of 84,886 Da and contained an amino terminal signal peptide, suggesting that the protein is secreted. Analysis of the predicted protein sequence indicates 12 highly conserved Kunitz-type serine protease inhibitor domains connected by short, conserved spacers. On the basis of sequence analysis, the first 11 domains are predicted to be active serine protease inhibitors based on the P1 amino acid. Domains 5-8 have identical amino acid sequences, and the remaining domains are 38-88% identical. Domain 12 lacks several of the conserved cysteine residues and has an atypical amino acid in the P1 position, suggesting that it is nonfunctional. Reverse transcriptase-PCR indicated that the Ac-kpi-1 messenger ribonucleic acid is present in egg, L1, L3, and adult stages but is most abundant in the adult stage. Ac-KPI-1 is most similar in domain architecture to several extracellular matrix proteins involved in cellular remodeling during insect development. In addition, there are 44 nematode proteins containing one or more Kunitz domains in GenBank, including several with multiple domains.

  6. Molecular weight enlargement--a molecular approach to continuous homogeneous catalysis.

    PubMed

    Janssen, Michèle; Müller, Christian; Vogt, Dieter

    2010-09-28

    Molecular weight enlargement (MWE) is an attractive method for homogeneous catalyst recycling. Applications of MWE in combination with either catalyst precipitation or nanofiltration have demonstrated their great potential as a method for process intensification in homogeneous catalysis. Selected, recent advances in MWE in combination with catalyst recovery are discussed, together with their implication for future developments. These examples demonstrate that this strategy is applicable in many different homogeneously catalyzed transformations.

  7. Optimization of parameters for coverage of low molecular weight proteins.

    PubMed

    Müller, Stephan A; Kohajda, Tibor; Findeiss, Sven; Stadler, Peter F; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin; Kalkhof, Stefan

    2010-12-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  8. Kinetics of Formation of Molecular Weight Distribution of Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Komar, Lyudmila A.; Kondyurin, Alexey; Svistkov, Alexander L.

    Curing of epoxy matrix prepreg in free space environment is a complex problem. A simulation of the chemical reaction, evaporation and radiation effects in the matrix is a way to understand and predict the curing process. We have developed a mathematical apparatus of the epoxy resin kinetics in term of molecular weight distribution (MWD), which includes the polymerization mechanism of bifunctional epoxy and sixfunctional triethylenetetraamine (TETA) molecules. The mathematical model for a number of molecules with the mass m at time t is based on the following equation $ beta(t,m)=m_{am} / m sum(6}_{i=0) alpha(am) _i (t,m)+ m_{ep} / m sum(2}_{i=0) alpha(ep) _i (t,m), where m_{am} and m_{ep} are the masses of one amine block and one epoxy block, respectively; alpha^{am}_i (t,m) is the MWD near the TETA blocks with the chemical bonds i at time t for the mass values m>0; alpha_i^{ep}(t,m) is the MWD parameters of the epoxy blocks with chemical bonds i at time t for the mass values m>0. For the distribution densities alpha^{am}_i (t,m) and alpha_i^{ep}(t,m), we propose the differential system of equations, which has been solved by applying boundary conditions which are based on the results of chromatography and infrared spectroscopy measurements of the epoxy matrix having different concentration of the hardener. For the initial MWD we accept a Gaussian distribution with parameters alpha^{am}_0 (t,m_1) =146 amu, alpha_0^{ep}(t,m_1) =340 amu and alpha_1^{ep}(t,m_1) =624 amu. Dispersion of the molecular weight for the initial distribution equals to 25 amu. A portion of TETA molecules in the fraction was 25%, and the portion of epoxy molecules with i=0 and i=1 was 67.5% and 7.5%$, respectively. Solutions were obtained at mass step equals to 5 amu and at time step equals to 0.25 min over the interval from 0 to 500 min. The model gives a full kinetic of MWD during the curing reaction. The study is supported by the RFBR (grants N 12-08-00970-a and N 14-08-96011-r-ural-a).

  9. Anti-cancer glycosidase inhibitors from natural products: a computational and molecular modelling perspective.

    PubMed

    Singh, Ashona; Mhlongo, Ndumiso; Soliman, Mahmoud E S

    2015-01-01

    The implementation of computational tools in pharmaceutics has proven an effectual strategy in creating harmony between the physical and chemical aspects of proteins and potential inhibitors. This is achieved by bringing to life the three dimensional retrospect of biological systems, which takes into consideration computational approaches such as quantum mechanics and molecular dynamics to facilitate drug design and discovery. In this work, we aim to provide a summary of the computational aspects of naturally derived anti-cancer inhibitors targeting the enzyme family of glycosidases. Our study offers insight into the evolution of drug discovery, molecular modelling and molecular binding modes of natural product inhibitors associated with glycosidase enzymes. PMID:25706917

  10. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-01

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  11. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-01

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  12. Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights

    PubMed Central

    Li, Weibin; Chung, Hoyong; Daeffler, Christopher; Johnson, Jeremiah A.; Grubbs, Robert H.

    2012-01-01

    To address the practical issues of polymer molecular weight determination, the first accurate polymer weight-average molecular weight determination method in diverse living/controlled polymerization via DOSY (diffusion-ordered NMR spectroscopy) is reported. Based on the linear correlation between the logarithm of diffusion coefficient (log D) and the molecular weights (log Mw), external calibration curves were created to give predictions of molecular weights of narrowly-dispersed polymers. This method was successfully applied to atom transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT), and ring-opening metathesis polymerization (ROMP), with weight-average molecular weights given by this method closely correlated to those obtained from GPC measurement. PMID:23335819

  13. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    PubMed

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  14. Composition and molecular weight distribution of carob germ protein fractions.

    PubMed

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  15. Mean Molecular Weight Gradients in Proto-Jupiter

    NASA Astrophysics Data System (ADS)

    Helled, R.; Bodenheimer, P.; Rosenberg, E. D.; Podolak, M.; Lozovsky, M.

    2015-12-01

    The distribution of heavy elements in Jupiter cannot be directly measured, and must be inferred from structure models. Typically, structure models assume that Jupiter is fully convective with the heavy elements being uniformly distributed. However, in the case of layered-convection there is a gradient in the distribution of heavy elements which affects the temperature profile of the planet, and as a result also its derived composition. We simulate the formation of Jupiter and investigate whether mean molecular weight gradients that can lead to layered-convection are created. We show that planetesimal accretion naturally leads to compositional gradients in the region above the core. It is shown that after about 10^5 years the core of Jupiter is hot and is surrounded by layers that consist mostly heavy-elements but also some hydrogen and helium. As a result, Jupiter's core mass is expected to be 2-5 M_Earth with no sharp transition between the core and the envelope. These findings are important for the interpretation of Juno data and for linking giant planet internal structure with origins.

  16. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  17. Photoelectrical characterization of a new low molecular weight compound

    NASA Astrophysics Data System (ADS)

    Siderov, V.; Dobrikov, G. H.; Zhivkov, I.; Dobrikov, G. M.; Georgiev, Y.; Yordanov, R.; Honova, J.; Weiter, M.

    2014-12-01

    Photoelectrical characterization of a newly synthesized low molecular weight compound was carried out. 1,8-naphtalimide (chemical formula C32H34N4O5S) was originally synthesized and analyzed by NMR spectroscopy. Thin films were deposited in vacuum on commercially pre-patterned ITO covered glass substrates and the samples were prepared in clean room environment. The films deposited were characterized by SEM. Photoelectrical characteristics of the samples prepared were estimated by dark current-voltage measurement, spectral dependence of the photoconductivity and measurement under exposure with light, produced by solar simulator. Finally electroluminescence measurements were performed. It was found that the samples exhibit diode behaviour. The low values characterizing photovoltaic parameters obtained could be connected with the relative higher series resistance (Rseries). The predominant influence of Rseries is assumed as the relative high photoluminescence, measured from solution should be related to a relatively strong charge carrier photogeneration. This result is supported by electroluminescent measurement. Another reason for the low values of the photovoltaic parameters measured could be the non-optimized film thickness leading to a non-optimal light absorption and increased charge carrier recombination. The assumption for the predominant influence of Rseries is supported by the electroluminescent measurements.

  18. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

  19. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-01

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods.

  20. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-01

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  1. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  2. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-01-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application. PMID:26732018

  3. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites

    NASA Astrophysics Data System (ADS)

    Porras, A.; Tellez, J.; Casas-Rodriguez, J. P.

    2012-08-01

    Ultra high molecular weight polyethylene (UHMWPE) fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE) fibre reinforced composites were characterized using the End Notch Flexural (ENF) test. Critical strain energy release rate was obtained from the load - deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  4. Antiaging activity of low molecular weight peptide from Paphia undulate

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  5. Photochemical Preparation of a Novel Low Molecular Weight Heparin

    PubMed Central

    Higashi, Kyohei; Hosoyama, Saori; Ohno, Asami; Masuko, Sayaka; Yang, Bo; Sterner, Eric; Wang, Zhenyu; Linhardt, Robert J.; Toida, Toshihiko

    2011-01-01

    Commercial low molecular weight heparins (LMWHs) are prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical ß-elimination, and enzymatic β-elimination. The disadvantages of these methods are that strong reaction conditions or harsh chemicals are used and these can result in decomposition or modification of saccharide units within the polysaccharide backbone. These side-reactions reduce product quality and yield. Here we show the partial photolysis of unfractionated heparin can be performed in distillated water using titanium dioxide (TiO2). TiO2 is a catalyst that can be easily removed by centrifugation or filtration after the photochemical reaction takes place, resulting in highly pure products. The anticoagulant activity of photodegraded LMWH (pLMWH) is comparable to the most common commercially available LMWHs (i.e., Enoxaparin and Dalteparin). 1H NMR spectra obtained show that pLMWH maintains the same core structure as unfractionated heparin. This photochemical reaction was investigated using liquid chromatography/mass spectrometry (LC/MS) and unlike other processes commonly used to prepare LMWHs, photochemically preparation affords polysaccharide chains of reduced length having both odd and even of saccharide residues. PMID:22205826

  6. Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors.

    PubMed

    Zhou, Shunye; Li, Youyong; Hou, Tingjun

    2013-04-22

    Multitarget agents have been extensively explored for solving limited efficacies, poor safety, and resistant profiles of an individual target. Theoretical approaches for searching and designing multitarget agents are critically useful. Here, the performance of molecular docking to search dual-target inhibitors for four kinase pairs (CDK2-GSK3B, EGFR-Src, Lck-Src, and Lck-VEGFR2) was assessed. First, the representative structures for each kinase target were chosen by structural clustering of available crystal structures. Next, the performance of molecular docking to distinguish inhibitors from noninhibitors for each individual kinase target was evaluated. The results show that molecular docking-based virtual screening illustrates good capability to find known inhibitors for individual targets, but the prediction accuracy is structurally dependent. Finally, the performance of molecular docking to identify the dual-target kinase inhibitors for four kinase pairs was evaluated. The analyses show that molecular docking successfully filters out most noninhibitors and achieves promising performance for identifying dual-kinase inhibitors for CDK2-GSK3B and Lck-VEGFR2. But a high false-positive rate leads to low enrichment of true dual-target inhibitors in the final list. This study suggests that molecular docking serves as a useful tool in searching inhibitors against dual or even multiple kinase targets, but integration with other virtual screening tools is necessary for achieving better predictions.

  7. Molecular mechanisms of scar-sourced axon growth inhibitors

    PubMed Central

    Ohtake, Yosuke; Li, Shuxin

    2014-01-01

    Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. Currently, enzymatic digestion of CSPGs with locally applied chondroitinase ABC is the main in vivo approach to overcome scar inhibition, but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of molecular mechanisms underlying CSPG function may facilitate development of new effective therapies to overcome scar-mediated inhibition. Previous studies support that CSPGs act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions, but two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibition. CSPGs may also act by binding two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3. Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. PMID:25192646

  8. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages

    PubMed Central

    Zheng, Bin; Wen, Zheng-Shun; Huang, Yun-Juan; Xia, Mei-Sheng; Xiang, Xing-Wei; Qu, You-Le

    2016-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines. PMID:27657093

  9. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents.

  10. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  11. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus.

    PubMed

    Parsons, Joshua B; Yao, Jiangwei; Frank, Matthew W; Jackson, Pamela; Rock, Charles O

    2012-10-01

    The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1Δ9 was used for phospholipid synthesis, whereas toxic 16:1Δ9 was not and required elongation to 18:1Δ11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1Δ9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1Δ9 was as toxic as 16:1Δ9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.

  12. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  13. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  14. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.

    PubMed

    Loo, Say Chye Joachim; Tan, Hui Tong; Ooi, Chui Ping; Boey, Yin Chiang Freddy

    2006-05-01

    The purpose of this study is to examine the hydrolytic degradation of electron beam irradiated ring-opening polymerized (ROP) poly(l-lactide) (PLLA-ir) and non-irradiated melt polycondensation polymerized poly(l-lactic acid) (PLLA-pc). It was observed that irradiation increases the hydrolytic degradation rate constant for ROP PLLA. This was due to a more hydrophilic PLLA-ir, as a result of irradiation. The degradation rate constants (k) of PLLA-ir samples were also found to be similar, regardless of the radiation dose, and an empirically formulated equation relating hydrolytic degradation time span to radiation dose was derived. The k value for PLLA-pc was observed to be lower than that for PLLA-ir, though the latter had a higher molecular weight. This was due to the difference in degradation mechanism, in which PLLA-ir undergoes end group scission, through a back- biting mechanism, during hydrolysis and thus a faster hydrolysis rate. Electron beam irradiation, though accelerates the degradation of PLLA, has been shown to be useful in accurately controlling the hydrolytic time span of PLLA. This method of controlling the hydrolytic degradation time was by far an easier task than through melt polycondensation polymerization. This would allow PLLA to be used for drug delivery purposes or as a temporary implant that requires a moderate time span (3-6 months). PMID:16701888

  15. Reductions with lithium in low molecular weight amines and ethylenediamine

    PubMed

    Garst; Dolby; Esfandiari; Fedoruk; Chamberlain; Avey

    2000-10-20

    Reductions of several types of compounds with lithium and ethylenediamine using low molecular weight amines as solvent are described. In all cases 1 mol of ethylenediamine or N, N'-dimethylethylenediamine per gram-atom of lithium was used. In some cases it was beneficial to add an alcohol as a proton donor. These reaction conditions were applied to the debenzylation of N-benzylamide and lactams which are refractory to hydrogenolysis with hydrogen and a catalyst. N-Benzylpilolactam 2, synthesized from pilocarpine hydrochloride in refluxing benzylamine, was debenzylated in good yield using 10 gram-atoms of lithium per mole (10 Li/mol) of 2 in n-propylamine. The debenzylation of N-benzyl-N-methyldecanoic acid amide, 4 (6 Li/mol), in t-butylamine/N, N'-dimethylethylenediamine gave N-methyldecanoic acid amide 6 in 70% yield. Alternatively, reduction of 4 (7 Li/mol) in t-butanol/n-propylamine/ethylenediamine gave n-decanal 12 in 36% yield. Using the same conditions, thioanisole, 1-adamantane-p-toluenesulfonamide, and 1-adamantane methyl p-toluenesulfonate were reduced with 3, 7, and 7.2 Li/mol of compound to give thiophenol (74%), adamantamine (91%), and 1-adamantane methanol (75%), respectively. In this solvent system naphthalene and 3-methyl-2-cyclohexene-1-one were reduced to isotetralin (74%) and 3-methyl cyclohexanone (quantitative) with 5 and 2.2 Li/mol of starting compound, respectively. Oximes and O-methyloximes were reduced to their corresponding amines using 5 and 8 Li/mol of compound, respectively. Anisole was also reduced to 1-methoxy-1,4-cyclohexadiene with 2.5 Li/mol of anisole. Undecanenitrile was reduced to undecylamine with 8.6 Li/mol. Additionally, a base-catalyzed formation of imidazolines from a nitrile and ethylenediamine was also explored.

  16. Respiratory clearance of aerosolized radioactive solutes of varying molecular weight

    SciTech Connect

    Huchon, G.J.; Montgomery, A.B.; Lipavsky, A.; Hoeffel, J.M.; Murray, J.F.

    1987-05-01

    To determine the influence of varying molecular weight (mol wt) on respiratory clearance of aerosolized solutes, we studied eight radiopharmaceuticals, each administered to four dogs: sodium /sup 99m/Tc pertechnetate (TcO4), /sup 99m/Tc glucoheptonate ((/sup 99m/Tc)GH), 51Cr-ethylenedinitrotetraacetate ((51Cr)EDTA), /sup 99m/Tc diethylenetriaminepentaacetate ((99mTc) DTPA), /sup 111/In diethylenetriaminepentaacetate ((/sup 111/In)DTPA), /sup 67/Ga desferoxaminemesylate ((/sup 67/Ga)DFOM), /sup 99m/Tc dextran ((/sup 99m/Tc)DX) and /sup 111/In transferrin ((/sup 111/In)TF). After aerosolization (0.8 m MMD, 2.4 GSD), clearance was determined for 30 min and then corrected by intravenous injection for nonairspace radioactivity. In-TF clearance (0.11 +/- 0.10%/min) was lower than TcO4 (6.32 +/- 0.62%/min), (/sup 99m/Tc)GH (1.50 +/- 0.37%/min), (/sup 51/Cr)EDTA (2.38 +/- 1.02%/min), (/sup 99m/Tc)DTPA (3.51 +/- 0.40%/min), (/sup 111/In)DTPA (2.35 +/- 0.42%/min), (/sup 67/Ga) DFOM (1.99 +/- 0.49%/min) and (/sup 99m/Tc)DX (1.81 +/- 0.75%/min) clearances (p less than 0.001). TcO4 clearance was higher than others (p less than 0.001). Technetium binding to DX was unsatisfactory; aerosolization caused unbinding from DTPA. We conclude that respiratory clearance of large mol wt solutes within 30 min is negligible and, that clearance of molecules between 347-5099 daltons differs greatly, suggesting that binding and/or intrapulmonary retention affect transfer.

  17. [Practical use of low molecular weight heparins in angiology].

    PubMed

    Plettner, J L

    1991-01-01

    The recent development of low molecular weight heparins (LMWH), obtained by the depolymerization of standard non-fractioned heparin (NFH), considerably simplifies the course of anticoagulant treatments. They now allow effectively and safely dealing with the risks of thrombosis, both in hospital and at the patient's home. Their effectiveness for both the prevention and the treatment of thromboembolic accidents has been proved by many clinical trials. In comparison to standard heparin, the LMWHs still have a high anti-Xa activity, but their anti-IIa action is much reduced, thus preserving their antithrombotic power while reducing the hemorrhagic risks. Owing to their better bioavailability and longer half-life, they allow using in priority the subcutaneous route, reducing the frequency of the injections and simplifying surveillance, without impairing the effectiveness of the treatment. The prevention of thrombosis with LMWHs requires one daily subcutaneous dose. The control of the anti-Xa activity is not necessary for the doses used. Prior to initiating a curative treatment, it is essential to confirm the existence of thrombosis. When the diagnosis is definitive, the three LMWHs currently known are used after reconversion, at a dosage of 100 IU/kg/12 hrs. The anti-Xa activity, in samples taken 3 to 4 hours after the injection, must be maintained between 0.5 and 1 IU anti-Xa/ml. It is prudent to control the platelet level at D5 and D10, although thrombocytopenia is exceptional. The changeover treatment with antivitamins K (AVK), which is essential to prevent the recurrence of venous thrombosis, is initiated very early (2nd or 3rd day).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  19. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  20. Directed molecular screening for RecA ATPase inhibitors.

    PubMed

    Wigle, Tim J; Singleton, Scott F

    2007-06-15

    The roles of bacterial RecA in the evolution and transmission of antibiotic resistance genes make it an attractive target for inhibition by small molecules. We report two complementary fluorescence-based ATPase assays that were used to screen for inhibitors of RecA. We elected to employ the ADP-linked variation of the assay, with a Z' factor of 0.83 in 96-well microplates, to assess whether 18 select compounds could inhibit ATP hydrolysis by RecA. The compounds represented five sets of related inhibitor scaffolds, each of which had the potential to cross-inhibit RecA. Although nucleotide analogs, known inhibitors of GHL ATPases, and known protein kinase inhibitors were not active against RecA, we found that three suramin-like agents substantially inhibited RecA's ATPase activity. PMID:17499507

  1. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Pan, Peichen; Zhang, Liling; Hou, Tingjun

    2013-03-01

    Rho-associated protein kinases (ROCK1 and ROCK2) are promising targets for a number of diseases, including cardiovascular disorders, nervous system diseases, cancers, etc. Recently, we have successfully identified a ROCK1 inhibitor (1) with the triazine core. In order to gain a deeper insight into the microscopic binding of this inhibitor with ROCK1 and design derivatives with improved potency, the interactions between ROCK1 and a series of triazine/pyrimidine-based inhibitors were studied by using an integrated computational protocol that combines molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis. First, three docking protocols, rigid receptor docking, induced fit docking, QM-polarized ligand docking, were used to determine the binding modes of the studied inhibitors in the active site of ROCK1. The results illustrate that rigid receptor docking achieves the best performance to rank the binding affinities of the studied inhibitors. Then, based on the predicted structures from molecular docking, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The binding free energies predicted by MM/GBSA are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. In addition, the residue-inhibitor interaction spectra were obtained by the MM/GBSA free energy decomposition analysis, and the important residues for achieving strong binding were highlighted, which affords important guidance for the rational design of novel ROCK inhibitors. Finally, a variety of derivatives of inhibitor 1 were designed and four of them showed promising potency according to the predictions. We expect that our study can provide significant insight into the

  2. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid".

    PubMed

    Karthick, T; Balachandran, V; Perumal, S

    2015-04-15

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm(-1) has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  3. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  4. Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro.

    PubMed

    Layman, John M; Ramirez, Sean M; Green, Matthew D; Long, Timothy E

    2009-05-11

    Establishing clear structure-property-transfection relationships is a critical step in the development of clinically relevant polymers for nonviral gene therapy. In this study, we determined the influence of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) molecular weight on cytotoxicity, DNA binding, and in vitro plasmid DNA delivery efficiency in human brain microvascular endothelial cells (HBMEC). Conventional free radical polymerization was used to synthesize PDMAEMA with weight-average molecular weights ranging from 43,000 to 915,000 g/mol. MTT and LDH assays revealed that lower molecular weight PDMAEMA (M(w) = 43,000 g/mol) was slightly less toxic than higher molecular weights (M(w) > 112,000 g/mol) and that the primary mode of toxicity was cellular membrane destabilization. An electrophoretic gel shift assay revealed that all PDMAEMA molecular weights completely bound with plasmid DNA. However, heparin competitive binding experiments revealed that higher molecular weight PDMAEMA (M(w) = 915,000 g/mol) had a greater binding affinity toward plasmid DNA than lower molecular weight PDMAEMA (M(w) = 43,000 g/mol). The molecular weight of PDMAEMA was found to have a dramatic influence on transfection efficiency, and luciferase reporter gene expression increased as a function of increasing molecular weight. However, cellular uptake of polyplexes was determined to be insensitive to PDMAEMA molecular weight. In addition, our data did not correlate polyplex size with transfection efficiency. Collectively, our data suggested that the intracellular fate of the polyplexes, which involves endosomal release and DNase resistance, is more important to overall transfection efficiency than barriers to entry, such as polyplex size.

  5. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  6. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  7. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  8. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  9. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  10. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  11. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  12. Effects of a supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters.

    PubMed

    Glusa, E; Barthel, W; Schenk, J; Radziwon, P; Butti, A; Markwardt, F; Breddin, K H

    1998-01-01

    In a phase I trial effects of a new supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters were investigated in healthy volunteers. Parameters studied were activated partial thromboplastin time (aPTT), thrombin time, Heptest, anti-activated factor II (anti-FIIa) and anti-activated factor X (anti-FXa) activity, platelet adhesion, platelet count, platelet-induced thrombin generation time (PITT), bleeding time, antithrombin III, fibrinogen and several safety parameters. After single intravenous (i.v.) injections of IK-SSH (0.14, 0.33 and 0.66 mg/kg) aPTT, Heptest and PITT were strongly and dose-dependently prolonged. After ascending subcutaneous (s.c.) doses of IK-SSH (0.33, 0.66 and 1 mg/kg) aPTT, Heptest and PITT were prolonged in a dose-dependent manner. Repeat s.c. injections of 1 mg/kg IK-SSH for 5 days markedly prolonged aPTT, Heptest and PITT. No cumulative effects were observed. Anti-FIIa and anti-FXa activity were not or only slightly increased. Bleeding time, thrombin time and platelet adhesion were not significantly changed after i.v. and s.c. injections of IK-SSH. However, tissue factor pathway inhibitor (TFPI) concentration was markedly increased after each injection of IK-SSH and returned to the preinjection value 24 h later. IK-SSH prolongs aPTT, Heptest and PITT in a similar manner as other low molecular weight heparins but without significantly affecting thrombin time, FIIa and FXa activity. The release of TFPI may well be responsible for the prolongation of aPTT, Heptest and PITT. IK-SSH may be further developed as an antithrombotic agent.

  13. Low molecular weight proteinuria in Chinese herbs nephropathy.

    PubMed

    Kabanda, A; Jadoul, M; Lauwerys, R; Bernard, A; van Ypersele de Strihou, C

    1995-11-01

    Urinary excretion of five low molecular weight proteins (LMWP) [beta 2-microglobulin (beta 2m), cystatin C (cyst C), Clara cell protein (CC16), retinol-binding protein (RBP) and alpha 1-microglobulin (alpha 1m)], albumin and N-acetyl-beta-D-glucosaminidase (NAG) were quantified in 16 patients who followed a weight reduction program which included Chinese herbs, which have been incriminated in the genesis of Chinese herbs nephropathy (CHN). An additional group of four patients transplanted for CHN were investigated. Urinary data were obtained for comparison purpose in five groups of proteinuric patients: two groups with normal serum creatinine (SCr) and glomerular albuminura [12 patients with diabetes mellitus and microalbuminuria (DN), 10 patients with primary nephrotic syndrome (NS)]; two groups with normal SCr and toxic nephropathy [6 patients with analgesic (AN), 9 patients with cadmium nephropathy (CdN)]; and one group of seven patients with glomerular diseases and increased SCr (GN). Patients were classified according to serum level S beta 2m to take into account the possibility of overflow proteinuria at S beta 2m > or = 5 mg/liter. Three patients (CHN0) with a S beta 2m < 5 mg/liter, had a normal urinary protein pattern including NAG and a normal S beta 2m. Eight patients (CHN1) with a S beta 2m < 5 mg/liter had various abnormalities of their urinary protein pattern. In four of them (CHN1a) only beta 2m, RBP and CC16 were increased while total proteinuria and SCr were normal. In the other four (CHN1b and c) albumin, cyst C, alpha 1m and NAG were also elevated, while total proteinuria and SCr were moderately raised. Five patients (CHN2) with a S beta 2m > or = 5 mg/liter had a markedly increased excretion of all LMWP, albumin and NAG (CHN1 vs. CHN2, P < 0.05) as well as a further increase in total proteinuria and SCr. The urinary LMWP/albumin concentration ratio was strikingly higher in CHN patients than in patients with glomerular albuminuria (CHN1 vs. DN

  14. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  15. Bacterial degradation of high molecular-weight polynuclear aromatic hydrocarbons

    SciTech Connect

    Ye, D.; Siddiqi, A.; Kumar, S.; Sikka, H.C.

    1995-12-31

    The ability of Pseudomonas paucimobilis, strain EPA 505 (a soil bacterium capable of utilizing fluoranthene as the sole source of carbon and energy for growth) to metabolize a variety of high molecular-weight polynuclear aromatic hydrocarbons (PAHs) was investigated. After 16 hours of incubation with 10 ppm of a PAH, a resting cell suspension (1 mg wet cells/ml) of P. paucimobilis grown on fluoranthene degraded 80.0, 72.9, 31.5, 33.3, 12.5, and 7.8% of pyrene, benz[a]anthracene (B[a]A), chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), and dibenz[a,h]anthracene (DB[a,h]A), respectively. No degradation of dibenz[a,1]pyrene was detected under these conditions. Studies with [7-{sup 14}C]B[a]P and [5,6,11,12-{sup 14}C]chrysene showed that after 48 hours of incubation, the cells degraded nearly 28 and 42% of {sup 14}C-B[a]P and {sup 14}C-chrysene to {sup 14} C0{sub 2}, respectively, suggesting that the bacterium is able to metabolize B[a]P and chrysene via ring cleavage. No evolution of {sup 14}CO{sub 2} was detected from cultures incubated with [4,5,9,10{sup 14}C]pyrene or [1,2,3,4,4a,4bU-{sup 14}C]dibenz[a,1]pyrene. The degradation of B[a]P with P. paucimobilis significantly reduced the mutagenic activity associated with the hydrocarbon. The addition of 5 ppm of B[a]A, chrysene, fluoranthene, or DB[a,h]A to the incubation medium containing 5 ppm B[a]P had no effect on the degradation of B[a]P by P. paucimobilis. The data suggest that P. paucimobilis, strain EPA 505 may be useful for remediation of PAH-contaminated sites.

  16. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  17. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    NASA Astrophysics Data System (ADS)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  18. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells.

    PubMed

    Mattox, Austin K; Li, Jing; Adamson, David C

    2012-12-01

    Glioblastoma multiforme (GBM) represents one of the most common aggressive types of primary brain tumors. Despite advances in surgical resection, novel neuroimaging procedures, and the most recent adjuvant radiotherapy and chemotherapy, the median survival after diagnosis is about 12-14 months. Targeting migrating GBM cells is a key research strategy in the fight against this devastating cancer. Though the vast majority of the primary tumor focus can be surgically resected, these migrating cells are responsible for its universal recurrence. Numerous strategies and technologies are being explored to target migrating glioma cells, with small molecular inhibitors as one of the most commonly studied. Small molecule inhibitors, such as protein kinase inhibitors, phosphorylation site inhibitors, protease inhibitors, and antisense oligonucleotides show promise in slowing the progression of this disease. A better understanding of these small molecule inhibitors and how they target various extra- and intracellular signaling pathways may eventually lead to a cure for GBM.

  19. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  20. Large Molecular Weight Polymer Solar Cells with Strong Chain Alignment Created by Nanoimprint Lithography.

    PubMed

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2016-03-23

    In this work, strong chain alignment in large molecular weight polymer solar cells is for the first time demonstrated by nanoimprint lithography (NIL). The polymer crystallizations in nonimprinted thin films and imprinted nanogratings with different molecular weight poly(3-hexylthiophene-2,5-diyl) (P3HT) are compared. We first observe that the chain alignment is favored by medium molecular weight (Mn = 25 kDa) P3HT for nonimprinted thin films. However, NIL allows large molecular weight P3HT (>40 kDa) to organize more strongly, which has been desired for efficient charge transport but is difficult to achieve through any other technique. Consequently P3HT/[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) solar cells with large molecular weight P3HT nanogratings show a high power conversion efficiency of 4.4%, which is among the best reported P3HT/PCBM photovoltaics devices.

  1. Optical properties of polycarbonate/styrene-co-acrylonitrile blends: effects of molecular weight of the matrix.

    PubMed

    Yi, Ping; Xiong, Ying; Guo, Shaoyun

    2015-12-01

    In this paper, the effects of the molecular weight of a polycarbonate (PC) matrix on the phase morphology and optical properties of a PC/styrene-co-acrylonitrile (SAN) blend were investigated. A scanning electron microscope is used to analyze the phase morphology of the blends, and Mie scattering theory is used to analyze the changing laws of the optical properties of PC/SAN blends with the increasing of PC molecular weight. Results show that the average particle diameter is not strongly changed with different PC molecular weight because the values of the viscosity ratios are very close to each other. But it is obvious that the number of large particles gradually reduced while small particles (especially d<2  μm) significantly increased with the increasing of PC molecular weight. And the increase in small particles will result in an increase in backward scattering so the transmittance of PC/SAN blends decreases with the increase of PC molecular weight. However, the balance of the scattering coefficients and the number concentration of particles eventually lead to the haze of the blends being very close, despite having different PC molecular weights. Meanwhile, the photographs of scattering patterns indicate that the PC/SAN blends whose component weight ratios are fixed at 70:30 have excellent antiglare properties, despite the changes in molecular weight of the PC matrix.

  2. Influence of molecular-weight polydispersity on the glass transition of polymers.

    PubMed

    Li, Shu-Jia; Xie, Shi-Jie; Li, Yan-Chun; Qian, Hu-Jun; Lu, Zhong-Yuan

    2016-01-01

    It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.

  3. Developer molecular size dependence of pattern formation of polymer type electron beam resists with various molecular weights

    NASA Astrophysics Data System (ADS)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Ochiai, Shunsuke; Hoshino, Ryoichi; Kawata, Atsushi

    2016-05-01

    The sensitivity and the resolution are affected by not only the nature of the resist such as a chemical structure and a molecular weight but also the developing process such as a developer molecular size. Exposure characteristics of positive-tone polymer resists having various molecular weights (Mw's) ranging from 60 k to 500 k are investigated using different ester solvents as a developer. The line-and-space (L/S) patterns are exposed by the electron beam writing system with an acceleration voltage of 50 kV and the samples are developed by amyl acetate, hexyl acetate and heptyl acetate. The pattern shape becomes better and the surface of the resist also becomes smoother with increasing developer molecular size, though the exposure dose required for the formation of the L/S pattern increases. The dose margin of pattern formation is also wider in all the resists having the different molecular weights. The dissolution in the unexposed portions of the 60k-Mw resist for heptyl acetate is reduced significantly compared with those for amyl acetate and hexyl acetate. The improvement of the pattern shape and the increasing of dose margin are remarkable in the low molecular weight resist. The 3σ of line width roughness tends to be smaller in the higher molecular weight resist and with the larger molecular size developer. Exposure experiment of the 35 nm pitch pattern using the 500k-Mw resist developed at the room temperature is presented.

  4. Calculation of molecular weights of humic substances from colligative data: Application to aquatic humus and its molecular size fractions

    NASA Astrophysics Data System (ADS)

    Reuter, J. H.; Perdue, E. M.

    1981-11-01

    A rigorous mathematical expression for the dependence of colligative properties on acid dissociation of water soluble humic substances is presented. New data for number average molecular weights of a river derived humic material and its gel permeation Chromatographic fractions are compared with M¯n values obtained by a reevaluation of previously published experimental observations on soil and water fulvic acids. The results reveal a remarkable similarity of fulvic acids from widely different sources with respect to number-average molecular weight.

  5. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  6. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    PubMed

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  7. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  8. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages.

    PubMed

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-09-30

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.

  9. MOLECULAR PATHWAYS: JAK/STAT PATHWAY: MUTATIONS, INHIBITORS, AND RESISTANCE

    PubMed Central

    Quintás-Cardama, Alfonso; Verstovsek, Srdan

    2016-01-01

    Aberrant activation of the JAK/STAT pathway has been reported in a variety of disease states, including inflammatory conditions, hematologic malignancies, and solid tumors. For instance, a large proportion of patients with myeloproliferative neoplasms (MPNs) carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of the pathogenesis of MPNs and it has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK/STAT pathway, now recognized as a common underlying biological abnormality in MPNs. Ruxolitinib is an oral JAK1 and JAK2 inhibitor that has recently been approved for the treatment of myelofibrosis and has been tested against other hematologic malignancies. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials for patients with MPNs, lymphoma, and solid tumors such as breast or pancreatic cancer. Despite their significant clinical activity exhibited in myelofibrosis, some patients fail to respond or progress during JAK kinase inhibitor therapy. Recent reports have shed light into the mechanisms of resistance to JAK kinase inhibitor therapy. Several approaches hold promise to overcome such resistance. PMID:23406773

  10. De novo design of caseinolytic protein proteases inhibitors based on pharmacophore and 2D molecular fingerprints.

    PubMed

    Wu, Guanzhong; Zhang, Zhen; Chen, Hong; Lin, Kejiang

    2015-06-01

    Caseinolytic protein proteases (ClpP) are large oligomeric protein complexes that contribute to cell homeostasis as well as virulence regulation in bacteria. Inhibitors of ClpP can significantly attenuate the capability to produce virulence factors of the bacteria. In this work, we developed a workflow to expand the chemical space of potential ClpP inhibitors based on a set of β-lactones. In our workflow, an artificial pharmacophore model was generated based on HipHop and HYPOGEN method. A de novo compound library based on molecular fingerprints was constructed and virtually screened by the pharmacophore model. The results were further investigated by molecular docking study. The workflow successfully achieved potential ClpP inhibitors. It could be applied to design more novel potential ClpP inhibitors and provide theoretical basis for the further optimization of the hit compounds. PMID:25937012

  11. De novo design of caseinolytic protein proteases inhibitors based on pharmacophore and 2D molecular fingerprints.

    PubMed

    Wu, Guanzhong; Zhang, Zhen; Chen, Hong; Lin, Kejiang

    2015-06-01

    Caseinolytic protein proteases (ClpP) are large oligomeric protein complexes that contribute to cell homeostasis as well as virulence regulation in bacteria. Inhibitors of ClpP can significantly attenuate the capability to produce virulence factors of the bacteria. In this work, we developed a workflow to expand the chemical space of potential ClpP inhibitors based on a set of β-lactones. In our workflow, an artificial pharmacophore model was generated based on HipHop and HYPOGEN method. A de novo compound library based on molecular fingerprints was constructed and virtually screened by the pharmacophore model. The results were further investigated by molecular docking study. The workflow successfully achieved potential ClpP inhibitors. It could be applied to design more novel potential ClpP inhibitors and provide theoretical basis for the further optimization of the hit compounds.

  12. Discovery of Potential Inhibitors of Aldosterone Synthase from Chinese Herbs Using Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation Studies

    PubMed Central

    Lu, Fang; Qiao, Liansheng; Chen, Xi; Li, Gongyu

    2016-01-01

    Aldosterone synthase (CYP11B2) is a key enzyme for the biosynthesis of aldosterone, which plays a significant role for the regulation of blood pressure. Excess aldosterone can cause the dysregulation of the renin-angiotensin-aldosterone system (RAAS) and lead to hypertension. Therefore, research and development of CYP11B2 inhibitor are regarded as a novel approach for the treatment of hypertension. In this study, the pharmacophore models of CYP11B2 inhibitors were generated and the optimal model was used to identify potential CYP11B2 inhibitors from the Traditional Chinese Medicine Database (TCMD, Version 2009). The hits were further refined by molecular docking and the interactions between compounds and CYP11B2 were analyzed. Compounds with high Fitvalue, high docking score, and expected interactions with key residues were selected as potential CYP11B2 inhibitors. Two most promising compounds, ethyl caffeate and labiatenic acid, with high Fitvalue and docking score were reserved for molecular dynamics (MD) study. All of them have stability of ligand binding which suggested that they might perform the inhibitory effect on CYP11B2. This study provided candidates for novel drug-like CYP11B2 inhibitors by molecular simulation methods for the hypertension treatment. PMID:27781210

  13. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    PubMed

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  14. Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens.

    PubMed

    Hernández-Allica, J; Garbisu, C; Becerril, J M; Barrutia, O; García-Plazaola, J I; Zhao, F J; Mcgrath, S P

    2006-07-01

    In this study, we investigated the accumulation of phytochelatins (PCs) and other low molecular weight (LMW) thiols in response to Cd exposure in two contrasting ecotypes differing in Cd accumulation. Using a root elongation test, we found that the highly accumulating ecotype Ganges was more tolerant to Cd than the low Cd-accumulation ecotype Prayon. L-buthionine-(S,R)-sulphoximine (BSO), a potent inhibitor of the gamma-glutamylcysteine synthetase gamma-ECS) (an enzyme involved in the PC biosynthetic pathway), increased the Cd sensitivity of Prayon, but had no effect on Ganges. Although PC accumulation increased in response to Cd exposure, no significant differences were observed between the two ecotypes. Cd exposure induced a dose-dependent accumulation of both Cys and a still unidentified LMW thiol in roots of both ecotypes. Root accumulation of Cys and this thiol was higher in Ganges than in Prayon; the ecotypic differences were more pronounced when the plants were treated with BSO. These findings suggest that PCs do not contribute to the Cd hypertolerance displayed by the Ganges ecotype of Thlaspi caerulescens, whereas Cys and other LMW thiols might be involved. PMID:17080963

  15. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  16. [Depolymerization of high-molecular-weight chitosan by the enzyme preparation Celloviridine G20x].

    PubMed

    Il'ina, A V; Tkacheva, Iu V; Varlamov, V P

    2002-01-01

    A low-molecular-weight water-soluble chitosan was obtained from high-molecular-weight crab chitosan using the enzyme preparation Celloviridine G20x. Optimum conditions for the enzymatic hydrolysis were designed. The reaction should be performed for 4 h in a sodium-acetate buffer (pH 5.2) at 55 degrees C and the enzyme to substrate ratio of 1:400. Fractional extraction of chitosan hydrolysate by aqueous ethanol (ethanol: distilled water) yielded fractions with molecular weights in the range 3.2-26.4 kDa.

  17. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  18. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.

    PubMed

    Sun, Qian; Xie, Hong-Bin; Chen, Jingwen; Li, Xuehua; Wang, Zhuang; Sheng, Lianxi

    2013-07-01

    As an important part of dissolved organic matter (DOM), low molecular weight organic acids (LOAs) may play a key role in the process for DOM stabilizing carbon nanomaterials (e.g. C60) suspensions in aquatic environment. In addition, both LOAs and C60 have been detected in the troposphere and therefore have a chance to interact with each other in the gaseous phase. However, the mechanism for LOAs-C60 interactions and their environmental implications need further investigations. In this study, molecular dynamics (MD) simulation was employed to investigate the interactions between both neutral and ionic LOAs with C60 in vacuum and water. The results showed that the adsorptions of all LOAs on C60 in energy are favorable, and the aromatic acids have stronger interactions with C60 than the aliphatic acids in vacuum and water. The interaction energies (Eint) of the LOA anions with C60 were weaker than those of their corresponding neutral LOA molecules. The models were also developed to predict and interpret Eint based on the results from MD simulations. Dispersion, induction and hydrophobic interactions were found to be the dominating factor in Eint. These findings indicate that cost-efficient MD simulation can be employed as an important tool to predict the adsorption behavior of LOAs on carbon nanomaterials.

  19. Molecular mechanism of viral resistance to a potent non-nucleoside inhibitor unveiled by molecular simulations.

    PubMed

    Asthana, Shailendra; Shukla, Saumya; Ruggerone, Paolo; Vargiu, Attilio V

    2014-11-11

    Recently, we reported on a potent benzimidazole derivative (227G) that inhibits the growth of the bovine viral diarrhea virus (BVDV) in cell-based and enzyme assays at nanomolar concentrations. The target of 227G is the viral RNA-dependent RNA polymerase (RdRp), and the I261M mutation located in motif I of the RdRp finger domain was found to induce drug resistance. Here we propose a molecular mechanism for the retained functionality of the enzyme in the presence of the inhibitor, on the basis of a thorough computational study of the apo and holo forms of the BVDV RdRp either in the wild type (wt) or in the form carrying the I261M mutation. Our study shows that although the mutation affects to some extent the structure of the apoenzyme, the functional dynamics of the protein appear to be largely maintained, which is consistent with the retained functionality of this natural mutant. Despite the binding site of 227G not collapsing or undergoing drastic structural changes upon introduction of the I261M substitution, these alterations reflect crucially on the binding mode of 227G, which is significantly different from that found in wt RdRp. In particular, while in the wt system the four loops lining the template entrance site embrace 227G and close the template passageway, in the I261M variant the template entrance is only marginally occluded, allowing in principle the translocation of the template to the interior of the enzyme. In addition, the mutated enzyme in the presence of 227G retains several characteristics of the wt apoprotein. Our work provides an original molecular picture of a resistance mechanism that is consistent with published experimental data.

  20. Chromatin to clinic: The molecular rationale for PARP1 inhibitor function

    PubMed Central

    Knudsen, Karen E.; de Bono, Johann S.; Rubin, Mark A.; Feng, Felix Y.

    2015-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed. PMID:26091341

  1. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  2. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Li, Dechang; Liu, Ming S.; Ji, Baohua; Hwang, Kehchih; Huang, Yonggang

    2009-06-01

    Binding dynamics and pathways of ligands or inhibitors to target proteins are challenging both experimental and theoretical biologists. A dynamics understanding of inhibitors interacting with protein is essential for the design of novel potent drugs. In this work we applied a coarse-grained molecular dynamics method for simulating inhibitors entering the binding cavity of human immunodeficiency virus type 1 protease (PR). It shows that the coarse-grained dynamics, consistent with the experimental results, can capture the essential molecular dynamics of various inhibitors binding into PR. The primary driving force for the binding processes is the nonbond interaction between inhibitors and PR. The size and topology of inhibitors and the interacting strength between inhibitors and PR have great influence on the binding mode and processes. The interaction strength between the PR and various inhibitors is also analyzed by atomistic molecular mechanics and Poisson-Boltzmann solvation area method.

  3. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies.

    PubMed

    Chinnasamy, Sathishkumar; Chinnasamy, Selvakkumar; Nagamani, Selvaraman; Muthusamy, Karthikeyan

    2015-01-01

    Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM-GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.

  4. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  5. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  6. Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities.

    PubMed

    Körner, Anna; Larsson, Anette; Andersson, Asa; Piculell, Lennart

    2010-03-01

    The aim of the study was to determine and compare the degree of swelling and the swelling kinetics of poly(ethylene oxide) (PEO) hydrophilic matrix tablets without any additives for matrixes with different molecular weight polydispersities. A wide range of "mixed" polydisperse PEO tablets were obtained by mixing two PEO batches with average molecular weights of 10(5) and 2 x 10(6), respectively. These were compared with "single-batch" tablets with narrower mono-modal molecular weight distributions. A texture analyzer (TA) was used to determine, during the entire dissolution process, the thickness of the "gel" layer, the height of the dry tablet core and the total height of the tablet. The release of polymer from the tablet was also measured using a chromatographic method. Both the swelling histories and the polymer release rates varied strongly with molecular weight and agitation rate, whereas the rate of dissolution of the solid core varied much less with molecular weight. For single-batch and mixed tablets, tuned to give the same release rate, the swelling process was found to be very similar, regardless of the molecular polydispersity (between 1.2 and 8.8). These results support a previously proposed dissolution model with the key assumption of a constant critical viscosity, independent of time or polymer molecular weight, at the surface of the gel layer of a dissolving tablet. PMID:19718760

  7. Molecular dynamics of protein kinase-inhibitor complexes: a valid structural information.

    PubMed

    Caballero, Julio; Alzate-Morales, Jans H

    2012-01-01

    Protein kinases (PKs) are key components of protein phosphorylation based signaling networks in eukaryotic cells. They have been identified as being implicated in many diseases. High-resolution X-ray crystallographic data exist for many PKs and, in many cases, these structures are co-complexed with inhibitors. Although this valuable information confirms the precise structure of PKs and their complexes, it ignores the dynamic movements of the structures which are relevant to explain the affinities and selectivity of the ligands, to characterize the thermodynamics of the solvated complexes, and to derive predictive models. Atomistic molecular dynamics (MD) simulations present a convenient way to study PK-inhibitor complexes and have been increasingly used in recent years in structure-based drug design. MD is a very useful computational method and a great counterpart for experimentalists, which helps them to derive important additional molecular information. That enables them to follow and understand structure and dynamics of protein-ligand systems with extreme molecular detail on scales where motion of individual atoms can be tracked. MD can be used to sample dynamic molecular processes, and can be complemented with more advanced computational methods (e.g., free energy calculations, structure-activity relationship analysis). This review focuses on the most commonly applications to study PK-inhibitor complexes using MD simulations. Our aim is that researchers working in the design of PK inhibitors be aware of the benefits of this powerful tool in the design of potent and selective PK inhibitors. PMID:22571663

  8. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    NASA Astrophysics Data System (ADS)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  9. Inhibitors to Polyhydroxyalkanoate (PHA) Synthases: Synthesis, Molecular Docking, and Implications

    PubMed Central

    Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered as an ideal alternative to nonbiodegradable synthetic plastics. However, study of PhaC has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty along with lack of a structure has become the main hurdle to understand and engineer PhaCs for economical PHA production. Here we reported the synthesis of two carbadethia CoA analogs, sT-CH2-CoA 26a and sTet-CH2-CoA 26b as well as sT-aldehyde 29 as new PhaC inhibitors. Study of these analogs with PhaECAv revealed that 26a/b and 29 are competitive and mixed inhibitors, respectively. It was observed that CoA moiety and PHA chain extension can increase binding affinity, which is consistent with the docking study. Estimation from Kic of 26a/b predicts that a CoA analog attached with an octameric-HB chain may facilitate the formation of a kinetically well-behaved synthase. PMID:25394180

  10. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  11. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  12. Circulating high molecular weight IgG fibronectin complexes in myeloproliferative disorders.

    PubMed Central

    Baglin, T P; Price, S M; Boughton, B J

    1990-01-01

    The plasma of patients with myeloproliferative diseases was examined by polyethylene glycol (PEG) precipitation, analytical ultracentrifugation, and immunoaffinity chromatography for the presence of high molecular weight complexes of IgG and fibronectin. Abnormal circulating high molecular weight material was identified by ultracentrifugation in all patients. This was precipitated by PEG and was shown by exclusion chromatography to contain IgG in a high molecular weight form. Examination of plasma by immunoaffinity chromatography supported previous evidence for complex formation between IgG and fibronectin. These findings are further evidence that abnormal high molecular weight IgG complexes are a prominent feature of myeloproliferative disorders and implicate IgG fibronectin complex formation. PMID:2318985

  13. Ultra-low-molecular-weight heparins: precise structural features impacting specific anticoagulant activities.

    PubMed

    Lima, Marcelo A; Viskov, Christian; Herman, Frederic; Gray, Angel L; de Farias, Eduardo H C; Cavalheiro, Renan P; Sassaki, Guilherme L; Hoppensteadt, Debra; Fareed, Jawed; Nader, Helena B

    2013-03-01

    Ultra-low-molecular-weight heparins (ULMWHs) with better efficacy and safety ratios are under development; however, there are few structural data available. The main structural features and molecular weight of ULMWHs were studied and compared to enoxaparin. Their monosaccharide composition and average molecular weights were determined and preparations studied by nuclear magnetic resonance spectroscopy, scanning ultraviolet spectroscopy, circular dichroism and gel permeation chromatography. In general, ULMWHs presented higher 3-O-sulphated glucosamine and unsaturated uronic acid residues, the latter being comparable with their higher degree of depolymerisation. The analysis showed that ULMWHs are structurally related to LMWHs; however, their monosaccharide/oligosaccharide compositions and average molecular weights differed considerably explaining their different anticoagulant activities. The results relate structural features to activity, assisting the development of new and improved therapeutic agents, based on depolymerised heparin, for the prophylaxis and treatment of thrombotic disorders.

  14. In vivo models of occupational asthma due to low molecular weight chemicals

    PubMed Central

    Hayes, J P; Taylor, A J Newman

    1995-01-01

    The aim was to review the development of in vivo models of asthma due to low molecular weight chemicals, in particular, those aspects that may be important to the understanding of occupational asthma in humans. PMID:7663640

  15. Simple nanoparticle-based luminometric method for molecular weight determination of polymeric compounds.

    PubMed

    Pihlasalo, Sari; Virtamo, Maria; Legrand, Nicolas; Hänninen, Pekka; Härmä, Harri

    2014-01-21

    A nanoparticle-based method utilizing time-resolved luminescence resonance energy transfer (TR-LRET) was developed for molecular weight determination. This mix-and-measure nanoparticle method is based on the competitive adsorption between the analyte and the acceptor-labeled protein to donor Eu(III) nanoparticles. The size-dependent adsorption of molecules enables the molecular weight determination of differently sized polymeric compounds down to a concentration level of micrograms per liter. The molecular weight determination from 1 to 10 kDa for polyamino acids and from 0.3 to 70 kDa for polyethylene imines is demonstrated. The simple and cost-effective nanoparticle method as microtiter plate assay format shows great potential for the detection of the changes in molecular weight or for quantification of differently sized molecules in biochemical laboratories and in industrial polymeric processes.

  16. The chemical functionalized platinum nanodendrites: The effect of chemical molecular weight on electrocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Rui; Han, Shu-He; Liu, Zong-Huai; Chen, Yu

    2016-02-01

    The surface chemical functionalization of noble metal nanocrystals is a promising strategy for improving the catalytic/electrocatalytic activity and selectivity of noble metal nanocrystals. In this work, we successfully synthesize the polyallylamine (PAA) with different molecular weight functionalized Pt nanodendrites (Pt-NDs) using a facile hydrothermal reduction method. The morphology and surface composition are investigated by transmission electron microscopy, element map, and thermogravimetric analysis. Furthermore, we detailedly investigate the effect of the molecular weight of PAA on the electrochemical property of the functionalized Pt-NDs. Electrochemical measurements show only low molecular weight PAA functionalized Pt-NDs allow electrolytes to access freely the Pt sites. Meanwhile, the low molecular weight PAA functionalized Pt-NDs show the excellent selectivity and activity for the oxygen reduction reaction in the presence of methanol.

  17. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    SciTech Connect

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of these model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.

  18. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water.

    PubMed

    Ng, Yeap-Hung; di Lena, Fabio; Chai, Christina L L

    2011-06-14

    The preparation of acrylic polymers with predetermined molecular weights using metalloenzymes as catalysts, ascorbic acid as reducing agent and alkyl halides as initiators is reported. The mechanism of polymerization resembles an ARGET ATRP process. PMID:21552589

  19. Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass.

    PubMed

    Esparza-Soto, M; Westerhoff, P K

    2001-01-01

    Two fractions of extracellular polymer substances (EPSs), soluble and readily extractable (RE), were characterised in terms of their molecular weight distributions (MWD) and 3-D excitation-emission-matrix (EEM) fluorescence spectroscopy signatures. The EPS fractions were different: the soluble EPSs were composed mainly of high molecular weight compounds, while the RE EPSs were composed of small molecular weight compounds. Contrary to previous thought, EPS may not be considered only as macromolecular because most organic matter present in both fractions had low molecular weight. Three different fluorophore peaks were identified in the EEM fluorescence spectra. Two peaks were attributed to protein-like fluorophores, and the third to a humic-like fluorophore. Fluorescence signatures were different from other previously published signatures for marine and riverine environments. EEM spectroscopy proved to be a suitable method that may be used to characterise and trace organic matter of bacterial origin in wastewater treatment operations.

  20. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  1. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    PubMed

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-01

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase).

  2. Mild cracking of high-molecular-weight hydrocarbons

    SciTech Connect

    Biouri, B.; Hamdan, F.; Herault, D.

    1985-01-01

    Controlled cracking in the liquid phase of n-hexadecane, 6-methyleicosane, 1-phenyldodecane, and C21-C27 paraffins was studied in a stainless steel microreactor between 350 and 440 C for residence times varyin from 0.5 to 4 h at nitrogen or hydrogen pressures of 20 bar. Cracking occurred according to a molecular mechanism, but its kinetic data such as the order of reaction and the activation energy were similar to those of radical type cracking. The rate of formation of cracked gases was extremely small and the experimental and simulated compositions of the cracked liquids, based on a molecular type scission, agreed very well. This type of cracking is very interesting for visbreaking of heavy oils.

  3. Synthesis and polymerization of bicyclic ketals: a practical route to high-molecular weight polyketals.

    PubMed

    Whiting, Bryan T; Coates, Geoffrey W

    2013-07-31

    Polyketals are an important class of materials for drug delivery to sensitive tissues as they degrade in vivo to nonacidic species. We report the synthesis of high-molecular weight cyclic polyketals by the cationic ring-opening polymerization of bicyclic ketal monomers, which were prepared by the metal-catalyzed rearrangement of epoxy ketones. Three different cyclic polyketals with high molecular weights were synthesized using this protocol.

  4. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides.

    PubMed

    McKenzie, D L; Collard, W T; Rice, K G

    1999-10-01

    In a previous report (M.S. Wadhwa et al. (1997) Bioconjugate Chem. 8, 81-88), we synthesized a panel of polylysine-containing peptides and determined that a minimal repeating lysine chain of 18 residues followed by a tryptophan and an alkylated cysteine residue (AlkCWK18) resulted in the formation of optimal size (78 nm diameter) plasmid DNA condensates that mediated efficient in vitro gene transfer. Shorter polylysine chains produced larger DNA condensates and mediated much lower gene expression while longer lysine chains were equivalent to AlkCWK18. Surprisingly, AlkCWK18 (molecular weight 2672) was a much better gene transfer agent than commercially available low molecular weight polylysine (molecular weight 1000-4000), despite its similar molecular weight. Possible explanations were that the cysteine or tryptophan residue in AlkCWK18 contributed to the DNA binding and the formation of small condensates or that the homogeneity of AlkCWK18 relative to low molecular weight polylysine facilitated optimal condensation. To test these hypotheses, the present study prepared AlkCYK18 and K20 and used these to form DNA condensates and conduct in vitro gene transfer. The results established that DNA condensates prepared with either AlkCYK18 or K20 possessed identical particle size and mediated in vitro gene transfer efficiencies that were indistinguishable from AlkCWK18 DNA condensates, eliminating the possibility of contributions from cysteine or tryptophan. However, a detailed chromatographic and electrospray mass spectrometry analysis of low molecular weight polylysine revealed it to possess a much lower than anticipated average chain length of dp 6. Thus, the short chain length of low molecular weight polylysine explains its inability to form small DNA condensates and mediate efficient gene transfer relative to AlkCWK18 DNA condensates. These experiments further emphasize the need to develop homogenous low molecular weight carrier molecules for nonviral gene delivery.

  5. Production of soluble, high molecular weight phosphorus and its subsequent uptake by stream detritus

    SciTech Connect

    Mulholland, P.J.; Minear, R.A.; Elwood, J.W.

    1987-02-08

    Several studies have demonstrated the importance of nonorthophosphate compounds, including some of relatively high molecular weight, in phosphorus cycling in aquatic ecosystems. This paper reports results from a laboratory study indicating that some of the soluble phosphorus released by microbes associated with coarse and fine detritus in streams is of relatively high molecular weight (>5000 daltons) and that this phosphorus is subsequently utilized, but at rates considerably lower than for orthophosphate.

  6. Intrinsic viscoelasticity in thin high-molecular-weight polymer films.

    PubMed

    Sheng, Xiaoyuan; Wintzenrieth, Frédéric; Thomas, Katherine R; Steiner, Ullrich

    2014-06-01

    The rheology of 44-75-nm-thick polystyrene films were probed by destabilization in an electric field. The non-cross-linked films showed the hallmark of viscoelasiticy; they exhibited elastic behavior at high shear rates and viscous rheology at low shear rates for stationary applied fields. These results are interpreted in terms of surface adhesion of chain segments in contact with the substrate surface, which substantially reduces reptative molecular motion of nearly all chains within the film.

  7. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.

  8. Effect of oxygen and shear stress on molecular weight of hyaluronic acid.

    PubMed

    Duan, Xu-Jie; Yang, Li; Zhang, Xu; Tan, Wen-Song

    2008-04-01

    Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effect on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only (1.22+/-0.02) x 106 Da. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of (2.19+/- 0.05) x 106 Da at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

  9. Discharge Characteristics of Low Molecular Weight Solid Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Kumar, P. Naveen; Sasikala, U.; Sekhar, P. Chandra; Achari, V. B. S.; Rao, V. V. R. N.; Sharma, A. K.

    2011-07-01

    Solid polymer electrolytes based on polyethylene glycol (PEG) complexed with sodium chloride (NaCl) at different weight percent ratios were prepared using solution cast technique. Measurement of DC conductivity in the temperature range 303-373 K shows that the conductivity increases with increase in concentration of salt and with increase in temperature. Transference number measurent has been employed to investigate the charge transport in the polymer electrolyte system. This data has shown that the charge transport in the polymer electrolyte system is predominantly due to ions. Using this polymer electrolyte, solid state electrochemical cells have been fabricated. Various cell parameters associated with these cells were evaluated and reported.

  10. Novel Cancer Chemotherapy Hits by Molecular Topology: Dual Akt and Beta-Catenin Inhibitors

    PubMed Central

    Morell, Cecilia; Rodríguez-Henche, Nieves; Recio-Iglesias, Maria Carmen; Garcia-Domenech, Ramon

    2015-01-01

    Background and Purpose Colorectal and prostate cancers are two of the most common types and cause of a high rate of deaths worldwide. Therefore, any strategy to stop or at least slacken the development and progression of malignant cells is an important therapeutic choice. The aim of the present work is the identification of novel cancer chemotherapy agents. Nowadays, many different drug discovery approaches are available, but this paper focuses on Molecular Topology, which has already demonstrated its extraordinary efficacy in this field, particularly in the identification of new hit and lead compounds against cancer. This methodology uses the graph theoretical formalism to numerically characterize molecular structures through the so called topological indices. Once obtained a specific framework, it allows the construction of complex mathematical models that can be used to predict physical, chemical or biological properties of compounds. In addition, Molecular Topology is highly efficient in selecting and designing new hit and lead drugs. According to the aforementioned, Molecular Topology has been applied here for the construction of specific Akt/mTOR and β-catenin inhibition mathematical models in order to identify and select novel antitumor agents. Experimental Approach Based on the results obtained by the selected mathematical models, six novel potential inhibitors of the Akt/mTOR and β-catenin pathways were identified. These compounds were then tested in vitro to confirm their biological activity. Conclusion and Implications Five of the selected compounds, CAS n° 256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4) and 431925-096 (Inhibitor n°6) gave positive responses and resulted to be active for Akt/mTOR and/or β-catenin inhibition. This study confirms once again the Molecular Topology’s reliability and efficacy to find out novel drugs in the field of cancer. PMID:25910265

  11. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.

    PubMed

    Jia, Xiaolong; Listak, Jessica; Witherspoon, Velencia; Kalu, E Eric; Yang, Xiaoping; Bockstaller, Michael R

    2010-07-20

    A systematic evaluation of the effect of polymer matrix molecular weight on the coarsening kinetics of uniformly dispersed polystyrene-grafted gold nanoparticles is presented. Particle coarsening is found to proceed via three stages (i.e., atomic-diffusion-based Ostwald ripening (OR), particle-migration-based collision-coalescence, and the subsequent reshaping of particle assemblies). The relative significance of each stage and hence the evolution of particle size and shape have been found to depend sensitively upon time, temperature, and the molecular weight of the host polymer. At temperatures close to the matrix glass-transition temperature, Ostwald ripening has been observed to be dominant on all experimental timescales. With increasing annealing temperature, collision coalescence becomes the dominant mode of coarsening, leading to rapid particle growth. The onset of the latter process is found to be increasingly delayed with increasing molecular weight of the polymer host. Particle coalescence is observed to proceed via two fundamental modes (i.e., diffusion-limited aggregation and growth resulting in the formation of fractal particle clusters and the subsequent recrystallization into more spherical monolithic aggregate structures). Interestingly, particle coarsening in high-molecular-weight matrix polymers is found to proceed significantly faster than predicted on the basis of the bulk polymer viscosity; this acceleration is interpreted to be a consequence of the network characteristics of high-molecular-weight polymers by analogy to the phenomenon of nanoviscosity that has been reported in the context of nanoparticle diffusion within high-molecular-weight polymers. PMID:20575544

  12. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  13. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  14. [Molecular weight analysis of physiological proteinuria in newborn infants (author's transl)].

    PubMed

    Thanner, F; Wartha, R; Gekle, D

    1979-03-15

    The physiological protien and glycoprotein excretions in the urine samples of a larger group of newborn infants were separated according to the molecular weights by SDS polyacrylamide gel electrophoresis and compared with the protein excretions of older children. We found higher proportions of albumin, of high molecular weight (MW = molecular weight greater than or equal to 150 000 dt) and of lower molecular weight (MW less than albumin 6800 dt) proteins in the first 24-h urine samples after birth. One week after birth the low molecular weight proteins predominated because there was a substantial decrease in the excretion of albumin and of high molecular weight proteins (MW greater than or equal to 150 000 dt). We compared the patterns of protein excretion of the newborn infants with those of children aged from 2 1/2 to 15 years. These urines samples showed a typical pattern of protein excretion not correlated to the age. These findings express a transitory immaturity of the glomerular filter and of the tubular protein reabsorbing system of the newborn kidney. Apparently, the tubular protein handling normalizes later than the glomerular filtration of proteins.

  15. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    PubMed Central

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  16. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-01

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  17. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG...′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as articles or components...

  18. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG... Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of...

  19. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG... Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of...

  20. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  1. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives – An In Silico Approach

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins.

  2. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives – An In Silico Approach

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins. PMID:27594785

  3. Interaction Analysis of T7 RNA Polymerase with Heparin and Its Low Molecular Weight Derivatives - An In Silico Approach.

    PubMed

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Murali, Ayaluru

    2016-01-01

    The single subunit T7 RNA polymerase (T7RNAP) is a model enzyme for studying the transcription process and for various biochemical and biophysical studies. Heparin is a commonly used inhibitor against T7RNAP and other RNA polymerases. However, exact interaction between heparin and T7RNAP is still not completely understood. In this work, we analyzed the binding pattern of heparin by docking heparin and few of its low molecular weight derivatives to T7RNAP, which helps in better understanding of T7RNAP inhibition mechanism. The efficiency of the compounds was calculated by docking the selected compounds and post-docking molecular mechanics/generalized Born surface area analysis. Evaluation of the simulation trajectories and binding free energies of the complexes after simulation showed enoxaparin to be the best among low molecular weight heparins. Binding free energy analysis revealed that van der Waals interactions and polar solvation energy provided the substantial driving force for the binding process. Furthermore, per-residue free energy decomposition analysis revealed that the residues Asp 471, Asp 506, Asp 537, Tyr 571, Met 635, Asp 653, Pro 780, and Asp 812 are important for heparin interaction. Apart from these residues, most favorable contribution in all the three complexes came from Asp 506, Tyr 571, Met 635, Glu 652, and Asp 653, which can be essential for binding of heparin-like structures with T7RNAP. The results obtained from this study will be valuable for the future rational design of novel and potent inhibitors against T7RNAP and related proteins. PMID:27594785

  4. Effect of low molecular weight epidermal material upon DNA synthesis in primary cultures of newborn rat keratinocytes

    SciTech Connect

    Abler, A.S.

    1985-01-01

    The objective of this study was to isolate inhibitors of replicative DNA synthesis from newborn rat epidermis. The strategy for this study was to assay epidermal extracts for inhibitors of DNA synthesis in primary cultures of newborn rat keratinocytes. DNA synthesis was measured as the incorporation of /sup 4/H-TdR into acid precipitable material. The low molecular weight fraction, LMWF (less than 10Kd), of an aqueous epidermal extract was found to contain activity that inhibits replicative DNA synthesis in primary cultures. The inhibitory activity of the LMWD was detected in a novel assay utilizing primary cultures that were synchronized at the G1/S boundary with the DNA polymerase alpha inhibitor, aphidicolin. LMWF caused a dose dependent inhibition of replicative DNA synthesis as measured by the incorporation of /sup 3/H-TdR into acid precipitable material. The magnitude of the inhibitory effect for a given dose of LMWF was dependent upon the duration of exposure to that dose. The results presented in this investigation suggest that newborn rat epidermis contains a small polypeptide factor that inhibits replicative DNA synthesis in primary culture of newborn rat keratinocytes.

  5. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  6. Molecular docking studies on quinazoline antifolate derivatives as human thymidylate synthase inhibitors

    PubMed Central

    Srivastava, Vivek; Gupta, Satya Prakash; Siddiqi, Mohd. Imran; Mishra, Bhartendu Nath

    2010-01-01

    We have performed molecular docking on quinazoline antifolates complexed with human thymidylate synthase to gain insight into the structural preferences of these inhibitors. The study was conducted on a selected set of one hundred six compounds with variation in structure and activity. The structural analyses indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. In this study, fast flexible docking simulations were performed on quinazoline antifolates derivatives as human thymidylate synthase inhibitors. The results indicated that the quinazoline ring of the inhibitors forms hydrophobic contacts with Leu192, Leu221 and Tyr258 and stacking interaction is conserved in complex with the inhibitor and cofactor. PMID:20975900

  7. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    PubMed Central

    Ammazzalorso, Alessandra; De Filippis, Barbara; Campestre, Cristina; Laghezza, Antonio; Marrone, Alessandro; Amoroso, Rosa; Tortorella, Paolo; Agamennone, Mariangela

    2016-01-01

    Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data. PMID:27782083

  8. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors.

    PubMed

    Wang, Fangfang; Yang, Wei; Shi, Yonghui; Le, Guowei

    2015-09-01

    The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R(2)cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R(2)pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.

  9. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  10. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kirby, Andrew R; Morris, Victor J; Tosh, Susan M

    2011-10-01

    The rheological properties and microstructure of aqueous oat β-glucan solutions varying in molecular weight were investigated. The structural features and molecular weights (MW) were characterized by (13)C NMR spectroscopy and high performance size-exclusion chromatography (HPSEC), respectively. The microstructure of the β-glucans dispersions was also examined by atomic force microscopy (AFM). The samples with β-glucan content between 78 and 86% on a dry weight basis had MW, intrinsic viscosity ([η]) and critical concentration (c*) in the range of 142-2800×10(3)g/mol, 1.7-7.2dl/g and 0.25-1.10g/dl, respectively. The flow and viscoelastic behaviour was highly dependent on MW and on the concentration of the β-glucans dispersions. Pseudoplastic behaviour was exhibited at high concentrations and Newtonian behaviour was evident at low concentrations. At the same concentration, the viscosity was higher for higher MW samples. The Cox-Merz rule was applicable for the lower molecular weight samples at higher concentrations whereas the high molecular weight sample deviated at concentrations greater than 1.0%, w/v. The mechanical spectra with variation of both MW and concentration were typical of entangled biopolymer solutions. AFM images revealed the formation of clusters or aggregates linked via individual polymer chains scattered heterogeneously throughout the system. The aggregate size increased with the molecular weight of the samples investigated and has been linked to the rheological behaviour of the samples.

  11. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas. PMID:17206812

  12. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  13. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    NASA Astrophysics Data System (ADS)

    Satti, Angel J.; Andreucetti, Noemí A.; Ciolino, Andrés E.; Vitale, Cristian; Sarmoria, Claudia; Vallés, Enrique M.

    2010-11-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ( Satti et al., 2008).

  14. Slip of polydisperse polymers: Molecular weight distribution above and below the plane of slip

    NASA Astrophysics Data System (ADS)

    Sabzevari, Seyed Mostafa; Strandman, Satu; Wood-Adams, Paula Marie

    2015-04-01

    When strong slip occurs during the drag flow of highly entangled polybutadienes (PBD) in a sliding plate rheometer equipped with stainless steel parallel plates, a thin film of polymer debris remains on the substrate after the slip. This debris is assumed to be formed by the disentanglement process that occurs in strong slip at a distance of about one molecular size from the plate. In order to evaluate the composition of the debris we collected it with tetrahydrofuran and subjected it to gel permeation chromatography. It was found that the molecular weight distribution (MWD) of the debris is significantly different from that of the bulk. Moreover, in mixtures prepared from long and short PBDs with distinctly different molecular weight distributions, the MWD of the debris was found to be richer in low molecular weight components and leaner in the high molecular weight components compared to the bulk. This information is important since it reveals the compositional difference between the bulk and interfacial layer above and below the plane of slip. The difference in MWD is likely a consequence of the strong slip in which some of long chains are pulled away from the surface-adsorbed chains by the flow leaving a debris lean in the high molecular weight component.

  15. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    PubMed Central

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  16. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  17. [The molecular-weight characteristics of the bacterial lectins and humus components in soil].

    PubMed

    Votselko, S K; Iutinskaia, G A; Kovalenko, E A; Kucheriavaia, N S

    2000-01-01

    A method has been developed to determine the molecular-weight distribution of biologically active substances: bacterial lectins and soil humus compounds. The method based on the simultaneous centrifugation of samples and molecular weight standards in the density gradient of NaCl solutions or combined gradient of NaCl and CsCl solutions permits analysing biologically active substances: lectins, proteins, polysaccharides, protein-polysaccharide complexes, humus compounds in the interval of molecular weight of 13.7 kappa [symbol: see text] a to 2000 kappa [symbol: see text] a. The use of this method in the soil researches makes it possible to study the dynamics of change of molecular parameters of the soil organic matter depending on agrotechnical methods as well as to determine transformation regularities of microbial polysaccharides.

  18. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  19. Early expression of the high molecular weight neurofilament subunit attenuates axonal neurite outgrowth.

    PubMed

    Boumil, Edward; Vohnoutka, Rishel; Lee, Sangmook; Shea, Thomas B

    2015-09-14

    Phospho-dependent interactions of the C-terminal region of the high molecular weight NF subunit (NF-H) with each other and with other cytoskeletal elements stabilize the axonal cytoskeleton and contribute to an increase in axonal caliber. The same kinase cascades that mediate axonal pathfinding via growth cone dynamics are those that foster NF-mediated axonal stabilization, yet there is a developmental delay in the accumulation of NF C-terminal phosphorylation. Moreover, the phospho-mediated C-terminal NF-H interactions that stabilize the axonal cytoskeleton also inhibit axonal elongation. We hypothesized that a delay in expression and/or accumulation of NF-H within developing axons is essential to allow axonal elongation and pathfinding. We tested this hypothesis in differentiating NB2a/d1 cells. The first 3 days of differentiation of NB2a/d1 cells is normally accompanied by rapid elongation of axonal neurites. This period is followed by the accumulation of C-terminally phosphorylated NF-H, cessation of axonal elongation and an increase in axonal caliber. Herein, overexpression of GFP-tagged NF-H simultaneously with induction of differentiation fostered accumulation of C-terminally phosphorylated NF-H within developing axonal neurites within 48hr, which was accompanied by retardation of axonal elongation and a hastened increase in caliber. These effects were prevented by treatment with inhibitors of kinases that mediate the association of NFs with other cytoskeletal elements. Overexpression of GFP-NF-H lacking the C-terminal 187 amino acids (which mediate NF-NF interactions) did not retard elongation nor increase caliber. These findings support the hypothesis that a developmental delay in NF-H C-terminal phosphorylation is essential to allow appropriate axonal elongation prior to stabilization. PMID:26225928

  20. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  1. Low molecular weight components of pollen alter bronchial epithelial barrier functions.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated. PMID:26451347

  2. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  3. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors.

  4. Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase

    PubMed Central

    Luniwal, Amarjit; Wang, Lin; Pavlovsky, Alexander; Erhardt, Paul W.; Viola, Ronald E.

    2013-01-01

    Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors. PMID:22464683

  5. An optimal polymerization process for low mean molecular weight HBOC with lower dimer.

    PubMed

    Zhou, Wentao; Li, Shen; Hao, Shasha; Liu, Jiaxin; Wang, Hong; Yang, Chengmin

    2015-06-01

    The new research tried to improve the distribution of molecular weight of Hb-based oxygen carriers (HBOC), a bottleneck of glutaraldehyde (GDA)-polymerization process. The orthogonal experiments were done on the basis of the early study of human placenta Hemoglobin (Hb)-crosslinked-GDA and three factors were selected including the molar ratio of GDA and Hb, Hb concentration, and the rate of the feeding GDA. The optimal match condition of polymerization process prepared for the purpose of lower mean molecular weight, content of super-weight molecule, and the content of dimer. The results showed that the molar ratio of GDA and Hb was the greatest influencing factor on the molecular weight distribution of polymerized-Hb, followed by the Hb concentration, and the last is the rate of feeding GDA. The optimum matching conditions had reached the objective that the mean molecular weight with 155.54 ± 5.79, the content of dimer with 17.23 ± 3.71, and content of super-weight molecule with 0.17 ± 0.09, and the results can be repeated in the 30 times expansion experiments.

  6. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  7. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased.

  8. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate).

    PubMed

    Boesel, Luciano F; Le Meur, Sylvaine; Thöny-Meyer, Linda; Ren, Qun

    2014-11-01

    Poly(4-hydroxybutyrate) (P4HB) is a bacterial polyhydroxyalkanoate with interesting biological and physico-chemical properties for the use in biomedical applications. The synthesis of P4HB through a fermentation process often leads to a polymer with a too high molecular weight, making it difficult to process it further by solvent- or melt-processing. In this work P4HB was degraded to obtain polymers with a molecular weight ranging from 1.5×10(3)g/mol to 1.0×10(6)g/mol by using a method established in our laboratory. We studied the effect of the change in molecular weight on thermal and mechanical properties. The decrease of the molecular weight led to an increase in the degree of crystallinity of the polymer. Regarding the tensile mechanical properties, the molecular weight played a more prominent role than the degree of crystallinity in the evolution of the properties for the different polymer fractions. The method presented herein allows the preparation of polymer fractions with easier processability and still adequate thermal and mechanical properties for biomedical applications.

  9. Anticancer properties of low molecular weight oat beta-glucan – An in vitro study.

    PubMed

    Choromanska, Anna; Kulbacka, Julita; Rembialkowska, Nina; Pilat, Justyna; Oledzki, Remigiusz; Harasym, Joanna; Saczko, Jolanta

    2015-09-01

    Anticancer properties of 1-3, 1-4 oat beta glucan are under intensive investigation now. Antitumor characteristic of fungi and yeast beta-glucans have been widely recognized, but those polysaccharides are mostly insoluble which creates several problems especially in topical formulation. Also high molecular weight oat beta-glucans reveal high viscosity which restricts its application. According to those problems in the current study the antitumor activities of low molecular weight beta-glucan derived from oats were investigated in cancer cells: Me45, A431 and normal HaCaT and murine macrophages P388/D1. The low molecular weight beta-glucan from oat significantly deceased cancer cells viability, while for the normal cells it was non-toxic. It was observed that with the increasing incubation time and the beta-glucan concentration the cancer cells viability significantly deceased. Furthermore for the normal cells the low molecular weight beta-glucan from oat was non-toxic. Immunocytochemical ABC analysis showed that beta-glucan induced strong expression of caspase-12 in both cancer cell lines, while in HaCaT cells ABC reaction was significantly lower and in P388/D1 cell line ABC reaction was negative. Our preliminary studies show strong anti-tumor properties of new low molecular weight beta-glucan from oat and at the same time no toxicity for normal cells.

  10. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa.

    PubMed

    Liu, Xiaoxiao; Liu, Yong; Hao, Jiejie; Zhao, Xiaoliang; Lang, Yinzhi; Fan, Fei; Cai, Chao; Li, Guoyun; Zhang, Lijuan; Yu, Guangli

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study. PMID:27187337

  11. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa.

    PubMed

    Liu, Xiaoxiao; Liu, Yong; Hao, Jiejie; Zhao, Xiaoliang; Lang, Yinzhi; Fan, Fei; Cai, Chao; Li, Guoyun; Zhang, Lijuan; Yu, Guangli

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  12. Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights.

    PubMed

    Chung, Ying-Chien; Li, Yi-He; Chen, Chiing-Chang

    2005-01-01

    Removal of organic compounds, inorganic nutrients, and bacteria from aquaculture wastewaters before discharge cannot only minimize deterioration of receiving water quality, but can also make possible the reuse of the original water in the culture of prawn, fish, and shellfish. In this study, the feasibility of using chitosan, a multifunctional environmentally friendly biopolymer, at different molecular weights to simultaneously remove various pollutants from the discharge of an eel culture pond is evaluated. Experimental results indicated chitosan with a high molecular weight was best at removing turbidity, suspended solids, and biological and chemical oxygen demand (BOD and COD). In contrast, chitosan of a low molecular weight excelled at removing NH3 and PO4(3-) from wastewater. Additionally, chitosan with a high molecular weight did well at eliminating suspended solids of various particle sizes relative to chitosan with a low molecular weight. The best performance of chitosan in removing turbidity, suspended solids, BOD, COD, NH3, PO4(3-), and bacteria was 87.7%, 62.6%, 52.3%, 62.8%, 91.8%, 99.1%, and 99.998% removal, respectively. When chitosan with a high molecular weight was added at 12 mg/L, the quality of treated wastewater successfully complied with government discharge standards. Furthermore, the relatively low bacteria amount in the wastewater after treatment with chitosan was confirmed by both the plate count method and molecular analysis technique. These results indicated that the application of chitosan is feasible in an effort to recycle the effluents of a culture pond.

  13. Synthesis, biological characterization and molecular modeling insights of spirochromanes as potent HDAC inhibitors.

    PubMed

    Thaler, Florian; Moretti, Loris; Amici, Raffaella; Abate, Agnese; Colombo, Andrea; Carenzi, Giacomo; Fulco, Maria Carmela; Boggio, Roberto; Dondio, Giulio; Gagliardi, Stefania; Minucci, Saverio; Sartori, Luca; Varasi, Mario; Mercurio, Ciro

    2016-01-27

    In the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines. The goal was to obtain highly potent compounds with a good in vitro ADME profile. In addition, molecular modeling studies unravelled the binding mode of these inhibitors.

  14. Molecular docking approaches in identification of High affinity inhibitors of Human SMO receptor

    PubMed Central

    Akare, Uday Raj; Bandaru, Srinivas; Shaheen, Uzma; Singh, Pramod Kumar; Tiwari, Geet; Singare, Paramanand; Nayarisseri, Anuraj; Banerjee, Tushar

    2014-01-01

    Inappropriate activation of the Hh signaling pathway has been implicated in the development of several types of cancers including prostate, lung, pancreas, breast, brain and skin. Present study identified the binding affinities of eight established inhibitors viz., Cyclopamine, Saridegib, Itraconazole, LDE-225, TAK-441, BMS-833923 (XL139), PF-04449913 and Vismodegib targeting SMO receptor - a candidate protein involved in hedgehog pathway and sought to identify the best amongst the established inhibitors through by molecular docking. Exelxis® BMS 833923 (XL 139) demonstrated superior binding affinity aided by MolDock scoring docking algorithm. Further BMS 833923 (XL 139) was evaluated for pharmacophoric features which revealed appreciable ligand receptor interactions. PMID:25670876

  15. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  16. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  17. Effect of molecular weight on ion diffusion and transference number in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Timachova, Ksenia; Balsara, Nitash

    2015-03-01

    Solid polymer electrolytes are of great interest for their potential use in high specific energy, solid-state batteries, however, salt transport properties in polymer electrolytes have not been comprehensively addressed over a wide range of molecular weights. Poly(ethylene oxide) (PEO) has been the most widely studied polymer electrolyte due to its high solvation of lithium salts and low glass transition temperature. This study presents measurements of the transport properties of lithium bis(trifluoromethanesulfone)imide (LiTFSI) in PEO at both the high concentration present in functional electrolytes and in the dilute limit for a large range of PEO molecular weights. Individual diffusion coefficients of the Li + and TFSI- ions were measured using pulsed-field gradient nuclear magnetic resonance and the cation transference number was calculated. The diffusion coefficients, transference number, and conductivity as a function of molecular weight and salt concentration provide a complete set of transport properties for PEO.

  18. Molecular weight of DNA from four entomopoxviruses determined by electron microscopy.

    PubMed Central

    Langridge, W H; Roberts, D W

    1977-01-01

    DNA was isolated from entomopoxviruses infected Amsacta moorei and Euxoa auxiliaris (Lepidoptera), Goeldichironomus holoprasinus (Diptera), and Othnonius batesi (Coleoptera) and compared with vertebrate virus DNA (vaccinia). After incubation in Pronase, sodium lauryl sulfate, and deoxycholate, poxvirus preparations shadowed with platinum and palladium revealed subcore particles 45 to 60 nm in diameter. Continued incubation in Pronase resulted in the gradual release of DNA from the particles. Metal-shadowed DNA molecules were photographed in the electron microscope and measured, and the average molecular weights were calculated. Lepidopteran poxvirus DNA (135 X 10(6)) was approximately equal to vaccinia DNA (131.7 X 10(6)) in molecular weight. The molecular weight of dipteran and coleopteran poxvirus DNA (200 X 10(6) to 251 X 10(6)) was approximately 50% greater than vaccinia DNA. Based on the concentration of DNA and protein per virion, Amsacta entomopoxvirus contained 5.7 to 7.7% DNA. Images PMID:833926

  19. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  20. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements. PMID:26428112

  1. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities.

    PubMed

    Sun, Liqin; Wang, Changhai; Shi, Quanjian; Ma, Cuihua

    2009-07-01

    Hermetical microwave was used to degrade Porphyridium cruentum polysaccharides from 2918 to 256.2, 60.66 and 6.55kDa. The antioxidant properties of different molecular weight polysaccharides were evaluated by determining the scavenging ability of free radicals, inhibitory effects on lipid peroxidation in liver homogenates and hemolysis of mouse erythrocytes. Analysis of physicochemical properties confirmed that microwave degradation might not markedly change the chemical components of the polysaccharides. High-molecular-weight polysaccharides from P. cruentum had no obvious antioxidant activity, but low-molecular-weight fragments after degradation exerted an inhibitory effect on oxidative damage. The 6.55-kDa fragment had stronger antioxidant activity than the 60.66 and 256-kDa fragments.

  2. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  3. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.

    PubMed

    Richard, Andrew; Margaritis, Argyrios

    2003-05-01

    Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.

  4. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells.

  5. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. PMID:25078662

  6. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested.

  7. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements.

  8. Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures.

    PubMed

    Díaz-Barrera, Alvaro; Silva, Paulina; Berrios, Julio; Acevedo, Fernando

    2010-12-01

    Alginate production by Azotobacter vinelandii in chemostat cultures was evaluated at different dilution rates (D) and inlet sucrose concentrations of 5 and 20 g l(-1). At the low inlet sucrose concentration, the molecular weight of alginate increased from 800 to 1800 kDa when D increased from 0.05 to 0.10 h(-1), whereas the opposite trend was observed with the high inlet sucrose concentration. This behaviour can be explained by changes in specific sucrose uptake rate. Thus, a decrease in alginate molecular weight was dependent on the specific sucrose uptake rate when this rate was higher than 0.42 g g(-1) h(-1). The manipulation of the D can be used to select the molecular weight of alginate in continuous culture.

  9. Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis.

    PubMed

    Areskogh, Dimitri; Li, Jiebing; Gellerstedt, Göran; Henriksson, Gunnar

    2010-04-12

    Lignosulfonates are by-products from the sulfite pulping process. During this process, lignin is liberated from pulp fibers through sulfonation and washed away. As a consequence, the lignosulfonate molecules contain both hydrophobic and hydrophilic moieties. Lignosulfonates are low-value products with limited performance and are used as such as binders, surfactants, and plasticizers in concrete. Lignosulfonates face strong competition from synthetic petroleum-based plasticizers with superior quality. Therefore, increasing the performance of lignosulfonates is desirable not only from a sustainability point of view but also to expand their usage. One important aspect that describes how well lignosulfonates can act as plasticizers is the molecular weight. In this paper, the molecular weight of four commercial lignosulfonates is increased through oxidation by two laccases without utilization of mediators. Different parameters to obtain maximal molecular weight increase were identified and the technical significance of the experiments is discussed.

  10. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  11. Low-molecular weight metalloproteins in tissues of the narwhal (Monodon monoceros).

    PubMed

    Wagemann, R; Hobden, B

    1986-01-01

    Narwhal (Monodon monoceros) liver and kidney cytosol were fractionated by gel chromatography, anion-exchange chromatography and electrophoresis. Cadmium was associated largely with low molecular weight proteins, while mercury was associated also with high molecular weight proteins, but apparently not because of saturation of the metallothionein mechanism. Eight different electrophoretic bands, four of which were metalloproteins, were found under the "metallothionein" peak. Anion-exchange chromatography yielded five metal peaks while further fractionation on G-50 gave two peaks, one containing almost pure metallothionein (Mt-1) and the other a metalloprotein having twice the molecular weight of metallothionein. Mt-2 was observed, at a much lower concentration than Mt-1, in liver but not kidney. PMID:2874949

  12. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.

    PubMed

    Yu, Jing; Sanyal, Oishi; Izbicki, Andrew P; Lee, Ilsoon

    2015-09-01

    This work focuses on the design of porous polymeric films with nano- and micro-sized pores existing in distinct zones. The porous thin films are fabricated by the post-treatment of layer-by-layer assembled poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayers. In order to improve the processing efficiency, the deposition time is shortened to ≈ 10 s. It is found that fine porous structures can be created even by significantly reducing the processing time. The effect of using polyelectrolytes with widely different molecular weights is also studied. The pore size is increased by using high molecular weight PAH, while high molecular weight PAA minimizes the pore size to nanometer scale. Having gained a precise control over the pore size, layered multiscale porous thin films are further built up with either a microsized porous zone on top of a nanosized porous zone or vice versa.

  13. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  14. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    PubMed

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane. PMID:11091796

  15. Association between HIV in pregnancy and antiretroviral therapy, including protease inhibitors and low birth weight infants.

    PubMed Central

    Goldstein, P J; Smit, R; Stevens, M; Sever, J L

    2000-01-01

    OBJECTIVE: To determine the incidence of low birth weight infants born to HIV seropositive women and to demonstrate any effects of antiretroviral therapy on birth weight. METHODS: Retrospective review of all obstetrical medical records from January 1, 1995 through June 30, 1998 to identify HIV seropositive women. We evaluated their antiretroviral therapy, CD4 counts, and birth weights of their newborns. We conducted detailed review of the clinical and laboratory findings for the HIV-infected untreated patients, women who received ZDV antepartum alone, and those who received PIs as part of antiretroviral treatment. RESULTS: The frequency of low birth weight infants was significantly increased in HIV seropositive compared to HIV seronegative parturients. Low birth weight infants were more frequent among HIV infected women with lower CD4 counts but the association was not statistically significant. Women who received no antepartum treatment, antepartum only ZDV, and those treated with PIs had significantly more low birth weight infants than did comparison groups. HIV seropositive women also had high frequencies of several obstetrical risk factors for low birth weight infants. CONCLUSION: The present study showed a significantly increased frequency of low birth weight infants among HIV infected women and especially the subgroups of infected women who received no antepartum treatment, antepartum ZDV only, and those treated with PIs. This association, however, may be related to the presence of many other preterm obstetrical risk factors noted in this study. Increasing numbers of HIV seropositive women are being treated with PIs according to the Centers for Disease Control (CDC) guidelines. If PIs are a cause of low birth weight infants, women taking these drugs may have incremental risk of low birth weight. PMID:10805364

  16. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors.

    PubMed

    Dong, Ming-Hui; Chen, Hai-Feng; Ren, Yu-Jie; Shao, Fang-Ming

    2016-01-15

    In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q(2) and a non-cross-validation r(2), which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.

  17. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    PubMed

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity.

  18. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  19. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  20. The lognormal and gamma distribution models for estimating molecular weight distributions of polymers using PGSE NMR

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Nydén, Magnus; Röding, Magnus

    2016-06-01

    We present comprehensive derivations for the statistical models and methods for the use of pulsed gradient spin echo (PGSE) NMR to characterize the molecular weight distribution of polymers via the well-known scaling law relating diffusion coefficients and molecular weights. We cover the lognormal and gamma distribution models and linear combinations of these distributions. Although the focus is on methodology, we illustrate the use experimentally with three polystyrene samples, comparing the NMR results to gel permeation chromatography (GPC) measurements, test the accuracy and noise-sensitivity on simulated data, and provide code for implementation.

  1. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  2. Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1985-01-01

    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.

  3. Process for producing high quality, high molecular weight microcrystalline wax derived from undewaxed bright stock

    SciTech Connect

    Miller, S.J.

    1986-08-26

    A process is described for preparing high molecular weight microcrystalline wax from a hydrocracked, undewaxed bright stock, comprising: (a) contacting the bright stock with hydrogen in the presence of a catalyst having hydrodenitrification activity under conditions effective to reduce the nitrogen content of the stock to produce a substantially nitrogen-free product; (b) contacting the substantially nitrogen-free product with hydrogen in the presence of a catalyst having hydrogenation activity under mild conditions to produce a wax-containing oil; and (c) solvent dewaxing the wax-containing oil to produce high molecular weight microcrystalline wax.

  4. Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording

    NASA Astrophysics Data System (ADS)

    Solano, Cristina; Martinez-Ponce, Geminiano; Castañeda, Carlos

    2006-07-01

    An analysis of different polyvinyl alcohol films dyed with Malachite Green is presented. Absorbance and diffraction efficiency of holographic gratings are compared, taking as a parameter the molecular weight and hydrolysis degree of the polymer. It is observed that, using the same dye concentration, the absorption coefficient of the films increases as the molecular weight increases. The absorbance of these plates can be modified when exposed to UV light. In addition, it is found that for holographic recording there is an optimal dye-polymer system film.

  5. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  6. Quick and easy molecular weight determination with Macintosh computers and public domain image analysis software.

    PubMed

    Seebacher, T; Bade, E G

    1996-10-01

    The program "molecular weights" allows a fast and easy estimation of molecular weights (M(r)), isoelectric point (pI) values and band intensities directly from scanned, polyacrylamide gels, two-dimensional protein patterns and DNA gel images. The image coordinates of M(r) and pI reference standards enable the program to calculate M(r) and pI values in a real time manner for any cursor position. The program requires NIH-Image for Macintosh computers and includes automatic band detection coupled with a densitometric evaluation.

  7. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  8. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures.

    PubMed

    Gao, Wei; Wang, Weifan

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  9. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei; Wang, Weifan

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  10. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  11. Small-molecule inhibitors of cathepsin L incorporating functionalized ring-fused molecular frameworks.

    PubMed

    Song, Jiangli; Jones, Lindsay M; Chavarria, Gustavo E; Charlton-Sevcik, Amanda K; Jantz, Adam; Johansen, Audra; Bayeh, Liela; Soeung, Victoria; Snyder, Lindsey K; Lade, Shawn D; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2013-05-01

    Cathepsin L is a cysteine protease that is upregulated in a variety of malignant tumors and plays a significant role in cancer cell invasion and migration. It is an attractive target for the development of small-molecule inhibitors, which may prove beneficial as treatment agents to limit or arrest cancer metastasis. We have previously identified a structurally diverse series of thiosemicarbazone-based inhibitors that incorporate the benzophenone and thiochromanone molecular scaffolds. Herein we report an important extension of this work designed to explore fused aryl-alkyl ring molecular systems that feature nitrogen atom incorporation (dihydroquinoline-based) and carbon atom exclusivity (tetrahydronaphthalene-based). In addition, analogues that contain oxygen (chromanone-based), sulfur (thiochroman-based), sulfoxide, and sulfone functionalization have been prepared in order to further investigate the structure-activity relationship aspects associated with these compounds and their ability to inhibit cathepsins L and B. From this small-library of 30 compounds, five were found to be strongly inhibitory (IC50 <500 nM) against cathepsin L with the most active compound (7-bromodihydroquinoline thiosemicarbazone 48) demonstrating an IC50=164 nM. All of the compounds evaluated were inactive (IC50 >10,000 nM) as inhibitors of cathepsin B, thus establishing a high degree (>20-fold) of selectivity (cathepsin L vs. cathepsin B) for the most active cathepsin L inhibitors in this series.

  12. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors.

    PubMed

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  13. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors

    PubMed Central

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  14. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  15. Design of new inhibitors for H5N1 avian influenza using a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Park, Jin Woo; Jo, Won Ho

    2008-03-01

    Recently, there has been a growing interest in the treatment of H5N1 avian influenza. One of the most widely used antiviral agents is oseltamivir. However, it has been reported that oseltamivir is not as effective against the neuraminidase subtype N1 as it is against subtypes N2 and N9. In our research we addressed this problem by designing new inhibitors and these altered inhibitor's binding affinities were calculated. In this study, we introduced chemical groups to the existing oseltamivir, so to fit into the newly discovered cavity in the subtype N1. When the binding strengths of the oseltamivir and the newly designed inhibitors for N1 were calculated to examine the drug efficiency through a molecular dynamics simulation, then compared with each other, it was found that one of the designed molecules exhibited a strong binding affinity, with more than twice the binding strength than that of oseltamivir. Since the aforementioned designed inhibitor appears to have the possibility for oral activity according to the criteria of human oral bioavailability, we propose that the inhibitor is a promising antiviral drug for H5N1 avian influenza.

  16. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  17. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides.

    PubMed

    Mainil-Varlet, P; Curtis, R; Gogolewski, S

    1997-09-01

    The in vivo and in vitro degradation of low-molecular-weight poly(L-lactide), poly(L/D-lactide), and poly (L/DL-lactide) rods was investigated. The low-molecular-weight fast-degrading materials were used to accelerate the degradation process and make the test conditions more critical. In the in vivo study the rods were implanted in the soft tissue of sheep and explanted at 1, 3, 6, and 12 months. In the in vitro experiments the samples were subjected to aging at 37 degrees C in the phosphate buffer using two different modes. In the so-called pseudodynamic mode the aging buffer was regularly replaced if the pH dropped more than 0.5. In the static mode the buffer was not changed over the whole testing period of 52 weeks. The mechanical, molecular, and crystalline properties of the rods were measured and their appearance in the course of aging was evaluated using scanning electron microscopy. It was found that the changes in the mechanical properties of poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide) samples subjected to in vitro degradation tests in both the static and pseudodynamic modes are in good approximation with data obtained from the in vivo study. The pH of the buffer solution had no evident effect on the mechanical properties or the rate of degradation as estimated from the drop in molecular weight of the aged samples. The replacement of the aging buffer to maintain a constant pH at 7.4 does not seem to be critical for the degradation of the polylactides. In vitro degradation tests can be used as a relevant procedure for predicting the in vivo functionality of implants from the polylactides used if the criteria for assessing such a functionality are the changes in mechanical properties and molecular weight.

  18. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice. PMID:15739234

  19. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice.

  20. Molecular docking and competitive binding study discovered different binding modes of microsomal prostaglandin E synthase-1 inhibitors.

    PubMed

    He, Shan; Lai, Luhua

    2011-12-27

    Microsomal prostaglandin E synthase-1 (mPGES-1) is a newly recognized therapeutic target for the treatment of inflammation, pain, cancer, atherosclerosis, and stroke. Many mPGES-1 inhibitors have been discovered. However, as the structure of the binding site is not well-characterized, none of these inhibitors was designed based on the mPGES-1 structure, and their inhibition mechanism remains to be fully disclosed. Recently, we built a new structural model of mPGES-1 which was well supported by experimental data. Based on this model, molecular docking and competition experiments were used to investigate the binding modes of four representive mPGES-1 inhibitors. As the inhibitor binding sites predicted by docking overlapped with both the substrate and the cofactor binding sites, mPGES-1 inhibitors might act as dual-site inhibitors. This inhibitory mechanism was further verified by inhibitor-cofactor and inhibitor-substrate competition experiments. To investigate the potency-binding site relationships of mPGES-1 inhibitors, we also carried out molecular docking studies for another series of compounds. The docking results correlated well with the different inhibitory effects observed experimentally. Our data revealed that mPGES-1 inhibitors could bind to the substrate and the cofactor binding sites simultaneously, and this dual-site binding mode improved their potency. Future rational design and optimization of mPGES-1 inhibitors can be carried out based on this binding mechanism.

  1. Hypersulfated low molecular weight heparin with reduced affinity for antithrombin acts as an anticoagulant by inhibiting intrinsic tenase and prothrombinase.

    PubMed

    Anderson, J A; Fredenburgh, J C; Stafford, A R; Guo, Y S; Hirsh, J; Ghazarossian, V; Weitz, J I

    2001-03-30

    In buffer systems, heparin and low molecular weight heparin (LMWH) directly inhibit the intrinsic factor X-activating complex (intrinsic tenase) but have no effect on the prothrombin-activating complex (prothrombinase). Although chemical modification of LMWH, to lower its affinity for antithrombin (LA-LMWH) has no effect on its ability to inhibit intrinsic tenase, N-desulfation of LMWH reduces its activity 12-fold. To further explore the role of sulfation, hypersulfated LA-LMWH was synthesized (sLA-LMWH). sLA-LMWH is not only a 32-fold more potent inhibitor of intrinsic tenase than LA-LMWH; it also acquires prothrombinase inhibitory activity. A direct correlation between the extent of sulfation of LA-LMWH and its inhibitory activity against intrinsic tenase and prothrombinase is observed. In plasma-based assays of tenase and prothrombinase, sLA-LMWH produces similar prolongation of clotting times in plasma depleted of antithrombin and/or heparin cofactor II as it does in control plasma. In contrast, heparin has no effect in antithrombin-depleted plasma. When the effect of sLA-LMWH on various components of tenase and prothrombinase was examined, its inhibitory activity was found to be cofactor-dependent (factors Va and VIIIa) and phospholipid-independent. These studies reveal that sLA-LMWH acts as a potent antithrombin-independent inhibitor of coagulation by attenuating intrinsic tenase and prothrombinase.

  2. Effect of mahlep on molecular weight distribution of cookie flour gluten proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...

  3. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  4. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    PubMed

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability.

  5. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments.

  6. Improved isolation protocol to detect high molecular weight polysaccharide structures of Campylobacter jejuni.

    PubMed

    Kovács, Judit K; Felső, Péter; Emődy, Levente; Schneider, György; Kocsis, Béla

    2014-12-01

    Simple detection of high molecular weight, LPS-like structures of Campylobacter jejuni is still an unsolved problem. A phenol-free extraction method for the detection of HMW polysaccharide was developed without the need for Western blot. This method provides a reliable technique for large-scale screening and comparative characterization study of different isolates.

  7. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    EPA Science Inventory

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  8. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    PubMed

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability. PMID:27455549

  9. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  10. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  11. Effect of chitosan molecular weight on rheological behavious of chitosan modified nanoclay at highly hydrated state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...

  12. DETERMINATION OF CERTAIN AMINO ACIDS IN CHYMOTRYPSINOGEN, AND ITS MOLECULAR WEIGHT

    PubMed Central

    Brand, Erwin; Kassell, Beatrice

    1941-01-01

    1. A preparation of chymotrypsinogen, obtained from Dr. M. Kunitz, was analyzed for sulfur, the sulfur amino acids, tyrosine, and tryptophane. 2. The protein sulfur of chymotrypsinogen was accounted for as methionine, cysteine, and cystine. 3. A method is presented for calculating the minimum molecular weight of a protein from the distribution of the sulfur amino acids. In the case of chymotrypsinogen, the calculated minimum molecular weight was found to be the actual molecular weight. 4. The molecular weight of chymotrypsinogen is 36,700 by amino acid analysis as compared to 36,000 by osmotic pressure measurements of Kunitz and Northrop. Chymotrypsinogen contains per mol 17 atoms of sulfur, 3 residues of methionine, 4 of cysteine, 10 of half-cystine (i.e. 5 S—S linkages), 6 of tyrosine, and 10 of tryptophane. 5. The tryptophane content of chymotrypsinogen (5.51 per cent) is the highest of any protein so far on record. 6. Chymotrypsinogen contains no reactive SH groups, although it yields cysteine on hydrolysis. This may be due either to preformed but unreactive SH groups or to S—X groups. The term S—X group is used to denote the substitution of the sulfhydryl hydrogen by a constituent X; hydrolysis yields SH groups: S—X + HOH = SH + X—OH. PMID:19873262

  13. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  14. Morphology Evolution of Molecular Weight Dependent P3HT: PCBM Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Chen, Dian; Briseno, Alejandro; Russell, Thomas

    2011-03-01

    Effective strategies to maximize the performance of bulk heterojunction (BHJ) photovoltaic devices have to be developed and understood to realize their full potential. In BHJ solar cells, the morphology of the active layer is a critical issue to improve device efficiency. In this work, we choose poly(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) system to study the morphology evolution. Different molecular weight P3HTs were synthesized by using Grignard Metathesis (GRIM)~method. In device optimization, polymer with a molecular weight between 20k-30k shows the highest efficiency. It was observed that the as-spun P3HT: PCBM (1:1) blends do not have high order by GISAXS. Within a few seconds of thermal annealing at 150& circ; the crystallinity of P3HT increaased substantially and the polymer chains adopted an edge-on orientation. An-bicontinous morphology was also developed within this short thermal treatment. The in situ GISAXS experiment showed that P3HT of high molecular weight was more easily crystallized from a slowly evaporated chlorobenzene solution and their edge-on orientation is much more obvious than for the lower molecular weight P3HTs. DSC was used to study the thermal properties of P3HTs and P3HT: PCBM blend. The χ of P3HT-PCBM was also calculated by using melting point depression method.

  15. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  16. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.

    PubMed

    Milanovic, Jovana; Schiehser, Sonja; Milanovic, Predrag; Potthast, Antje; Kostic, Mirjana

    2013-10-15

    The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2',6,6'-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42-9.67 mmol NaClO/g fiber) after modification times of 1h or longer.

  17. Broadening the polyethylene molecular weight distribution by controlling the hydrogen concentration and catalyst feed rates.

    PubMed

    Ali, Emad M; Ali, Mohammad Al-haj

    2010-01-01

    This paper discusses the control of an industrial gas-phase polyethylene reactor to produce a desired molecular weight distribution (MWD) of the polymer. The controller objective is to regulate online the entire molecular weight distribution by either manipulating the hydrogen content inside the reactor or coordinating the feed rates of two different types of catalysts. In this work, the molecular weight distribution is modeled as a function of the reaction kinetics and hydrogen to monomer ratio. Nonlinear model predictive controller (NLMPC) algorithm is used to maintain the desired molecular weight distribution online. The closed-loop simulations indicated the effectiveness of NLMPC to achieve its goal even in the presence of modeling errors. Moreover, the results showed that, altering the hydrogen concentration solely can produce the required polymer quality provided that an efficient mechanism is available to readily alter the hydrogen composition. Alternatively, the desired MWD can also be guaranteed with proper manipulation of the catalyst feed rates while the other process inputs are kept constant.

  18. High-molecular-weight polymers for protein crystallization: poly-gamma-glutamic acid-based precipitants.

    PubMed

    Hu, Ting Chou; Korczyńska, Justyna; Smith, David K; Brzozowski, Andrzej Marek

    2008-09-01

    Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-gamma-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of approximately 400 kDa and PGA-HM (high molecular weight) of >1,000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  19. Deviation from mean-field behavior in a low molecular weight critical polymer blend

    NASA Astrophysics Data System (ADS)

    Hair, D. W.; Hobbie, E. K.; Nakatani, A. I.; Han, C. C.

    1992-06-01

    A deviation from mean-field behavior is observed in the static susceptibility and correlation length measured with small angle neutron scattering as a function of temperature near the phase boundary of a relatively low molecular weight critical polymer mixture. The possibility of a fluctuation influenced crossover from mean-field to nonmean-field behavior is considered.

  20. Polyacrylamide Molecular Weight and Phosphogypsum Effects on Infiltration and Erosion in Semi-Arid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  1. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  2. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  3. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  4. Mental retardation in mucopolysaccharidoses correlates with high molecular weight urinary heparan sulphate derived glucosamine.

    PubMed

    Coppa, G V; Gabrielli, O; Zampini, L; Maccari, F; Mantovani, V; Galeazzi, T; Santoro, L; Padella, L; Marchesiello, R L; Galeotti, F; Volpi, N

    2015-12-01

    Mucopolysaccharidoses (MPS) are characterized by mental retardation constantly present in the severe forms of Hurler (MPS I), Hunter (MPS II) and Sanfilippo (MPS III) diseases. On the contrary, mental retardation is absent in Morquio (MPS IV) and Maroteaux-Lamy (MPS VI) diseases and absent or only minimal in the attenuated forms of MPS I, II and III. Considering that MPS patients affected by mental disease accumulate heparan sulfate (HS) due to specific enzymatic defects, we hypothesized a possible correlation between urinary HS-derived glucosamine (GlcN) accumulated in tissues and excreted in biological fluids and mental retardation. 83 healthy subjects were found to excrete HS in the form of fragments due to the activity of catabolic enzymes that are absent or impaired in MPS patients. On the contrary, urinary HS in 44 patients was observed to be composed of high molecular weight polymer and fragments of various lengths depending on MPS types. On this basis we correlated mental retardation with GlcN belonging to high and low molecular weight HS. We demonstrate a positive relationship between the accumulation of high molecular weight HS and mental retardation in MPS severe compared to attenuated forms. This is also supported by the consideration that accumulation of other GAGs different from HS, as in MPS IV and MPS VI, and low molecular weight HS fragments do not impact on central nervous system disease.

  5. A global survey of low-molecular weight carbohydrates in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, they have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in different environments and (2) identify any genetic and environmental effects on tho...

  6. Design, Synthesis, Biological Activity and Molecular Dynamics Studies of Specific Protein Tyrosine Phosphatase 1B Inhibitors over SHP-2

    PubMed Central

    Sun, Su-Xia; Li, Xiao-Bo; Liu, Wen-Bo; Ma, Ying; Wang, Run-Ling; Cheng, Xian-Chao; Wang, Shu-Qing; Liu, Wei

    2013-01-01

    Over expressing in PTPN1 (encoding Protein tyrosine phosphatase 1B, PTP1B), a protein tyrosine phosphatase (PTP) that plays an overall positive role in insulin signaling, is linked to the pathogenesis of diabetes and obesity. The relationship between PTP1B and human diseases exhibits PTP1B as the target to treat these diseases. In this article, small weight molecules of the imidazolidine series were screened from databases and optimized on silicon as the inhibitors of PTP1B based on the steric conformation and electronic configuration of thiazolidinedione (TZD) compounds. The top three candidates were tested using an in vitro biological assay after synthesis. Finally, we report a novel inhibitor, Compound 13, that specifically inhibits PTP1B over the closely related phosphatase Src homology 2 (SH2) domain-containing phosphatase 2 (SHP-2) at 80 μM. Its IC50 values are reported in this paper as well. This compound was further verified by computer analysis for its ability to combine the catalytic domains of PTP1B and SHP-2 by molecular dynamics (MD) simulations. PMID:23774838

  7. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  8. Comparative molecular field analysis and molecular dynamics studies of α/β hydrolase domain containing 6 (ABHD6) inhibitors.

    PubMed

    Kaczor, Agnieszka A; Targowska-Duda, Katarzyna M; Patel, Jayendra Z; Laitinen, Tuomo; Parkkari, Teija; Adams, Yahaya; Nevalainen, Tapio J; Poso, Antti

    2015-10-01

    The endocannabinoid system remains an attractive molecular target for pharmacological intervention due to its roles in the central nervous system in learning, thinking, emotional function, regulation of food intake or pain sensation, as well as in the peripheral nervous system, where it modulates the action of cardiovascular, immune, metabolic or reproductive function. α/β hydrolase domain containing 6 (ABHD6)--an enzyme forming part of the endocannabinoid system--is a newly discovered post-genomic protein acting as a 2-AG (2-arachidonoylglycerol) serine hydrolase. We have recently reported a series of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. Here, we present comparative molecular field analysis (CoMFA) and molecular dynamics studies of these compounds. First, we performed a homology modeling study of ABHD6 based on the assumption that the catalytic triad of ABHD6 comprises Ser148-His306-Asp 278 and the oxyanion hole is formed by Met149 and Phe80. A total of 42 compounds was docked to the homology model using the Glide module from the Schrödinger suite of software and the selected docking poses were used for CoMFA alignment. A model with the following statistics was obtained: R(2) = 0.98, Q(2) = 0.55. In order to study the molecular interactions of the inhibitors with ABHD6 in detail, molecular dynamics was performed with the Desmond program. It was found that, during the simulations, the hydrogen bond between the inhibitor carbonyl group and the main chain of Phe80 is weakened, whereas a new hydrogen bond with the side chain of Ser148 is formed, facilitating the possible formation of a covalent bond. Graphical Abstract Left-right: Docking pose of 1 in the binding pocket of α/β hydrolase domain containing 6 (ABHD6) selected for molecular alignment; CoMFA steric and electrostatic contour fields; changes in potential energy of the complex during simulations for the complex of 6 and ABHD6. PMID:26350245

  9. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    NASA Astrophysics Data System (ADS)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  10. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests

    PubMed Central

    Royo, Joaquín; León, José; Vancanneyt, Guy; Albar, Juan Pablo; Rosahl, Sabine; Ortego, Félix; Castañera, Pedro; Sánchez-Serrano, José J.

    1999-01-01

    De novo jasmonic acid (JA) synthesis is required for wound-induced expression of proteinase inhibitors and other defense genes in potato and tomato. The first step in JA biosynthesis involves lipoxygenase (LOX) introducing molecular oxygen at the C-13 position of linolenic acid. We previously have shown that, in potato, at least two gene families code for 13-LOX proteins. We have now produced transgenic potato plants devoid of one specific 13-LOX isoform (LOX-H3) through antisense-mediated depletion of its mRNA. LOX-H3 depletion largely abolishes accumulation of proteinase inhibitors on wounding, indicating that this specific LOX plays an instrumental role in the regulation of wound-induced gene expression. As a consequence, weight gain of Colorado potato beetles fed on antisense plants is significantly larger than those fed on wild-type plants. The poorer performance of LOX-H3-deficient plants toward herbivory is more evident with a polyphagous insect; larvae of beet armyworm reared on the antisense lines have up to 57% higher weight than those fed on nontransformed plants. LOX-H3 thus appears to regulate gene activation in response to pest attack, and this inducible response is likely to be a major determinant for reducing performance of nonspecialized herbivores. However, the regulatory role of LOX-H3 is not caused by its involvement in the wound-induced increase of JA, as wild-type and LOX-H3 deficient plants have similar jasmonate levels after wounding. LOX-H3-deficient plants have higher tuber yields. The apparent effect of suppressing the inducible defensive response on plant vigor suggests that it may pose a penalty in plant fitness under nonstress situations. PMID:9927708

  11. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill.

    PubMed

    Hernández-Lauzardo, A N; Bautista-Baños, S; Velázquez-Del Valle, M G; Méndez-Montealvo, M G; Sánchez-Rivera, M M; Bello-Pérez, L A

    2008-09-01

    Determination of the molecular weight of three types of chitosan was carried out by HPSEC-RI. The effect of low, medium and high molecular weight chitosan was evaluated on development of three isolates of Rhizopus stolonifer. Image analysis and electronic microscopy observations were done in spores of this fungus. Germination of R. stolonifer in potato dextrose broth with chitosan was also evaluated. Results pointed out that the low molecular weight chitosan was more effective for inhibition of mycelial growth while the high molecular weight chitosan affected spore shape, sporulation and germination. Studies of scanning and transmission electron microscopy revealed numerous and deeper ridge ornamentations of the chitosan-treated spore.

  12. Exposure characterizations of polymer type electron beam resists with various molecular weights for next-generation photomask

    NASA Astrophysics Data System (ADS)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Hoshino, Ryoichi; Kawata, Atsushi

    2015-10-01

    Higher resolution is eagerly requested to the electron beam resist for the next generation photomask production as well as higher sensitivity. The performance of a polymer resist is mainly characterized by its chemical structure and molecular weight. Positive tone polymer resists with various molecular weights ranging from 60 k to 500 k are synthesized and the molecular weight dependence on exposure characteristics is examined by fabricating line-and-space patterns. The molecular weight dependence of sensitivity for amyl acetate developer is small in the molecular weight range in this study. In a low molecular weight resist, the cross-section profile of the resist pattern becomes rounder and then the disconnections are observed in the 20-nm line-and-space pattern. Although the pattern width change by changing the exposure dose for each resist is quite similar, the exposure dose margin of pattern formation becomes wider with the higher molecular weight. The line width roughness is smaller in a high molecular weight resist than in a low molecular weight resist. The shift amount of the pattern width from the design value for various line-and-space patterns and the dry etching resistance to CF4 plasma are also presented.

  13. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  14. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity.

  15. Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol.

    PubMed

    Kim, Kyoungtea; Cho, Eunae; Choi, Jae Min; Kim, Hwanhee; Jang, Ahri; Choi, Youngjin; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2014-06-15

    The low-molecular-weight succinoglycans isolated from Sinorhizobium meliloti are repeating octasaccharide units consisting of monomers, dimers, and trimers. Pindolol is a beta-blocker used to treat cardiovascular disorders. We investigated the formation of complexes between pindolol and low-molecular-weight succinoglycan monomers (SGs). Even though SGs have a linear structure, the solubility of pindolol in the presence of SGs was increased up to 7-fold compared with methyl-β-cyclodextrin reported as the best solubilizer of pindolol. Complexation of SGs with pindolol was confirmed by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Formation constants of complexes were determined from phase solubility diagrams. Conformation of complex was suggested based on a molecular docking study. The present study indicated that formation of pindolol/SGs complexes not only resulted in increased pindolol solubility but also could be useful for improving its clinical application as it did not affect cell viability.

  16. Molecular Weight Changes and Crosslinking Kinetics in Glassy and Elastomeric Thin Films

    NASA Astrophysics Data System (ADS)

    Carbone, Nicholas; Ene, Mada; Lancaster, Jeffrey; Koberstein, Jeffrey

    2010-03-01

    The quantitative and qualitative kinetics of molecular bridging through hydrogen extraction from the tertiary carbon in Polymer backbones are explored through HPLC with MALLS in 300nm films of Polystyrene, Poly(n-butyl acrylate), and other polymers above and below the glass transition temperature. Changes in molecular weight distribution and the appearance of peaks at double and triple the original molecular weight allow the study of the initial stages of network formation. The relative merits of multiple bridging molecules are explored, as well as their effects on kinetics and distribution. When our compounds are mixed into a polymer and exposed to UV radiation, they abstract hydrogen atoms from any chains in proximity, thereby initiating a cascade of free radical reactions that include several mechanisms that can lead to covalent polymer crosslinking.

  17. 3D-QSAR and molecular fragment replacement study on diaminopyrimidine and pyrrolotriazine ALK inhibitors

    NASA Astrophysics Data System (ADS)

    Ke, Zhipeng; Lu, Tao; Liu, Haichun; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Yao, Sihui; Xiong, Xiao; Xu, Jinxing; Xu, Anyang; Chen, Yadong

    2014-06-01

    Over expression of anaplastic lymphoma kinase (ALK) has been found in many types of cancer, and ALK is a promising therapeutic target for the treatment of cancer. To obtain new potent inhibitors of ALK, we conducted lead optimization using 3D-QSAR modeling and molecular docking investigation of 2,4-diaminopyrimidines and 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine-based compounds. Three favorable 3D-QSAR models (CoMFA with q2, 0.555; r2, 0.939; CoMSIA with q2, 0.625; r2, 0.974; Topomer CoMFA with q2, 0.557; r2 0.756) have been developed to predict the biological activity of novel compounds. Topomer Search was utilized for virtual screening to obtain suitable fragments. The novel compounds generated by molecular fragment replacement (MFR) were evaluated by Topomer CoMFA prediction, Glide (docking) and further evaluated with CoMFA and CoMSIA prediction. 25 novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine derivatives as potential ALK inhibitors were finally obtained. In this paper, a combination of CoMFA, CoMSIA and Topomer CoMFA could obtain favorable 3D-QSAR models and suitable fragments for ALK inhibitors optimization. The work flow which comprised 3D-QSAR modeling, Topomer Search, MFR, molecular docking and evaluating criteria could be applied to de novo drug design and the resulted compounds initiate us to further optimize and design new potential ALK inhibitors.

  18. Design and synthesis of fluorescent and biotin tagged probes for the study of molecular actions of FAF1 inhibitor.

    PubMed

    Yoo, Sung-eun; Yu, Changsun; Jung, SeoHee; Kim, Eunhee; Kang, Nam Sook

    2016-02-15

    To study the molecular action of ischemic Fas-mediated cell death inhibitor, we prepared fluorescent-tagged and biotin-tagged probes of the potent inhibitor, KR-33494, of ischemic cell death. We used the molecular modeling technique to find the proper position for attaching those probes with minimum interference in the binding process of probes with Fas-mediated cell death target, FAF1.

  19. Effects of High Molecular Weight Species on Shear-Induced Orientation and Crystallization of Isotactic Polypropylene

    SciTech Connect

    Somani,R.; Yang, L.; Hsiao, B.

    2006-01-01

    In situ rheo-SAXS (small-angle X-ray scattering) and rheo-WAXD (wide-angle X-ray diffraction) techniques were used to investigate the role of high molecular weight species on the evolution of oriented microstructure in isotactic polypropylene (iPP) melt under shear flow. The two iPP samples, designated as PP-A and PP-B, respectively, had the same number-average (M{sub n}) but different weight-average (M{sub w}) and Z-average (M{sub z}) molecular weights. Molecular weight distribution (MWD) of PP-A and PP-B was such that for MW<10{sup 5} the MWD curves overlapped; whereas in the high MW tail region, the amount of high molecular weight species was higher in PP-B than PP-A. Both samples were subjected to an identical shear condition (rate=60 s{sup -1}, duration=5 s, T=155 degC). In situ 2D SAXS and WAXD images allowed the tracking of shear-induced oriented structures in the melt. It was found that the shish structures evolved much earlier, and the degree of crystal orientation and oriented crystal fractions were higher in PP-B than PP-A. Moreover, PP-B exhibited faster crystallization kinetics than PP-A. These results, along with the predictions of double reptation models of chain motion and experimental studies of chain conformation dynamics in dilute solutions under flow, suggest the following: When a polymer melt that consists of entangled chains of different lengths is deformed, the chain segments aligned with the flow eigenvector can undergo the abrupt coil-stretch-like transition, while other segments would remain in the coiled state. Since, flow-induced orientation decays much more slowly for long chains than for short chains, oriented high molecular weight species play a prominent role in formation of the stretched sections, where shish originates. Our experimental results are strong evidence of the hypothesis that even a small increase in the concentration of high molecular weight species causes a significant increase in the formation, stability and

  20. In situ analysis of melt-drawing behavior of ultrahigh molecular weight polyethylene films with different molecular weights: roles of entanglements on oriented crystallization.

    PubMed

    Kato, Satomi; Tanaka, Hidekazu; Yamanobe, Takeshi; Uehara, Hiroki

    2015-04-16

    Ultrahigh molecular weight polyethylene (UHMW-PE) films having different molecular weights (MWs) were melt-drawn at 150 °C. The stress-strain curve for higher-MW film exhibits higher stress on the characteristic plateau region and a subsequent steeper increase of stress due to strain hardening. Structural changes during such melt-drawing were analyzed using in situ wide-angle X-ray diffraction measurements. Hexagonal crystallization occurs at the beginning of the plateau region, independent of the sample MW. Once this hexagonal reflection intensity is saturated, it remains constant even at the later stage of draw. In contrast, orthorhombic reflection intensities gradually increase with increasing draw strain. Both of these oriented crystallizations into plateau hexagonal and increasing orthorhombic forms are accelerated with increasing MW. Correspondingly, the higher amount of extended chain crystals (ECCs) was confirmed from morphological observation for the resultant melt-drawn films of the higher-MW sample. Deep entanglements can effectively transmit the applied stress; thus, the oriented amorphous melts induce rapid hexagonal crystallization with disentangling shallow entanglements, which subsequently transforms into orthorhombic form. Such hexagonal crystallization plays the role of a thermodynamic pathway for growing such ECCs, where the stable orthorhombic form gradually accumulates with increasing draw strain.

  1. Simultaneous ion removal and quantitation of low-molecular-weight dietary fiber from high-molecular-weight dietary fiber filtrates using liquid chromatography.

    PubMed

    Post, Brett E; Marshak, Michael R; DeVries, Jonathan W

    2010-01-01

    Dietary fiber and its quantitation in foods have been of significant interest in the nutrition community for over 50 years. A number of AOAC Official Methods of Analysis have been adopted for the analysis of dietary fiber and some of its fractions and components commensurate with the evolving discoveries of dietary fiber nutrition research. Quantitation of low-molecular-weight soluble dietary fiber (LMWSDF) has been difficult due to high solubility in a precipitating solvent mixture of four parts alcohol and one part water. AOAC Method 2001.03 effectively quantitates LWMSDF subsequent to gravimetric removal of high-molecular-weight dietary fiber using LC. However, deionization and concentration of the enzymatic digestate, necessary to assure accurate LC quantitation, requires substantial time and manual labor. A modification to the method and resulting method performance is presented that describes a means of simultaneously deionizing the digestate and quantitating the LMWSDF in a single LC injection, eliminating a number of time-consuming manual preparation steps.

  2. In situ analysis of melt-drawing behavior of ultrahigh molecular weight polyethylene films with different molecular weights: roles of entanglements on oriented crystallization.

    PubMed

    Kato, Satomi; Tanaka, Hidekazu; Yamanobe, Takeshi; Uehara, Hiroki

    2015-04-16

    Ultrahigh molecular weight polyethylene (UHMW-PE) films having different molecular weights (MWs) were melt-drawn at 150 °C. The stress-strain curve for higher-MW film exhibits higher stress on the characteristic plateau region and a subsequent steeper increase of stress due to strain hardening. Structural changes during such melt-drawing were analyzed using in situ wide-angle X-ray diffraction measurements. Hexagonal crystallization occurs at the beginning of the plateau region, independent of the sample MW. Once this hexagonal reflection intensity is saturated, it remains constant even at the later stage of draw. In contrast, orthorhombic reflection intensities gradually increase with increasing draw strain. Both of these oriented crystallizations into plateau hexagonal and increasing orthorhombic forms are accelerated with increasing MW. Correspondingly, the higher amount of extended chain crystals (ECCs) was confirmed from morphological observation for the resultant melt-drawn films of the higher-MW sample. Deep entanglements can effectively transmit the applied stress; thus, the oriented amorphous melts induce rapid hexagonal crystallization with disentangling shallow entanglements, which subsequently transforms into orthorhombic form. Such hexagonal crystallization plays the role of a thermodynamic pathway for growing such ECCs, where the stable orthorhombic form gradually accumulates with increasing draw strain. PMID:25785561

  3. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    PubMed

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  4. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors.

    PubMed

    Passeri, Daniela; Camaioni, Emidio; Liscio, Paride; Sabbatini, Paola; Ferri, Martina; Carotti, Andrea; Giacchè, Nicola; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2016-06-20

    Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.

  5. Weight loss for reduction of proteinuria in diabetic nephropathy: Comparison with angiotensin-converting enzyme inhibitor therapy

    PubMed Central

    Patil, M. R.; Mishra, A.; Jain, N.; Gutch, M.; Tewari, R.

    2013-01-01

    Reduction of weight in obese type 2 diabetes mellitus (T2DM) individuals is emerging as a significant strategy in the reduction of proteinuria in diabetic nephropathy along with control of hyperglycemia, hypertension, and dyslipidemia. The objective was to evaluate the reduction in 24-h proteinuria in T2DM patients with nephropathy by weight loss, with conventional therapy (angiotensin-converting enzyme [ACE] inhibitors) as the control arm. A prospective, randomized controlled trial was conducted between June 2010 and May 2011. T2DM patients with confirmed nephropathy by 24-h urinary protein estimation with a body mass index (BMI) of >25 kg/m2 were studied. Patients who had nondiabetic nephropathy, uncontrolled hypertension (>125/75 mmHg) irrespective of antihypertensive drugs, excess weight due to edema or obesity due to other specific diseases, alcoholics, smokers, and patients who were on hemodialysis were excluded from the study. The patients were divided into three groups, namely, group A, patients on ACE inhibitor therapy; group B, patients on lifestyle modifications for weight loss; and group C, patients on an antiobesity drug (orlistat) and lifestyle modifications. At the end of 6 months, all the three groups were compared. Data were analyzed using software SPSS version 15.0. This study encompassed a total of 88 patients; 12 patients were dropped during the study period and 76 (group A: 22, group B: 23, and group C: 31) patients remained. The mean age of the patients was 58.36 ± 10.87 years (range: 30-70 years). At baseline, age, gender, mean BMI, waist-to-hip ratio (WHR), and 24-h proteinuria did not vary significantly among the three groups. At 6 months, the mean BMI significantly decreased in group C (P < 0.001) compared to that in the other two groups. Among the parameters BMI and WHR, the proportional form of BMI correlated well with the degree of reduction in proteinuria (r = 0.397, P = 0.01). Reduction in weight using lifestyle modifications and

  6. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xin, Meng; Ren, Li; Sun, Yang; Li, Hai-hua; Guan, Hua-Shi; He, Xiao-Xi; Li, Chun-Xia

    2016-05-23

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for nearly 30 years. To extend the applications of PSS, a series of low-molecular-weight PSSs (named FPs) were prepared by oxidative-reductive depolymerization, and the antithrombotic activities were investigated thoroughly in vitro and in vivo. The bioactivity evaluation demonstrated a positive correlation between the molecular weight and the anticoagulant and antithrombotic activities of FPs. FPs could prolong the APTT and clotting time and reduce platelet aggregation significantly. FPs could also effectively inhibit factor IIa in the presence of AT-III and HC-II. FPs decreased the wet weights and lengths of the thrombus and increased occlusion times in vivo. FP-6k, a PSS fragment with a molecular weight of 6 kDa, is an optimal antithrombotic candidate for further study and showed little chance for hemorrhagic action.

  7. Effects of Molecular Weight on poly( -pentadecalactone) Mechanical and Thermal Properties

    SciTech Connect

    Cai, J.; Liu, C; Cai, M; Zhu, J; Zuo, F; Hsiao, B; Gross, R

    2010-01-01

    A series of poly({omega}-pentadecalactone) (PPDL) samples, synthesized by lipase catalysis, were prepared by systematic variation of reaction time and water content. These samples possessed weight-average molecular weights (M{sub w}), determined by multi-angle laser light scattering (MALLS), from 2.5 x 10{sup 4} to 48.1 x 10{sup 4}. Cold-drawing tensile tests at room temperature of PPDL samples with M{sub W} between 4.5 x 10{sup 4} and 8.1 x 10{sup 4} showed a brittle-to-ductile transition. For PPDL with M{sub W} of 8.1 x 10{sup 4}, inter-fibrillar slippage dominates during deformation until fracture. Increasing M{sub W} above 18.9 x 10{sup 4} resulted in enhanced entanglement network strength and strain-hardening. The high M{sub W} samples also exhibited tough properties with elongation at break about 650% and tensile strength about 60.8 MPa, comparable to linear high density polyethylene (HDPE). Relationships among molecular weight, Young's modulus, stress, strain at yield, melting and crystallization enthalpy (by differential scanning calorimetry, DSC) and crystallinity (from wide-angle X-ray diffraction, WAXD) were correlated for PPDL samples. Similarities and differences of linear HDPE and PPDL molecular weight dependence on their mechanical and thermal properties were also compared.

  8. Molecular weight distribution characterization of hydrophobe-modified hydroxyethyl cellulose by size-exclusion chromatography.

    PubMed

    Li, Yongfu; Meunier, David M; Partain, Emmett M

    2014-09-12

    Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers.

  9. The potential benefits of low-molecular-weight heparins in cancer patients

    PubMed Central

    2010-01-01

    Cancer patients are at increased risk of venous thromboembolism due to a range of factors directly related to their disease and its treatment. Given the high incidence of post-surgical venous thromboembolism in cancer patients and the poor outcomes associated with its development, thromboprophylaxis is warranted. A number of evidence-based guidelines delineate anticoagulation regimens for venous thromboembolism treatment, primary and secondary prophylaxis, and long-term anticoagulation in cancer patients. However, many give equal weight to several different drugs and do not make specific recommendations regarding duration of therapy. In terms of their efficacy and safety profiles, practicality of use, and cost-effectiveness the low-molecular-weight heparins are at least comparable to, and offer several advantages over, other available antithrombotics in cancer patients. In addition, data are emerging that the antithrombotics, and particularly low-molecular-weight heparins, may exert an antitumor effect which could contribute to improved survival in cancer patients when given for long-term prophylaxis. Such findings reinforce the importance of thromboprophylaxis with low-molecular-weight heparin in cancer patients. PMID:20074349

  10. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS).

    PubMed

    Xin, Meng; Ren, Li; Sun, Yang; Li, Hai-hua; Guan, Hua-Shi; He, Xiao-Xi; Li, Chun-Xia

    2016-05-23

    Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for nearly 30 years. To extend the applications of PSS, a series of low-molecular-weight PSSs (named FPs) were prepared by oxidative-reductive depolymerization, and the antithrombotic activities were investigated thoroughly in vitro and in vivo. The bioactivity evaluation demonstrated a positive correlation between the molecular weight and the anticoagulant and antithrombotic activities of FPs. FPs could prolong the APTT and clotting time and reduce platelet aggregation significantly. FPs could also effectively inhibit factor IIa in the presence of AT-III and HC-II. FPs decreased the wet weights and lengths of the thrombus and increased occlusion times in vivo. FP-6k, a PSS fragment with a molecular weight of 6 kDa, is an optimal antithrombotic candidate for further study and showed little chance for hemorrhagic action. PMID:26974373

  11. Inhibition of Helicobacter pylori adhesion to Kato III cells by intact and low molecular weight acharan sulfate.

    PubMed

    Sim, Joon-Soo; Hahn, Bum-Soo; Im, A-Rang; Park, Youmie; Shin, Ji-Eun; Bae, Eun-Ah; Kim, Dong-Hyun; Kim, Yeong Shik

    2011-08-01

    We investigated the inhibitory activity of glycosaminoglycans (GAGs) in terms of growth, adhesion, and VacA vacuolation of Helicobacter pylori. Intact acharan sulfate (AS, MW:114 kDa) potently inhibited H. pylori adhesion to Kato III cells with IC(50) value of 1.4 mg/mL, while other GAGs did not show any inhibitory activity except for heparin which is a well-known inhibitor of H. pylori adhesion. To investigate whether low molecular weight acharan sulfate (LMWAS) can inhibit H. pylori adhesion, we performed chemical depolymerization of AS by radical reactions to obtain LMWAS. Its physicochemical properties were characterized by high-performance size exclusion chromatography (HPSEC), agarose gel electrophoresis, disaccharide compositional analysis after digestion with heparinase II, and (1)H-NMR spectroscopy. The most potent molecular size of LMWAS was 3 kDa with IC(50) value of 32 μg/mL, which is 44-fold more potent than intact AS. These results suggest that AS as well as other GAGs can be chemically depolymerized by free radicals and LMWAS compared to intact AS can be applied as a pharmaceutical candidate in order to inhibit H. pylori adhesion to Kato III cells. PMID:21744069

  12. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications. PMID:26942486

  13. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications.

  14. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature.

  15. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. PMID:27558730

  16. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    PubMed

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification.

  17. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    SciTech Connect

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  18. Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight.

    PubMed

    Tronci, Giuseppe; Kanuparti, Ramya Sri; Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-11-01

    The formation of naturally derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activated 1,3-phenylenediacetic acid (Ph) (E: 726±43-844±85MPa), compared to samples crosslinked via intramolecular carbodiimide-mediated condensation reaction (E: 588±38MPa). Resulting fibres displayed a dry diameter in the range of 238±18-355±28μm and proved to be mechanically stable (E: 230kPa) following equilibration with PBS, whilst a nearly complete degradation was observed after 5-day incubation in physiological conditions.

  19. Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies.

    PubMed

    García, Manuela E; Borioni, José L; Cavallaro, Valeria; Puiatti, Marcelo; Pierini, Adriana B; Murray, Ana P; Peñéñory, Alicia B

    2015-12-01

    The investigation of natural products in medicinal chemistry is essential today. In this context, acetylcholinesterase (AChE) inhibitors comprise one type of the compounds most actively studied in the search for an effective treatment of symptoms of Alzheimer's disease. This work describes the isolation of a natural compound, solanocapsine, the preparation of its chemical derivatives, the evaluation of AChE inhibitory activity, and the structure-activity analysis of relevant cases. The influence of structural variations on the inhibitory potency was carefully investigated by modifying different reactive parts of the parent molecule. A theoretical study was also carried out into the binding mode of representative compounds to the enzyme through molecular modeling. The biological properties of the series were investigated. Through this study valuable information was obtained of steroidal alkaloid-type compounds as a starting point for the synthesis of AChE inhibitors. PMID:26362598

  20. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  1. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors.

    PubMed

    Tripathi, Sunil Kumar; Muttineni, Ravikumar; Singh, Sanjeev Kumar

    2013-10-01

    Molecular docking, free energy calculation and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 3,5-diaminoindazoles, imidazo(1,2-b)pyridazines and triazolo(1,5-a) pyridazines series of Cyclin-dependent kinase (CDK2) inhibitors. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviations (RMSDs). We found different binding sites namely catalytic, inhibitory phosphorylation, cyclin binding and CKS-binding site of the CDK2 contributing towards the binding of these compounds. Moreover, correlation between free energy of binding and biological activity yielded a statistically significant correlation coefficient. Finally, three representative protein-ligand complexes were subjected to molecular dynamics simulation to determine the stability of the predicted conformations. The low value of the RMSDs between the initial complex structure and the energy minimized final average complex structure suggests that the derived docked complexes are close to equilibrium. We suggest that the phenylacetyl type of substituents and cyclohexyl moiety make the favorable interactions with a number of residues in the active site, and show better inhibitory activity to improve the pharmacokinetic profile of compounds against CDK2. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity.

  2. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true 4,4â²-Isopropylidenediphenol-epichlorohydrin resins... § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as...

  3. Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara.

    PubMed

    Senis, Yotis A; Kim, Paul Y; Fuller, Gemma L J; García, Angel; Prabhakar, Sripadi; Wilkinson, Mark C; Brittan, Helen; Zitzmann, Nicole; Wait, Robin; Warrell, David A; Watson, Steve P; Kamiguti, Aura S; Theakston, R David G; Nesheim, Michael E; Laing, Gavin D

    2006-05-01

    In this study, we isolated a novel prothrombin activator from the venom of Bothrops cotiara, a Brazilian lance-headed pit viper (Cotiara, Jararaca preta, Biocotiara), which we have designated "cotiaractivase" (prefix: cotiar- from B. cotiara; suffix: -activase, from prothrombin activating activity). Cotiaractivase was purified using a phenyl-Superose hydrophobic interaction column followed by a Mono-Q anion exchange column. It is a single-chain polypeptide with a molecular weight of 22,931 Da as measured by mass spectroscopy. Cotiaractivase generated active alpha-thrombin from purified human prothrombin in a Ca2+-dependent manner as assessed by S2238 chromogenic substrate assay and SDS-PAGE. Cotiaractivase cleaved prothrombin at positions Arg271-Thr272 and Arg320-Ile321, which are also cleaved by factor Xa. However, the rate of thrombin generation by cotiaractivase was approximately 60-fold less than factor Xa alone and 17 x 10(6)-fold less than the prothrombinase complex. The enzymatic activity of cotiaractivase was inhibited by the chelating agent EDTA, whereas the serine protease inhibitor PMSF had no effect on its activity, suggesting that it is a metalloproteinase. Interestingly, S2238 inhibited cotiaractivase activity non-competitively, suggesting that this toxin contains an exosite that allows it to bind prothrombin independently of its active site. Tandem mass spectrometry and N-terminal sequencing of purified cotiaractivase identified peptides that were identical to regions of the cysteine-rich and disintegrin-like domains of known snake venom metalloproteinases. Cotiaractivase is a unique low molecular weight snake venom prothrombin activator that likely belongs to the metalloproteinase family of proteins. PMID:16647309

  4. Energy-weighted sum rules and the analysis of vibrational structure in molecular spectra

    NASA Astrophysics Data System (ADS)

    Smith, W. L.

    2015-10-01

    The energy-weighted sum SV = Σn (E‧n - E″m)|<ψ″m|ψ‧n>|2 = <ψ″m|ΔV|ψ″m> for the vibrational potential functions V‧, V″ associated with transitions between two electronic states of diatomic molecular species is investigated and specific formulae are given using Morse functions for V‧ and V″. It is found that these formulae are useful approximations which provide a convenient way to analyse the vibrational structure of real spectra to give estimates of molecular parameters such as the change in internuclear distance accompanying a transition.

  5. Molecular Characterization of an rsmD-Like rRNA Methyltransferase from the Wolbachia Endosymbiont of Brugia malayi and Antifilarial Activity of Specific Inhibitors of the Enzyme

    PubMed Central

    Rana, Ajay Kumar; Chandra, Sharat; Siddiqi, Mohammad Imran

    2013-01-01

    The endosymbiotic organism Wolbachia is an attractive antifilarial drug target. Here we report on the cloning and expression of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi, its molecular properties, and assays for specific inhibitors. The gene was found to be expressed in all the major life stages of B. malayi. The purified enzyme expressed in Escherichia coli was found to be in monomer form in its native state. The activities of the specific inhibitors (heteroaryl compounds) against the enzyme were tested with B. malayi adult and microfilariae for 7 days in vitro at various concentrations, and NSC-659390 proved to be the most potent compound (50% inhibitory concentration [IC50], 0.32 μM), followed by NSC-658343 (IC50, 4.13 μM) and NSC-657589 (IC50, 7.5 μM). On intraperitoneal administration at 5 mg/kg of body weight for 7 days to adult jirds into which B. malayi had been transplanted intraperitoneally, all the compounds killed a significant proportion of the implanted worms. A very similar result was observed in infected mastomys when inhibitors were administered. Docking studies of enzyme and inhibitors and an in vitro tryptophan quenching experiment were also performed to understand the binding mode and affinity. The specific inhibitors of the enzyme showed a higher affinity for the catalytic site of the enzyme than the nonspecific inhibitors and were found to be potent enough to kill the worm (both adults and microfilariae) in vitro as well as in vivo in a matter of days at micromolar concentrations. The findings suggest that these compounds be evaluated against other pathogens possessing a methyltransferase with a DPPY motif and warrant the design and synthesis of more such inhibitors. PMID:23733469

  6. [Chromatographic analysis of low molecular weight fraction of cerebrospinal fluid in children with acute neuroinfections].

    PubMed

    Alekseeva, L A; Shatik, S V; Sorokina, M N; Karasev, V V

    2002-05-01

    Low molecular-weight (oligopeptide) fraction of the cerebrospinal fluid was analyzed by high-performance reversed phase liquid chromatography in 30 children with bacterial and viral neuroinfections. The incidence and height of chromathoraphic peaks in bacterial meningitis depended on the disease etiology, stage, and severity. Qualitative and quantitative composition of low molecular-weight fraction of the liquor varied in patients with viral neuroinfections, depending on the severity of the cerebral parenchyma involvement. Differences in chromatographic profiles in complicated and uneventful course of neuroinfections indicate a possible damaging, protective, or regulatory effect of the liquor peptides. These data focus the attention on the role of oligopeptides in the genesis of neuroinfectious process, significance of search for peptide markers, their further isolation, identification, and development of test systems available for clinical application. PMID:12085699

  7. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    PubMed

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds. PMID:22566767

  8. Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants

    PubMed Central

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-01-01

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds. PMID:24378988

  9. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants.

    PubMed

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-12-23

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.

  10. Cytotoxicity of chitosans with different acetylation degrees and molecular weights on bladder carcinoma cells.

    PubMed

    Younes, Islem; Frachet, Véronique; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2016-03-01

    The purpose of this research was to evaluate the cytotoxicity of chitosans with different degrees of acetylation (DA) and molecular weights (MW), as well as the effect of their positive ionic charges controlled by pH on bladder carcinoma cells (RT112 and RT112cp) using the tetrazolium salt colorimetric (MTT) assay. Our data showed that all chitosan samples were cytotoxic on RT112 and RT112cp cells with a higher cytotoxicity obtained at lower pH. Further, it was found that the toxicity increased with increasing DA. However, no significant difference in cytotoxicity between chitosans with different molecular weights was observed. Annexin V-FITC staining test was then used to study and quantify the induction of apoptosis. Data shows that chitosans induce apoptosis of RT112 and RT112cp cells with the same dependence with DA.

  11. HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight.

    PubMed

    Johnson, Russell N; Chu, David S H; Shi, Julie; Schellinger, Joan G; Carlson, Peter M; Pun, Suzie H

    2011-10-30

    Polycations are one of the most frequently used classes of materials for non-viral gene transfer in vivo. Several studies have demonstrated a sensitive relationship between polymer structure and delivery activity. In this work, we used reverse addition-fragmentation chain transfer (RAFT) polymerization to build a panel of N-(2-hydroxypropyl)methacrylamide (HPMA)-oligolysine copolymers with varying peptide length and polymer molecular weight. The panel was screened for optimal DNA-binding, colloidal stability in salt, high transfection efficiency, and low cytotoxicity. Increasing polyplex stability in PBS correlated with increasing polymer molecular weight and decreasing peptide length. Copolymers containing K(5) and K(10) oligocations transfected cultured cells with significantly higher efficiencies than copolymers of K(15). Four HPMA-oligolysine copolymers were identified that met the desired criteria. Polyplexes formed with these copolymers demonstrated both salt stability and transfection efficiencies on-par with poly(ethylenimine) PEI in cultured cells.

  12. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    PubMed Central

    Margittai, Éva; Csala, Miklós; Mandl, József; Bánhegyi, Gábor

    2009-01-01

    Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding. PMID:19399252

  13. Effect of radiation on the structure of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Kamel, Ihab; Finegold, Leonard

    Radiation sterilization of ultrahigh molecular weight polyethylene (UHMW-PE) was recently found to cause changes in crystallinity, contradicting earlier observations on linear polyethylene of lower molecular weight. In this study, UHMW-PE (Hercules 1900) was gamma-irradiated up to 21 Mrad. Changes in melting and crystallization temperatures, enthalpies of melting and of crystallization, determined by differential scanning calorimetry, are reported. In particular, the temperature at the onset of crystallization provided a clearer view of the radiation damage to the polymer chains. A mechanism based on chain scission is proposed to explain the observed increase in crystallinity in agreement with recent findings. The crystallization temperature may be useful as an indicator of radiation and/or other damage to the UHMW-PE.

  14. Determination of molecular weight distributions of large water soluble macromolecules using dynamic light scattering

    SciTech Connect

    Mettille, M.J.; Hester, R.D.

    1988-05-01

    Characterization of polymer molecular weight is an extremely important aspect of polymer research, and a vast number of analytical techniques has been used to determine molecular weights. One method is dynamic light scattering (DLS). DLS is also referred to as photon correlation spectroscopy (PCS), quasi-elastic light scattering (QLS), and may other appellations. The phenomenon that gives rise to the DLS technique was first observed in the early 1930's. In the mid 1950's, measurement techniques similar to modern dynamic light scattering were developed. Two major technical developments have greatly enhanced the use of DLS. The first was the development of the laser. This provided a light source with very high intensity at a single frequency. Also, major advances in digital electronics have allowed better data acquisition and faster data analysis than were previously available.

  15. [Chromatographic analysis of low molecular weight fraction of cerebrospinal fluid in children with acute neuroinfections].

    PubMed

    Alekseeva, L A; Shatik, S V; Sorokina, M N; Karasev, V V

    2002-05-01

    Low molecular-weight (oligopeptide) fraction of the cerebrospinal fluid was analyzed by high-performance reversed phase liquid chromatography in 30 children with bacterial and viral neuroinfections. The incidence and height of chromathoraphic peaks in bacterial meningitis depended on the disease etiology, stage, and severity. Qualitative and quantitative composition of low molecular-weight fraction of the liquor varied in patients with viral neuroinfections, depending on the severity of the cerebral parenchyma involvement. Differences in chromatographic profiles in complicated and uneventful course of neuroinfections indicate a possible damaging, protective, or regulatory effect of the liquor peptides. These data focus the attention on the role of oligopeptides in the genesis of neuroinfectious process, significance of search for peptide markers, their further isolation, identification, and development of test systems available for clinical application.

  16. Friction and wear of polyethylene oxide polymer having a range of molecular weights

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction and wear experiments were conducted at light loads (25 to 250 g) with various molecular weights of the polyethylene oxide polymer sliding on itself and iron. Results of the experimental investigation indicate that: (1) the coefficient of friction for the polymer decreases with increasing molecular weight; (2) friction coefficient is higher for the polymer sliding on itself than it is for the polymer sliding on iron; (3) at sufficiently high loads localized surface melting occurs and the friction coefficient is the same for the polymer sliding on itself and iron; (4) fracture cracks develop in the sliding wear track at higher but not lower sliding velocities, reflecting a strain rate sensitivity to crack initiation, and (5) the friction coefficient for the polymer sliding on iron increases with the formation of a polymer film on the iron surface.

  17. Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives.

    PubMed

    Xu, Xu; Bi, Decheng; Wan, Min

    2016-01-01

    Alginate is a naturally occurring acidic linear polysaccharide obtained from marine brown seaweed. Low molecular weight structurally diverse derivatives and oligosaccharides derived from alginate have shown various tremendous biological and pharmacological activities. It has been demonstrated that immuno-inflammation is involved in many prevalent human diseases, such as cancer, severe infection and neurodegeneration. Given the activities of marine natural products in the regulation of immune responses, increasing efforts are being made toward the development of lowmolecular- weight natural compounds that aid in the prevention and treatment of immune- and inflammatory-related diseases. In this review, we describe the development of chemical modification and molecular depolymerization methods that modify the physicochemical and biological characteristics of alginate. Additionally, current progress in research on immuno-inflammatory, anti-neurodegenerative and anti-tumor activities of alginate derivatives is highlighted.

  18. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    PubMed

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  19. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  20. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  1. Inhibitory Effects of Medium Molecular Weight Heparinyl Amino Acid Derivatives on Ischemic Paw Edema in Mice.

    PubMed

    Takeda, Seiichi; Toda, Takao; Nakamura, Kazuki

    2016-01-01

    We investigated the radical-scavenging effects of heparin (HE), medium molecular weight heparinyl phenylalanine (MHF), and medium molecular weight heparinyl leucine (MHL) using ischemic paw edema in mice. We also examined the activated partial thromboplastin time (APTT) of mice that were administered these compounds as an index of their side-effects. HE had a preventative effect and significant reduced ischemic paw edema. However, its effect was not dose-dependent and the dose-response curve was bell-shaped. The effective dose of HE also exhibited a prolonged APTT. Pretreatment using MHF and MHL were effective against ischemic paw edema without a prolonged APTT. Remarkably, the action of MHF was not only preventively, but also therapeutically active. These results suggest that MHF and MHL are superior to HE as safe radical scavengers in vivo. PMID:27381605

  2. [Benign salivary gland-type tumors of the bronchus: expression of high molecular weight cytokeratins].

    PubMed

    Méjean-Lebreton, Frédérique; Barnoud, Raphaëlle; de la Roche, Eric; Devouassoux-Shisheboran, Mojgan

    2006-02-01

    Primary lung tumors showing features of salivary gland-type neoplasms are extremely rare, and their immunohistochemical profile has been seldom studied. We report two cases of bronchial pleomorphic and mucous gland adenomas and study the expression of markers such as TTF-1 and high molecular weight keratins in these tumors. Both tumors were endobronchial. The pleomorphic adenoma also had a well-circumscribed parenchymal component, with a biphasic morphology composed of epithelial and myoepithelial cells in a background of myxoid and hyaline stroma. The mucous gland adenoma displayed papillary and dilated glandular structures. In both cases, epithelial cells showed strong and diffuse cytoplasmic staining with high molecular weight cytokeratins (cytokeratin 5/6 and keratin 903), and lacked TTF-1 expression. This immunoprofile provides useful clues for the histogenesis of pulmonary benign salivary gland-type adenomas and helps in distinguishing them from primary adenocarcinomas in small biopsy specimens.

  3. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  4. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer.

    PubMed

    Dash, Raju; Uddin, Mir Muhammad Nasir; Hosen, S M Zahid; Rahim, Zahed Bin; Dinar, Abu Mansur; Kabir, Mohammad Shah Hafez; Sultan, Ramiz Ahmed; Islam, Ashekul; Hossain, Md Kamrul

    2015-01-01

    Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration. PMID:26770028

  5. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer

    PubMed Central

    Dash, Raju; Uddin, Mir Muhammad Nasir; Hosen, S.M. Zahid; Rahim, Zahed Bin; Dinar, Abu Mansur; Kabir, Mohammad Shah Hafez; Sultan, Ramiz Ahmed; Islam, Ashekul; Hossain, Md Kamrul

    2015-01-01

    Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration. PMID:26770028

  6. Molecular weight of polydisperse icodextrin effects its oncotic contribution to water transport.

    PubMed

    Nishimura, Kohei; Kamiya, Yohei; Miyamoto, Keiichi; Nomura, Shinsuke; Horiuchi, Takashi

    2008-01-01

    Icodextrin, a mixture of polysaccharides of alpha-(1 --> 4) polyglucopyranose having 10% branched chains, is clinically available as a D-glucose substitute for peritoneal dialysis (PD). Due to the high intraperitoneal retention time of this glucose polymer (GP), water transport from the vessels to the peritoneal cavity is prolonged even in PD patients with high peritoneal permeability. The purpose of this study was to elucidate why 7.5% icodextrin solution has such a broad distribution of molecular weights. A gel permeation chromatography study indicated that the average molecular weight was about 18.0 kDa in terms of number average (Mn) and 31.3 kDa in terms of weight average (Mw), respectively, resulting in a polydispersity index (Mn/Mw) of 1.74. Five fractions of GP having Mn values of 41.3, 19.3, 8.3, 3.8, and 2.1 kDa, respectively, produced 0.24, 0.49, 0.50, 0.08, and 0.03 mOsmol/kg H2O of colloid osmotic pressure. Water transport through a membrane having a molecular cutoff of 15 kDa was simulated using the mass transfer coefficient and reflection coefficient for each fraction. Fractions with Mn values of 19.3 and 8.3 kDa contributed to water transport dominantly (approximately 76%), while only 18%, 5%, and 3% of total water removal was contributed by fractions with Mn values of 41.3, 3.8 and 2.1 kDa, respectively. As a result of enzymatic degradation for 10 h by 2, 10, or 20 U/l alpha-amylase, a decrease in the high molecular weight zone (40-60 kDa) and a rise in the low molecular weight zone (1-2 kDa) were seen with few change in the distribution profile between 4 and 30 kDa. These results suggested that fractions in the molecular range between 8.3 and 19.3 kDa, where the distribution profile was less influenced by enzymatic degradation, preferably contributed to water transport.

  7. Molecular weight characterization of high molecular weight dextran with multiangle light scattering in on-line and off-line mode.

    PubMed

    Wang, Jinfeng; Wang, Jing

    2015-07-01

    This work reports the molecular weight (MW) analysis of high MW dextran using multiangle light scattering (MALS) in both chromatography and automated batch measurement mode. The results show that the chromatographic columns alter the high MW native dextran and cause underestimation of the MW as a consequence. Alternatively, a batch MALS measurement (without columns) provides more accurate MW values. The batch MALS measurement was automated with the incorporation of an automatic sample dilution and injection device. This automation reduces the sample preparation time and minimizes concentration errors introduced by manual sample dilution. To the best of our knowledge, this is the first study using an automated batch MALS in the analysis of high MW dextran.

  8. A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity.

    PubMed

    Filipski, Kevin J; Bian, Jianwei; Ebner, David C; Lee, Esther C Y; Li, Jian-Cheng; Sammons, Matthew F; Wright, Stephen W; Stevens, Benjamin D; Didiuk, Mary T; Tu, Meihua; Perreault, Christian; Brown, Janice; Atkinson, Karen; Tan, Beijing; Salatto, Christopher T; Litchfield, John; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel

    2012-01-01

    A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to rats, in which clearance was high; and compound 49, which demonstrated a dose-dependent reduction in glucose excursion in a rat glucagon challenge experiment.

  9. Effect of cryogrinding on the molecular weight of samples of polyisobutylene

    SciTech Connect

    Waters, P.F.; Hadermann, A.F.; Trippe, J.C.

    1983-01-01

    Three different molecular weight samples of isobutylene are ground and dissolved in isooctane. Also, unground samples are dissolved for comparison. The viscosity and height-at-break in ductless siphon are measured. Small quantities of macromolecules dissolved in fuels impede the aerosolization of the fuels (the purpose of antimisting additives). Mathematical formulas for the intrinsic viscosity and height-at-break are derived from the data.

  10. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers.

    PubMed

    Fang, Gang; Zeng, Fang; Yu, Changmin; Wu, Shuizhu

    2014-10-01

    Low-molecular-weight polyethyleneimine (LMW PEI) exhibits poorer transfection efficiency but lower cytotoxicity compared to high-molecular-weight polyethyleneimine (such as PEI 25kDa). To enhance the gene transfection performance of LMW PEI, we herein demonstrate a new strategy for modifying LMW PEI. A crosslinker containing an acid-labile hydrazone bond (hydrazone-based crosslinker) was synthesized and used to crosslink PEI 1.8kDa and convert it into higher-molecular-weight polycations. And the crosslinked polycations were further modified by incorporating a betaine monomer [N,N-dimethyl(acrylamidopropyl)ammonium propane sulfonate, DMAAPS] onto their surfaces. The molar percentages of the incorporated betaine molecules to amino groups on the polycations were determined as 21.2%, 36.0% and 77.2%, respectively. Molecular weights of the modified polycations were measured using capillary viscometry at pH 7.4 and 5.0, respectively, and the degradation of the polymers in acidic solution was confirmed. The PEIs modified with hydrazone and betaine (PEI-Hdz-DMAAPS) exhibit much lower cytotoxicity than PEI 25K, and they also show no or little hemolytic effect with their hemolysis rates around 5%. PEI-Hdz-DMAAPS21.2%/DNA and PEI-Hdz-DMAAPS36.0%/DNA complexes exhibit high transfection efficiencies, which are comparable to or higher than that of PEI 25K/DNA complex in the absence or presence of 10% serum. With these improved gene delivery properties, the PEI-Hdz-DMAAPS samples have great potential for serving as efficient gene carriers. This strategy may provide some insights for constructing some other biocompatible materials.

  11. Low molecular weight Neutral Boron Dipyrromethene (Bodipy) dyads for fluorescence-based neural imaging

    NASA Astrophysics Data System (ADS)

    Bai, Dan; Benniston, Andrew C.; Clift, Sophie; Baisch, Ulrich; Steyn, Jannetta; Everitt, Nicola; Andras, Peter

    2014-05-01

    The neutral low molecular weight julolidine-based borondipyrromethene (Bodipy) dyads JULBD and MJULBD were used for fast voltage-sensitive dye imaging of neurons in the crab stomatogastric ganglion. The fluorescence modulation of the dyads mirrors alterations in the membrane potential of the imaged neurons. The toxicity of the dyes towards the neurons is related to their structure in that methyl groups at the 3,5 positions results in reduced toxic effects.

  12. New External Calibration Curves (ECCs) for the Estimation of Molecular Weights in Various Common NMR Solvents.

    PubMed

    Bachmann, Sebastian; Neufeld, Roman; Dzemski, Martin; Stalke, Dietmar

    2016-06-13

    New external calibration curves (ECCs) for the estimation of aggregation states of small molecules in solution by DOSY NMR spectroscopy for a range of different common NMR solvents ([D6 ]DMSO, C6 D12 , C6 D6 , CDCl3 , and CD2 Cl2 ) are introduced and applied. ECCs are of avail to estimate molecular weights (MWs) from diffusion coefficients of previously unknown aggregates. This enables a straightforward and elaborate examination of (de)aggregation phenomena in solution.

  13. Characterization of Rhizobial Isolates of Phaseolus vulgaris by Staircase Electrophoresis of Low-Molecular-Weight RNA

    PubMed Central

    Velázquez, Encarna; Martínez-Romero, Esperanza; Rodríguez-Navarro, Dulce Nombre; Trujillo, Martha E.; Daza, Antonio; Mateos, Pedro F.; Martínez-Molina, Eustoquio; van Berkum, Peter

    2001-01-01

    Low-molecular-weight (LMW) RNA molecules were analyzed to characterize rhizobial isolates that nodulate the common bean growing in Spain. Since LMW RNA profiles, determined by staircase electrophoresis, varied across the rhizobial species nodulating beans, we demonstrated that bean isolates recovered from Spanish soils presumptively could be characterized as Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum bv. viciae and bv. trifolii, and Sinorhizobium fredii. PMID:11157280

  14. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-01-01

    Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations. PMID:22292952

  15. pH response and molecular recognition in a low molecular weight peptide hydrogel.

    PubMed

    Lange, Stefanie C; Unsleber, Jan; Drücker, Patrick; Galla, Hans-Joachim; Waller, Mark P; Ravoo, Bart Jan

    2015-01-14

    In this article we report the preparation and characterization of a peptide-based hydrogel, which possesses characteristic rheological properties, is pH responsive and can be functionalized at its thiol function. The tripeptide N-(fluorenyl-9-methoxycarbonyl)-L-Cys(acetamidomethyl)-L-His-L-Cys-OH 1 forms stable supramolecular aggregates in water leading to hydrogels above 1.5 wt%. Rheological analysis of the hydrogel revealed visco-elastic and shear thinning properties of samples containing 1.5 wt% of peptide 1. The hydrogel reversibly responds to pH changes. Below and above pH 6, electrostatic repulsion of the peptide results in a weakening of the three-dimensional gel network. Based on atomic force microscopy, small angle X-ray scattering and molecular dynamics simulations, it is proposed that the peptide assembles into nanostructures that tend to entangle at higher concentrations in water. The development of functional materials based on the peptide assemblies was possible via thiol-ene-click chemistry of the free thiol function at the C-terminal cysteine unit. As a proof of concept, the functionalization with adamantyl units to give 1-Ad was shown by molecular recognition of β-cyclodextrin vesicles. These vesicles were used as supramolecular cross-linkers of the assemblies of peptide 1 mixed with peptide 1-Ad leading to gel networks at a reduced peptide concentration.

  16. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168.

    PubMed

    Jin, Peng; Kang, Zhen; Yuan, Panhong; Du, Guocheng; Chen, Jian

    2016-05-01

    Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01gL(-1) to 3.16gL(-1), with a molecular weight range of 1.40×10(6)-1.83×10(6)Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×10(6)UmL(-1)), the production of HA was substantially increased from 5.96gL(-1) to 19.38gL(-1). The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×10(3)-1.42×10(6)Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides. PMID:26851304

  17. Detonation-Synthesis Nanodiamonds in Compositions of Ultrahigh-Molecular-Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Dubkova, V. I.; Korzhenevskii, A. P.; Krut‧ko, N. P.; Komarevich, V. G.; Kul‧bistkaya, L. V.

    2016-07-01

    A study has been made of the influence of an ultradisperse carbonaceous product, i.e., detonation-synthesis nanodiamonds, on the structure and properties of nanocomposites based on ultrahigh-molecular-weight polyethylene using electron microscopy and acoustic, electrophysical, thermomechanical, and x-ray phase analysis methods It has been shown that a diamond blend is a structurally active filler of ultrahigh-molecular-weight polyethylene, which changes the crystalline and supermolecular structure of the polymer during its melt crystallization under the conditions of uniaxial plastic deformation. The developed polymer nanocomposites based on ultrahigh-molecular-weight polyethylene, which contain 0.5-0.25 wt.% of the diamond blend, possess higher than average indices of hardness, modulus of elasticity, and electrical conductivity manifested to a larger extent in the frequency range 1-10 kHz, a low friction factor (0.15-0.18), and high resistance to wear under dry-friction conditions (the wear rate is 10-4-10-5 mg/m).

  18. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Strahan, Gary D; Levine, Alex C; Nomura, Christopher T

    2015-03-01

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW). Glycerine was used as the primary carbon source with varying concentrations of MeOH. Methanol retarded but did not completely inhibit growth and PHB production in Pseudomonas oleovorans. Proton NMR analysis revealed that the PHB polymers were end-capped with methoxy chemical groups causing MW reductions. The MW decreases were contingent upon the initial MeOH media concentration and the duration of the fermentations. The largest impact occurred at an initial MeOH concentration of 0.10% (w/v) where the number average molecular weights (Mn) decreased by 39%, 55%, and 72% in the 48, 72 and 96 h cultures, respectively. Diffusion ordered NMR spectroscopy revealed a diffusivity (D) increase in the smaller molecular weight polymers with the PHB synthesized in the presence of 0.85% MeOH (72 h post-inoculation) having a D value of 0.66×10(-10) m2/s. Diffusivity increases indicate a reduction in hydrodynamic radii (Rhz) consistent with shorter chain-lengths. Crude glycerine from the biodiesel production process has been used as an inexpensive fermentation feedstock for polyhydroxyalkanoate (PHA) synthesis but its composition is facility-dependent. This information will be vital to tailor PHA properties to specific applications. PMID:25542165

  19. The Effect of Molecular Weight on the Composite Properties of Cured Phenylethynyl Terminated Imide Oligomers

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1997-01-01

    As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.

  20. Influence of molecular weight on in vitro immunostimulatory properties of instant coffee.

    PubMed

    Passos, Cláudia P; Cepeda, Márcio R; Ferreira, Sónia S; Nunes, Fernando M; Evtuguin, Dmitry V; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2014-10-15

    Instant coffee was prepared and fractionated into higher (>100kDa), medium (5-10, 10-30, 30-100kDa) and lower (1-5, <1kDa) molecular weight fractions. Sugars and linkage composition characteristics of arabinogalactans and galactomannans were recovered in all fractions. Also, amino acid analysis performed after hydrolysis showed similar compositions in all fractions. On the contrary, free chlorogenic acids and caffeine were only detected in the lowest molecular weight fraction (<1kDa). A direct relationship between the melanoidins browning index and the molecular weight was observed. The fractions obtained were incubated in vitro with murine spleen lymphocytes in order to evaluate their possible immunostimulatory abilities. The surface expression of CD69 (early activation marker) on different lymphocyte sub-populations showed that the fraction with 1-5kDa was able to induce activation of B-lymphocytes. This was the only fraction to induce B-lymphocyte activation, since all the other fractions failed, even when higher concentrations were used.

  1. Phase Behavior of Weakly Ordered Diblock Copolymers in the High Molecular Weight Limit

    NASA Astrophysics Data System (ADS)

    Patel, Amish; Balsara, Nitash

    2004-03-01

    Poly(tert-butylstyrene-block-polydiene) (TBS-D) diblock copolymers with molecular weights ranging from 10 kg/mol to 500 kg/mol have been synthesized. The dienes studied thus far are 1-4 polyisoprene and 1-2 polybutadiene. The Flory-Huggins interaction parameters (kii) between TBS and D chains are negative at room temperature. Thus, the mean field theory of polymer blends predicts that TBS-D diblock copolymers must be disordered, regardless of their molecular weight. With increasing temperature, kii increases, and we thus expect the formation of ordered phases. The nature of these transitions can be also predicted by mean-field theory. We are conducting small-angle X-ray scattering and optical birefringence experiments on the TBS-D block copolymers to test the applicability of the mean-field theory. This enables a test of the mean-field theory of block copolymers over an unprecedented range of molecular weights. The results of these tests will be presented at the meeting.

  2. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    DOE PAGES

    Mondal, Titash; Ashkar, Rana; Butler, Paul; Bhowmick, Anil K.; Krishnamoorti, Ramanan

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less

  3. Self-assembly of high molecular weight polypeptide copolymers studied via diffusion limited aggregation.

    PubMed

    Meier, Christoph; Wu, Yuzhou; Pramanik, Goutam; Weil, Tanja

    2014-01-13

    The assembly of high molecular weight polypeptides into complex architectures exhibiting structural complexity ranging from the nano- to the mesoscale is of fundamental importance for various protein-related diseases but also hold great promise for various nano- and biotechnological applications. Here, the aggregation of partially unfolded high molecular weight polypeptides into multiscale fractal structures is investigated by means of diffusion limited aggregation and atomic force microscopy. The zeta potential, the hydrodynamic radius, and the obtained fractal morphologies were correlated with the conformation of the polypeptide backbones as obtained from circular dichroism measurements. The polypeptides are modified with polyethylene oxide side chains to stabilize the polypeptides and to normalize intermolecular interactions. The modification with the hydrophobic thioctic acid alters the folding of the polypeptide backbone, resulting in a change in solution aggregation and fractal morphology. We found that a more compact folding results in dense and highly branched structures, whereas a less compact folded polypeptide chain yields a more directional assembly. Our results provide first evidence for the role of compactness of polypeptide folding on aggregation. Furthermore, the mesoscale-structured biofilms were used to achieve a hierarchical protein assembly, which is demonstrated by deposition of Rhodamine-labeled HSA with the preassembled fractal structures. These results contribute important insights to the fundamental understanding of the aggregation of high molecular weight polypeptides in general and provide opportunities to study nanostructure-related effects on biological systems such as adhesion, proliferation, and the development of, for example, neuronal cells. PMID:24354281

  4. The effect of the molecular weight of additive on the properties of antimisting fuels

    SciTech Connect

    Hadermann, A.F.; Trippe, J.C.; Waters, P.F.

    1983-09-01

    Antimisting aircraft fuels, when ignited, do not produce the roaring fireball which often accompanies aircraft crashes. This result is attributable to the suppression of the aerosolization of the fuel by added macromolecules which alter the structure of the droplets of fuel emanating from rent fuel tanks after the crash. The first studies of the antimisting effect of macromolecules on aviation fuel were carried out in Great Britain in 1968. In that early work it was established that there was a qualitative relationship between the suppression of the atomization of the fuel and the molecular weight of the additive above a certain critical concentration; the latter being inverse to the molecular weight of the additive. Subsequent investigations have demonstrated a dependence of the antimisting effectiveness of polyisobutylene in diesel fuel on the viscosity average molecular weight to a power exceeding 2, and in jet-A fuel to the 2..cap alpha.. + 1 power, where ..cap alpha.. is the exponent in the Mark-Houwink equation. In their study Chao et al, were able to demonstrate a strong correlation between the extent of antimisting effectiveness and flammability reduction with the maximum ductless siphon height supported by the solution. They introduced the ductless siphon to the study of antimisting fuels as a measure of the elongational viscosity impaired by the macromolecules to the fuel.

  5. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168.

    PubMed

    Jin, Peng; Kang, Zhen; Yuan, Panhong; Du, Guocheng; Chen, Jian

    2016-05-01

    Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01gL(-1) to 3.16gL(-1), with a molecular weight range of 1.40×10(6)-1.83×10(6)Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×10(6)UmL(-1)), the production of HA was substantially increased from 5.96gL(-1) to 19.38gL(-1). The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×10(3)-1.42×10(6)Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides.

  6. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.

    PubMed

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide.

  7. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  8. Molecular weight-dependent genetic information transfer with disulfide-linked polyethylenimine-based nonviral vectors.

    PubMed

    Parhiz, Hamideh; Hashemi, Maryam; Hatefi, Arash; Shier, Wayne Thomas; Farzad, Sara Amel; Ramezani, Mohammad

    2013-07-01

    One strategy for improving gene vector properties of polyethylenimine is to facilitate individual transfection mechanism steps. This study investigates (i) improving transfection efficiency by attaching peptide nuclear localization signals (nuclear localization signals: SV40 large T antigen nuclear localization signal or C-terminus of histone H1) to polyethylenimine (10 kDa) and (ii) using disulfide linkages, which are expected to be stable during polyplex formation, but cleaved inside cells giving improved gene release. Nuclear localization signal-containing polyplexes exhibited low cytotoxicity, whereas transfection efficiency with high molecular weight plasmid DNA increased up to 3.6 times that of underivatized polyethylenimine in Neuro2A cells at higher molar ratio of polyethylenimine-nitrogen to DNA-phosphate (N/P) ratios. However, with luciferase-specific low molecular weight small interfering RNA in Neuro2A/EGFPLuc cells, nuclear localization signal-containing polyplexes with disulfide linkages caused substantial cytotoxicity at N/P ratios >15 and no consistent significant reduction in luciferase expression. Possible explanations for molecular weight-dependent differences in genetic information transfer by polyplexes containing disulfide-linked nuclear localization signals are discussed.

  9. Determination of dextrose equivalent value and number average molecular weight of maltodextrin by osmometry.

    PubMed

    Rong, Y; Sillick, M; Gregson, C M

    2009-01-01

    Dextrose equivalent (DE) value is the most common parameter used to characterize the molecular weight of maltodextrins. Its theoretical value is inversely proportional to number average molecular weight (M(n)), providing a theoretical basis for correlations with physical properties important to food manufacturing, such as: hygroscopicity, the glass transition temperature, and colligative properties. The use of freezing point osmometry to measure DE and M(n) was assessed. Measurements were made on a homologous series of malto-oligomers as well as a variety of commercially available maltodextrin products with DE values ranging from 5 to 18. Results on malto-oligomer samples confirmed that freezing point osmometry provided a linear response with number average molecular weight. However, noncarbohydrate species in some commercial maltodextrin products were found to be in high enough concentration to interfere appreciably with DE measurement. Energy dispersive spectroscopy showed that sodium and chloride were the major ions present in most commercial samples. Osmolality was successfully corrected using conductivity measurements to estimate ion concentrations. The conductivity correction factor appeared to be dependent on the concentration of maltodextrin. Equations were developed to calculate corrected values of DE and M(n) based on measurements of osmolality, conductivity, and maltodextrin concentration. This study builds upon previously reported results through the identification of the major interfering ions and provides an osmolality correction factor that successfully accounts for the influence of maltodextrin concentration on the conductivity measurement. The resulting technique was found to be rapid, robust, and required no reagents.

  10. Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography.

    PubMed

    Saravanan, R; Shanmugam, A

    2010-03-01

    The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500-7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.

  11. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1).

  12. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.

    PubMed

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  13. Post-translational modification and stability of low molecular weight cyclin E.

    PubMed

    Mull, B B; Cox, J; Bui, T; Keyomarsi, K

    2009-09-01

    Our laboratory has previously described the presence of five tumor-specific low molecular weight isoforms of cyclin E in both tumor cell lines and breast cancer patient biopsies. We have also shown that one of these low forms arises from an alternate start site, whereas the other four appear as two sets of doublets following cleavage through an elastase-like enzyme. However, the origin of both sets of doublets was unknown. Here, we demonstrate that the larger isoform of each doublet is the result of phosphorylation at a key degradation site. Through site-directed mutagenesis of different phosphorylation sites within the cyclin E protein, we discovered that phosphorylation of threonine 395 is responsible for generating the larger isoform of each doublet. Because phosphorylation of threonine 395 has been linked to the proteasome-mediated degradation of full length cyclin E, we examined the stability of T395A phospho-mutants in both non-tumorigenic mammary epithelial cells and tumor cells. The results revealed that the low molecular weight isoforms appear to be stable in both a tumor cell line and a non-tumor forming cell line regardless of the presence of this critical phosphorylation site. The stability of low molecular weight cyclin E may have implications for both tumorigenesis and treatment of tumors expressing them.

  14. Self-assembly of high molecular weight polypeptide copolymers studied via diffusion limited aggregation.

    PubMed

    Meier, Christoph; Wu, Yuzhou; Pramanik, Goutam; Weil, Tanja

    2014-01-13

    The assembly of high molecular weight polypeptides into complex architectures exhibiting structural complexity ranging from the nano- to the mesoscale is of fundamental importance for various protein-related diseases but also hold great promise for various nano- and biotechnological applications. Here, the aggregation of partially unfolded high molecular weight polypeptides into multiscale fractal structures is investigated by means of diffusion limited aggregation and atomic force microscopy. The zeta potential, the hydrodynamic radius, and the obtained fractal morphologies were correlated with the conformation of the polypeptide backbones as obtained from circular dichroism measurements. The polypeptides are modified with polyethylene oxide side chains to stabilize the polypeptides and to normalize intermolecular interactions. The modification with the hydrophobic thioctic acid alters the folding of the polypeptide backbone, resulting in a change in solution aggregation and fractal morphology. We found that a more compact folding results in dense and highly branched structures, whereas a less compact folded polypeptide chain yields a more directional assembly. Our results provide first evidence for the role of compactness of polypeptide folding on aggregation. Furthermore, the mesoscale-structured biofilms were used to achieve a hierarchical protein assembly, which is demonstrated by deposition of Rhodamine-labeled HSA with the preassembled fractal structures. These results contribute important insights to the fundamental understanding of the aggregation of high molecular weight polypeptides in general and provide opportunities to study nanostructure-related effects on biological systems such as adhesion, proliferation, and the development of, for example, neuronal cells.

  15. Synthesis, characterization and in situ intestinal absorption of different molecular weight scutellarin-PEG conjugates.

    PubMed

    Zhou, Qingsong; Jiang, Xuehua; Li, Kejia; Fan, Xingxing

    2006-08-01

    Highly water soluble esters of scutellarin with different molecular weight polyethylene glycol (PEG) were synthesized. The physicochemical properties, the stabilities under different conditions and the in situ intestinal absorption of the conjugates in rats were investigated. By PEG modification, greatly increased water solubility and a desirable partition coefficient were obtained. These compounds act as prodrugs i.e. breakdown occurrs in a predictable fashion: in vitro, the t1/2 of them in PBS buffer at pH 7.4 was above 12 h (37 degrees C), while in plasma a more rapid breakdown was observed (t1/2 1.5-3 h). PEGylation could enhance the absorption of scutellarin in rat intestine, and scutellarin, its PEG conjugates are absorbed through intestine mainly via passive transport. When the molecular weight of PEG increased from 200 to 1000 Da, the absorption of the conjugates decreased accordingly. The range of PEG molecular weight used for the PEGylation of scutellarin was about 400-1000 Da based on considerations of the yield, the stability and the absorption.

  16. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  17. Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers.

    PubMed

    Fernández, Jorge; Amestoy, Hegoi; Sardon, Haritz; Aguirre, Miren; Varga, Aitor Larrañaga; Sarasua, Jose-Ramon

    2016-12-01

    Poly(ethylene brassylate) (PEB) is a biodegradable polyester that nowadays is of particular interest owing to its poly(ε-caprolactone)-like properties (with a Tg at -30°C and a Tm at 70°C) and the low-cost of its monomer. However, it is not simple to achieve high molar masses with conventional catalysts. In this work, high molar mass PEBs, characterized by SEC-MALS, were successfully synthesized using triphenyl bismuth (Ph3Bi) as catalyst. Then, with the aim of evaluating the impact of the molecular weight on the physical properties, several PEBs ranging from 27 to 247kgmol(-1) were prepared. It was demonstrated that above a Mw of 90Kgmol(-1), PEB behaved in a constant manner. PEBs with lower molecular weight (<46Kgmol(-1)) showed lower values of Tg (~(-35°C)) and presented a melting peak that was split into three or four different peaks while their crystallites started to melt earlier (at ~30°C). In addition, these PEBs were more sensitive to thermal degradation (two additional stages of degradation were observed) and, what is more important, were found to be prone to brittle fracture. As the Mw rose, the PEB samples became more ductile and those PEBs with a molecular weight above 90Kgmol(-1) possessed deformation at break values higher than 800%, secant modulus in the 296-324 range and ultimate tensile strength of >20MPa.

  18. Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components.

    PubMed

    Wang, MingYi; Yao, Lei; Zheng, Jun; Wang, XinKe; Chen, JianMin; Yang, Xin; Worsnop, Douglas R; Donahue, Neil M; Wang, Lin

    2016-06-01

    Aging of organic aerosol particles is one of the most poorly understood topics in atmospheric aerosol research. Here, we used an aerosol flow tube together with an iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS) to investigate heterogeneous ozonolysis of oleic acid (OL), developing a comprehensive oxidation mechanism with observed products. In addition to the well-known first-generation C9 products including nonanal, nonanoic acid, azelaic acid, and 9-oxononanoic acid, the iodide-adduct chemical ionization permitted unambiguous determination of a large number of high-molecular-weight particulate products up to 670 Da with minimum amounts of fragmentation. These high-molecular-weight products are characterized by a fairly uniform carbon oxidation state but stepwise addition of a carbon backbone moiety, and hence continuous decrease in the volatility. Our results demonstrate that heterogeneous oxidation of organic aerosols has a significant effect on the physiochemical properties of organic aerosols and that reactions of particulate SCIs from ozonolysis of an unsaturated particulate species represent a previously underappreciated mechanism that lead to formation of high-molecular-weight particulate products that are stable under typical atmospheric conditions.

  19. Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers.

    PubMed

    Fernández, Jorge; Amestoy, Hegoi; Sardon, Haritz; Aguirre, Miren; Varga, Aitor Larrañaga; Sarasua, Jose-Ramon

    2016-12-01

    Poly(ethylene brassylate) (PEB) is a biodegradable polyester that nowadays is of particular interest owing to its poly(ε-caprolactone)-like properties (with a Tg at -30°C and a Tm at 70°C) and the low-cost of its monomer. However, it is not simple to achieve high molar masses with conventional catalysts. In this work, high molar mass PEBs, characterized by SEC-MALS, were successfully synthesized using triphenyl bismuth (Ph3Bi) as catalyst. Then, with the aim of evaluating the impact of the molecular weight on the physical properties, several PEBs ranging from 27 to 247kgmol(-1) were prepared. It was demonstrated that above a Mw of 90Kgmol(-1), PEB behaved in a constant manner. PEBs with lower molecular weight (<46Kgmol(-1)) showed lower values of Tg (~(-35°C)) and presented a melting peak that was split into three or four different peaks while their crystallites started to melt earlier (at ~30°C). In addition, these PEBs were more sensitive to thermal degradation (two additional stages of degradation were observed) and, what is more important, were found to be prone to brittle fracture. As the Mw rose, the PEB samples became more ductile and those PEBs with a molecular weight above 90Kgmol(-1) possessed deformation at break values higher than 800%, secant modulus in the 296-324 range and ultimate tensile strength of >20MPa. PMID:27517665

  20. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  1. Melt rheology and molecular weight degradation of amylopectin during multiple pass extrusion of starch

    SciTech Connect

    Willett, J.L.; Millard, M.M.; Jasberg, B.K.

    1996-12-31

    The degradation of starch during extrusion and the role of specific mechanical energy (SME) in this process have been widely studied for single pass extrusion, Multiple extrusion histories are not uncommon in the plastics industry, but little if any has been reported on their effects on starch. Native waxy maize starch (app. 98% amylopectin) was initially converted to a thermoplastic by twin screw extrusion. This extrudate was equilibrated to either 18% or 23% moisture content, and subsequently re-extruded in a single screw extruder (3:1 compression screw) at 110{degrees}C or 130{degrees}C. Melt viscosity data were calculated using the output-pressure data from the second pass. The melts exhibited shear thinning behavior; the power law index increased with temperature, and slightly with moisture content. Molecular weights of selected second-pass extrudates, as well as the native starch and the first-pass extrudate, were measured by light scattering in dimethyl sulfoxide/water. The initial extrusion pass reduced the molecular weight from 300 million to 50 million. Molecular weight reductions in the second pass increased with increasing SME. A first order expression was shown to fit the MW-SME data with a correlation coefficient of 0.91. Implications of the degradation on extrusion processing of starch and the use of single screw extruders for rheological characterization will be discussed.

  2. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    PubMed Central

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  3. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    PubMed

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  4. Molecular Pathways: Resistance to Kinase Inhibitors and Implications for Therapeutic Strategies

    PubMed Central

    Lovly, Christine M.; Shaw, Alice T.

    2014-01-01

    The development of targeted therapies has revolutionized the treatment of cancer patients. The identification of ‘druggable’ oncogenic kinases and the creation of small molecule inhibitors designed to specifically target these mutant kinases has become an important therapeutic paradigm across several different malignancies. Often these inhibitors induce dramatic clinical responses in molecularly defined cohorts. However, resistance to such targeted therapies is an inevitable consequence of this therapeutic approach. Resistance can be either primary (de novo) or acquired. Mechanisms leading to primary resistance may be categorized as tumor intrinsic factors or as patient/drug specific factors. Acquired resistance may be mediated by target gene modification, activation of ‘bypass tracks’ which serve as compensatory signaling loops, or histological transformation. This brief review is a snapshot of the complex problem of therapeutic resistance, with a focus on resistance to kinase inhibitors in EGFR mutant and ALK rearranged non-small cell lung cancer, BRAF mutant melanoma, and BCR-ABL positive chronic myeloid leukemia. We will describe specific mechanisms of primary and acquired resistance and then review emerging strategies to delay or overcome drug resistance. PMID:24789032

  5. A review on ROCK-II inhibitors: From molecular modelling to synthesis.

    PubMed

    Shah, Surmil; Savjani, Jignasa

    2016-05-15

    Rho kinase enzyme expressed in different disease conditions and involved in mediating vasoconstriction and vascular remodeling in the pathogenesis. There are two isoforms of Rho kinases, namely ROCK I and ROCK II, responsible for different physiological function due to difference in distribution, but almost similar in structure. The Rho kinase 2 belongs to AGC family and is widely distributed in brain, heart and muscles. It is responsible for contraction of vascular smooth muscles by calcium sensitization. Its defective and unwanted expression can lead to many medical conditions like multiple sclerosis, myocardial ischemia, inflammatory responses, etc. Many Rho kinase 1 and 2 inhibitors have been designed for Rho/Rho kinase pathway by use of molecular modeling studies. Most of the designed compounds have been modeled based on ROCK 1 enzyme. This article is focused on Rho kinase 2 inhibitors as there are many ways to improvise by use of Computer aided drug designing as very less quantum of research work carried out. Herein, the article highlights different stages of designing like docking, SAR and synthesis of ROCK inhibitors and recent advances. It also highlights future prospective to improve the activity.

  6. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  7. High-molecular weight protein toxins of marine invertebrates and their elaborate modes of action.

    PubMed

    Butzke, Daniel; Luch, Andreas

    2010-01-01

    High-molecular weight protein toxins significantly contribute to envenomations by certain marine invertebrates, e.g., jellyfish and fire corals. Toxic proteins frequently evolved from enzymes meant to be employed primarily for digestive purposes. The cellular intermediates produced by such enzymatic activity, e.g., reactive oxygen species or lysophospholipids, rapidly and effectively mediate cell death by disrupting cellular integrity. Membrane integrity may also be disrupted by pore-forming toxins that do not exert inherent enzymatic activity. When targeted to specific pharmacologically relevant sites in tissues or cells of the natural enemy or prey, toxic enzymes or pore-forming toxins even may provoke fast and severe systemic reactions. Since toxin-encoding genes constitute "hot spots" of molecular evolution, continuous variation and acquirement of new pharmacological properties are guaranteed. This also makes individual properties and specificities of complex proteinaceous venoms highly diverse and inconstant. In the present chapter we portray high-molecular weight constituents of venoms present in box jellyfish, sea anemones, sea hares, fire corals and the crown-of-thorns starfish. The focus lies on the latest achievements in the attempt to elucidate their molecular modes of action. PMID:20358685

  8. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.

    PubMed

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-12-14

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.

  9. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.

    PubMed

    Kumar, Rajender; Garg, Prabha; Bharatam, P V

    2015-01-01

    Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand-enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6 Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.

  10. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    PubMed Central

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to

  11. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  12. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  13. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis.

  14. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  15. Exploring the Molecular Basis of Qo bc1 Complex Inhibitors Activity to Find Novel Antimalarials Hits.

    PubMed

    Carrasco, Marta P; Gut, Jiri; Rodrigues, Tiago; Ribeiro, Maria H L; Lopes, Francisca; Rosenthal, Philip J; Moreira, Rui; Dos Santos, Daniel J V A

    2013-07-01

    Cytochrome bc1 complex is a crucial element in the mitochondrial respiratory chain, being indispensable for the survival of several species of Plasmodia that cause malaria and, therefore, it is a promising target for antimalarial drug development. We report a molecular docking study building on the most recently obtained X-ray structure of the Saccharomyces cerevisiae bc1 complex (PDB code: 3CX5) using several reported inhibitors with experimentally determined IC50 values against the Plasmodium falciparum bc1 complex. We produced a molecular docking model that correlated the calculated binding free energy with the experimental inhibitory activity of each compound. This Qo model was used to search the drug-like database included in the MOE package for novel potential bc1 complex inhibitors. Twenty three compounds were chosen to be tested for their antimalarial activity and four of these compounds demonstrated activity against the chloroquine-resistant W2 strain of P. falciparum. The most active compounds were also active against the atovaquone-resistant P. falciparum FCR3 strain and S. cerevisiae. Our study suggests the validity of the yeast bc1 complex structure as a model for the discovery of new antimalarial hits.

  16. Molecular dynamics and Monte Carlo simulations for protein–ligand binding and inhibitor design☆

    PubMed Central

    Cole, Daniel J.; Tirado-Rives, Julian; Jorgensen, William L.

    2014-01-01

    Background Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. Methods Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein–ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. Results Predictions of protein–ligand binding modes are very consistent for the two simulation methods, which are attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. Conclusions Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. General significance Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled “Recent developments of molecular dynamics”. PMID:25196360

  17. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2016-01-01

    Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis. PMID:27110097

  18. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  19. Sialyltransferase inhibitors: consideration of molecular shape and charge/hydrophobic interactions.

    PubMed

    Kumar, Rishi; Nasi, Ravindranath; Bhasin, Milan; Huan Khieu, Nam; Hsieh, Margaret; Gilbert, Michel; Jarrell, Harold; Zou, Wei; Jennings, Harold J

    2013-08-30

    In order to evaluate the importance of molecular shape of inhibitor molecules and the charge/H-bond and hydrophobic interactions, we synthesized three types of molecules and tested them against a sialyltransferase. The first type of compounds were designed as substrate mimics in which the phosphate in CMP-Neu5NAc was replaced by a non-hydrolysable, uncharged 1,2,3-triazole moiety. The second type of compound contained a 2-deoxy-2,3-dehydro-acetylneuraminic moiety which was linked to cytidine through its carboxylic acid and amide linkers. In the third type of compound the sialyl phosphate was substituted by an aryl sulfonamide which was then linked to cytidine. Inhibition study of these cytidine conjugates against Campylobacter jejuni sialyltransferase Cst 06 showed that the first type of molecules are competitive inhibitors, whereas the other two could only inhibit the enzyme non-competitively. The results indicate that although the binding specificity may be guided by molecular shape and H-bond interaction, the charge and hydrophobic interactions contributed most to the binding affinity.

  20. [Low-molecular cytolysins and trypsin inhibitors from sea anemone Radianthus macrodactylus. Isolation and partial characterization].

    PubMed

    Zykova, T A; Monastyrnaia, M M; Apalikova, O V; Shvets, T V; Kozlovskaia, E P

    1998-07-01

    Two low-molecular cytolytic toxins (RmI and RmII) and four trypsin inhibitors were isolated from the aqueous extract of sea anemone Radianthus macrodactylus. The method of isolation involved precipitation with acetone, gel filtration on acrylex P-4, ion-exchange chromatography on CM-32 cellulose, affinity chromatography on trypsin-binding sepharose 4B, ion exchange chromatography on an Ultrapore TSK CM-3SW column, and reversed phase HPLC on a Silasorb C18 column. RmI, RmII, and JnI inhibitor displayed molecular masses 5100, 6100, and 7100 Da, respectively, when subjected to SDS-PAGE. The isoelectric points were 9.2 and 9.3 for RmI and RmII, respectively. The amino acid composition and N-terminal amino acid residue (glycine) were determined for RmI, RmII, and JnI. Both proteins were nontoxic to mice and crabs. Hemolytic activity was determined to be 25 and 20 HU/mg for RmI and RmII, respectively, and their action on erythrocyte membrane was not inhibited by exogenous sphingomyelin. RmI and RmII exhibited antihistamine activity.

  1. A molecular-beacon-based screen for small molecule inhibitors of miRNA maturation.

    PubMed

    Bose, Debojit; Jayaraj, Gopal Gunanathan; Kumar, Santosh; Maiti, Souvik

    2013-05-17

    miRNAs are small non-coding RNAs that regulate about 60% of mammalian genes by modulating their transcript levels. Network scale studies of miRNA-mediated regulatory circuits demonstrate the central importance of this class of small RNA in the maintenance of biological robustness. More recently, several reports have described the deregulation of numerous miRNA to be causally associated with many diseases, including cancer. These studies have highlighted the potential for development of therapeutic modalities against miRNA. Previous screening protocols, for small molecules targeting miRNA function, are either costly or technically too complex to be applied in a high-throughput manner in standard chemical laboratories. We describe a simple in vitro screening method using a DNA-based molecular beacon that overcomes the limitations associated with earlier screens. We used this method to identify inhibitors of miR-27a function from a library of 14 aminoglycosides as a pilot study. Inhibitory molecules identified were further scrutinized to identify the validity of screen. With this proof of concept we illustrate the utility of a scalable molecular-beacon-based screening strategy for miRNA inhibitors.

  2. Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism.

    PubMed

    Chen, Xiao-Xin; Shi, Yan; Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents.

  3. The influence of FGF2 high molecular weight (HMW) isoforms in the development of cardiac ischemia-reperfusion injury

    PubMed Central

    Liao, Siyun; Bodmer, Janet R.; Azhar, Mohamad; Newman, Gilbert; Coffin, J. Douglas; Doetschman, Thomas; Schultz, Jo El J.

    2010-01-01

    Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low [LMW] and high molecular weight [HMW]), which are localized to different cellular compartments, indicating unique biological activity. We previously showed that the LMW isoform is important in protecting the heart from myocardial dysfunction associated with ischemia-reperfusion (I/R) injury, but the roles of the HMW isoforms remain unknown. To elucidate the role of HMW isoforms in I/R and cardioprotection, hearts from novel mouse models,in which the murine FGF2 HMWs are knocked out (HMWKO) or the human FGF2 24 kDa HMW isoform is overexpressed (HMW Tg) and their wildtype (Wt) or non-transgenic (NTg) cohorts were subjected to an ex vivo work-performing heart model of I/R. There was a significant improvement in post-ischemic recovery of cardiac function in HMWKO hearts (76±5%, p<0.05) compared to Wt hearts (55±5%), with a corresponding decrease in HMW Tg function (line 20: 38±6% and line 28: 33±4%, p<0.05) compared to non-transgenic hearts (68±9%). FGF2 LMW isoform was secreted from Wt and HMWKO hearts during I/R, and a FGF receptor (FGFR) inhibitor, PD173074 caused a decrease in cardiac function when administered in I/R in Wt and FGF2 HMWKO hearts (p<0.05), indicating that FGFR is involved in FGF2 LMW isoform's biological effect in ischemia-reperfusion injury. Moreover, overexpression of HMW isoform reduced FGFR1 phosphorylation/activation with no further decrease in the phosphorylation state in the presence of the FGFR inhibitor. Overall, our data indicate that HMW isoforms have a detrimental role in the development of post-ischemic myocardial dysfunction. PMID:20116383

  4. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    SciTech Connect

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to the DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.

  5. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGES

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  6. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data.

    PubMed

    González-Andrade, Martin; Rodríguez-Sotres, Rogelio; Madariaga-Mazón, Abraham; Rivera-Chávez, José; Mata, Rachel; Sosa-Peinado, Alejandro; Del Pozo-Yauner, Luis; Arias-Olguín, Imilla I

    2016-01-01

    In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.

  7. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica

    PubMed Central

    Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.

    2015-01-01

    Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed

  8. On-demand degrafting and the study of molecular weight and grafting density of poly(methyl methacrylate) brushes on flat silica substrates.

    PubMed

    Patil, Rohan R; Turgman-Cohen, Salomon; Šrogl, Jiří; Kiserow, Douglas; Genzer, Jan

    2015-03-01

    We report on degrafting of surface-anchored poly(methyl methacrylate) (PMMA) brushes from flat silica-based substrates using tetrabutylammonium fluoride (TBAF) and determining their molecular weight distribution (MWD) using size exclusion chromatography (SEC). The grafted PMMA layer was synthesized using surface-initiated atom transfer radical polymerization (SI-ATRP) of MMA for polymerization times ranging from 6 to 24 h. X-ray photoelectron spectroscopy, ellipsometry, and time-of-flight secondary ion mass spectrometry were employed in tandem to characterize the degrafting process. The SEC eluograms were fit to various polymer distributions, namely Zimm-Schulz, ATRP in continuous stirred tank reactor, Wesslau, Schulz-Flory, and Smith et al. The ATRP model gives the best fit to the experimental data. The dry PMMA brush thickness and the number-average molecular weight (obtained from the MWD) suggest that the grafting density of the PMMA grafts is independent of polymerization time, indicating well-controlled/living growth of MMA. The observed polydispersity index (PDI) was higher than that generally observed in bulk grown polymers under similar conditions, indicating an effect due to chain confinement and crowding. We detect small but noticeable dependence of the polymer brush grafting density on the inhibitor/catalyst ratio. Higher inhibitor/catalyst ratio offers better control with lower early terminations, which results in a small increase in the apparent grafting density of the chains.

  9. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer's Disorders Using Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066

  10. Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates.

    PubMed

    Numata, Keiji; Finne-Wistrand, Anna; Albertsson, Ann-Christine; Doi, Yoshiharu; Abe, Hideki

    2008-08-01

    The influences of the stereochemical structure, the molecular weight, and the number of molecular branches for poly(lactide) (PLA) on enzymatic hydrolysis rates of PLA monolayers were studied by atomic force microscopy (AFM) and the Langmuir-Blodgett (LB) technique. Monolayers of six kinds of PLA with different molecular weights, stereochemical structure, and numbers of molecular branches were prepared by LB techniques and then characterized by AFM in air. The PLA molecules covered homogeneously with a silicon substrate and did not form lamellar crystals in the monolayer. We determined the initial hydrolysis rate of PLA monolayers in presence of proteinase K by volumetric analysis from the continuous AFM height images. The presence of D-lactyl unit reduced the hydrolysis rate of the monolayer. The hydrolysis rate for the linear PLLA samples increased with a decrease in the molecular weight. In contrast, the rates of erosion for branched PLLA monolayers were independent of the molecular weight of samples. The erosion rate of branched PLLA monolayers was found to be dependent on the average molecular weight of PLLA segment in branched molecules, not on the overall molecular weight of samples. From these results, furthermore, the hydrolysis mode of PLAs by proteinase K is discussed.

  11. Immunolocalization and molecular properties of a high molecular weight microtubule-bundling protein (syncolin) from chicken erythrocytes

    PubMed Central

    1991-01-01

    A protein of apparent molecular weight 280,000 (syncolin), which is immunoreactive with antibodies to hog brain microtubule-associated protein (MAP) 2, was purified from chicken erythrocytes. Immunofluorescence microscopy of bone marrow cells revealed the presence of syncolin in cells at all stages of erythrocyte differentiation. In early erythroblasts syncolin was diffusely distributed throughout the cytoplasm. At later stages it was found along microtubules of the marginal band, as confirmed by immunoelectron microscopy. The association of syncolin with the marginal band was dependent on the integrity of microtubules, as demonstrated by temperature-dependent de- and repolymerization or marginal band microtubules. Syncolin cosedimented in a saturable manner with microtubules assembled in vitro, and it was displaced from the polymer by salt. Brain as well as erythrocyte microtubules, reconstituted with taxol from MAP-free tubulin and purified syncolin, were aggregated into dense bundles containing up to 15 microtubules, as determined by electron microscopy. On the ultrastructural level, syncolin molecules were visualized as globular or ringlike structures, in contrast to the thin, threadlike appearance of filamentous MAPs, such as brain MAP 2. According to ultrastructural measurements and gel permeation chromatography, syncolin's molecular weight was approximately 1 x 10(6). It is suggested that syncolin's specific function is the cross- linking of microtubules in the marginal band and, by implication, the stabilization of this structure typical for nucleated (chicken) erythrocytes. PMID:1993737

  12. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    PubMed Central

    Soeiro, Vinicius C.; Melo, Karoline R. T.; Alves, Monique G. C. F.; Medeiros, Mayara J. C.; Grilo, Maria L. P. M.; Almeida-Lima, Jailma; Pontes, Daniel L.; Costa, Leandro S.; Rocha, Hugo A. O.

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  13. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential.

    PubMed

    Soeiro, Vinicius C; Melo, Karoline R T; Alves, Monique G C F; Medeiros, Mayara J C; Grilo, Maria L P M; Almeida-Lima, Jailma; Pontes, Daniel L; Costa, Leandro S; Rocha, Hugo A O

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  14. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  15. A dual labelling method for measuring uptake of low molecular weight compounds into the pathogenic yeast Candida albicans.

    PubMed

    Ziegelbauer, K

    1998-10-01

    In contrast to other eukaryotic cells the pathogenic yeast Candida albicans is resistant to many structurally unrelated metabolic inhibitors. Reduced permeability due to the cell wall and/or altered plasma membrane composition is thought to be at least partly responsible for this phenomenon. To study the uptake of low molecular weight compounds into C. albicans we developed a dual labelling method. Intact cells, metabolically inactivated cells, spheroplasts or membrane fragments of C. albicans were incubated with various [14C]-labelled compound in the presence of [3H]-labelled water. After separation of cells and supernatant isotope ratios [3H]/[14C] were determined. Quotients of the isotope ratios from cells and supernatant, called enrichment coefficients, were calculated under all four conditions. The enrichment coefficients indicated whether a compound can enter C. albicans cells, is trapped within the cell wall, is enriched in the lipophilic membrane compartment, is actively accumulated or actively exported by multidrug resistance carriers. We used six structurally unrelated compounds to test our method. We found no evidence for a general impermeability of C. albicans.

  16. Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening.

    PubMed

    Wang, Yan; Law, Wai-Kit; Hu, Jian-Shu; Lin, Huang-Quan; Ip, Tsz-Ming; Wan, David Chi-Cheong

    2014-11-24

    We first identified fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin as inhibitors of fatty acid binding protein 4 using molecular docking screening from FDA-approved drugs. Subsequently, the biochemical characterizations showed that levofloxacin directly inhibited FABP4 activity in both the in vitro ligand displacement assay and cell-based function assay. Furthermore, levofloxacin did not induce adipogenesis in adipocytes, which is the major adverse effect of FABP4 inhibitors.

  17. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    SciTech Connect

    Mai, Binh Khanh; Li, Mai Suan

    2011-07-08

    Highlights: {yields} We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. {yields} It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. {yields} We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. {yields} The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  18. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    PubMed

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  19. Sensor Based on Aptamer Folding to Detect Low-Molecular Weight Analytes.

    PubMed

    Osypova, Alina; Thakar, Dhruv; Dejeu, Jérôme; Bonnet, Hugues; Van der Heyden, Angéline; Dubacheva, Galina V; Richter, Ralf P; Defrancq, Eric; Spinelli, Nicolas; Coche-Guérente, Liliane; Labbé, Pierre

    2015-08-01

    Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D. PMID:26122480

  20. Determination of the low molecular weight fraction of food-grade carrageenans.

    PubMed

    Spichtig, Véronique; Austin, Sean

    2008-01-01

    Recently there has been some debate regarding the presence and associated health risk of low molecular weight carrageenan in foodstuffs. Unfortunately measurement of the low molecular weight tail (LMT) of food-grade carrageenans (defined here as the carrageenan having relative molecular mass (Mr) below 50,000) is not trivial, largely due to its low abundance. So far methods employing light scattering have been unsuccessful in producing reproducible results, probably due to the poor detector response at low masses. In this work a method based on high performance size exclusion chromatography coupled to a refractive index detector (HPSEC-RI) has been used for the measurement of the LMT in food-grade carrageenan ingredients and in a carrageenan-containing finished product (a jelly). Over the course of half a year, 19 measurements were made on a reference carrageenan; the results demonstrated that the method had excellent reproducibility. Applied to a number of different carrageenan ingredients, it was found that, in general, the LMT represents less than 8% of the total carrageenan in ingredients, and under the correct conditions increases little during food processing. The data also indicated that pH appears to be a critical factor during food processing and pH levels below 4.0 should be avoided.

  1. Green Synthesis of Silver Nanoparticles: Effect of Dextran Molecular Weight Used as Stabilizing-Reducing Agent.

    PubMed

    Carré-Rangel, Luceldi; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-12-01

    This paper describes an easy green chemistry method for the synthesis of silver nanoparticles (AgNPs). The AgNPs were obtained through the use of an aqueous silver nitrate solution (AgNO3), with dextrans aqueous solutions of different molecular weights acting as stabilizing and reducing agent, employing the chemical reduction method. We made a comparative study to determine which molecular weight dextran was the best stabilizing and reducing agent, and it was found that the molecular size of the stabilizing agent is inversely proportional to the size of the nanoparticle synthesized. The formation of the AgNPs was demonstrated by UV-Vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS analysis shows the formation of particles with dendritic structure. TEM shows nanoparticles which are spherical in shape and 1-10 nm in size; also, the clear lattice fringes show highly crystalline AgNPs (FCC). PMID:26682423

  2. Sensor Based on Aptamer Folding to Detect Low-Molecular Weight Analytes.

    PubMed

    Osypova, Alina; Thakar, Dhruv; Dejeu, Jérôme; Bonnet, Hugues; Van der Heyden, Angéline; Dubacheva, Galina V; Richter, Ralf P; Defrancq, Eric; Spinelli, Nicolas; Coche-Guérente, Liliane; Labbé, Pierre

    2015-08-01

    Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D.

  3. Metastable region of phase diagram: optimum parameter range for processing ultrahigh molecular weight polyethylene blends.

    PubMed

    Gai, Jing-Gang; Zuo, Yuan

    2012-06-01

    Numerous studies suggest that two-phase morphology and thick interface are separately beneficial to the viscosity reduction and mechanical property maintainence of the matrix when normal molecular weight polymer (NMWP) is used for modification of ultrahigh molecular weight polyethylene (UHMWPE). Nevertheless, it is very difficult to obtain a UHMWPE/NMWP blend which may demonstrate both two-phase morphology and thick interface. In this work, dissipative particle dynamics simulations and Flory-Huggins theory are applied in predicting the optimum NMWP and the corresponding conditions, wherein the melt flowability of UHMWPE can be improved while its mechanical properties can also be retained. As is indicated by dissipative particle dynamics simulations and phase diagram calculated from Flory-Huggins theory, too small Flory-Huggins interaction parameter (χ) and molecular chain length of NMWP (N(NMWP)) may lead to the formation of a homogeneous phase, whereas very large interfacial tension and thin interfaces might also appear when parameters N(NMWP) and χ are too large. When these parameters are located in the metastable region of the phase diagram, however, two-phase morphology occurs and interfaces of the blends are extremely thick. Therefore, metastable state is found to be advisable for both the viscosity reduction and mechanical property improvement of the UHMWPE/NMWP blends.

  4. Molecular Size and Weight of Asphaltene and Asphaltene Solubility Fractions from Coals, Crude Oils and Bitumen

    SciTech Connect

    Badre,S.; Goncalves, C.; Norinaga, K.; Gustavson, G.; Mullins, O.

    2005-01-01

    The molecular weight of asphaltenes has been a controversy for several decades. In recent years, several techniques have converged on the size of the fused ring system; indicating that chromophores in virgin crude oil asphaltenes typically have 4-10 fused rings. Consequently, the molecular weight debate is equivalent to determining whether asphaltenes are monomeric (one fused-ring system per molecule) or whether they are polymeric. Time-resolved fluorescence depolarization (FD) is employed here to interrogate the absolute size of asphaltene molecules and to determine the relation of the size of the fused ring system to that of the corresponding molecule. Coal, petroleum and bitumen asphaltenes are compared. Molecular size of coal asphaltenes obtained here by FD-determined rotational diffusion match closely with Taylor-dispersion-derived translational diffusion measurements with UV absorption. Coal asphaltenes are smaller than petroleum asphaltenes. N-methyl pyrrolidinone (NMP) soluble and insoluble fractions are examined. NMP soluble and insoluble fractions of asphaltenes are monomeric. It is suggested that the 'giant' asphaltene molecules reported from SEC studies using NMP as the eluting solvent may actually be the expected flocs of asphaltene which are not soluble in NMP. Data is presented that intramolecular electronic relaxation in asphaltenes does not perturb FD results.

  5. Screening of commercial cyclic peptide as inhibitor NS5 methyltransferase of Dengue virus through Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Tambunan, Usman Sumo Friend; Zahroh, Hilyatuz; Utomo, Bimo Budi; Parikesit, Arli Aditya

    2014-01-01

    Dengue has become a major global health threat, especially in tropical and subtropical regions. The development of antiviral agent targeting viral replication is really needed at this time. NS5 methyltransferase presents as a novel antiviral target. This enzyme plays an important role in the methylation of 5'-cap mRNA. Inhibition of the NS5 methyltransferase could inhibit dengue virus replication. In this research, two sites of NS5 methyltransferase (S-Adenosyl methionine/SAM binding site and RNA-cap site) were used as targets for inhibition. As much as 300 commercial cyclic peptides were screened to these target sites by means of molecular docking. Analysis of ligand-enzyme binding free energy and pharmacological prediction revealed two best ligands, namely [Tyr123] Prepro Endothelin (110-130), amide, human and Urotensin II, human. According to molecular dynamic simulation, both ligands maintain a stable complex conformation between enzyme and ligand at temperature 310 K and 312 K. Hence, Urotensin II, human is more reactive at 312 K than at 310 K. However, both ligands can be used as potential inhibitor candidates against NS5 methyltransferase of dengue virus with Urotensin II, human exposes more promising activity at 312 K. PMID:24516322

  6. Human brain tumor-associated urinary high molecular weight transforming growth factor: a high molecular weight form of epidermal growth factor.

    PubMed

    Stromberg, K; Hudgins, W R; Dorman, L S; Henderson, L E; Sowder, R C; Sherrell, B J; Mount, C D; Orth, D N

    1987-02-15

    Urinary protein obtained from a patient with a highly malignant brain tumor (astrocytoma, grade IV) was adsorbed to trimethylsilyl controlled-pore glass beads and selectively eluted with acetonitrile to yield a high molecular weight (HMW) human transforming growth factor (hTGF). This HMW hTGF promoted clonogenic cell growth in soft agar and competed for membrane receptors with mouse epidermal growth factor. After surgical resection of the tumor, no HMW hTGF was found in urine. HMW hTGF generated a human EGF (hEGF) radioimmunoassay competitive binding curve similar to that of hEGF and parallel to that of a highly purified HMW form of hEGF previously reported to be present in trace concentrations in normal human urine. Both hEGF and HMW hEGF were clonogenic in soft agar, and their clonogenic activity as well as that of HMW hTGF was inhibited by anti-hEGF serum. Both HMW hTGF and HMW hEGF had 20 to 25% of the radioreceptor binding activity of hEGF. HMW hTGF purified from the pooled urine of several patients with malignant astrocytomas and HMW hEGF purified from normal control urine comigrated at Mr 33,000. Thus, HMW hTGF was indistinguishable from HMW hEGF in terms of apparent molecular size, epidermal growth factor receptor binding activity, epidermal growth factor immunoreactivity, and clonogenic activity. Urinary HMW hEGF/hTGF may be of tumor cell origin or may represent a response of normal host tissues to the tumor or its products.

  7. A New Class of Molecular Targeted Radioprotectors: GSK-3beta Inhibitors

    SciTech Connect

    Thotala, Dinesh K.; Geng Ling; Dickey, Amy K.; Hallahan, Dennis E.; Yazlovitskaya, Eugenia M.

    2010-02-01

    Purpose: Development of new treatments is critical to effective protection against radiation-induced injury. We investigate the potential of developing small-molecule inhibitors of glycogen synthase kinase 3beta (GSK-3beta)-SB216763 or SB415286-as radioprotective agents to attenuate intestinal injury. Methods and Materials: A survival study was done by use of C57BL/6J mice to evaluate the radioprotective effect of GSK-3beta inhibitors. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and immunohistochemical staining for Bax and Bcl-2 were used to assess apoptosis in the small intestines of the treated mice. A clonogenic survival study, apoptosis assays (staining with annexin V or 4',6-diamidino-2-phenylindole), and immunoblot analysis of beta-catenin, Bcl-2, Bax, and caspase 3 were done by use of Rat intestinal epithelial cell line IEC-6 cells. Results: Pretreatment with SB415286 significantly improved survival of mice irradiated with 8 and 12 Gy. Mice pretreated with SB216763 or SB415286 showed a significant reduction in TUNEL- and Bax-positive cells and an increase in Bcl-2-positive cells in intestinal crypts at 4 and/or 12 h after radiation with 4 and/or 8 Gy compared with radiation alone. Pretreatment of irradiated IEC-6 cells with GSK-3beta inhibitors significantly increased clonogenic survival compared with cells treated with radiation alone. This increase was due to the attenuation of radiation-induced apoptosis, as shown by annexin V and 4',6-diamidino-2-phenylindole assays, as well as immunoblot analysis of Bcl-2, Bax, and caspase 3. Conclusions: Glycogen synthase kinase 3beta small-molecule inhibitors protect mouse intestine from radiation-induced damage in cell culture and in vivo and improve survival of mice. Molecular mechanisms of this protection involve attenuated radiation-induced apoptosis regulated by Bcl-2, Bax, and caspase 3. Therefore GSK-3beta inhibitors reduce deleterious consequences of intestinal irradiation and

  8. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    PubMed

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure.

  9. The Role of High Molecular Weight Chains in Flow-Induced Crystallization Precursor Structures

    SciTech Connect

    Yang,L.; Somani, R.; Scis, I.; Hsiao, B.; Kolb, R.; Lohse, D.

    2006-01-01

    Flow-induced crystallization in a bimodal polyethylene blend was investigated by means of in situ shear-WAXD (wide-angle x-ray diffraction) and shear-SAXS (small-angle x-ray scattering) techniques. The blend contained a low molecular weight (M{sub w} = 50 000 g mol{sup -1} and polydispersity = 2) polyethylene copolymer matrix (MB-50k) with 2 mol% of hexene, and a nearly monodisperse high molecular weight (M{sub w} = 161 000 g mol{sup -1} and polydispersity = 1.1) hydrogenated polybutadiene component (MD-161k), which has the microstructure of an ethylene-butene copolymer with 4 mol% butene. At the experimental temperatures of 112 and 115 C, MB-50k exhibited faster crystallization kinetics and higher crystallinity due to higher chain mobility and higher ethylene content than those of the MB-50k/MD-161k blend. However, both WAXD and SAXS results indicated that the high molecular weight component (MD-161k) is responsible for the formation of more highly oriented crystals, which we relate to a shear-induced precursor scaffold. Values of the lamellar long period in all experimental runs were found to slightly decrease in the beginning of crystallization and then reached a plateau value. Vonk's method for single lamella scattering was employed to estimate the lamellar thickness in the MB-50k/MD-161k blend at high temperature (115 C), where the lamellar thickness was also found to decrease in the beginning and remained about constant afterward. Twisted lamellar structures were observed in all formed kebabs.

  10. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  11. The role of high molecular weight chains in flow-induced crystallization precursor structures

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Somani, Rajesh H.; Sics, Igors; Hsiao, Benjamin S.; Kolb, Rainer; Lohse, David

    2006-09-01

    Flow-induced crystallization in a bimodal polyethylene blend was investigated by means of in situ shear-WAXD (wide-angle x-ray diffraction) and shear-SAXS (small-angle x-ray scattering) techniques. The blend contained a low molecular weight (Mw = 50 000 g mol-1 and polydispersity = 2) polyethylene copolymer matrix (MB-50k) with 2 mol% of hexene, and a nearly monodisperse high molecular weight (Mw = 161 000 g mol-1 and polydispersity = 1.1) hydrogenated polybutadiene component (MD-161k), which has the microstructure of an ethylene-butene copolymer with 4 mol% butene. At the experimental temperatures of 112 and 115 °C, MB-50k exhibited faster crystallization kinetics and higher crystallinity due to higher chain mobility and higher ethylene content than those of the MB-50k/MD-161k blend. However, both WAXD and SAXS results indicated that the high molecular weight component (MD-161k) is responsible for the formation of more highly oriented crystals, which we relate to a shear-induced precursor scaffold. Values of the lamellar long period in all experimental runs were found to slightly decrease in the beginning of crystallization and then reached a plateau value. Vonk's method for single lamella scattering was employed to estimate the lamellar thickness in the MB-50k/MD-161k blend at high temperature (115 °C), where the lamellar thickness was also found to decrease in the beginning and remained about constant afterward. Twisted lamellar structures were observed in all formed kebabs.

  12. Isolation of a very high molecular weight polylactosamine from an ovarian cyst mucin of blood group

    SciTech Connect

    Wu, A.S.S.; Bush, C.A.

    1986-05-01

    Treatment of a blood group A active ovarian cyst mucin glycoprotein with alkaline borohydride under conditions expected to cleave-O-glycosidically linked carbohydrate chains releases a polysaccharide of average molecular weight 25,000 daltons. It contains no peptide or mannose at the 1% level and carbohydrate analysis gives fuc:galNAc:gal:glcNAc in the ratio of 1:1:2.5:2.5. The /sup 13/C and /sup 1/H NMR spectra show that the polysaccharide has non-reducing terminal side chains of the structure galNAc(..cap alpha..-1 ..-->.. 3)(fuc(..cap alpha..-1 ..-->.. 2)) gal(..beta..-1 ..-->.. 3) glcNAc (i.e. a type 1 chain). Periodate oxidation removes all the fucose and galNAc from the non-reducing terminal but leaves intact the backbone composed of ..beta..-linked gal and glcNAc as would be expected for a polylactosamine. They conclude that this is a high molecular weight polylactosamine which is related to the asparagine linked polylactosamine chains of cell surface glycoproteins which have been implicated in cell differentiation. However, the blood group A polysaccharide from the ovarian cyst mucin is unique in several respects. It has a much larger molecular weight than even the erythroglycan of the red cell membrane protein, band 3, and is linked to the protein by an -O-glycosidic bond rather than the -N-asparagine linkage of the previously known polylactosamines which have a trimannosyl core. Its blood group A side chains are on a type one core rather than type 2 which is found on other polylactosamines.

  13. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  14. [Evaluation of molecular weights of hyaluronate preparations by multi-angle laser light scattering].

    PubMed

    Yomota, Chikako

    2003-01-01

    Hyaluronate (HA), a glycosaminoglycan polysaccharide, has been used for osteoarthritis, periartritis of the shoulder and rheumatoid arthritis by intraarticular administration, and in ophthalmic surgery such as anterior segment surgery, and eye lotion. In this study, the molecular weight (Mw) of HA preparations were estimated by size-exclusion chromatography (SEC) system consisted of a refractometer (RI) and a multi-angle laser light scattering (MALS). From the results, it has been clarified that a successful characterization of HA samples with Mw up to 2 - 3 x 10(6) g/mol was possible by multidetector system.

  15. Molecular weight control in organochromium olefin polymerization catalysis by hemilabile ligand-metal interactions.

    PubMed

    Mark, Stefan; Wadepohl, Hubert; Enders, Markus

    2016-01-01

    A series of Cr(III) complexes based on quinoline-cyclopentadienyl ligands with additional hemilabile side arms were prepared and used as single-site catalyst precursors for ethylene polymerization. The additional donor functions interact with the metal centers only after activation with the co-catalyst. Evidence for this comes from DFT-calculations and from the differing behavior of the complexes in ethylene polymerization. All complexes investigated show very high catalytic activity and the additional side arm minimizes chain-transfer reactions, leading to increase of molecular weights of the resulting polymers. PMID:27559387

  16. Study on Different Molecular Weights of Chitosan as an Immobilization Matrix for a Glucose Biosensor

    PubMed Central

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2013-01-01

    Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant () was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave

  17. Reliable low-molecular-weight heparin reversal in a child undergoing emergency surgery: a case report.

    PubMed

    Botros, Mena M; Mahmoud, Mohamed A; Costandi, Andrew J

    2016-09-01

    Low-molecular-weight heparin neutralization using protamine alone can be unreliable, especially in cases of immediate reversal for emergency surgery. Here, we describe a unique case of a 17-month-old girl with a history of glioneuronal tumor and corresponding hydrocephalus status post debulking and ventriculoperitoneal shunt placement, who was placed on enoxaparin after the development of a sagittal sinus thrombosis. Patient presented for emergency craniectomy and evacuation of subdural bleed after a fall while on therapeutic dose of enoxaparin. Protamine and fresh frozen plasma were used in the patient's perioperative course providing a reliable reversal of enoxaparin. PMID:27555185

  18. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  19. Development of C3-Symmetric Tris-Urea Low-Molecular-Weight Gelators.

    PubMed

    Yamanaka, Masamichi

    2016-04-01

    This article describes recent developments in C3 -symmetric tris-urea low-molecular-weight gelators and their applications. The C3 -symmetric tris-ureas are excellent frameworks to form supramolecular polymers through noncovalent interactions. In organic solvents, hydrophobic tris-ureas form supramolecular gels. Amphiphilic tris-ureas form supramolecular gels in aqueous media. Functional supramolecular gels were prepared by introducing appropriate functional groups into the outer sphere of tris-ureas. Supramolecular hydrogels obtained from amphiphilic tris-ureas were used in the electrophoresis of proteins. These electrophoreses results showed several unique characteristics compared to typical electrophoreses results obtained using polyacrylamide matrices. PMID:26915980

  20. The skin: target organ in immunotoxicology of small-molecular-weight compounds.

    PubMed

    Merk, H F; Sachs, B; Baron, J

    2001-01-01

    Immunotoxicology studies two different effects of xenobiotics: immunosuppression and dysregulation of immune responses leading to hypersensitivity or autoimmunity. The skin is a major target organ of immunotoxicity which is provoked by small-molecular-weight compounds. Methods may be helpful for immunotoxicological investigations and screenings for adverse effects of xenobiotics which are used for diagnosis or studies on the pathophysiology of skin disorders such as allergic contact dermatitis, cutaneous drug-allergic reactions or autoimmune diseases of the skin. Examples include well-designed patch tests, assays involving antigen-presenting cells such as dendritic cells, but also T lymphocytes, basophiles or keratinocytes.