Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives
J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky
1989-01-01
Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...
Production and Application of Lignosulfonates and Sulfonated Lignin.
Aro, Thomas; Fatehi, Pedram
2017-05-09
Lignin is the largest reservoir of aromatic compounds on earth and has great potential to be used in many industrial applications. Alternative methods to produce lignosulfonates from spent sulfite pulping liquors and kraft lignin from black liquor of kraft pulping process are critically reviewed herein. Furthermore, options to increase the sulfonate contents of lignin-based products are outlined and the industrial attractiveness of them is evaluated. This evaluation includes sulfonation and sulfomethylation of lignin. To increase the sulfomethylation efficiency of lignin, various scenarios, including hydrolysis, oxidation, and hydroxymethylation, were compared. The application of sulfonated lignin-based products is assessed and the impact of the properties of these products on the characteristics of their end-use application is critically evaluated. Sulfonated lignin-based products have been used as dispersants in cement admixtures and dye solutions more than other applications, and their molecular weight and degree of sulfonation were crucial in determining their efficiency. The use of lignin-based sulfonated products in composites may result in an increase in the hydrophilicity of some composites, but the sulfonated products may need to be desulfonated with an alkali and/or oxygen prior to their use in composites. To be used as a flocculant, sulfonated lignin-based products may need to be cross-linked to increase their molecular weight. The challenges associated with the use of lignin-based products in these applications are comprehensively discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphological studies of sulfonated polystyrene and sulfonated EPDM ionomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.A.
1992-12-31
Two ionomer systems have been investigated in this research. Sulfonated polystyrene (SPS) is a typical random ionomer and is a good material for studies into the nature of phase separation in ionomers. A series of narrow molecular weight distribution (MWD) zinc neutralized SPS samples of varying sulfonation levels were prepared and analyzed through small angle x-ray scattering (SAXS). Results indicated that the correlation distance varied with both molecular weight and sulfonation level. Increases in the position of the scattering maximum with sulfonation level is the result of a greater number of ionic groups. Increasing molecular weight led to the movementmore » of the scattering maximum to smaller scattering vectors, an indication of larger distances. It was also observed that ionomer peak occurred at smaller scattering vectors for the narrow MWD samples than in corresponding materials of greater dispersity. SAXS was also used to examine the morphology of zinc stearate (ZnSt) filled sulfonated EPDM (S-EPDM) ionomers and the nature of the interaction between the plasticizer and the ionomer. S-EPDM is a material that may find use as a thermoplastic elastomer, although its melt viscosity is too high to allow for convenient processing. The addition of of ZnSt as a plasticizer greatly reduces the melt viscosity of S-EPDM. ZnSt exists in this system as very small crystallites which are associated with ionic groups. As the temperature is increased, the crystallites anneal briefly into larger crystals before melting and diffusing into the S-EPDM matrix. Above the melting temperature of the ZnSt, it solvates the ionic groups of the ionomer, decreasing their self-association and the viscosity of the system. Increasing ZnSt loading is seen in the SAXS as an increase in scattering in the low angle region. However, this increase in intensity is not linear with concentration, showing that ZnSt exists in different environments at higher concentrations.« less
Synthesis and Characterization of Polymers for Fuel Cells Application
NASA Technical Reports Server (NTRS)
Tytko, Stephen F.
2003-01-01
The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Wang, Weiyu; Cheng, Shiwang
2018-01-29
Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone.more » Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.« less
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.
Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming
2014-03-01
Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.
Lei, Jiehua; Yuan, Yuqi; Lyu, Zhonglin; Wang, Mengmeng; Liu, Qi; Wang, Hongwei; Yuan, Lin; Chen, Hong
2017-08-30
Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), hold great potential for inducing the neural differentiation of embryonic stem cells (ESCs) and have brought new hope for the treatment of neurological diseases. However, the disadvantages of natural heparin/HS, such as difficulty in isolating them with a sufficient amount, highly heterogeneous structure, and the risk of immune responses, have limited their further therapeutic applications. Thus, there is a great demand for stable, controllable, and well-defined synthetic alternatives of heparin/HS with more effective biological functions. In this study, based upon a previously proposed unit-recombination strategy, several heparin-mimicking polymers were synthesized by integrating glucosamine-like 2-methacrylamido glucopyranose monomers (MAG) with three sulfonated units in different structural forms, and their effects on cell proliferation, the pluripotency, and the differentiation of ESCs were carefully studied. The results showed that all the copolymers had good cytocompatibility and displayed much better bioactivity in promoting the neural differentiation of ESCs as compared to natural heparin; copolymers with different sulfonated units exhibited different levels of promoting ability; among them, copolymer with 3-sulfopropyl acrylate (SPA) as a sulfonated unit was the most potent in promoting the neural differentiation of ESCs; the promoting effect is dependent on the molecular weight and concentration of P(MAG-co-SPA), with the highest levels occurring at the intermediate molecular weight and concentration. These results clearly demonstrated that the sulfonated unit in the copolymers played an important role in determining the promoting effect on ESCs' neural differentiation; SPA was identified as the most potent sulfonated unit for copolymer with the strongest promoting ability. The possible reason for sulfonated unit structure as a vital factor influencing the ability of the copolymers may be attributed to the difference in electrostatic and steric hindrance effect. The synthetic heparin-mimicking polymers obtained here can offer an effective alternative to heparin/HS and have great therapeutic potential for nervous system diseases.
Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure
NASA Astrophysics Data System (ADS)
von Hoessle, F.; Plank, J.; Leroux, F.
2015-05-01
A series of sulfonated melamine formaldehyde (SMF) polycondensates possessing different anionic charge amounts and molecular weights was synthesized and incorporated into a hydrocalumite type layered double hydroxide structure using the rehydration method. For this purpose, tricalcium aluminate was dispersed in water and hydrated in the presence of these polymers. Defined inorganic-organic hybrid materials were obtained as reaction products. All SMF polymers tested intercalated readily into the hydrocalumite structure, independent of their different molecular weights (chain lengths) and anionic charge amounts. X-ray diffraction revealed typical patterns for weakly ordered, highly polymer loaded LDH materials which was confirmed via elemental analysis and thermogravimetry. IR spectroscopy suggests that the SMF polymers are interleaved between the [Ca2Al(OH)6]+ main sheets via electrostatic interaction, and that no chemical bond between the host matrix and the guest anion is formed. The SMF polymers well ensconced within the LDH structure exhibit significantly slower thermal degradation.
NASA Technical Reports Server (NTRS)
Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.
1987-01-01
Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.
Color reduction of sulfonated eucalyptus kraft lignin.
Zhang, Hui; Bai, Youcan; Zhou, Wanpeng; Chen, Fangeng
2017-04-01
Several eucalyptus lignins named as HSL, SML and BSL were prepared by high temperature sulfonation, sulfomethylation, butane sultone sulfonation respectively. The color properties of samples were investigated. Under optimized conditions the sulfonic group (SO 3 H) content of HSL, SML and BSL reached 1.52, 1.60 and 1.58mmol/g, respectively. Samples were characterized by UV-vis spectroscopy, FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test, respectively. The results revealed that BSL performed a higher molecular weight and lighter color due to the phenolic hydroxyl blocking by 1,4-butane sultone (1,4-BS). The color reduction of sodium borohydride treated BSL (labeled as SBSL) was further enhanced and the brightness value was improved by 76.1% compared with the darkest HSL. SBSL process was much better than HSL and SML process. Hydroxyl blocking effect of 1,4-BS and reducibility of sodium borohydride played important roles in the color reduction of sulfonated eucalyptus kraft lignin. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of Sulfonated burdock fructooligosaccharide (BFO)
NASA Astrophysics Data System (ADS)
Zhang, Haiguang; Chen, Kaoshan; Zhang, Pengying; Zhang, Xian; Wang, Zhe; Xue, Jingwen
2017-12-01
Burdock Fructooligosaccharide (BFO) were sulfated using SO3-Py complex. The maximal degree of sulfonation (DSsulf) was 1.56, which were obtained by varying reaction factor such molar ratio of SO3-Py to fructofuranans unit (FU). The FT-IR, 1H NMR and 13C NMR spectra showed the introduction of sulfate group, and the reaction occurred at C-6, C-4 and C-3 in the fructofuranans unit of BFO. The molecular weight estimated by HPGPC were 6104.7-11003.3 g/mol for S-BFO (DS sulf=1.2).
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2002-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2000-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Melt crystallization of bisphenol A polycarbonate in PC/zinc sulfonated polystyrene ionomer blend
NASA Astrophysics Data System (ADS)
Xu, Liang
The effects of zinc sulfonated polystyrene ionomer (ZnSPS) on the melt crystallization of bisphenol A polycarbonate (PC) were investigated. Melt crystallization of pure PC is extremely slow due to its rigid chain. In the blend of PC and ZnSPS (PC-ZnSPS), the melt crystallization rate of PC can be enhanced. DSC was used to study the crystallization kinetics of PC in PC-ZnSPS blend. The crystallization of PC at 190°C increased in both partially miscible and miscible blends with ZnSPS. For PC-ZnSPS blend with same PC composition as 80%, the crystallization rate was affected by the sulfonation level of ZnSPS. The induction time of crystallization for a partially miscible blend PC-ZnSPS9.98 (80/20) was 40 minutes, and the crystallization reaches 27% crystallinity within 14 hrs. The induction time for pure PC with the same thermal history was more than 24 hrs. The crystal structure of PC crystal formed in PC-ZnSPS blend was studied by WAXD, which showed no difference from the reported WAXD pattern for pure PC. Molecular weight change of PC was found during the thermal annealing of PC-ZnSPS blend at 190°C, but molecular weight alone cannot explain the change of crystallization rate of PC in PC-ZnSPS blend. Discussion was made to address the mechanisms that are responsible for the crystallization rate enhancement of PC in PC-ZnSPS blend. In order to understand and elucidate the reason for the molecular weight change of PC in PC-ZnSPS blend and its effect on the crystallization of PC, TG, GPC and GC-MS were used to investigate the stability of PC-ZnSPS blend and mixtures of PC with sodium tosylate (NaTS), zinc tosylate (ZnTS) and sodium benzoate (NaBZ). ZnSPS, NaTS and ZnTS undergo desulfonation of the sulfonate group at temperatures above 350°C. The desulfonation process can destabilize PC and lower the maximum mass loss rate temperature of PC for more than 70°C. NaTS, ZnTS and NaBZ have quite different effect on the thermal stability of PC at temperatures below 250°C. NaBZ can significantly degrade PC both at 190°C and 250°C. PC does not show any molecular weight (M w) change in the presence of NaTS at 250°C and 190°C for up to 1hr and 16 hrs respectively. ZnTS can also cause Mw change of PC at 250°C and 190°C, but the changing of Mw of PC in the presence of ZnTS is less than that in the presence of NaBZ. The reason for the molecular weight change of PC in PC-ZnSPS blend can be explained based on Davis's ionic ester exchange reaction mechanism.
NASA Astrophysics Data System (ADS)
Guha Thakurta, Soma
Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.
Devi, Prabha; Wahidullah, Solimabi; Sheikh, Farhan; Pereira, Rochelle; Narkhede, Niteen; Amonkar, Divya; Tilvi, Supriya; Meena, Ram Murthy
2017-01-01
Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo)-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC). Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a) reduction of its azo group by azoreductase enzyme (b) dimerization of the hydrazo compound followed by (c) degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water. PMID:28208715
NASA Astrophysics Data System (ADS)
Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao
2014-03-01
Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.
Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology
Cornelius, Christopher J [Albuquerque, NM
2006-04-04
A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.
Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu
2013-01-01
This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...
Electrical properties of multilayers from low- and high-molecular-weight polyelectrolytes.
Radeva, Tsetska; Milkova, Viktoria; Petkanchin, Ivana
2004-11-15
The formation of stable multilayer films by using as constituents sodium poly(4-styrene sulfonate) (PSS) and poly(4-vinyl pyridine) (PVP) was studied by electrooptics. A strong increase in basicity of the pyridine rings in the electrical field of the oppositely charged PSS chains was suggested to be the driving force for multilayer film formation. A linear increase in the film thickness was registered after deposition of the first three layers, with no dependence on the polyelectrolyte molecular weight. The electrooptical effect was found to increase with increasing area of each next layer, but depended on the molecular weights of both polymers. Polarization of "condensed" counterions along the chains of the last-adsorbed layer was suggested to explain this dependence. Following the counterion dynamics, we come to the conclusion that the electrical properties of the top layer govern the electrooptical behavior of the PSS/PVP film.
Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose
Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu
2014-01-01
The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...
Relative size selection of a conjugated polyelectrolyte in virus-like protein structures.
Brasch, Melanie; Cornelissen, Jeroen J L M
2012-02-01
A conjugated polyelectrolyte poly[(2-methoxy-5-propyloxy sulfonate)-phenyl-ene vinylene] (MPS-PPV) drives the assembly of virus capsid proteins to form single virus-like particles (VLPs) and aggregates with more than two VLPs, with a relative selection of high molecular weight polymer in the latter. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Baugh, Daniel Webster, III
Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)
Matsushita, Yasuyuki; Yasuda, Seiichi
2005-03-01
In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.
Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers.
Ogunlaja, Adeniyi S; du Sautoy, Carol; Torto, Nelson; Tshentu, Zenixole R
2014-08-01
Molecularly imprinted polybenzimidazole nanofibers fabricated for the adsorption of oxidized organosulfur compounds are presented. The imprinted polymers exhibited better selectivity for their target model sulfone-containing compounds with adsorption capacities of 28.5±0.4mg g(-1), 29.8±2.2mg g(-1) and 20.1±1.4mg g(-1) observed for benzothiophene sulfone (BTO2), dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) respectively. Molecular modeling based upon the density functional theory (DFT) indicated that hydrogen bond interactions may take place between sulfone oxygen groups with NH groups of the PBI. Further DFT also confirmed the feasibility of π-π interactions between the benzimidazole rings and the aromatic sulfone compounds. The adsorption mode followed the Freundlich (multi-layered) adsorption isotherm which indicated possible sulfone-sulfone interactions. A home-made pressurized hot water extraction (PHWE) system was employed for the extraction/desorption of sulfone compounds within imprinted nanofibers at 1mL min(-1), 150°C and 30 bar. PHWE used a green solvent (water) and achieved better extraction yields compared to the Soxhlet extraction process. The application of molecularly imprinted polybenzimidazole (PBI) nanofibers displayed excellent sulfur removal, with sulfur in fuel after adsorption falling below the determined limit of detection (LOD), which is 2.4mg L(-1)S, and with a sulfur adsorption capacity of 5.3±0.4mg g(-1) observed for application in the fuel matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.
2015-12-01
Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.
Everett, C.R.; Chin, Y.-P.; Aiken, G.R.
1999-01-01
A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.
1990-10-16
washed with concentrated sulfuric acid , then with water, dried over anhydrous magnesium sulfate, refluxed over calcium hydride and freshly distilled...oxide, filtered, and fractionally distilled under reduced pressure. Trifluoromethane sulfonic acid (triflic acid , 98%, Aldrich) w s distilled under...flask. Then the flask was filled with argon, cooled to 0°C and the methylene chloride, dimethyl sulfide and triflic acid were added via a syringe. The
Zhang, Hui; Yu, Boming; Zhou, Wanpeng; Liu, Xinxin; Chen, Fangeng
2018-04-01
The dark color of industrial lignin is the main obstacle for their high value-added use in areas such as dyestuff dispersants. A kind of light-colored lignosulfonate with favorable dispersibility and remarkable stain resistance is prepared using fractionated eucalyptus kraft lignin. The fractionated lignins named as D (insoluble part) and X (soluble part) and sulfonated lignin fractions named as SD and SX are characterized by FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test. The results reveal that fraction X presents a lower molecular weight but a higher hydroxyl content than that of fraction D, which lead to the differences on the SO 3 H content, dispersibility and color performance of SD and SX. The sulfonated fractions perform a similar molecular weight to that of unsulfonated lignins and show light color due to the phenolic hydroxyl blocking of 1,4-BS (1,4-butane sultone) and the postprocessing of sodium borohydride. The SX that performs the best of all exhibits obvious decrease on phenolic hydroxyl groups and increase on brightness value which is improved by 85.8% compared with control sample. The SX reaches the highest level (grade 5) in the dispersibility test and presents remarkable stain resistance on different textiles, especially on the dacron and cotton. Copyright © 2017 Elsevier B.V. All rights reserved.
Chu, Shaogang; Covaci, Adrian; Haraguchi, Koichi; Schepens, Paul
2002-12-01
An optimised method is described for the determination of 27 methyl sulfone polychlorobiphenyls (PCBs) and DDE in biota samples. Initially, the samples were extracted by hot Soxhlet and the methyl sulfones were separated by liquid/liquid extraction with concentrated sulfuric acid and back-extracted with hexane. The parameters of the back-extraction were studied and it was found that for a quantitative extraction of the methyl sulfones from the concentrated acid layer, a 50% dilution with cold water should be done. The hexane layer containing the methyl sulfones was further cleaned-up on basic silica (33% KOH) and Florisil. After concentration, the extract was analysed by gas chromatography-mass spectrometry (GC-MS) with electron capture negative ionisation (ECNI) in selected ion monitoring mode (SIM). It was shown that, for methyl sulfones, the ion formation was dependent on the chlorine substitution, position of the MeSO2-group and the ion source temperature. If the ion source temperature was higher than 200 degrees C, [M-CH3]- was the predominant ion for most methyl sulfones. Therefore, for increased sensitivity, quantitation of most congeners was done using [M-CH3]- ions instead of the molecular ion as used in previously reported methods. The method was validated for the determination of 26 tri- to hepta- 3- and 4-substituted MeSO2-PCBs and 3-MeSO2-DDE in animal and human tissues. Good sensitivity and selectivity of the method were obtained. Limits of detection (LODs) ranged from 0.06 to 0.10 ng g(-1) lipid weight. Average recoveries of individual congeners from vegetable oil spiked with individual standards (3.33 ng g(-1)) ranged from 73 to 112% with a mean value of 89%. The coefficients of variation ranged from 5.2 to 12.2%, which is within the acceptable range for environmental analyses.
[Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245].
Kupriashina, M A; Selivanov, N Iu; Nikitina, V E
2012-01-01
Homogenous Mn-peroxidase of a 26-fold purity grade was isolated from a culture of Azospirillum brasilense Sp245 cultivated on a medium containing 0.1 mM pyrocatechol. The molecular weight of the enzyme is 43 kD as revealed by electrophoresis in SDS-PAAG. It was shown that the use of pyrocatechol and 2,2'-azino-bis(3-ethylbenzotiazoline-6-sulfonate) at concentrations of 0.1 and I mM as inductors increased the Mn-peroxidase activity by a factor of 3.
NASA Astrophysics Data System (ADS)
Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian
2018-02-01
Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.
NASA Astrophysics Data System (ADS)
Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong
2017-12-01
Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.
Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert
2015-09-01
A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20μl using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. Copyright © 2015 Elsevier Inc. All rights reserved.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
NASA Astrophysics Data System (ADS)
Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang
2014-10-01
Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.
Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers
Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...
2017-01-11
Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less
Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes
2008-07-03
factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower
Counterion adsorption and desorption rate of a charged macromolecule
NASA Astrophysics Data System (ADS)
Shi, Yu; Yang, Jingfa; Zhao, Jiang
The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.
Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune
2013-03-01
The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p < 0.002) positively correlated with lipid content for all brain regions. Lipid-normalized PFOS and PFCA (C(10) -C(15) ) concentrations were not significantly (p > 0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.
Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L
2017-01-01
Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oil recovery method using high water content oil-external micellar dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.C.; Roszelle, W.O.; Svaldi, M.A.
1971-10-19
A high water content oil-external micellar dispersion (containing 55 percent to about 90 percent water) was developed for enhanced oil recovery. The micellar slug contained petroleum sulfonate (molecular weight averaged at about 350 to about 525), hydrocarbon, water and cosurfactant. The micellar slug was driven by a mobility buffer slug, which consisted of No. 530 Pusher, fusel oil and the residue Palestine water (420 ppm TDS) from the Palestine water reservoir in Palestine, Illinois. Fired Berea sandstone cores (porosity near 20 percent) were saturated with water (18,000 ppm sodium chloride), flooded with sweet black crude oil from Henry lease inmore » Illinois (7 cp at 72/sup 0/F), and waterflooded with water from Henry lease (18,000 ppm TDS). A maximum recovery of 11.5 percent of oil in place was recovered by 2 percent pore volume of a micellar dispersion containing petroleum sulfonate (MW 406), 70 percent by volume distilled water, and p-hexanol.« less
High water content oil-external micellar dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.C.; Roszelle, W.O.; Svaldi, M.A.
1970-02-24
A high water content oil-external micellar dispersion (containing 55 percent to about 90 percent water) was developed for enhanced oil recovery. The micellar slug contained petroleum sulfonate (molecular weight averaged at about 350 to about 525), hydrocarbon, water and cosurfactant. The micellar slug was driven by a mobility buffer slug, which consisted of No. 530 Pusher, fusel oil and the residue Palestine water (420 ppm TDS) from the Palestine water reservoir in Palestine, Illinois. Fired Berea sandstone cores (porosity near 20 percent) were saturated with water (18,000 ppm sodium chloride), flooded with sweet black crude oil from Henry lease inmore » Illinois (7 cp at 72/sup 0/F), and waterflooded with water from Henry lease (18,000 ppm TDS). A maximum recovery of 11.5 percent of oil in place was recovered by 2 percent pore volume of a micellar dispersion containing petroleum sulfonate (MW 406), crude oil, 70 percent by volume distilled water, and p-hexanol.« less
NASA Astrophysics Data System (ADS)
He, Xibing; Shinoda, Wataru; DeVane, Russell; Anderson, Kelly L.; Klein, Michael L.
2010-02-01
A coarse-grained (CG) forcefield for linear alkylbenzene sulfonates (LAS) was systematically parameterized. Thermodynamic data from experiments and structural data obtained from all-atom molecular dynamics were used as targets to parameterize CG potentials for the bonded and non-bonded interactions. The added computational efficiency permits one to employ computer simulation to probe the self-assembly of LAS aqueous solutions into different morphologies starting from a random configuration. The present CG model is shown to accurately reproduce the phase behavior of solutions of pure isomers of sodium dodecylbenzene sulfonate, despite the fact that phase behavior was not directly taken into account in the forcefield parameterization.
Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter
2010-01-01
The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.
Modification of epoxy-reinforced glass-cloth composites with a perfluorinated alkyl ether elastomer
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Chen, T. S.; Taylor, M.
1984-01-01
A perfluorinated alkyl ether diacyl fluoride prepolymer (molecular weight about 1500) was coreacted with Epon 828 epoxy resin and diamino diphenyl sulfone to obtain an elastomer-toughened, glass-cloth composite. Improvements in flexural toughness, impact resistance, and water resistance, without loss of strength, modulus of elasticity or a lowering of the glass-transition temperature, were realized over those of the unmodified composite. Factors concerning optimization of the process are discussed. Results suggest that a simultaneously interpenetrating polymer network may be formed which gives rise to a measured improvement in composite mechanical properties.
Meng, Shengnan; Wu, Baojian; Singh, Rashim; Yin, Taijun; Morrow, John Kenneth; Zhang, Shuxing; Hu, Ming
2012-01-01
Flavonoids are the polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 mono-hydroxyl flavonoids with –OH group at 3, 4’, 5 or 7 position, followed by 5 di-hydroxyl-flavonoids, and 2 tri-hydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at 7-OH position in Caco-2 cell lysates with minor amounts of 4’-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells. PMID:22352375
Crystal structure of zwitterionic bisimidazolium sulfonates
NASA Astrophysics Data System (ADS)
Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao
2012-05-01
Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.
Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design*
Kerr, Iain D.; Lee, Ji H.; Farady, Christopher J.; Marion, Rachael; Rickert, Mathias; Sajid, Mohammed; Pandey, Kailash C.; Caffrey, Conor R.; Legac, Jennifer; Hansell, Elizabeth; McKerrow, James H.; Craik, Charles S.; Rosenthal, Philip J.; Brinen, Linda S.
2009-01-01
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs. PMID:19620707
Condensed tannin-sulfonate derivatives in cold-setting wood-laminating adhesives
Roland E. Kreibich; Richard W. Hemingway
1987-01-01
Extraction of southern pine bark with 4.0 percent sodium sulfite and 0.4-percent sodium carbonate(based on ovendry bark weight) gives epicatechin-(4β)-sulfonate and oligomeric procyanidin-4-sulfonatee that show great promise to replace about 50 percent of the phenol-resorcinol-formaldehyde resin in coldsetting wood-laminating adhesives. Bonds in Douglas-fir...
NASA Technical Reports Server (NTRS)
Herbert, C. G.; Bass, R. G.
1994-01-01
As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.
Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan
2016-02-01
Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, V.; Chawla, G.; Kumar, V.
1987-04-01
Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.
Nakahata, Rina; Yusa, Shin-Ichi
2018-01-05
Amphoteric random copolymers P(AMPS/APTAC50) x , where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) x can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) x can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50) c with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50) c cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) x and FBS because corresponding increases could not be observed.
Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.
Kowaluk, E A; Seth, P; Fung, H L
1992-09-01
Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)
Toughening mechanism in elastomer-modified epoxy resins, part 2
NASA Technical Reports Server (NTRS)
Yee, A. F.; Pearson, R. A.
1984-01-01
The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.
Kwon, Taehoon; Cho, Hyeongrae; Lee, Jang-Woo; Henkensmeier, Dirk; Kang, Youngjong; Koo, Chong Min
2017-08-30
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H + /g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm -1 ), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m -3 ) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite
NASA Astrophysics Data System (ADS)
Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.
He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang
2015-09-01
Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A
2012-11-01
A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.
NASA Astrophysics Data System (ADS)
Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto
2017-11-01
The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.
Guo, Jinxiu; Chen, Yu; Zhao, Lizhi; Sun, Ping; Li, Hongli; Zhou, Lei; Wang, Xiayan; Pu, Qiaosheng
2016-12-16
Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10 -4 cm 2 V -1 s -1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×10 5 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×10 5 /m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Sardella, Roccaldo; Ianni, Federica; Lisanti, Antonella; Scorzoni, Stefania; Marini, Francesca; Sternativo, Silvia; Natalini, Benedetto
2014-05-01
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.
Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.) 1
Elliott, Malcolm C.; Stowe, Bruce B.
1971-01-01
Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins. PMID:16657624
Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.).
Elliott, M C; Stowe, B B
1971-03-01
Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins.
NASA Technical Reports Server (NTRS)
Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.
1986-01-01
Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.
Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group
NASA Astrophysics Data System (ADS)
Wang, Liyuan; Yu, Jinxing; Xu, Na
2010-04-01
Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.
NASA Astrophysics Data System (ADS)
Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir
2015-12-01
The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.
Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation
NASA Astrophysics Data System (ADS)
Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu
2015-11-01
A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.
Packaging of Polyelectrolytes in Viral Capsids: The Interplay Between Polymer Length and Capsid Size
NASA Astrophysics Data System (ADS)
Knobler, Charles
2008-03-01
Each particle of the Cowpea Chlorotic Mottle Virus (CCMV) has a very small ``parts list,'' consisting of two components: a molecule of single-stranded RNA and a 190-residue protein that makes up the 28-nm diameter icosahedral capsid. When purified viral RNA and capsid protein are mixed in solution at an appropriate pH and ionic strength, infectious wild-type viruses form spontaneously. Virus-like particles (VLPs) are formed when the protein self assembles around other anionic polymers such as poly(styrene sulfonate) (PSS). Under different pH and ionic strength conditions the capsid protein can assemble by itself into empty capsids, multishell structures, tubes and sheets. To explore the effect on virion size of the competition between the preferred curvature of the protein and the size of the packaged cargo we have examined the formation of VLPs around PSS polymers with molecular weights ranging from 400 kDa to 3.4 MDa. Two distinct sizes are observed -- 22 nm for the lower molecular weights, jumping to 27 nm at 2 MDa. While under given conditions the size of PSS in solution is directly determined by its molecular weight, the self-complementarity of RNA makes its solution structure dependent on the nucleotide sequence as well. We have therefore employed Small-Angle X-ray Scattering and Fluorescence Correlation Spectroscopy to examine the sizes of viral and non-viral RNAs of identical lengths. A model for the assembly that includes both the self-interactions of the polyelectrolyte and the capsid proteins and the interactions between them provides insight into the experimental results.
Molecular evidence for biodegradation of geomacromolecules
NASA Astrophysics Data System (ADS)
Jenisch-Anton, A.; Adam, P.; Michaelis, W.; Connan, J.; Herrmann, D.; Rohmer, M.; Albrecht, P.
2000-10-01
The biodegradability of macromolecular organic structures of geological origin was investigated by performing in vitro studies. Cultures of the common Nocardioides simplex were grown, first, on a high molecular weight, asymmetric thioether (1-(phytanylsulfanyl)-octadecane 1) and then on macromolecular fractions isolated from a sulfur-rich oil. Gross data indicate that bacteria convert macromolecular substances to material of higher polarity by oxidizing the abundant thioethers to sulfones and sulfoxides and by introducing new functionalities, such as carboxylic acid, keto or hydroxyl groups. Furthermore, bacteria remineralize the macromolecular structures. Bacterially induced alterations were also studied on a molecular level after chemical desulfurization of the macromolecular structure. Thus, it could be established that the amounts of linear hydrocarbons in the macromolecular structure are decreased relative to branched and cyclic structures due to a preferential bacterial attack of the linear moieties bound to the macromolecules. This is further supported by the detection of S-bound fatty acids resulting from the bacterial oxidation of S-bound n-alkanes. Moreover, N. simplex also degraded sulfur-bound steranes by oxidation of the steroid side-chain leading to S-bound steroid acids.
Mahalingam, Alamelu; Geonnotti, Anthony R.; Balzarini, Jan; Kiser, Patrick F.
2011-01-01
Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by issues in regards to economical production, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV therapeutics pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (~25 M−1) for non-reducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct; revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol% BzB functionalization with EC50 of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC50 (59 ± 5 nM), likely due to the elongated rigid structure of the polymer chain compelled by electrostatic repulsion between the boronic acid groups. An increase in molecular weight of the polymer at 50 mol% BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC50 of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol% sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold, but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole-sulfonic acid copolymers showed no decrease in activity in the presence of a seminal concentration of fructose (p > 0.05). Additionally, the co-polymers exhibit minimal, if any effect on the cellular viability, barrier properties, or cytokine levels in human reconstructed ecto-cervical tissue after 3 days of repeated exposure and did not show pronounced activity against a variety of other RNA and DNA viruses. PMID:21879735
1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent.
Matulis, D; Baumann, C G; Bloomfield, V A; Lovrien, R E
1999-05-01
1-Anilino-8-naphthalene sulfonate (ANS) anion is conventionally considered to bind to preexisting hydrophobic (nonpolar) surfaces of proteins, primarily through its nonpolar anilino-naphthalene group. Such binding is followed by an increase in ANS fluorescence intensity, similar to that occurring when ANS is dissolved in organic solvents. It is generally assumed that neither the negative sulfonate charge on the ANS, nor charges on the protein, participate significantly in ANS-protein interaction. However, titration calorimetry has demonstrated that most ANS binding to a number of proteins occurs through electrostatic forces, in which ion pairs are formed between ANS sulfonate groups and cationic groups on the proteins (D. Matulis and R. E. Lovrien, Biophys. J., 1998, Vol. 74, pp. 1-8). Here we show by viscometry and diffusion coefficient measurements that bovine serum albumin and gamma-globulin, starting from their acid-expanded, most hydrated conformations, undergo extensive molecular compaction upon ANS binding. As the cationic protein binds negatively charged ANS anion it also takes up positively charged protons from water to compensate the effect of the negative charge, and leaves the free hydroxide anions in solution thus shifting pH upward (the Scatchard-Black effect). These results indicate that ANS is not always a definitive reporter of protein molecular conformation that existed before ANS binding. Instead, ANS reports on a conformationally tightened state produced by the interplay of ionic and hydrophobic characters of both protein and ligand.
Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations.
Brennan, Amanda A; Harwood, Amanda D; You, Jing; Landrum, Peter F; Lydy, Michael J
2009-09-01
The current study measured the degradation of fipronil in laboratory-spiked silt loam sediment under anaerobic conditions at different aging times. The half-life of fipronil in anaerobic sediments spiked at 5.8+/-0.049 and 21+/-1.4microg/kg dry weight (dw) was 21+/-0.22 and 15+/-0.11d, respectively. Fipronil-sulfide was the primary degradation product with fipronil-sulfone detected at lower concentrations. No degradation occurred to fipronil-sulfide and fipronil-sulfone over 200d in separate systems. A concurrent decline in sediment concentrations resulted in a decline of fipronil in sediment porewater with an increase in fipronil-sulfide and fipronil-sulfone measured by matrix-solid phase microextraction (matrix-SPME). Equilibrium among sediment, porewater, and matrix-SPME fiber occurred within 138d for fipronil and fipronil-sulfone; however, fipronil-sulfide did not reach equilibrium during the test, and modeling predicted upwards of 1083d to reach equilibrium. Regardless of the time to reach equilibrium, the rapid degradation of fipronil has little ecological significance given that fipronil-sulfide and fipronil-sulfone have equal or greater toxicity, and exhibit greater environmental stability in both the sediment and porewater, thereby becoming bioavailable.
2008-01-01
Sulfonated styrene-(ethylene-butylene)-styrene triblock copolymer (SSEBS) was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT) and organically (quaternary amine) modified hydrophobic nanoclay (OMT) at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight%) of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications.
NASA Technical Reports Server (NTRS)
Cooper, George
1996-01-01
Intramolecular carbon, hydrogen, and sulfur isotope measurements have been made on a homologous series of organic sulfonates discovered in the Murchison meteorite. Mass independent sulfur isotope fractionations were observed along with D/H ratios clearly larger than terrestrial. The sulfur fractionations may be produced chemically and due to molecular symmetry factors. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of molecular clouds. The source of the sulfonate precursors may have been the reactive interstellar molecule, CS. Low temperature CS reactions also produce other sulfur containing compounds as well as a solid phase. Isotopic measurements on bulk phosphonates were also made.
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
Sun, Jing; Jiang, Xi; Siegmund, Aaron; ...
2016-04-04
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this study, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (Φ Npm) values ranging from 0.13 to 0.44 and dispersity (¯D) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Drymore » samples with Φ Npm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. Finally, we demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.« less
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
2016-01-01
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312
Persson, Sara; Rotander, Anna; Kärrman, Anna; van Bavel, Bert; Magnusson, Ulf
2013-09-01
This study investigates the influence of biological and environmental factors on the concentrations of perfluoroalkyl acids (PFAAs) in a top predator; the American mink. Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) with C8-C13 perfluorinated carbon chains were analyzed in livers from wild male mink liver (n=101) from four areas in Sweden representing two inland environments (rural and highly anthropogenic, respectively) and two different coastal environments. Mean PFOS concentrations were 1250ng/g wet weight and some mink from the urban inland area had among the highest PFOS concentrations ever recorded in mink (up to 21 800ng/g wet weight). PFBS was detected in 89% of the samples, but in low concentrations (mean 0.6ng/g ww). There were significant differences in PFAA concentrations between the geographical areas (p<0.001-0.01). Age, body condition and body weight did not influence the concentrations significantly, but there was a seasonal influence on the concentrations of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) (p<0.01 and p<0.05, respectively), with lower concentrations in autumn samples than in samples taken in the winter and spring. It is thus recommended to take possible seasonal differences into account when using mink exposure data. The overall results suggest that the mink is a suitable sentinel species for assessing and monitoring environmental levels of PFAAs. © 2013. Published by Elsevier Ltd. All rights reserved.
Oosthuizen, Mathys M J; Lambrechts, Hugo
2007-01-01
Hepatoproliferin (HPF) was purified from regenerating rat livers as an oligomeric entity (big-HPF) from which the monomeric form (small-HPF) could be obtained using disaggregating conditions. By using a solid-phase ion-exchange method, small-HPF was forced to dissociate into two charged ionic species, namely norepinephrine (NE) and a sulfonated disaccharide with a molecular structure consisting of D-glucuronic acid bound to glucosamine 2,6-disulfate by a beta-glycosidic linkage having a beta, 1 --> 4 configuration. Monomeric HPF stemmed from the formation of three electrostatic bonds between the protonated amine groups of three norepinephrines, of which two bind to the deprotonated sulfonic groups of glucosamine 2,6-disulfate and one to the deprotonated carboxylic group of glucuronic acid, to constitute a tightly associated complex with a molecular mass of 1046 Da. This represents one of the two purified isoforms of small-HPF. The other isoform, which has a lower molecular mass of 877 Da, lack one NE, leaving the weaker carboxylic group of glucuronic acid unoccupied, to constitute a more acidic form of HPF.
Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.
Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans
2017-08-23
Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and -CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO 3 H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.
Diffusion kinetics of the ion exchange of benzocaine on sulfocationites
NASA Astrophysics Data System (ADS)
Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.
2016-06-01
The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Wei, K. X.; Lv, J. S.
2013-12-01
DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.
Novel Polyanions Inhibiting Replication of Influenza Viruses
Ciejka, Justyna; Milewska, Aleksandra; Wytrwal, Magdalena; Wojarski, Jacek; Golda, Anna; Ochman, Marek; Nowakowska, Maria
2016-01-01
Novel sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) and N-sulfonated chitosan (NSCH) have been synthesized, and their activity against influenza A and B viruses has been studied and compared with that of a series of carrageenans, marine polysaccharides of well-documented anti-influenza activity. NSPAHs were found to be nontoxic and very soluble in water, in contrast to gel-forming and thus generally poorly soluble carrageenans. In vitro and ex vivo studies using susceptible cells (Madin-Darby canine kidney epithelial cells and fully differentiated human airway epithelial cultures) demonstrated the antiviral effectiveness of NSPAHs. The activity of NSPAHs was proportional to the molecular mass of the chain and the degree of substitution of amino groups with sulfonate groups. Mechanistic studies showed that the NSPAHs and carrageenans inhibit influenza A and B virus assembly in the cell. PMID:26729490
Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao
2018-02-15
Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.
Swinton Darious, Robert; Thomas Muthiah, Packianathan
2018-01-01
The crystals of two new salts, 2,6-diamino-4-chloropyrimidin-1-ium 5-chlorosalicylate, C4H6ClN4 +·C7H4ClO3 −, (I), and bis(2,6-diamino-4-chloropyrimidin-1-ium) naphthalene-1,5-di-sulfonate, 2C4H6ClN4 +·C10H6O6S2 2−, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both compounds, the N atom of the pyrimidine group in between the amino substituents is protonated and the pyrimidinium cation forms a pair of N—H⋯O hydrogen bonds with the carboxylate/sulfonate ion, leading to a robust R 2 2(8) motif (supramolecular heterosynthon). In compound (I), a self-complementary base pairing involving the other pyrimidinium ring nitrogen atom and one of the amino groups via a pair of N—H⋯N hydrogen bonds [R 2 2(8) homosynthon] is also present. In compound (II), the crystallographic inversion centre coincides with the inversion centre of the naphthalene-1,5-disulfonate ion and all the sulfonate O atoms are hydrogen-bond acceptors, generating fused-ring motifs and a quadruple DDAA array. A halogen-bond (Cl⋯Cl) interaction is present in (I) with a distance and angle of 3.3505 (12) Å and 151.37 (10)°, respectively. In addition, a C—Cl⋯π interaction and a π–π interaction in (I) and a π–π interaction in (II) further stabilize these crystal structures. PMID:29850062
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; You, Jing; Yu, Jiliang; Fan, Chengcheng; Ma, Yunfei; Cui, Yanjie; Gao, Shanshan; Li, Yongbin; Hu, Songqing; Liu, Huiqin
2017-12-01
Molecular dynamics simulation had been carried out to investigate the influence of CaCl2 on the aggregation behaviour of sodium dodecyl polyoxyethylene sulfonate (A12E2SO3) at the air/water interface. First, structure properties of A12E2SO3 monolayer was studied by analyzing the snapshots of the configuration and density profiles of different components in A12E2SO3 systems. Results showed that Ca2+ could replace some Na+ to combine with the hydrophilic headgroups. Besides, the addition of CaCl2 could reduce the thickness of water layer at the interface. Second, the interactions between A12E2SO3 headgroups and water molecules were studied through calculating radial distribution functions (RDFs) between water molecules and the sulfonate group, as well as the oxyethyl group. Results revealed that Ca2+ could penetrate the hydration layer of the sulfonate group, but could not enter the first hydration layer of the oxygen ethyl group close to the sulfonate group. The addition of CaCl2 could make the degree of hydration more orderly and the thickness of hydration layer in the headgroups of A12E2SO3 molecules increase. Third, the property of interface double layer was studied through analyzing RDFs of the headgroups and counterions. Results showed that the addition of CaCl2 could not only reduce the interaction between the headgroups and the counterions, but also compress the thickness of the electric double layer in A12E2SO3 system.
Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis.
Lü, Hongying; Gao, Jinbo; Jiang, Zongxuan; Yang, Yongxing; Song, Bo; Li, Can
2007-01-14
Dibenzothiophene (DBT) is oxidized to the corresponding sulfoxide and sulfone in an emulsion system (W/O) composed of polyoxometalate anion [C(18)H(37)N(CH(3))3](5)[PV(2)Mo(10)O(40)] as both the surfactant and catalyst, using molecular oxygen as the oxidant and aldehyde as the sacrificial agent under mild conditions.
Lee, Ki Chang; Choo, Hun Seung
2015-10-01
In order to study the surfactant-free emulsion copolymerization of benzyl methacrylate (BMA) with sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I) and the resulting optical properties, a series of experiments was carried out at various reaction conditions such as the changes of BMA concentration, COPS-I concentration, BMA concentration under a fixed COPS-I amount, initiator and divinyl benzene (DVB) concentration. All the latices showed highly monodispersed spherical particles in the size range of 144~435 nm and the respective shiny structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. The increase of number of particles led to the increased rate of polymerization and zeta-potential of the latices, on the other hand, to the decreased molecular weight. Refractive indices and the reflectivity increased with COPS-I concentration, on the other hand, and decreased with DVB concentration. Especially, refractive indices of the resulting poly[BMA-co-(COPS-I)] colloidal photonic crystals showed much higher values of 1.65~2.21 than that of polystyrene, due to the formation of core-shell shaped morphology. Monodisperse and high refractive index of poly[BMA-co-(COPS-I)] particles prepared in this work could be used for the study in photonic crystals and electrophoretic display.
Eriksson, Ulrika; Haglund, Peter; Kärrman, Anna
2017-11-01
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs, precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well. Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids (PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters (PAPs) were 15-20ng/g dry weight, the sum of fluorotelomer sulfonic acids (FTSAs) was 0.8-1.3ng/g, and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2ng/g. Persistent PFSAs and PFCAs were detected at 1.9-3.9ng/g and 2.4-7.3ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%, respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment. Copyright © 2017. Published by Elsevier B.V.
Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung
2014-04-23
Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
DFT study of the effect of substitution on the molecular structure of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.
2016-05-01
To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.
Neutron vibrational spectroscopic studies of novel tire-derived carbon materials
Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L.; ...
2017-08-11
Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed thatmore » the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and –CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO 3H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.« less
Molecular dynamics study of intermediate phase of long chain alkyl sulfonate/water systems.
Poghosyan, Armen H; Arsenyan, Levon H; Shahinyan, Aram A
2013-01-08
Using atomic level simulation we aimed to investigate various intermediate phases of the long chain alkyl sulfonate/water system. Overall, about 800 ns parallel molecular dynamics simulation study was conducted for a surfactant/water system consisting of 128 sodium pentadecyl sulfonate and 2251 water molecules. The GROMACS software code with united atom force field was applied. Despite some differences, the analysis of main structural parameters is in agreement with X-ray experimental findings. The mechanism of self-assembly of SPDS molecules was also examined. At T = 323 K we obtained both tilted fully interdigitated and liquid crystalline-like disordered hydrocarbon chains; hence, the presence of either gel phase that coexists with a lamellar phase or metastable gel phase with fraction of gauche configuration can be assumed. Further increase of temperature revealed that the system underwent a transition to a lamellar phase, which was clearly identified by the presence of fully disordered hydrocarbon chains. The transition from gel-to-fluid phase was implemented by simulated annealing treatment, and the phase transition point at T = 335 K was identified. The surfactant force field in its presented set is surely enabled to fully demonstrate the mechanism of self-assembly and the behavior of phase transition making it possible to get important information around the phase transition point.
Haifeng Zhou; Dongjie Yang; Junyong Zhu
2016-01-01
The molecular structure and properties of four sodium lignosulfates (LSs) derived from pulping or bioethanol production were evaluated and compared. SXP and SAL were produced by sulfite pulping and sulfonation reaction of lignin from alkali pulping of poplar, respectively. LS-180 and LS-150 were from sulfite pretreatment to overcome recalcitrance of lignocelluloses (...
TOXICOGENOMIC DISSECTION OF RODENT LIVER TRANSCRIPT PROFILES AFTER EXPOSURE TO PERFLUOROALKYL ACIDS
Exposure to peroxisome proliferator chemicals (PPC) leads to alterations in the balance between hepatocyte growth and apoptosis, increases in liver to body weight ratios and liver tumors. The perfluoroalkyl acids including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (...
Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong
2018-02-01
As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.
Effect of temperature and heating rate on apparent lethal concentrations of pyrolysis products
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Solis, A. N.; Marcussen, W. H.; Furst, A.
1976-01-01
The apparent lethal concentrations for 50 percent of the test animals of the pyrolysis products from twelve polymeric materials were studied as a function of temperature and heating rate. The materials were polyethylene, nylon 6, ABS, polycarbonate, polyether sulfone, polyaryl sulfone, wool fabric, aromatic polyamide fabric, polychloroprene foam, polyvinyl fluoride film, Douglas fir, and red oak. The apparent lethal concentration values of most materials vary significantly with temperature and heating rate. The apparent lethal concentration values, based on weight of sample charged, appears to effectively integrate the thermophysical, thermochemical, and physiological responses from a known quantity of material under specified imposed conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, L.S.
1982-12-01
Model water-soluble graft copolymers have been synthesized with acrylamide as the major grafting monomer and dextran as the substrate in order to define more clearly the structural parameters that are important in enhanced oil recovery applications. The structures of the model graft copolymer samples were studied by aqueous size exclusion chromatography, viscometry, elemental analysis, and selective hydrolysis of the graft copolymer backbone. The grafting systems with selected grafting monomers included Fe(II)/H/sub 2/O/sub 2/ with acrylamide, and Ce(IV)/HNO/sub 3/ with acrylamide, acrylamide/2-acrylamido-2-meth propane sulfonic acid, or acrylamide/diacetone acrylamide. The viscosity and pseudoplasticity of the resulting graft copolymers were affected by bothmore » total molecular weight and length of grafted chains; however, the latter was apparently more important when behavior was compared to linear counterparts.« less
Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.
1997-08-05
A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.
1997-01-01
A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
NASA Technical Reports Server (NTRS)
Akawie, R. I.; Bilow, N.; Giants, T. W.
1978-01-01
Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.
High temperature set retarded well cement compositions and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinson, E.F.; Brothers, L.E.; Bour, D.L.
1991-03-05
This patent describes a set retarded cement composition which is substantially non-thinning at high temperatures. It comprises: hydraulic cement; sufficient water to form a pumpable slurry; a set retarder comprising at least one member selected from the group consisting of a copolymer of 2-acrylamido, 2-methylpropane sulfonic acid (AMPS) and acrylic acid having an average molecular weight below about 5000 and comprising from about 40 to about 60 mole percent AMPS, the copolymer being present in an amount in the range of from about 0.1 to about 5% by weight of cement, lignosulfonates present in an amount in the range ofmore » from about 0.1 to about 5% by weight of cement, borates present in an amount in the range of from about 0.2 to about 5% by weight of cement and organic acids present in an amount of from about 0.2 to about 5% by weight of cement; and a galactomannan gum which has been treated with a hydrophobing agent selected from the group consisting of potassium pyroantimonate present on the gum in an amount of from about 0.001 to about 0.3 percent by weight of the gum and compounds capable of liberating borate ions when added to water present on the gum in an amount of from about 0.5 to about 1.0 percent by weight of the gum, whereby the hydration rate of the gum is retarded at temperatures below about 120 degrees F. and at pH levels above about 10, but the hydration rate increases at temperatures above about 120 degrees F., the treated gum being present in the composition in an amount of at least about 0.5% by weight of cement.« less
Method for forming cooperative binary ionic solids
Shelnutt, John A.; Martin, Kathleen E.; Wang, Zhongchun; Medforth, Craig J.
2013-03-05
A nanostructured molecular unit and method for forming is described where a cationic porphyrin having an ethanolic substituent species and a metal in the porphyrin cavity is combined with an anionic porphyrin having a sulfonate substituent species and a metal in the porphyrin cavity to form by self-assembly a nanostructured molecular unit with a morphology comprising four dendritic elements connected at a central node.
Method for forming cooperative binary ionic solids
Shelnutt, John A.; Martin, Kathleen E.; Wang, Zhongchun; Medforth, Craig J.
2014-09-09
A nanostructured molecular unit and method for forming is described where a cationic porphyrin having an ethanolic substituent species and a metal in the porphyrin cavity is combined with an anionic porphyrin having a sulfonate substituent species and a metal in the porphyrin cavity to form by self-assembly a nanostructured molecular unit with a morphology comprising four dendritic elements connected at a central node.
Newsted, J L; Beach, Susan A; Gallagher, S P; Giesy, J P
2008-04-01
Perfluorobutane sulfonate (PFBS) can be a final degradation product of perfluorobutane sulfonyl fluoride (PBSF)-based chemicals. Surfactants based on this chemistry are potential replacements for perfluorooctane sulfonate (PFOS)-related products and have many potential applications in industrial and commercial processes and applications. To evaluate the potential hazard that PFBS may pose to avian species, acute dietary studies with juvenile mallards and northern bobwhite quail, as well as a quail dietary chronic study of reproduction were conducted. In the acute studies, 10-day-old mallards and quail were exposed to nominal dietary concentrations of 1,000, 1,780, 3,160, 5,620 or 10,000 mg PFBS/kg feed, wet weight (ww) for 5 days and the birds were then fed an untreated diet and observed for up to 17 days. No treatment-related mortalities were observed in the study up to 10,000 mg PFBS/kg, ww feed. Body weight gains of quail exposed to 5620 or 10,000 mg PFBS/kg feed were statistically less than that of unexposed controls. Weight gain of mallards exposed to 10,000 mg PFBS/kg feed was statistically less than that of controls. There were no statistically significant effects on feed consumption of either species. In the acute studies, no observed adverse effect concentration (NOAEC) for mallards and quail were 5620 and 3160 mg PFBS/kg, ww feed, respectively. In a reproduction study, adult quail were exposed to nominal dietary concentrations of 100, 300, or 900 mg PFBS/kg, ww feed for up to 21 weeks. There were no treatment-related mortalities or effects on body weight, weight gain, feed consumption, histopathology measures, or reproductive parameters evaluated in the study when compared to the control group. Concentrations of PFBS in blood serum, liver, and eggs were dose-dependent but were less than the administered dose, indicating biodiminution. Based on the results from the quail reproduction study, the dietary NOAEC was 900 mg PFBS/kg, ww feed (equivalent to an ADI of 87.8 mg PFBS/kg bw/d).
Ansari, R; Ajori, S; Rouhi, S
2015-12-01
Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.
Crystal structure of bis[bis(4-azaniumylphenyl) sulfone] tetranitrate monohydrate
Benahsene, Amani Hind; Bendjeddou, Lamia; Merazig, Hocine
2017-01-01
In the title compound, the hydrated tetra(nitrate) salt of dapsone (4,4′-diaminodiphenylsulfone), 2C12H14N2O2S2+·4NO3 −·H2O {alternative name: bis[bis(4,4′-diazaniumylphenyl) sulfone] tetranitrate monohydrate}, the cations are conformationally similar, with comparable dihedral angles between the two benzene rings in each of 70.03 (18) and 69.69 (19)°. In the crystal, mixed cation–anion–water molecule layers lying parallel to the (001) plane are formed through N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding interactions and these layers are further extended into an overall three-dimensional supramolecular network structure. Inter-ring π–π interactions are also present [minimum ring centroid separation = 3.693 (3) Å]. PMID:29152359
Dechtrirat, Decha; Yingyuad, Peerada; Prajongtat, Pongthep; Chuenchom, Laemthong; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Tang, I-Ming
2018-04-23
A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N = 3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n = 6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries. Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.
Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan
2016-10-04
Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.
NASA Astrophysics Data System (ADS)
Kim, Onnuri; Park, Moon Jeong
2015-03-01
Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2016-04-11
Reaching exceptionally long times up to 500 ns in equilibrium and nonequilibrium molecular dynamics simulations studies, we have attained a fundamental molecular understanding of the correlation of ionomer clusters structure and multiscale dynamics, providing new insight into one critical, long-standing challenge in ionic polymer physics. The cluster structure in melts of sulfonated polystyrene with Na + and Mg 2+ counterions are resolved and correlated with the dynamics on multiple length and time scales extracted from measurements of the dynamic structure factor and shear rheology. We find that as the morphology of the ionic clusters changes from ladderlike for Na +more » to disordered structures for Mg 2+, the dynamic structure factor is affected on the length scale corresponding to the ionic clusters. Lastly, rheology studies show that the viscosity for Mg 2+ melts is higher than for Na + ones for all shear rates, which is well correlated with the larger ionic clusters’ size for the Mg 2+ melts.« less
Molecular deformation and stress-strain behavior of poly(bisphenol-A-diphenyl sulfone)
NASA Technical Reports Server (NTRS)
Hong, S.-D.; Chung, S. Y.; Fedors, R. F.
1983-01-01
The strain-birefringence response of poly(bisphenol-A-diphenyl sulfone) is found to be independent of temperature at temperatures below -100 C; at higher temperatures, the response becomes slightly dependent on temperature, with lower birefringence seen at higher temperatures. The stress-strain behavior and the stress-birefringence response both depend on temperature over the entire testing temperature range (-179 C to 150 C) studied; this dependence, however, is not pronounced. The evidence is seen as suggesting that the polymer molecules respond to deformation by undergoing conformational rearrangements; the mode of the molecular deformation remains unchanged for temperatures of -100 C or lower. At higher temperatures, the average length of the chain segments involved in the rearrangement increases. The stress-strain response is attributed mainly to chain orientation. The entropic contribution deriving from chain orientation at temperatures below -100 C is still substantial. The modest temperature dependence of the stress-strain response suggests that the energy barriers for the chain segments involved in the rearrangement are relatively low.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.
1983-01-01
Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.
Wang, Yawei; Fu, Jianjie; Wang, Thanh; Liang, Yong; Pan, Yuanyuan; Cai, Yaqi; Jiang, Guibin
2010-11-01
Perfluorinated compounds (PFCs) can be released to the surrounding environment during manufacturing and usage of PFC containing products, which are considered as main direct sources of PFCs in the environment. This study evaluates the release of perfluorooctane sulfonate (PFOS) and other PFCs to the ambient environment around a manufacturing plant. Among the nine PFCs analyzed, only PFOS, perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) were found in dust, water, soil, and chicken eggs. Very high concentrations of PFOS and PFOA were found in dust from the production storage, raw material stock room, and sulfonation workshop in the manufacturing facility, with the highest value at 4962 μg/g (dry weight) for PFOS and 160 μg/g for PFOA. A decreasing trend of the three PFCs concentrations in soils, water, and chicken eggs with increasing distance from the plant was found, indicating the production site to be the primary source of PFCs in this region. Risk quotients (RQs) assessment for surface water >500 m away from the plant were less than unity. Risk assessment of PFOS using predicted no-effect concentration (PNEC, 3.23 ng/g on a logarithmic scale) indicated no immediate ecological risk of a reduction in offspring survival. PFOS concentrations in most egg samples did not exceed the benchmark concentration derived in setting a reference dose for noncancer health effects (0.025 μg/(kgxd)).
Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite
NASA Technical Reports Server (NTRS)
Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to light isotopes of hydrogen (D/H), carbon (C-13/C-12), and nitrogen (N-15/N-14), are anomalous relative to bulk terrestrial and meteoritic values. In some cases, the D/H ratios approach those observed for molecules in interstellar clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis
2015-08-28
Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C,more » except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.« less
Kenzom, T.; Srivastava, P.
2014-01-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507
Kenzom, T; Srivastava, P; Mishra, S
2014-12-01
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Intumescent-ablator coatings using endothermic fillers
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Riccitiello, S. R. (Inventor)
1978-01-01
An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of environmentally persistent perfluorinated compounds and are found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in rats and mice. Exposure in utero reduces...
Custer, T.W.; Kannan, K.; Tao, L.; Yun, S.-H.; Trowbridge, A.
2010-01-01
Archived Great Blue Heron (Ardea herodias) eggs (N = 16) collected in 1993 from three colonies on the Mississippi River in Minnesota were analyzed in 2007 for perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs). One of the three colonies, Pig's Eye, was located near a presumed source of PFCs. Based on a multivariate analysis, the pattern of nine PFC concentrations differed significantly between Pig's Eye and the upriver (P = 0.002) and downriver (P = 0.02) colonies; but not between the upriver and downriver colonies (P = 0.25). Mean concentrations of perfluorooctane sulfonate (PFOS), a major PFC compound, were significantly higher at the Pig's Eye colony (geometric mean = 940 ng/g wet weight) than at upriver (60 ng/g wet weight) and downriver (131 ng/g wet weight) colonies. Perfluorooctane sulfonate concentrations from the Pig's Eye colony are among the highest reported in bird eggs. Concentrations of PFOS in Great Blue Heron eggs from Pig's Eye were well below the toxicity thresholds estimated for Bobwhite Quail (Colinus virginianus) and Mallards (Anas platyrhynchos), but within the toxicity threshold estimated for White Leghorn Chickens (Gallus domesticus). The pattern of six PBDE congener concentrations did not differ among the three colonies (P = 0.08). Total PBDE concentrations, however, were significantly greater (P = 0.03) at Pig's Eye (geometric mean = 142 ng/g wet weight) than the upriver colony (13 ng/g wet weight). Polybrominated diphenyl ether concentrations in two of six Great Blue Heron eggs from the Pig's Eye colony were within levels associated with altered reproductive behavior in American Kestrels (Falco sparverius).
Starling, Anne P; Adgate, John L; Hamman, Richard F; Kechris, Katerina; Calafat, Antonia M; Ye, Xiaoyun; Dabelea, Dana
2017-06-26
Certain perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widespread, persistent environmental contaminants. Prenatal PFAS exposure has been associated with lower birth weight; however, impacts on body composition and factors responsible for this association are unknown. We aimed to estimate associations between maternal PFAS concentrations and offspring weight and adiposity at birth, and secondarily to estimate associations between PFAS concentrations and maternal glucose and lipids, and to evaluate the potential for these nutrients to mediate associations between PFAS and neonatal outcomes. Within the Healthy Start prospective cohort, concentrations of 11 PFAS, fasting glucose, and lipids were measured in maternal mid-pregnancy serum (n=628). Infant body composition was measured using air displacement plethysmography. Associations between PFAS and birth weight and adiposity, and between PFAS and maternal glucose and lipids, were estimated via linear regression. Associations were decomposed into direct and indirect effects. Five PFAS were detectable in >50% of participants. Maternal perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) concentrations were inversely associated with birth weight. Adiposity at birth was approximately 10% lower in the highest categories of PFOA, PFNA, and perfluorohexane sulfonate (PFHxS) compared to the lowest categories. PFOA, PFNA, perfluorodecanoate (PFDeA), and PFHxS were inversely associated with maternal glucose. Up to 11.6% of the effect of PFAS on neonatal adiposity was mediated by maternal glucose concentrations. Perfluorooctane sulfonate (PFOS) was not significantly associated with any outcomes studied. Follow-up of offspring will determine the potential long-term consequences of lower weight and adiposity at birth associated with prenatal PFAS exposure. https://doi.org/10.1289/EHP641.
Adgate, John L.; Hamman, Richard F.; Kechris, Katerina; Calafat, Antonia M.; Ye, Xiaoyun; Dabelea, Dana
2017-01-01
Background: Certain perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widespread, persistent environmental contaminants. Prenatal PFAS exposure has been associated with lower birth weight; however, impacts on body composition and factors responsible for this association are unknown. Objectives: We aimed to estimate associations between maternal PFAS concentrations and offspring weight and adiposity at birth, and secondarily to estimate associations between PFAS concentrations and maternal glucose and lipids, and to evaluate the potential for these nutrients to mediate associations between PFAS and neonatal outcomes. Methods: Within the Healthy Start prospective cohort, concentrations of 11 PFAS, fasting glucose, and lipids were measured in maternal mid-pregnancy serum (n=628). Infant body composition was measured using air displacement plethysmography. Associations between PFAS and birth weight and adiposity, and between PFAS and maternal glucose and lipids, were estimated via linear regression. Associations were decomposed into direct and indirect effects. Results: Five PFAS were detectable in >50% of participants. Maternal perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) concentrations were inversely associated with birth weight. Adiposity at birth was approximately 10% lower in the highest categories of PFOA, PFNA, and perfluorohexane sulfonate (PFHxS) compared to the lowest categories. PFOA, PFNA, perfluorodecanoate (PFDeA), and PFHxS were inversely associated with maternal glucose. Up to 11.6% of the effect of PFAS on neonatal adiposity was mediated by maternal glucose concentrations. Perfluorooctane sulfonate (PFOS) was not significantly associated with any outcomes studied. Conclusions: Follow-up of offspring will determine the potential long-term consequences of lower weight and adiposity at birth associated with prenatal PFAS exposure. https://doi.org/10.1289/EHP641 PMID:28669937
NASA Astrophysics Data System (ADS)
Rafiee, Ezzat; Shahebrahimi, Shabnam
2017-07-01
Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.
Jun, Sang Hui; Cha, Song-Hyun; Kim, Jae-Hyun; Yoon, Minho; Cho, Seonho; Park, Youmie
2015-08-01
Silver nanoparticles (AgNPs) have been shown to be effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). In this study, AgNPs were synthesized using Caesalpinia sappan extract as a reducing agent to convert Ag+ to AgNPs. Seven stabilizers (surfactants and polymers) were added during the reduction step to increase the colloidal stability and to enhance the antibacterial activity of the AgNPs. Spherical and amorphous particles were primarily observed, with estimated diameters ranging from 30.2 to 47.5 nm. X-ray diffraction confirmed the face centered cubic structures of the AgNPs. Among the employed stabilizers, the cationic surfactant cetyltrimethylammonium bromide (CTAB) exhibited the highest antibacterial activity against 19 strains of MRSA, followed by polyvinylpyrrolidone (PVP, average molecular weight of 10,000). In contrast, the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) did not exhibit any significant antibacterial activity, suggesting that the cationic surfactant head group contributed to the higher antibacterial activity of the AgNPs against MRSA.
Capito, Florian; Skudas, Romas; Stanislawski, Bernd; Kolmar, Harald
2013-01-01
This manuscript describes customization of copolymers to be used for polymer-driven protein purification in bioprocessing. To understand how copolymer customization can be used for fine-tuning, precipitation behavior was analyzed for five target antibodies (mAbs) and BSA as model impurity protein, at ionic strength similar to undiluted cell culture fluid. In contrast to the use of standardized homopolymers, customized copolymers, composed of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-(acryloylamino)benzoic acid (ABZ), exhibited antibody precipitation yields exceeding 90%. Additionally, copolymer average molecular weight (Mw ) was varied and its influence on precipitation yield and contaminant coprecipitation was investigated. Results revealed copolymer composition as the major driving force for precipitation selectivity, which was also dependent on protein hydrophobicity. By adjusting ABZ content and Mw of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation yield and selectivity. These findings may open up new avenues for using polymers in antibody purification processes. © 2013 American Institute of Chemical Engineers.
Analysis of emulsion stability in acrylic dispersions
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2012-02-01
Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.
Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.
Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank
2017-01-01
Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .
Host-guest complex formation in cyclotrikis-(1-->6).
Cescutti, P; Utille, J P; Rizzo, R
2000-11-17
The possibility that cyclotrikis-(1-->6)-[alpha-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl] (CGM6) forms inclusion complexes, like cycloamyloses (cyclodextrins), was investigated by means of electrospray mass spectrometry and fluorescence spectroscopy. The complexing ability of both 1-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS), which were already used with cyclodextrins, was investigated. The former showed very little or no tendency to be complexed by CGM6, while the latter produced detectable adducts with CGM6. Fixed 90 degree angle light scattering experiments supported the findings obtained by molecular modelling calculations, which indicated a polar character for the CGM6 internal cavity. CGM6-TNS complexes were probably formed throughout interaction of the polar regions of the two molecules.
Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.
Cardenas, Allan Jay P; O'Hagan, Molly
2016-09-01
At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.
High cycle life secondary lithium battery
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Shen, David H. (Inventor); Carter, Boyd J. (Inventor); Somoano, Robert B. (Inventor)
1985-01-01
A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.
ERIC Educational Resources Information Center
Sanchez-Yague, J.; And Others
1987-01-01
Describes an experiment to discover the topology of plasma membrane aminophospholipids (phosphatidylethanolamine and phosphatidylserine) using whole platelets and trinitrobenzene sulfonate (TNBS) as a probe. Reports changes in phospholipid distribution during platelet activation with simultaneous action of thrombia and collagen. Details the…
HEPATIC GENE EXPRESSION PROFILES OF RATS EXPOSED TO PERFLUOROOCTANE SULFONATE (PFOS) IN UTERO
Hepatic Gene Expression Profiles of Rats Exposed to Perfluorooctanesulfonate (PFOS) in utero.
J.A. Bjork1, J.M. Berthiaume1, C. Lau2, J. L. Butenhoff3, and K.B. Wallace1
1Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Dulut...
Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer
NASA Astrophysics Data System (ADS)
Hu, Yufang
2005-03-01
We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.
Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments
NASA Astrophysics Data System (ADS)
Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.
2016-02-01
Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.
Grafted methylenediphosphonate ion exchange resins
Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip
1998-01-27
An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.
Grafted methylenediphosphonate ion exchange resins
Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.
1997-04-08
An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.
Grafted methylenediphosphonate ion exchange resins
Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip
1997-01-01
An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.
NASA Astrophysics Data System (ADS)
Schwarzbauer, J.
2009-04-01
Organic contaminants discharged to the aquatic environment exhibit a high diversity with respect to their molecular structures and the resulting physico-chemical properties. The chemical analysis of anthropogenic contamination in river systems is still an important feature, especially with respect to (i) the identification and structure elucidation of novel contaminants, (ii) to the characterisation of their environmental behaviour and (iii) to their risk for natural systems. A huge proportion of riverine contamination is caused by low-molecular weight organic compounds, like pesticides plasticizers, pharmaceuticals, personal care products, technical additives etc. Some of them, like PCB or PAH have already been investigated thoroughly and, consequently, their behaviour in aqueous systems is very well described. Although analyses on organic substances in river water traditionally focused on selected pollutants, in particular on common priority pollutants which are monitored routinely, the occurrence of further contaminants, e.g. pharmaceuticals, personal care products or chelating agents has received increasing attention within the last decade. Accompanied, screening analyses revealing an enormous diversity of low-molecular weight organic contaminants in waste water effluents and river water become more and more noticed. Since many of these substances have been rarely noticed so far, it will be an important task for the future to study their occurrence and fate in natural environments. Further on, it should be a main issue of environmental studies to provide a comprehensive view on the state of pollution of river water, in particular with respect to lipophilic low molecular weight organic contaminants. However, such non-target-screening analyses has been performed only rarely in the past. Hence, we applied extended non-target screening analyses on longitudinal sections of the rivers Rhine, Rur and Lippe (Germany) on the base of GC/MS analyses. The investigations revealed complex pattern of anthropogenic contaminants comprising a lot of still unnoticed pollutants (e.g. specific sulfones, trifluoromethyl substituted substances, nitrogen heterocycles etc.) or still unidentified compounds (such as selected brominated aromatics) of obviously high environmental relevance. In this presentation, a selection of several different contaminants will be discussed in detail comprising their emission sources, their emission behaviour, their fate within the river water bodies and in particular their structural properties. Generally. this investigation demonstrated the need to expand our analytical focus on a broader spectrum of organic contaminants, in particular to build up an adapted base for advanced monitoring studies.
In situ reinforced polymers using low molecular weight compounds
NASA Astrophysics Data System (ADS)
Yordem, Onur Sinan
2011-12-01
The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.
Preparation of ionic membranes for zinc/bromine storage batteries
NASA Astrophysics Data System (ADS)
Assink, R. A.; Arnold, C., Jr.
Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes
NASA Astrophysics Data System (ADS)
Bockstaller, Michael; Koehler, Werner
2000-03-01
Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.
Wen, Wu; Xia, Xinghui; Chen, Xi; Wang, Haotian; Zhu, Baotong; Li, Husheng; Li, Yang
2016-06-01
The effects of four types of dissolved organic matters (DOM) on the bioconcentration of perfluoroalkyl substances (PFASs) in Chironomus plumosus larvae have been studied. The PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA). The DOM included humic acid (HA), fulvic acid (FA), tannic acid (TA), and a protein, peptone (PEP), and their concentrations ranged from 0 to 50 mg L(-1). The results showed that, upon bioconcentration equilibrium, the body burdens of longer perfluoroalkyl chain PFASs (PFOS, PFDA, PFUnA and PFDoA) decreased with PEP and HA concentrations while increased with FA and TA concentrations. When FA and TA concentrations increased from 0 to 50 mg L(-1), body burdens of these PFASs increased by 7.5%-148.8% and 5.7%-37.1%, respectively. However, the DOM had no significant impact on the body burdens of shorter perfluoroalkyl chain PFASs (PFOA and PFNA). All of the four types of DOM lowered not only the uptake rate constants (ku) of PFASs due to the decrease of freely dissolved PFAS concentrations, but also the elimination rate constants (ke) due to the inhibition effect of DOM on the PFAS elimination from the larvae. The reduction in the two constants varied with both DOM and PFAS types. In the presence of PEP and HA with larger molecular weights, the ku values decreased more than ke, leading to the decreased body burdens of longer perfluoroalkyl chain PFASs. As for FA and TA with smaller molecular weights, the ke values decreased more than ku, resulting in increased body burdens of longer perfluoroalkyl chain PFASs. This study suggests that the effects of DOM on PFAS bioconcentration depend not only on the concentration but also on the molecule weight of DOM, which should be considered in the bioavailability assessment of PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of memantine on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice.
Motaghi, Ehsan; Hajhashemi, Valiollah; Mahzouni, Parvin; Minaiyan, Mohsen
2016-12-15
Previous reports suggest a significant role for N-Methyl-D-aspartate (NMDA) activation in inflammatory processes. So, this study was conducted to investigate the effect of memantine, a commonly used NMDA receptor antagonist, on inflammatory changes in mice model of colitis. Colitis was induced by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS) (40mg/kg). Animals received memantine (12.5, 25 and 50mg/kg, i.p.), glutamate (2g/kg, p.o.) or dexamethasone (1mg/kg, i.p.) 24h before TNBS instillation and daily thereafter for 4 days. The colonic injury was measured by clinical, macroscopic, microscopic and biochemical analysis. Memantine significantly attenuated the body weight loss, colon weight, the plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and colon level of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO); as well as macroscopic and microscopic signs of colitis. Oral administration of glutamate had no significant effect on investigated parameters. Memantine as a NMDA antagonist may provide a novel venue for the development of strategies for the treatment of ulcerative colitis. Copyright © 2016 Elsevier B.V. All rights reserved.
Devopmental toxicity of perfluorooctane Sulfonate (PFOS) is ...
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of PPARα. The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPARα. This study used PPARα knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPARα expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15-18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5 mg PFOS/kg/day. KO females were dosed with water, 8.5 or 10.5 mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12-15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1-15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and wei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedumaran, D.; Department of Chemistry, RMK Engineering College, Chennai; Pandurangan, A., E-mail: pandurangan_a@yahoo.com
2015-01-15
Graphical abstract: The wide angle XRD shows the well dispersion of HPWA in Sn-MCM-41. It enhances the total acidity of the material. The acidity of the material is correlated with sulfone selectivity. The FT-IR of dibenzothiophene and product shows the formation of sulfone (DBTO{sub 2}). - Highlights: • To enhance the total acidity of Sn-MCM-41 TPA is impregnated. • FT-IR and {sup 31}P MAS NMR confirms the HPWA intact on Sn-MCM-41. • EDAX shows the presence of W and P on Sn-MCM-41. • In ODS formation of sulfone was confirmed by FT-IR and {sup 1}H NMR. • The order ofmore » the catalytic activity of the catalysts are 18HSnM > 28HSnM > 8HSnM. - Abstract: Si-Sn-MCM-41 (Si/Sn = 110) mesoporous molecular sieve was synthesized by hydrothermal sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant and SnCl{sub 4}·5H{sub 2}O as a metal source. To generate surface acidity of Si-Sn-MCM-41, 12-tungstophosphoric acid (HPWA) is impregnated on it. The acidity of HPWA loading on Sn-MCM-41 was investigated by temperature programmed desorption of NH{sub 3}. The diffused reflectance spectra of ultraviolet radiation, Raman spectra, FT-IR, {sup 29}Si-MAS NMR and {sup 31}P-MAS NMR techniques revealed the intact of α-Keggin anions on Sn-MCM-41. The wide angle XRD results showed that the HPWA is well dispersed on the support. The total acidity was enhanced with increase in loading of H{sub 3}PW{sub 12}O{sub 40}. The catalytic activity was examined in desulfurization of dibenzothiophene in vapor phase system. Among the catalysts 18% HPWA loaded Sn-MCM-41 showed good catalytic activity in desulfurization at 325 °C. The HPWA/Sn-MCM-41 are a suitable solid acid catalyst for converting organic sulfur into insoluble sulfone.« less
Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundeen, S.G.; Savage, D.C.
1990-08-01
The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less
Quantitative fate of chlorogenic acid during enzymatic browning of potato juice.
Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Gruppen, Harry
2013-02-20
The quantitative fate of chlorogenic acid (ChA) during enzymatic browning of potato juice was investigated. Potato juice was prepared in water without the use of any antibrowning agent (OX treatment). As a control, a potato juice was prepared in the presence of NaHSO(3) (S control). To study the composition of phenolic compounds in potato in their native states, also a potato extract was made with 50% (v/v) methanol containing 0.5% (v/v) acetic acid (MeOH control). Water-soluble low molecular weight fractions (LMWFs) and high molecular weight fractions (HMWFs) from S and OX extracts were obtained by ultrafiltration and dialysis, respectively. Pellets obtained after the OX treatment and the S and MeOH controls were also analyzed for ChA content. Whereas in the S-LMWF all ChA was converted to sulfonic acid adducts, no free ChA was found in the OX-LMWF, indicating its high reactivity upon enzymatic browning. Analysis of protein in the HMWFs showed a higher content of "reacted" ChA in OX (49.8 ± 7.1 mg ChA/100 g potato DW) than in S (14.4 ± 1.5 mg ChA/100 g potato DW), as evidenced by quinic acid release upon alkaline hydrolysis. The presence of quinic acid in S-HMWF was unexpected, but a mass balance incorporating the ChA content of LMWF, HMWF, and pellet for the three extractions suggested that ChA might have been attached to polymeric material, soluble in the aqueous environment of S but not in that of MeOH. Size exclusion chromatography, combined with proteolysis, revealed that ChA reacted with patatin and protease inhibitors to produce brown soluble complexes.
Simulated infrared spectra of triflic acid during proton dissociation.
Laflamme, Patrick; Beaudoin, Alexandre; Chapaton, Thomas; Spino, Claude; Soldera, Armand
2012-05-05
Vibrational analysis of triflic acid (TfOH) at different water uptakes was conducted. This molecule mimics the sulfonate end of the Nafion side-chain. As the proton leaves the sulfonic acid group, structural changes within the Nafion side-chain take place. They are revealed by signal shifts in the infrared spectrum. Molecular modeling is used to follow structural modifications that occur during proton dissociation. To confirm the accuracy of the proposed structures, infrared spectra were computed via quantum chemical modeling based on density functional theory. The requirement to use additional diffuse functions in the basis set is discussed. Comparison between simulated infrared spectra of 1 and 2 acid molecules with different water contents and experimental data was performed. An accurate description of infrared spectra for systems containing 2 TfOH was obtained. Copyright © 2012 Wiley Periodicals, Inc.
Bis(tetraphenylphosphonium) tris[N-(methylsulfonyl)dithiocarbimato(2−)-κ2 S,S′]stannate(IV)
Barolli, João P.; Oliveira, Marcelo R. L.; Corrêa, Rodrigo S.; Ellena, Javier
2009-01-01
In the title complex, (C24H20P)2[Sn(C2H3NO2S3)3], the SnIV atom is coordinated by three N-(methylsulfonyl)dithiocarbimate bidentate ligands through the anionic S atoms in a slightly distorted octahedral coordination geometry. There is one half-molecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bisecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak intermolecular C—H⋯O and C—H⋯S interactions contribute to the packing stabilization. PMID:21577695
NASA Astrophysics Data System (ADS)
Kumar, S. Anil; Bhaskar, BL
2018-02-01
Ab-initio computational study of antihemorrhage drug molecule diethylammonium 2,5-dihydroxybenzene sulfonate, popularly known as ethamsylate, has been attempted using Gaussian 09. The optimized molecular geometry has been envisaged using density functional theory method at B3LYP/6-311 basis set. Different geometrical parameters like bond lengths and bond angles were computed and compared against the experimental results available in literature. Fourier transform infrared scanning of the title molecule was performed and vibrational frequencies were also computed using Gaussian software. The presence of O-H---O hydrogen bonds between C6H5O5S- anions and N-H---O hydrogen bonds between anion and cation is evident in the computational studies also. In general, satisfactory agreement of concordance has been observed between computational and experimental results.
Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.
1979-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Identification of a new sulfonic acid metabolite of metolachlor in soil
Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.
1996-01-01
An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.
Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort.
Manzano-Salgado, Cyntia B; Casas, Maribel; Lopez-Espinosa, Maria-Jose; Ballester, Ferran; Iñiguez, Carmen; Martinez, David; Costa, Olga; Santa-Marina, Loreto; Pereda-Pereda, Eva; Schettgen, Thomas; Sunyer, Jordi; Vrijheid, Martine
2017-11-01
Prenatal perfluorooctanoate (PFOA) exposure has been associated with reduced birth weight but maternal glomerular filtration rate (GFR) may attenuate this association. Further, this association remains unclear for other perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA). We estimated associations between prenatal PFAS exposure and birth outcomes, and the influence of GFR, in a Spanish birth cohort. We measured PFHxS, PFOS, PFOA, and PFNA in 1st-trimester maternal plasma (years: 2003-2008) in 1202 mother-child pairs. Continuous birth outcomes included standardized weight, length, head circumference, and gestational age. Binary outcomes included low birth weight (LBW), small-for-gestational-age, and preterm birth. We calculated maternal GFR from plasma-creatinine measurements in the 1st-trimester of pregnancy (n=765) using the Cockcroft-Gault formula. We used mixed-effects linear and logistic models with region of residence as random effect and adjustment for maternal age, parity, pre-pregnancy BMI, and fish intake during pregnancy. Newborns in this study weighted on average 3263g and had a median gestational age of 39.8weeks. The most abundant PFAS were PFOS and PFOA (median: 6.05 and 2.35ng/mL, respectively). Overall, PFAS concentrations were not significantly associated to birth outcomes. PFOA, PFHxS, and PFNA showed weak, non-statistically significant associations with reduced birth weights ranging from 8.6g to 10.3g per doubling of exposure. Higher PFOS exposure was associated with an OR of 1.90 (95% CI: 0.98, 3.68) for LBW (similar in births-at-term) in boys. Maternal GFR did not confound the associations. In this study, PFAS showed little association with birth outcomes. Higher PFHxS, PFOA, and PFNA concentrations were non-significantly associated with reduced birth weight. The association between PFOS and LBW seemed to be sex-specific. Finally, maternal GFR measured early during pregnancy had little influence on the estimated associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian
2017-05-01
Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.
Distribution and Variation of Indole Glucosinolates in Woad (Isatis tinctoria L.) 1
Elliott, Malcolm C.; Stowe, Bruce B.
1971-01-01
The exceptionally high levels in woad (Isatis tinctoria L.) of three indolic goitrogens, namely glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate, permit the facile study of their distribution in the plant and their changes during its development. Woad seeds contain as much as 0.23% fresh weight of glucobrassicin but no other indole glucosinolate, while 1-week-old seedlings also contain substantial amounts of neoglucobrassicin and glucobrassicin-1-sulfonate in their shoots whether grown in the light or dark. The sulfonate is not found in roots, and light depresses neoglucobrassicin levels in shoots. Sterile root cultures synthesize glucobrassicin and neoglucobrassicin, and significant quantities of these were even found to be excreted by the roots of intact sterile seedlings in culture. This may explain the long known deleterious effect of woad and other cruciferous crops on subsequent plantings and the observation could be of ecological importance. Long term changes in levels of all three substances in the plant are similar and are compatible with earlier suggestions that the compounds could be auxin precursors at the time of flower stem elongation. Since sterile seedlings readily incorporate 35SO42− into indole glucosinolates and relative specific radioactivities suggest that glucobrassicin is the precursor of the other two compounds, pathways of goitrogen biosynthesis should be relatively easily determined in this material. PMID:16657825
Distribution and Variation of Indole Glucosinolates in Woad (Isatis tinctoria L.).
Elliott, M C; Stowe, B B
1971-10-01
The exceptionally high levels in woad (Isatis tinctoria L.) of three indolic goitrogens, namely glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate, permit the facile study of their distribution in the plant and their changes during its development. Woad seeds contain as much as 0.23% fresh weight of glucobrassicin but no other indole glucosinolate, while 1-week-old seedlings also contain substantial amounts of neoglucobrassicin and glucobrassicin-1-sulfonate in their shoots whether grown in the light or dark. The sulfonate is not found in roots, and light depresses neoglucobrassicin levels in shoots. Sterile root cultures synthesize glucobrassicin and neoglucobrassicin, and significant quantities of these were even found to be excreted by the roots of intact sterile seedlings in culture. This may explain the long known deleterious effect of woad and other cruciferous crops on subsequent plantings and the observation could be of ecological importance. Long term changes in levels of all three substances in the plant are similar and are compatible with earlier suggestions that the compounds could be auxin precursors at the time of flower stem elongation. Since sterile seedlings readily incorporate (35)SO(4) (2-) into indole glucosinolates and relative specific radioactivities suggest that glucobrassicin is the precursor of the other two compounds, pathways of goitrogen biosynthesis should be relatively easily determined in this material.
Hofmann, Michael A.
2006-11-14
The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.
Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei
2013-11-13
Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.
Nanostructured membranes based on polysulfone homopolymers and copolymers
NASA Astrophysics Data System (ADS)
Nunes, Suzana
Polyethersulfone is one of the most successful polymers for membranes with applications varying from seawater desalination to hemodialysis. Their manufacture however is traditionally done by solution casting and phase inversion using solvents, which are now considered negative for the environment. We have been working on the membrane manufacture using ionic liquids as green solvent alternative. Polyethersulfone, and polyetherimide sulfone membranes, as flat-sheet and hollow fibers, were prepared from solutions in different ionic liquids. Thermodynamic and rheological investigation were conducted to optimize the membrane morphology, leading to permeances of 20-65 Lm-2h-1bar-1 useful for instance for separations of peptides with molecular weight in the range of 800 to 3500 gmol-1. We also synthesized block copolymers with polysulfone segments and explored them for membrane preparation with low fouling, high porosity and narrow pore size distribution. The self-assembly of the copolymer in solution, leading to the membrane formation was investigated by cryo electron microscopy, supported by modeling (dissipative particle dynamics). In collaboration with: Dooli Kim, Yihui xie, Burhannudin Sutisna, King Abdullah University of Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, A.K.; Huang, R.Y.M.
A newly developed thin-film composite (TFC) ultrafiltration membrane made of sulfonated poly(phenylene oxide) (SPPO) was used to establish the feasibility of separating L-phenylalanine from the fermentation broth containing a number of dissolved inorganic and organic solutes as an alternative approach to the currently used complex and uneconomical conventional ion-exchange schemes. It was found that the rejection of inorganic salts in a single component system was highly dependent on the feed solution concentration and varied inversely with it. The pH of the feed solution was found to have a strong effect on the rejection of L-phenylalanine, changing it from - 10more » to 90%. This rejection behavior was identical for the two TFC-SPPO membrane samples which had molecular weight cutoff ratings of 10,000 and 20,000, respectively, although the permeate flux of the latter sample was almost twice that of the former sample. It was found that glucose molecules were not rejected by the membrane. 11 refs., 18 figs., 2 tab.« less
Tabaraki, Reza; Sadeghinejad, Negar
2017-06-01
Biosorption of Methyl Blue (MB), Fuchsin Acid (FA), Rhodamine B (RB), Methylene Blue (MEB), Bromocresol purple (BC) and Methyl Orange (MO) onto Sargassum ilicifolium was studied in a batch system. Effect of dye structure on biosorption by Sargassum ilicifolium was studied to define the correlation between chemical structure and biosorption capacity. Different dye groups such as triarylmethane (MB, FA and BC), monoazo (MO), thiazine (MEB) and xanthene (RB) were studied. At optimum experimental conditions for each dye, biosorption capacity was determined and compared. The results indicate that the chemical structure (triarylmethane, monoazo, thiazine, xanthene), number of sulfonic groups, basicity (element of chromophore group: S, N, O) and molecular weight of dye molecules influence their biosorption capacity. Experimental parameters such as biosorbent dose, pH, contact time, and initial dye concentration were optimized for each dye. The biosorption kinetic data were successfully described by the pseudo second-order model. The biosorption results were also analyzed by the Langmuir and Freundlich isotherms. Finally, biosorption capacities obtained using Sargassum ilicifolium were compared with the ones presented in the literature.
NASA Astrophysics Data System (ADS)
Parot, Jérémie; Parlanti, Edith; Guéguen, Céline
2015-04-01
Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.
Simulation study of sulfonate cluster swelling in ionomers
NASA Astrophysics Data System (ADS)
Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut
2009-12-01
We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.
Carmon, Amber; Chien, Jeff; Sullivan, David
2010-01-01
Two enzymes, α glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and α glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene. PMID:19995806
Carmon, Amber; Chien, Jeff; Sullivan, David; MacIntyre, Ross
2010-01-01
Two enzymes, alpha glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and alpha glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene.
Ngo, Ha Thi; Hetland, Ragna Bogen; Sabaredzovic, Azemira; Haug, Line Småstuen; Steffensen, Inger-Lise
2014-07-01
We examined whether perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) had obesogenic effects and if they increased spontaneous intestinal tumorigenesis in the mouse model C57BL/6J-Min/+ (multiple intestinal neoplasia) after in utero exposure. The dams were exposed to PFOA or PFOS (0.01, 0.1 or 3.0mg/kg bw/day) by po gavage on GD1-17. The Min/+ and wild-type offspring were terminated at week 11 for examination of intestinal tumorigenesis or at week 20 for obesogenic effect, respectively. Body weights of the dams and pups were recorded throughout life. Food intake was determined at week 6 and 10. Blood glucose (non-fasted) was measured at week 6 and 11. No obesogenic effect of PFOA or PFOS was observed up to 20 weeks of age. PFOA or PFOS did not increase the incidence or number of tumors in the small intestine or colon of the Min/+ mice or affect their location along the intestines. Feed intake was not affected. There were some indications of toxicity of PFOA, but not of PFOS. There was lower survival of pups after 3.0mg/kg PFOA, lower body weight in pups after 3.0 and possibly 0.1mg/kg PFOA, and increased relative liver weight after 0.01 and possibly 0.1mg/kg PFOA. Plasma glucose was lower after 0.01 and 0.1mg/kg PFOA. In conclusion, exposure to PFOA and PFOS in utero with the doses used did not have obesogenic effect on either Min/+ or wild-type mice, at least not up to 11 or 20 weeks of age, nor increased intestinal tumorigenesis in Min/+ mice. Copyright © 2014 Elsevier Inc. All rights reserved.
Tóth, Gergő; Barabás, Csenge; Tóth, Anita; Kéry, Ágnes; Béni, Szabolcs; Boldizsár, Imre; Varga, Erzsébet; Noszál, Béla
2016-06-01
In this study the polyphenolic composition of lilac flowers and fruits was determined for the first time. For the identification of compounds, accurate molecular masses and formulas, acquired by LC and ESI-TOF-MS and fragmentation pattern given by LC-ESI/MS/MS analyses, were used. Our chromatographic system in conjunction with tandem MS was found to be valuable in the rapid separation and determination of the multiple constituents in methanolic extracts of lilac flowers and fruits. Altogether 34 phenolics, comprising 18 secoiridoids, seven phenylpropanoids, four flavonoids and five low-molecular-weight phenols, were identified. As marker compounds two secoiridoids (oleuropein and nuzhenide), two phenylpropanoids (acteoside and echinacoside) and rutin were quantified by validated methods. As a result of quantitative analysis, it was confirmed that flowers contain significant amounts of phenylpropanoids (acteoside, 2.48%; echinacoside, 0.75%) and oleuropein (0.95%), while in fruits secoiridoid oleuropein (1.09%) and nuzhenide (0.42%) are the major secondary metabolites. The radical scavenging activities of the extracts and the constituents were investigated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] assays. Both extracts show remarkable antioxidant activities. Our results clearly show that lilac flowers and fruits are inexpensive, readily available natural sources of phenolic compounds with pharmacological and cosmetic applications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Anti-genotoxicity of trans-anethole and eugenol in mice.
Abraham, S K
2001-05-01
The naturally occurring flavouring agents trans-anethole and eugenol were evaluated for antigenotoxic effects in mice. The test doses of trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg weight) were administered by gavage 2 and 20 h before the genotoxins were injected intraperitoneally. Anti-genotoxic effects were assessed in the mouse bone marrow micronucleus test. Pretreatment with trans-anethole and eugenol led to significant antigenotoxic effects against cyclophosphamide (CPH), procarbazine (PCB), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and urethane (URE). In addition, trans-anethole inhibited the genotoxicity of ethyl methane sulfonate (EMS). Both trans-anethole and eugenol exerted dose-related antigenotoxic effects against PCB and URE. There was no significant increase in genotoxicity when trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg body weight) were administered alone.
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Ethylene polymer, chloro-sulfonated is produced by chloro-sulfonation of a carbon tetrachloride solution of... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates. [42 FR 14491, Mar. 15...
Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui
2017-09-27
A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.
Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography
NASA Astrophysics Data System (ADS)
Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru
2009-03-01
EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.
Soft nanoparticles: nano ionic networks of associated ionic polymers
Aryal, Dipak; Grest, Gary S.; Perahia, Dvora
2017-01-01
Directing the formation of nanostructures that serve as building blocks of membranes presents an immense step towards engineering controlled polymeric ion transport systems. Here, using the exquisite atomic detail captured by molecular dynamics simulations, we follow the assembly of a co-polymer that consists of polystyrene sulfonate tethered symmetrically to hydrophobic blocks, realizing a new type of long lived solvent-responsive soft nanoparticle.
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen
2018-05-15
A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.
Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.
Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad
2016-10-01
Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, P.; Sivakumar, A.; Xu, Q.
1991-03-01
The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methylmore » groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.« less
2-Aminopyrimidin-1-ium 4-methylbenzenesulfonate
Tabatabaee, Masoumeh; Noozari, Najmeh
2011-01-01
In the crystal structure of the title compound, C4H6N3 +·C7H7O3S−, intermolecular N—H⋯O hydrogen bonds link the cations and anions into chains along [100]. Additional stabilization is provided by weak C—H⋯O hydrogen bonds. An intermolecular π–π stacking interaction with a centroid–centroid distance of 3.6957 (7) Å is also observed. The H atoms of the methyl group were refined as disordered over two sets of sites with equal occupancies PMID:21754830
McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX
2011-10-04
The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
Darrow, Lyndsey A; Stein, Cheryl R; Steenland, Kyle
2013-10-01
Previous research suggests perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) may be associated with adverse pregnancy outcomes. We conducted a population-based study of PFOA and PFOS and birth outcomes from 2005 through 2010 in a Mid-Ohio Valley community exposed to high levels of PFOA through drinking-water contamination. Women provided serum for PFOA and PFOS measurement in 2005-2006 and reported reproductive histories in subsequent follow-up interviews. Reported singleton live births among 1,330 women after 1 January 2005 were linked to birth records (n = 1,630) to identify the outcomes of preterm birth (< 37 weeks gestation), pregnancy-induced hypertension, low birth weight (< 2,500 g), and birth weight (grams) among full-term infants. We observed little or no evidence of association between maternal serum PFOA or PFOS and preterm birth (n = 158) or low birth weight (n = 88). Serum PFOA and PFOS were both positively associated with pregnancy-induced hypertension (n = 106), with adjusted odds ratios (ORs) per log unit increase in PFOA and PFOS of 1.27 (95% CI: 1.05, 1.55) and 1.47 (95% CI: 1.06, 2.04), respectively, but associations did not increase monotonically when categorized by quintiles. Results of subanalyses restricted to pregnancies conceived after blood collection were consistent with the main analyses. There was suggestion of a modest negative association between PFOS and birth weight in full-term infants (-29 g per log unit increase; 95% CI: -66, 7), which became stronger when restricted to births conceived after the blood sample collection (-49 g per log unit increase; 95% CI: -90, -8). Results provide some evidence of positive associations between measured serum perfluorinated compounds and pregnancy-induced hypertension and a negative association between PFOS and birth weight among full-term infants.
Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam.
Kishi, Takahiro; Arai, Mitsuru
2008-11-15
Perfluorooctane sulfonate (C(8)HF(17)SO(3)) and perfluorooctane acid (C(8)HF(15)O(2)) are artificial chemicals and have been used all over the world, mainly as water repellent agents, fluorochemical surfactants, coating agents, etc. However, perfluorooctane sulfonate and perfluorooctane acid are environmental contaminants because of their stability, bio-accumulativeness, and long-term persistence in the ecological environment. At the present day, they are diffused all over the world. Lately, this diffusion is viewed with suspicion and there is a movement towards their restriction, even if the environmental fate of them is still under investigation. Fluorochemical surfactants are key compounds in the aqueous film-forming foam (AFFF) formulations. AFFFs are used for massive conflagration such as industrial fire and petroleum fire because of their efficient fire control. On the other hand, a lot of AFFFs are used in case of massive conflagration and most of them enter ocean and groundwater. Actually, perfluorooctane sulfonate and perfluorooctane sulfonate related substances were detected from the fire-fighting facility of US forces. Therefore, there is the possibility of generating perfluorooctane sulfonate and perfluorooctane sulfonate related substances from fluorochemical surfactants in the AFFFs. In this study, activated sludge added AFFF were analyzed for perfluorooctane sulfonate and perfluorooctane acid with time. And the perfluorooctane sulfonate was directly detected after 2 days using LC-MS. This shows that AFFF can be decomposed perfluorooctane sulfonate by microorganisms easily. However, perfluorooctane sulfonate would not decompose at all. Additionally, activated sludge added N-polyoxyethylene-N-propyl perfluorooctane sulfonamide which is one of the fluorochemical surfactants used in the AFFF was analyzed for perfluorooctane sulfonate and perfluorooctane acid with time and the perfluorooctane sulfonate was detected too.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
De Silva, Amila O; Spencer, Christine; Scott, Brian F; Backus, Sean; Muir, Derek C G
2011-10-01
Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (
Molecular Dynamics Studies of Overbased Detergents on a Water Surface.
Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S
2017-07-25
Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.
Piddington, C S; Kovacevich, B R; Rambosek, J
1995-01-01
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582
Susceptibility of synthetic long-chain alkylbenzenes to degradation in reducing marine sediments
Eganhouse, Robert P.; Pontolillo, James
2008-01-01
Long-chain alkylbenzenes (LCABs) synthesized for production of alkylbenzene sulfonate surfactants have been used as molecular markers of anthropogenic waste for 25 years. Synthetic LCABs comprise two classes, the tetrapropylene-based alkylbenzenes (TABs) and the linear alkylbenzenes (LABs). LABs supplanted TABs in the mid-1960s because of improved biodegradability of their sulfonated analogs. Use of LCABs for molecular stratigraphy depends on their preservation in sediments over decadal time scales. Most laboratory and field studies suggest that LABs degrade rapidly under aerobic conditions but are resistant to degradation when oxygen is absent. However, recent work indicates that LABs may not be as persistent under reducing conditions as previously thought. To assess the potential for degradation of LCABs in reducing sediments, box cores collected in 1992 and 2003 near a submarine wastewater outfall system were analyzed using gas chromatography/mass spectrometry. The TABs were effectively preserved; differences between whole-core inventories were within analytical error. By contrast, whole-core inventories of the LABs decreased by about 50-60% during the same time interval. Based on direct comparison of chemical inventories in coeval core sections, LAB transformation rates are estimated at 0.07 ±. 0.01 yr-1. These results indicate that caution should be exercised when using synthetic LCABs for reconstruction of depositional records.
NASA Astrophysics Data System (ADS)
Sangeetha, M.; Mathammal, R.
2018-02-01
The ionic cocrystals of 5-amino-2-naphthalene sulfonate · ammonium ions (ANSA-ṡNH4+) were grown under slow evaporation method and examined in detail for pharmaceutical applications. The crystal structure and intermolecular interactions were studied from the single X-ray diffraction analysis and the Hirshfeld surfaces. The 2D fingerprint plots displayed the inter-contacts possible in the ionic crystal. Computational DFT method was established to determine the structural, physical and chemical properties. The molecular geometries obtained from the X-ray studies were compared with the optimized geometrical parameters calculated using DFT/6-31 + G(d,p) method. The band gap energy calculated from the UV-Visible spectral analysis and the HOMO-LUMO energy gap are compared. The theoretical UV-Visible calculations helped in determining the type of electronic transition taking place in the title molecule. The maximum absorption bands and transitions involved in the molecule represented the drug reaction possible. Non-linear optical properties were characterized from SHG efficiency measurements experimentally and the NLO parameters are also calculated from the optimized structure. The reactive sites within the molecule are detailed from the MEP surface maps. The molecular docking studies evident the structure-activity of the ionic cocrystal for anti-cancer drug property.
Karimian, Najmeh; Stortini, Angela Maria; Moretto, Ligia Maria; Costantino, Claudio; Bogialli, Sara; Ugo, Paolo
2018-06-18
This work is aimed at developing an electrochemical sensor for the sensitive and selective detection of trace levels of perfluorooctane sulfonate (PFOS) in water. Contamination of waters by perfluorinated alkyl substances (PFAS) is a problem of global concern due to their suspected toxicity and ability to bioaccumulate. PFOS is the perfluorinated compound of major concern, as it has the lowest suggested control concentrations. The sensor reported here is based on a gold electrode modified with a thin coating of a molecularly imprinted polymer (MIP), prepared by anodic electropolymerization of o-phenylenediamine (o-PD) in the presence of PFOS as the template. Activation of the sensor is achieved by template removal with suitable a solvent mixture. Voltammetry, a quartz crystal microbalance, scanning electron microscopy and elemental analysis were used to monitor the electropolymerization process, template removal and binding of the analyte. Ferrocenecarboxylic acid (FcCOOH) has been exploited as an electrochemical probe able to generate analytically useful voltammetric signals by competing for the binding sites with PFOS, as the latter is not electroactive. The sensor has a low detection limit (0.04 nM), a satisfactory selectivity, and is reproducible and repeatable, giving analytical results in good agreement with those obtained by HPLC-MS/MS analyses.
Materials for use as proton conducting membranes for fuel cells
Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2009-01-06
A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
Custer, Christine M.; Custer, Thomas W.; Schoenfuss, Heiko L.; Poganski, Beth H.; Solem, Laura
2012-01-01
Tree swallow (Tachycineta bicolor) samples were collected at a reference lake and a nearby lake (Lake Johanna) in east central Minnesota, USA contaminated with perfluorinated carboxylic and sulfonic acids. Tissues were analyzed for a suite of 13 perfluoroalkyl compounds (PFCs) to quantify exposure and to determine if there was an association between egg concentrations of PFCs and reproductive success of tree swallows. Concentrations of perfluoroocatane sulfonate (PFOS) were elevated in all tree swallow tissues from Lake Johanna compared to tissues collected at the reference lake. Other PFCs, except for two, were elevated in blood plasma at Lake Johanna compared to the reference lake. PFOS was the dominant PFC (>75%) at Lake Johanna, but accounted for <50% of total PFCs at the reference lake. There was a negative association between concentrations of PFOS in eggs and hatching success. Reduced hatching success was associated with PFOS levels as low as 150 ng/g wet weight.
Lupton, Sara J; Dearfield, Kerry L; Johnston, John J; Wagner, Sarah; Huwe, Janice K
2015-12-30
Perfluorooctane sulfonate (PFOS) is used in consumer products as a surfactant and is found in industrial and consumer waste, which ends up in wastewater treatment plants (WWTPs). PFOS does not breakdown during WWTP processes and accumulates in the biosolids. Common practices include application of biosolids to pastures and croplands used for feed, and as a result, animals such as beef cattle are exposed to PFOS. To determine plasma and tissue depletion kinetics in cattle, 2 steers and 4 heifers were dosed with PFOS at 0.098 mg/kg body weight and 9.1 mg/kg, respectively. Plasma depletion half-lives for steers and heifers were 120 ± 4.1 and 106 ± 23.1 days, respectively. Specific tissue depletion half-lives ranged from 36 to 385 days for intraperitoneal fat, back fat, muscle, liver, bone, and kidney. These data indicate that PFOS in beef cattle has a sufficiently long depletion half-life to permit accumulation in edible tissues.
Rashid, Umer; Rahim, Fazal; Taha, Muhammad; Arshad, Muhammad; Ullah, Hayat; Mahmood, Tariq; Ali, Muhammad
2016-06-01
Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
[Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin].
Wang, Qiu-ya; Meng, Qing-hua; Zhang, Zun-ting; Tian, Zhen-jun; Liu, Hui
2009-04-01
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Water based drilling mud additive
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrary, J.L.
1983-12-13
A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.
Preparation of Proton Exchange Membranes and Lithium Batteries from Melamine-containing Ormosils
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Kinder, James D.; Meador, Mary Ann; Waldecker, James; Bennett, William R.
2004-01-01
Our laboratory has recently reported a series of rodcoil polymers for lithium batteries that display dimensionally stable films with good ionic conductivity. The rod segments consist of rigid linear and branched polyimides and the coil segments are polyethylene oxides (PEO). It has been proposed that good mechanical and transport properties are due to phase separation between the rod and coil segments. It was also observed that increased branching and molecular weight lead to increased conductivity. The following study was undertaken to assess the effects of phase separation in polyalkylene oxides connected by melamine linkages. Melamine was chosen as the linking unit because it provides a branching site, cation binding sites to help ionic transport between polymer chains, and the opportunity for self assembly through hydrogen bonding. Polymers were made by the reaction of cyanuric chloride with a series of amine-terminated alkylene oxides. A linear polymer was first made, followed by reaction of the third site on cyanuric chloride with varying ratios of monofunctional Jeffamine and (3-aminopropyl)triethoxysilane. The lithium trifluoromethane sulfonamide-doped polymers are then crosslinked through a sol-gel process to form free-standing films. Initial results have shown mechanically strong films with lithium conductivities on the order of 2 x 10(exp -5) S/cm at ambient temperature. In a separate study, organically modified silanes (Ormosils) that contain sulfonic acid derivatized melamines have been incorporated into proton exchange membranes. The membranes are made by reaction of the primary amine groups of various ratios of melamine derivative and difunctional Jeffamine (MW = 2000) with the epoxide group of (3-Glycidyloxypropyl)trimethoxysilane. The films were then cross-linked through a sol-gel process. Resulting sulfuric acid doped films are strong, flexible, and have proton conductivities on the order of 2 x l0(exp -2) S/cm (120 C, 25% relative humidity). Our best results have been observed when films contain 60% PEO and 40% sulfonated melamine.
Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand
2009-01-01
In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1×106 Da) and HA oligomer mixtures (HA-o: 0.75–10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA oligomers was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild sub-cutaneous inflammatory response in vivo and VCAM-1 expression by ECs cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA oligomers and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromises their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA oligomers and more biocompatible HMW HAon synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and functional endothelialization can be achieved, and the need to create a mechanically compliant biomaterial for standalone use, circumvented. PMID:20186732
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Rizvi, S. J. A.; Azam, Ameer
2018-05-01
Poly ether ether ketone (PEEK) was sulfonated with 1.0 M sulphuric acid for varying durations to have various degrees of sulfonation (DS) from 43 to 55%. The FT-IR spectra confirmed the successful sulfonation of PEEK. The sulfonated PEEK (sPEEK) membranes were prepared by a solvent casting method using dimethylacetamide (DMAc) as solvent and upon drying the membranes were characterized. The DS% and ion exchange capacity (IEC) were determined by a back titration method. The IEC and DS of sPEEK was found to increase with the increment of sulfonation reaction time. Water uptake also increased with increase in the DS. The Thermogravimetric (TGA) curves revealed poor thermal stability of sPEEK. The proton conductivity of sPEEK membrane was found to considerably better with degree of sulfonation for fuel cell application.
Aqua-vanadyl ion interaction with Nafion® membranes
Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...
2015-03-23
Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.
Bisphenol A sulfonation is impaired in metabolic and liver disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu
Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results:more » In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.« less
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
Zhang, Rui; Liu, Yang; Huang, Xinran; Xu, Mengchen; Liu, Rutao; Zong, Wansong
2018-05-01
The extensive use of surfactants in food, laundry products and agriculture has caused concern about their biosafety. However, few studies have been done on their potential effect on the lipase which has always been used with surfactants in food and laundry industry. Herein, we investigated the interaction of three surfactants (sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfonate (SLS)) with Candida rugosa lipase (CRL), which is a popular biocatalyst used regularly with surfactants. The effect of the three surfactants on the conformation and activity of CRL was evaluated by using multiple spectral methods, enzyme activity assay and molecular docking modeling. The results demonstrated that CRL interacted with SDS, SDBS and SLS primarily through hydrophobic forces, H-bonding and electrostatic forces, respectively. The binding constants (K A ) of SDBS with CRL varied with temperature: 1.99×10 3 mol/L at 298K and 4.13×10 3 mol/L at 318K. SDS and SDBS affected the secondary structure and skeleton of CRL, which changed the polarity of CRL and enhanced its activity. SLS also changed the secondary structure and activity of CRL moderately, but had little effect on its polarity and chromophore microenvironment. Accordingly, all three surfactants exhibited effect to CRL on the molecular level calling for more attention to pay on their biosafety. The work demonstrates that SDS, SDBS and SLS could cause negative effects to CRL from different angles and therefore are not bio-friendly detergents. Copyright © 2017 Elsevier B.V. All rights reserved.
Zustiak, Silviya P.
2011-01-01
The objective of this work was to create three-dimensional (3D) hydrogel matrices with defined mechanical properties, as well as tunable degradability for use in applications involving protein delivery and cell encapsulation. Thus, we report the synthesis and characterization of a novel hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel composed of PEG vinyl sulfone (PEG-VS) cross-linked with PEG-diester-dithiol. Unlike previously reported degradable PEG-based hydrogels, these materials are homogeneous in structure, fully hydrophilic and have highly specific cross-linking chemistry. We characterized hydrogel degradation and associated trends in mechanical properties, i.e., storage modulus (G′), swelling ratio (QM), and mesh size (ξ). Degradation time and the monitored mechanical properties of the hydrogel correlated with cross-linker molecular weight, cross-linker functionality, and total polymer density; these properties changed predictably as degradation proceeded (G′ decreased, whereas QM and ξ increased) until the gels reached complete degradation. Balb/3T3 fibroblast adhesion and proliferation within the 3D hydrogel matrices were also verified. In sum, these unique properties indicate that the reported degradable PEG hydrogels are well poised for specific applications in protein and cell delivery to repair soft tissue. PMID:20355705
Wang, Xiaoli; Zhang, Yifei; Liu, Zhikai; Zhao, Mingqin; Liu, Pengfei
2017-10-31
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions-CPP1, CPP2, and CPP3, (CPPs)-were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.
Ethyl 5-amino-1-[(4-methylphenyl)sulfonyl]-1H-pyrazole-4-carboxylate
Elgazwy, Abdel-Sattar S. Hamad; Nassar, Ibrahim F.; Jones, Peter G.
2013-01-01
In the title molecule, C13H15N3O4S, the benzene and pyrazole rings are inclined to each other at 77.48 (3)°. Two amino H atoms are involved in bifurcated hydrogen bonds, viz. intramolecular N—H⋯O and intermolecular N—H⋯O(N). The intermolecular hydrogen bonds link the molecules related by translation in [100] into chains. A short distance of 3.680 (3) Å between the centroids of benzene and pyrazole rings from neighbouring molecules shows the presence of π–π interactions, which link the hydrogen-bonded chains into layers parallel to the ab plane. PMID:24427020
Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations
Abbott, Lauren J.; Frischknecht, Amalie L.
2017-01-23
We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less
Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J
1991-01-01
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi
2016-09-14
Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vögele, Martin; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M.; Holm, Christian
2015-12-28
We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models aremore » able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.« less
Disruption of Phosphatidylcholine Monolayers and Bilayers by Perfluorobutane Sulfonate
Oldham, E. Davis; Xie, Wei; Farnoud, Amir M.; Fiegel, Jennifer; Lehmler, Hans-Joachim
2012-01-01
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants resistant to biological and chemical degradation due to the presence of carbon-fluorine bonds. These compounds exhibit developmental toxicity in vitro and in vivo. The mechanisms of toxicity may involve partitioning into lipid bilayers. We investigated the interaction between perfluorobutane sulfonate (PFBS), an emerging PFAA, and model phosphatidylcholine (PC) lipid assemblies (i.e., dimyristoyl-, dipalmitoyl- and distearylphosphatidylcholine) using fluorescence anisotropy and Langmuir monolayer techniques. PFBS decreased the transition temperature and transition width of PC bilayers. The apparent membrane partition coefficients ranged from 4.9 × 102 to 8.2 × 102. The effects on each PC were comparable. The limiting molecular area of PC monolayers increased and the surface pressure at collapse decreased in a concentration-dependent manner. The compressibility of all three PCs was decreased by PFBS. In summary, PFBS disrupted different model lipid assemblies indicating potential for PFBS to be a human toxicant. However the effects of PFBS are not as pronounced as those seen with longer chain PFAAs. PMID:22834732
Phase Behavior of a Single Structured Ionomer Chain in Solution
Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; ...
2014-08-14
Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less
Flynn, Timothy Corcoran; Thompson, David H; Hyun, Seok-Hee
2013-10-01
In this study, the authors sought to determine the molecular weight distribution of three hyaluronic acids-Belotero Balance, Restylane, and Juvéderm Ultra-and their rates of degradation following exposure to hyaluronidase. Lot consistency of Belotero Balance also was analyzed. Three lots of Belotero Balance were analyzed using liquid chromatography techniques. The product was found to have high-molecular-weight and low-molecular-weight species. One lot of Belotero Balance was compared to one lot each of Juvéderm Ultra and Restylane. Molecular weights of the species were analyzed. The hyaluronic acids were exposed to ovine testicular hyaluronidase at six time points-baseline and 0.5, 1, 2, 6, and 24 hours-to determine degradation rates. Belotero Balance lots were remarkably consistent. Belotero Balance had the largest high-molecular-weight species, followed by Juvéderm Ultra and Restylane (p < 0.001). Low-molecular-weight differences among all three hyaluronic acids were not statistically significant. Percentages of high-molecular-weight polymer differ among the three materials, with Belotero Balance having the highest fraction of high-molecular-weight polymer. Degradation of the high-molecular-weight species over time showed different molecular weights of the high-molecular-weight fraction. Rates of degradation of the hyaluronic acids following exposure to ovine testicular hyaluronidase were similar. All hyaluronic acids were fully degraded at 24 hours. Fractions of high-molecular-weight polymer differ across the hyaluronic acids tested. The low-molecular-weight differences are not statistically significant. The high-molecular-weight products have different molecular weights at the 0.5- and 2-hour time points when exposed to ovine testicular hyaluronidase and are not statistically different at 24 hours.
Arboleda, Carolina; Cabana, H.; De Pril, E.; Jones, J. Peter; Jiménez, G. A.; Mejía, A. I.; Agathos, S. N.; Penninckx, M. J.
2013-01-01
Bisphenol A (BPA) and triclosan (TCS) are known or suspected potential endocrine disrupting chemicals (EDCs) which may pose a risk to human health and have an environmental impact. Enzyme preparations containing mainly laccases, obtained from Ganoderma stipitatum and Lentinus swartzii, two autochthonous Colombian forest white rot fungi (WRF), previously identified as high enzyme producers, were used to remove BPA and TCS from aqueous solutions. A Box-Behnken factorial design showed that pH, temperature, and duration of treatment were significant model terms for the elimination of BPA and TCS. Our results demonstrated that these EDCs were extensively removed from 5 mg L−1 solutions after a contact time of 6 hours. Ninety-four percent of TCS and 97.8% of BPA were removed with the enzyme solution from G. stipitatum; 83.2% of TCS and 88.2% of BPA were removed with the L. swartzii enzyme solution. After a 6-hour treatment with enzymes from G. stipitatum and L. swartzii, up to 90% of the estrogenic activity of BPA was lost, as shown by the yeast estrogen screen assay. 2,2-Azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) was used as a mediator (laccase/mediator system) and significantly improved the laccase catalyzed elimination of BPA and TCS. The elimination of BPA in the absence of a mediator resulted in production of oligomers of molecular weights of 454, 680, and 906 amu as determined by mass spectra analysis. The elimination of TCS in the same conditions produced dimers, trimers, and tetramers of molecular weights of 574, 859, and 1146 amu. Ecotoxicological studies using Daphnia pulex to determine lethal concentration (LC50) showed an important reduction of the toxicity of BPA and TCS solutions after enzymatic treatments. Use of laccases emerges thus as a key alternative in the development of innovative wastewater treatment technologies. Moreover, the exploitation of local biodiversity appears as a potentially promising approach for identifying new efficient strains for biotechnological applications. PMID:25969787
Henry, Barbara J; Carlin, Joseph P; Hammerschmidt, Jon A; Buck, Robert C; Buxton, L William; Fiedler, Heidelore; Seed, Jennifer; Hernandez, Oscar
2018-05-01
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated substances that are in the focus of researchers and regulators due to widespread presence in the environment and biota, including humans, of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Fluoropolymers, high molecular weight polymers, have unique properties that constitute a distinct class within the PFAS group. Fluoropolymers have thermal, chemical, photochemical, hydrolytic, oxidative, and biological stability. They have negligible residual monomer and oligomer content and low to no leachables. Fluoropolymers are practically insoluble in water and not subject to long-range transport. With a molecular weight well over 100 000 Da, fluoropolymers cannot cross the cell membrane. Fluoropolymers are not bioavailable or bioaccumulative, as evidenced by toxicology studies on polytetrafluoroethylene (PTFE): acute and subchronic systemic toxicity, irritation, sensitization, local toxicity on implantation, cytotoxicity, in vitro and in vivo genotoxicity, hemolysis, complement activation, and thrombogenicity. Clinical studies of patients receiving permanently implanted PTFE cardiovascular medical devices demonstrate no chronic toxicity or carcinogenicity and no reproductive, developmental, or endocrine toxicity. This paper brings together fluoropolymer toxicity data, human clinical data, and physical, chemical, thermal, and biological data for review and assessment to show that fluoropolymers satisfy widely accepted assessment criteria to be considered as "polymers of low concern" (PLC). This review concludes that fluoropolymers are distinctly different from other polymeric and nonpolymeric PFAS and should be separated from them for hazard assessment or regulatory purposes. Grouping fluoropolymers with all classes of PFAS for "read across" or structure-activity relationship assessment is not scientifically appropriate. Integr Environ Assess Manag 2018;14:316-334. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.
Filipovic, Marko; Woldegiorgis, Andreas; Norström, Karin; Bibi, Momina; Lindberg, Maria; Österås, Ann-Helen
2015-06-01
Historical usage of aqueous film forming foams (AFFFs) at military airports is a potential source of perfluoroalkyl acids (PFAAs) to the nearby environment. In this study, the distribution of perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) in soil, groundwater, surface water, tap water well, and fish muscle was investigated at a closed down military airfield (F18) and its surroundings in Stockholm, Sweden. The presence of PFOS at AFFF training sites was inventoried. One major finding of the study is that a former airfield, abandoned since 1994, may still be a point source of PFAAs to nearby recipients. PFOS and PFOA were ubiquitous in the soil samples at former AFFF training sites with concentrations ranging from 2.18 to 8520ngg(-1) dry weight and <0.12-287ngg(-1) dry weight respectively. The sum of PFAAs in the groundwater and surface waters ranged from 738 to 51000ngL(-1) and
So, M K; Taniyasu, S; Lam, P K S; Zheng, G J; Giesy, J P; Yamashita, N
2006-02-01
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), have been identified in the coastal waters of China and Japan. An alkaline digestion method, coupled with solid-phase extraction (SPE), and high-performance liquid chromatography interfaced with high-resolution electrospray tandem mass spectrometry was developed to determine PFCs in mussel and oyster samples from coastal waters of South China and Japan. These techniques produced adequate recoveries and reporting limits with small quantities of PFCs. Concentrations of individual PFCs in mussels and oysters from South China and Japan ranged from 113.6 to 586.0 pg/g, wet weight (ww) for PFOS, 63.1 to 511.6 pg/g, ww for perfluorohexane sulfonate, 9.3 to 30.1 pg/g, ww for perfluorobutane sulfonate and 37.8 to 2957.0 pg/g, ww for perfluorooctane sulfonamide. The quantification of perfluorinated carboxylates was compromised by interferences from carboxylates in the procedural blanks. Perfluoroundecanoate and perfluorononanoate had relatively great blank interferences, which resulted in relatively poor limits of quantification for these compounds. Some PFCs were only identified in a limited number of samples: perfluorododecanoate in samples from Tokyo Bay, Japan (195.9 pg/g, ww); and perfluorodecanoate in Fuzhou, China (131.7 pg/g, ww) and Tokyo Bay (118.6 pg/g, ww). The greatest concentrations of perfluorooctanoate, perfluoroheptanoate, and perfluorohexanoate were observed in samples from Tokyo Bay and Bei Hai, South China.
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility
Jeffrey Luo; Nikolay Semenikhin; Huibin Chang; Robert J. Moon; Satish Kumar
2018-01-01
Cellulose nanofibrils (CNF) were sulfonated and the dispersion quality was compared to unfunctionalized and 2,2,6,6-tetramethylpiperdine-1-oxyl radical (TEMPO) post-oxidation treatment of existing CNF (mechanically fibrillated pulp). A post-sulfonation treatment on existing CNF in chlorosulfonic acid and dimethylformamide (DMF) resulted in sulfonated CNF that retained...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
Sulfonates: A novel class of organic sulfur compounds in marine sediments
NASA Astrophysics Data System (ADS)
Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard
1994-11-01
X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.
Mendes, Simone Ferreira; dos Santos, Osvaldo; Barbosa, Aneli M; Vasconcelos, Ana Flora D; Aranda-Selverio, Gabriel; Monteiro, Nilson K; Dekker, Robert F H; Sá Pereira, Mariana; Tovar, Ana Maria F; Mourão, Paulo A de Souza; da Silva, Maria de Lourdes Corradi
2009-10-01
Botryosphaeran (EPS(FRU)), an exopolysaccharide of the beta-(1-->3,1-->6)-d-glucan type with 31% branching at C-6, is produced by the fungus Botryosphaeria rhodina MAMB-05 when grown on fructose as carbon source. Botryosphaeran was derivatized by sulfonation to induce anticoagulant activity. The effectiveness of the sulfonation reaction by chlorosulfonic acid in pyridine was monitored by the degree of substitution and FT-IR analysis of the sulfonated EPS(FRU) (once sulfonated, EPS(FRUSULF); and re-sulfonated, EPS(FRURESULF)). Activated partial thromboplastin time (APTT) and thrombin time (TT) tests of EPS(FRURESULF) indicated significant in vitro anticoagulant activity that was dose-dependent. EPS(FRU) did not inhibit any of the coagulation tests.
Tensile Properties of a Cellulose Ether Hydrogel
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Gehrke, Stevin H.
2003-01-01
Poly(hydroxycellulose) solutions were molded into dumbell-shaped specimens crosslinked with divinyl sulfone. The resulting hydrogels were tested in tension at room temperature and also at a temperature above the 40 C shrinkage transition. In contrast to behavior seen in some other responsive gels, apparent initial tangent moduli were lower in the shrunken state; breaking elongations were significantly higher. Possible molecular mechanisms are suggested, and implications for the design of temperature-responsive actuators ("artificial muscles") from this material are discussed.
Sodium polystyrene sulfonate is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by ...
Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
1999-01-01
Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.
NASA Astrophysics Data System (ADS)
Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.
1998-12-01
Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.
Sulfonated polystyrene and its characterization as a material of electrolyte polymer
NASA Astrophysics Data System (ADS)
Ngadiwiyana; Ismiyarto; Gunawan; Purbowatiningrum, RS; Prasetya, N. B. A.; Kusworo, T. D.; Susanto, H.
2018-05-01
The research of polystyrene modification from Styrofoam waste and its application as a main material of electrolyte polymer had been done. The sulfonation reaction of polystyrene was conducted using sulfuric acid as sufonation agent and the reactions were done with variation times of 1, 2, 3, 4 and 5 h. The characterization of the sulfonated products covered analysis of functional groups using FT-IR spectrophotometer, sulfonation degree, measurements of ion exchange capacity, conductivity and swelling degree. The sulfonated polystyrene product was white solid as confirmed by the spectra of FT-IR with the presence of wide band absorption of O=S=O at the wavenumber of 1080-1411 cm-1 as indication. The research showed the best sulfonated polystyrene prepared in 4 h as a material of electrolyte polymer, since it had the highest degree of sulfonation, ion exchange capacity, conductivity and swelling degree with the values were 28.52 %, 1.550 meg/g, 15,924.10-6 Ω-1cm-1 and 332.4 %, respectively.
Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.
Resin catalysts and method of preparation
Smith, Jr., Lawrence A.
1986-01-01
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Resin catalysts and method of preparation
Smith, L.A. Jr.
1986-12-16
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.R.; Kim, J.H.
The weight loss and flexural property changes of the autoclave cured carbon/epoxy (0{degree}){sub 8} laminates toughened by CTBN at the temperatures of 200, 250 and 300{degree}C for the endurance times of 1, 2, 4, 8 and 16 hours were measured. The matrix resins is composed of 100 phr of tetrafunctional epoxy resin (MY-720), 28 phr of Diamine-diphenyl sulfone (DDS) and 1 phr of Borontrifluoride monoethylene amine (BF{sub 3}{center_dot}MEA). The added contents of CTBN were 5, 10 and 15% by weight to the matrix resins. The addition of CTBN improves the thermal stability of the carbon/epoxy specimens in terms of weightmore » loss and flexural modulus. But the flexural strength was decreased by addition of CTBN.« less
Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.
2009-01-01
A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552
Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.
Vidyadhar, A; Hanumantha Rao, K
2007-02-15
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.
Acid/base equilibria in clusters and their role in proton exchange membranes: Computational insight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glezakou, Vanda A; Dupuis, Michel; Mundy, Christopher J
2007-10-24
We describe molecular orbital theory and ab initio molecular dynamics studies of acid/base equilibria of clusters AH:(H 2O) n↔A -:H +(H 2O) n in low hydration regime (n = 1-4), where AH is a model of perfluorinated sulfonic acids, RSO 3H (R = CF 3CF 2), encountered in polymeric electrolyte membranes of fuel cells. Free energy calculations on the neutral and ion pair structures for n = 3 indicate that the two configurations are close in energy and are accessible in the fluctuation dynamics of proton transport. For n = 1,2 the only relevant configuration is the neutral form. Thismore » was verified through ab initio metadynamics simulations. These findings suggest that bases are directly involved in the proton transport at low hydration levels. In addition, the gas phase proton affinity of the model sulfonic acid RSO 3H was found to be comparable to the proton affinity of water. Thus, protonated acids can also play a role in proton transport under low hydration conditions and under high concentration of protons. This work was supported by the Division of Chemical Science, Office of Basic Energy Sciences, US Department of Energy (DOE under Contract DE-AC05-76RL)1830. Computations were performed on computers of the Molecular Interactions and Transformations (MI&T) group and MSCF facility of EMSL, sponsored by US DOE and OBER located at PNNL. This work was benefited from resource of the National Energy Research Scientific Computing Centre, supported by the Office of Science of the US DOE, under Contract No. DE-AC03-76SF00098.« less
Processes for preparing carbon fibers using gaseous sulfur trioxide
Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.
2016-01-05
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia
2018-03-07
Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
Molecular water oxidation catalyst
Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.
1993-01-01
A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.
Process for the manufacture of carbon or graphite fibers
NASA Technical Reports Server (NTRS)
Overhoff, D.; Winkler, E.; Mueller, D.
1979-01-01
Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.
Smith, Jr., Lawrence A.
1985-01-01
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Smith, L.A. Jr.
1985-11-05
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Assessment of elimination profile of albendazole residues in fish.
Busatto, Zenaís; de França, Welliton Gonçalves; Cyrino, José Eurico Possebon; Paschoal, Jonas Augusto Rizzato
2018-01-01
Few drugs are specifically regulated for aquaculture. Thus this study considered albendazole (ABZ) as a potential drug for use in fish, which, however, is not yet regulated for this application. ABZ is a broad-spectrum anthelmintic approved for farmed ruminants and recently considered for treatment of fish parasites. It is the subject of careful monitoring because of potential residues in animal products. This study evaluated the depletion of ABZ and its main known metabolites: albendazole sulfoxide - ABZSO, albendazole sulfone - ABZSO 2 and albendazole amino sulfone - ABZ-2-NH 2 SO 2 , in the fillets of the Neotropical Characin pacu, Piaractus mesopotamicus, which were fed diets containing 10 mg ABZ kg -1 body weight in a single dose. Fish were euthanised at 8, 12, 24, 48, 72, 96 and 120 hours after medication and the depletion profiles of ABZ, each metabolite and the sum of all marker residues were assessed and evaluated taking into account methodological variations regarding determination of the maximum residue limits adopted by different international regulating agencies for estimation of the withdrawal period (WP). The estimated WPs ranged from 2 to 7 days.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2005-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated pi-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of sulfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Molecular Weight Effects on the Viscoelastic Response of a Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.
Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions
Sadeghifar, Hasan; Wells, Tyrone; Le, Rosemary Khuu; ...
2016-11-07
In this study, lignin fractions with different molecular weight were prepared using a simple and almost green method from switchgrass and pine organosolv lignin. Different proportions of acetone in water, ranging from 30 to 60%, were used for lignin fractionation. A higher concentration of acetone dissolved higher molecular weight fractions of the lignin. Fractionated organosolv lignin showed different molecular weight and functional groups. Higher molecular weight fractions exhibited more aliphatic and less phenolic OH than lower molecular weight fractions. Lower molecular weight fractions lead to more homogeneous structure compared to samples with a higher molecular weight. In conclusion, all fractionsmore » showed strong antioxidant activity.« less
Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna
2014-05-01
This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Goeritz, Ina; Falk, Sandy; Stahl, Thorsten; Schäfers, Christoph; Schlechtriem, Christian
2013-09-01
The present study investigated the biomagnification potential as well as the substance and tissue-specific distribution of perfluoroalkyl substances (PFASs) in market-size rainbow trout (Oncorhynchus mykiss). Rainbow trout with an average body weight of 314 ± 21 g were exposed to perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in the diet for 28 d. The accumulation phase was followed by a 28-d depuration phase, in which the test animals were fed with nonspiked trout feed. On days 0, 7, 14, 28, 31, 35, 42, and 56 of the present study, fish were sampled from the test basin for PFAS analysis. Biomagnification factors (BMFs) for all test compounds were determined based on a kinetic approach. Distribution factors were calculated for each test compound to illustrate the disposition of PFASs in rainbow trout after 28 d of exposure. Dietary exposure of market-size rainbow trout to PFASs did not result in biomagnification; BMF values were calculated as 0.42 for PFOS, >0.23 for PFNA, >0.18 for PFHxS, >0.04 for PFOA, and >0.02 for PFBS, which are below the biomagnification threshold of 1. Liver, blood, kidney, and skin were identified as the main target tissues for PFASs in market-size rainbow trout. Evidence was shown that despite relative low PFAS contamination, the edible parts of the fish (the fillet and skin) can significantly contribute to the whole-body burden. Copyright © 2013 SETAC.
Damsker, Jesse M; Conklin, Laurie S; Sadri, Soheil; Dillingham, Blythe C; Panchapakesan, Karuna; Heier, Christopher R; McCall, John M; Sandler, Anthony D
2016-09-01
The goal of this study was to assess the capacity of VBP15, a dissociative steroidal compound, to reduce pro-inflammatory cytokine expression in vitro, to reduce symptoms of colitis in the trinitrobenzene sulfonic acid-induced murine model, and to assess the effect of VBP15 on growth stunting in juvenile mice. In vitro studies were performed in primary human intestinal epithelial cells. Colitis was induced in mice by administering trinitrobenzene sulfonic acid. Growth stunting studies were performed in wild type outbred mice. Cells were treated with VBP15 or prednisolone (10 μM) for 24 h. Mice were subjected to 3 days of VBP15 (30 mg/kg) or prednisolone (30 mg/kg) in the colitis study. In the growth stunting study, mice were subjected to VBP15 (10, 30, 45 mg/kg) or prednisolone (10 mg/kg) for 5 weeks. Cytokines were measured by PCR and via Luminex. Colitis symptoms were evaluated by assessing weight loss, intestinal blood, and stool consistency. Growth stunting was assessed using an electronic caliper. VBP15 significantly reduced the in vitro production of CCL5 (p < 0.001) IL-6 (p < 0.001), IL-8 (p < 0.05) and reduced colitis symptoms (p < 0.05). VBP15 caused less growth stunting than prednisolone (p < 0.001) in juvenile mice. VBP15 may reduce symptoms of IBD, while decreasing or avoiding detrimental side effects.
2018-01-01
Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5′-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions. PMID:29732453
Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.
Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego
2017-03-01
Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT.
C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA
Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...
Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro
2011-09-12
A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.
1982-01-01
The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.
Clustering effects in ionic polymers: Molecular dynamics simulations.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S
2015-08-01
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
Ultrahigh molecular weight aromatic siloxane polymers
NASA Technical Reports Server (NTRS)
Ludwick, L. M.
1982-01-01
The condensation of a diol with a silane in toluene yields a silphenylene-siloxane polymer. The reaction of stiochiometric amounts of the diol and silane produced products with molecular weights in the range 2.0 - 6.0 x 10 to the 5th power. The molecular weight of the product was greatly increased by a multistep technique. The methodology for synthesis of high molecular weight polymers using a two step procedure was refined. Polymers with weight average molecular weights in excess of 1.0 x 10 to the 6th power produced by this method. Two more reactive silanes, bis(pyrrolidinyl)dimethylsilane and bis(gamma butyrolactam)dimethylsilane, are compared with the dimethyleminodimethylsilane in ability to advance the molecular weight of the prepolymer. The polymers produced are characterized by intrinsic viscosity in tetrahydrofuran. Weight and number average molecular weights and polydispersity are determined by gel permeation chromatography.
Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni
2005-01-01
Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294
Crystal structure of rofecoxib bound to human cyclooxygenase-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlando, Benjamin J.; Malkowski, Michael G.
2016-10-26
Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditionsmore » were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornburg, Nicholas E.; Notestein, Justin M.
Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less
Structure and Dynamics of Ionic Block Copolymer Melts: Computational Study
Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...
2017-09-06
Structure and dynamics of melts of copolymers with an ABCBA topology, where C is an ionizable block, have been studied by fully atomistic molecular dynamics (MD) simulations. Introducing an ionizable block for functionality adds a significant element to the coupled set of interactions that determine the structure and dynamics of the macromolecule. The polymer consists of a randomly sulfonated polystyrene C block tethered to a flexible poly(ethylene-r-propylene) bridge B and end-capped with poly(tert-butylstyrene) A. The chemical structure and topology of these polymers constitute a model for incorporation of ionic blocks within a framework that provides tactility and mechanical stability. Heremore » in this paper we resolve the structure and dynamics of a structured polymer on the nanoscale constrained by ionic clusters. We find that the melts form intertwined networks of the A and C blocks independent of the degree of sulfonation of the C block with no long-range order. The cluster cohesiveness and morphology affect both macroscopic translational motion and segmental dynamics of all the blocks.« less
Structure and Dynamics of Ionic Block Copolymer Melts: Computational Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora
Structure and dynamics of melts of copolymers with an ABCBA topology, where C is an ionizable block, have been studied by fully atomistic molecular dynamics (MD) simulations. Introducing an ionizable block for functionality adds a significant element to the coupled set of interactions that determine the structure and dynamics of the macromolecule. The polymer consists of a randomly sulfonated polystyrene C block tethered to a flexible poly(ethylene-r-propylene) bridge B and end-capped with poly(tert-butylstyrene) A. The chemical structure and topology of these polymers constitute a model for incorporation of ionic blocks within a framework that provides tactility and mechanical stability. Heremore » in this paper we resolve the structure and dynamics of a structured polymer on the nanoscale constrained by ionic clusters. We find that the melts form intertwined networks of the A and C blocks independent of the degree of sulfonation of the C block with no long-range order. The cluster cohesiveness and morphology affect both macroscopic translational motion and segmental dynamics of all the blocks.« less
Two-step sulfonation process for the conversion of polymer fibers to carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.
Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent
Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon
2015-12-29
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen
2017-01-01
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antaris, Alexander L.; Chen, Hao; Diao, Shuo
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...
2017-05-19
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
Characterization and analysis of the molecular weight of lignin for biorefining studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn
2014-06-04
The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, andmore » chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.« less
NASA Astrophysics Data System (ADS)
Ghasemian, Motaleb; Kakanejadifard, Ali; Karami, Tahereh
2016-11-01
The azo-azomethine dyes with a different substitution have been designed from the reaction of 4,4‧-diaminodiphenyl sulfone with 2-hydroxy-5-(aryldiazenyl)benzaldehyde. The compounds have been characterized by elemental analysis, Mass, IR, UV-Vis, TGA-DTA and NMR spectroscopy. The solvatochromism behaviors, effects of substitution and pH on the electronic absorption spectra of dyes were evaluated. The in vitro antimicrobial activities were also screened for their potential for antibiotic activities by broth micro dilution method. Also, the optimum molecular geometries, molecular electrostatic potential (MEP), nucleus-independent chemical shift (NICS) and frontier molecular orbitals (FMO), vibrational spectra (IR) and electronic absorption (UV-Vis) spectra of the title compounds have been investigated with the help of DFT and TDDFT methods with 6-311 ++G(d,p) basis sets and PCM calculations. The results of the calculations show excellent agreement with the experimental value.
Devendra, Leena P; Pandey, Ashok
2017-11-01
Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.
Adas, Gokhan; Arikan, Soykan; Kemik, Ozgur; Oner, Ali; Sahip, Nilgun; Karatepe, Oguzhan
2009-01-01
AIM: To establish which scolicidal agents are superior and more suitable for regular use. METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone, albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope. RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared, the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone, sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference. CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment. PMID:19115476
Effect of molecular weight on polymer processability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karg, R.F.
1983-01-01
Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.
Kiran, S Aditya; Arthanareeswaran, G; Thuyavan, Y Lukka; Ismail, A F
2015-11-01
In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.
Yuan, Qingxia; Xie, Yufeng; Wang, Wei; Yan, Yuhua; Ye, Hong; Jabbar, Saqib; Zeng, Xiaoxiong
2015-09-05
Extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from mulberry leaves (MLP) were investigated in the present study. The optimal extraction conditions with an extraction yield of 10.0 ± 0.5% for MLP were determined as follows: extraction temperature 92 °C, extraction time 3.5h and ratio (v/w, mL/g) of extraction solvent (water) to raw material 34. Two purified fractions, MLP-3a and MLP-3b with molecular weights of 80.99 and 3.64 kDa, respectively, were obtained from crude MLP by chromatography of DEAE-Cellulose 52 and Sephadex G-100. Fourier transform-infrared spectroscopy revealed that crude MLP, MLP-3a and MLP-3b were acidic polysaccharides. Furthermore, crude MLP and MLP-3a had more complicated monosaccharide compositions, while MLP-3b had a relatively higher content of uronic acid. Crude MLP, MLP-3a and MLP-3b exhibited potent Fe(2+) chelating power and scavenging activities on 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, superoxide and 2,2'-azinobis-(3-ethyl-benzothiazolin-6-sulfonic acid) radicals. The results suggested that MLP could be explored as natural antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang
2014-01-01
A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, K m values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778
Sun, Shao-Ni; Cao, Xue-Fei; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd
2014-06-25
An environmentally friendly steam explosion process of bamboo, followed by alkali and alkaline ethanol delignification, was developed to fractionate lignins. Results showed that after steam explosion the lignins isolated showed relatively low carbohydrate contents (0.55-1.76%) and molecular weights (780-1050 g/mol). For each steam-exploded sample, alkali-extracted lignins presented higher phenolic OH values (1.41-1.82 mmol/g), p-coumaric acid to ferulic acid ratios (pCA/FA ratios 4.5-14.1), and syringyl to guaiacyl ratios (S/G ratios 5.0-8.5) than those from alkaline ethanol-extracted lignins (phenolic OH 0.85-1.35 mmol/g, pCA/FA ratios 1.6-5.2, and S/G ratios 3.5-4.8). The lignins obtained consisted mainly of β-O-4' linkages combined with small amounts of β-β', β-5', and α-O-4/β-O-4 linkages. Antioxidant activities of the lignins obtained were tested by the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azobis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing activity power methods. It was found that alkali-extracted lignins obtained during the initial extraction process had higher antioxidant activities than alkaline ethanol-extracted lignins obtained during the second extraction process.
Regulation of Glyoxysomal Enzymes during Germination of Cucumber
Lamb, Jamie E.; Riezman, Howard; Becker, Wayne M.; Leaver, Christopher J.
1978-01-01
The glyoxysomal enzymes isocitrate lyase and catalase have been isolated from etiolated cucumber (Cucumis sativus) cotyledons. The enzymes co-purified through polyethyleneimine precipitation and (NH4)2SO4 precipitation, and were resolved by gel filtration on Sepharose 6B followed by chromatography on diethylaminoethyl-cellulose (isocitrate lyase) or hydroxylapatite (catalase). Purity of the isolated enzymes was assessed by sodium dodecyl sulfate-polyacrylamide electrophoresis, isoelectric focusing, and immunoelectrophoresis. Antibodies raised to both enzymes in rabbits and in tumor-bearing mice were shown to be monospecific by immunoelectrophoresis against total homogenate protein. Isocitrate lyase and catalase represent about 0.56% and 0.1%, respectively, of total extractable cotyledonary protein. Both enzymes appear to be present in a single form. Molecular weights of the native enzymes and its subunits are 225,000 and 54,500 for catalase, and 325,000 and 63,500 for isocitrate lyase. The pH optimum for isocitrate lyase is about 6.75 in morpholinopropane sulfonic acid buffer, but varies significantly with buffer used. The Km for d-isocitrate is 39 micromolar. A double antibody technique (rabbit anti-isocitrate lyase followed by 125I-labeled goat anti-rabbit immunoglobulin G) has been used to visualize isocitrate lyase subunit protein on sodium dodecyl sulfate-polyacrylamide with high specificity and sensitivity. ImagesFig. 5Fig. 6Fig. 7Fig. 8 PMID:16660600
Xu, Xiuqing; Yang, Xiuhan; Martin, Steven J; Mes, Edwin; Chen, Junlan; Meunier, David M
2018-08-17
Accurate measurement of molecular weight averages (M¯ n, M¯ w, M¯ z ) and molecular weight distributions (MWD) of polyether polyols by conventional SEC (size exclusion chromatography) is not as straightforward as it would appear. Conventional calibration with polystyrene (PS) standards can only provide PS apparent molecular weights which do not provide accurate estimates of polyol molecular weights. Using polyethylene oxide/polyethylene glycol (PEO/PEG) for molecular weight calibration could improve the accuracy, but the retention behavior of PEO/PEG is not stable in THF-based (tetrahydrofuran) SEC systems. In this work, two approaches for calibration curve conversion with narrow PS and polyol molecular weight standards were developed. Equations to convert PS-apparent molecular weight to polyol-apparent molecular weight were developed using both a rigorous mathematical analysis and graphical plot regression method. The conversion equations obtained by the two approaches were in good agreement. Factors influencing the conversion equation were investigated. It was concluded that the separation conditions such as column batch and operating temperature did not have significant impact on the conversion coefficients and a universal conversion equation could be obtained. With this conversion equation, more accurate estimates of molecular weight averages and MWDs for polyether polyols can be achieved from conventional PS-THF SEC calibration. Moreover, no additional experimentation is required to convert historical PS equivalent data to reasonably accurate molecular weight results. Copyright © 2018. Published by Elsevier B.V.
Formation and Fate of Bacterial Sulfonates
1989-01-05
sulfonates under phototrophic, anaerobic conditions’ Three cyanobacteria--a strain each of Synechococcus, Anabena, and Nostoc --have been examined for...their ability to utilize the sulfonate taurine as sole source of S for their oxygenic phototrophic growth; only Anabena and Nostoc were able to do so, and
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.824 Sodium mono- and dimethyl naphthalene sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in...
Erickson, Robert P.
1970-01-01
The molecular weight of Escherichia coli β-galactosidase was determined in 6m- and 8m-guanidine hydrochloride by meniscus-depletion sedimentation equilibrium, sedimentation velocity and viscosity. Sedimentation equilibrium revealed heterogeneity with the smallest component having a molecular weight of about 50000. At lower speeds, the apparent weight-average molecular weight is about 80000. By use of a calculation based on an empirical correlation for proteins that are random coils in 6m-guanidine hydrochloride, sedimentation velocity gave a molecular weight of 91000, and the intrinsic viscosity indicated a viscosity-average molecular weight of 84000. Heating in 6m-guanidine hydrochloride lowered the viscosity of β-galactosidase in a variable manner. PMID:4924171
Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z
2007-01-01
Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.
Drugs against avian influenza a virus: design of novel sulfonate inhibitors of neuraminidase N1.
Udommaneethanakit, Thanyarat; Rungrotmongkol, Thanyada; Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav; Bren, Urban
2014-01-01
The outbreak of avian influenza A (H5N1) virus has raised a global concern for both the animal as well as human health. Besides vaccination, that may not achieve full protection in certain groups of patients, inhibiting neuraminidase or the transmembrane protein M2 represents the main measure of controlling the disease. Due to alarming emergence of influenza virus strains resistant to the currently available drugs, development of new neuraminidase N1 inhibitors is of utmost importance. The present paper provides an overview of the recent advances in the design of new antiviral drugs against avian influenza. It also reports findings in binding free energy calculations for nine neuraminidase N1 inhibitors (oseltamivir, zanamivir, and peramivir -carboxylate, -phosphonate, and -sulfonate) using the Linear Interaction Energy method. Molecular dynamics simulations of these inhibitors were performed in a free and two bound states - the so called open and closed conformations of neuraminidase N1. Obtained results successfully reproduce the experimental binding affinities of the already known neuraminidase N1 inhibitors, i.e. peramivir being a stronger binder than zanamivir that is in turn stronger binder than oseltamivir, or phosphonate inhibitors being stronger binders than their carboxylate analogues. In addition, the newly proposed sulfonate inhibitors are predicted to be the strongest binders - a fact to be confirmed by their chemical synthesis and a subsequent test of their biological activity. Finally, contributions of individual inhibitor moieties to the overall binding affinity are explicitly evaluated to assist further drug development towards inhibition of the H5N1 avian influenza A virus.
NASA Technical Reports Server (NTRS)
Asunmaa, S. K.; Haack, R.
1977-01-01
An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.
Effect of molecular weight on polyphenylquinoxaline properties
NASA Technical Reports Server (NTRS)
Jensen, Brian J.
1991-01-01
A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as...
de Solla, S R; De Silva, A O; Letcher, R J
2012-02-01
Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (>1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., >99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223(±247.1SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1(±83.8)ng/g and 130.3(±43.6) ng/L downstream of the airport, and 19.1(±2.7) ng/g and 6.8(±0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy
ERIC Educational Resources Information Center
Izunobi, Josephat U.; Higginbotham, Clement L.
2011-01-01
The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…
Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.
ERIC Educational Resources Information Center
Ward, Thomas Carl
1981-01-01
Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2011 CFR
2011-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.
Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu
2013-05-01
The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.
Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines
NASA Astrophysics Data System (ADS)
van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat
1989-06-01
Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.
NASA Astrophysics Data System (ADS)
Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan
2014-06-01
In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.
Newsted, John L; Holem, Ryan; Hohenstein, Gary; Lange, Cleston; Ellefson, Mark; Reagen, William; Wolf, Susan
2017-11-01
In 2011, poly- and perfluoroalkyl substances (PFASs) were analyzed in surface water and fish fillet samples taken from Pool 2 of the Upper Mississippi River, a 33-mile stretch inclusive of the Minneapolis/St. Paul, Minnesota (USA) metropolitan area. Approximately 100 each of bluegill, freshwater drum, smallmouth bass, and white bass were sampled within the study area. Surface water samples were also collected from each of the 10 sampling reaches established for the study. Water and fillet samples were analyzed for perfluorinated carboxylic acids (C4-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide. Perfluorooctane sulfonate (PFOS) was observed with the greatest frequency in fish fillets and ranged from 3.0 to 760 ng/g wet weight. Mean (geometric) PFOS concentrations in bluegill, freshwater drum, smallmouth bass, and white bass were 20, 28, 29, and 58 ng/g wet weight, respectively. When compared with fish data collected in 2009, a significant reduction (p < 0.05) in PFOS concentrations was noted. This finding was confirmed based on data from studies conducted in 2012 and 2013. Overall, between 2009 and 2013, PFOS concentrations decreased by 65, 76, and 50% for bluegill, freshwater drum, and white bass, respectively (44% decrease for smallmouth bass from 2009 to 2012). These declines in fish PFOS concentrations are consistent with ongoing efforts to effectively control sources of PFASs to the Mississippi River. Environ Toxicol Chem 2017;36:3138-3147. © 2017 SETAC. © 2017 SETAC.
Lanza, Heather A; Cochran, Rebecca S; Mudge, Joseph F; Olson, Adric D; Blackwell, Brett R; Maul, Jonathan D; Salice, Christopher J; Anderson, Todd A
2017-08-01
Perfluoroalkyl substances (PFAS) have recently received increased research attention, particularly concerning aquatic organisms and in regions of exposure to aqueous film forming foams (AFFFs). Air Force bases historically applied AFFFs in the interest of fire training exercises and have since expressed concern for PFAS contamination in biota from water bodies surrounding former fire training areas. Six PFAS were monitored, including perfluorooctane sulfonate (PFOS), in aquatic species from 8 bayou locations at Barksdale Air Force Base in Bossier City, Louisiana (USA) over the course of 1 yr. The focus was to evaluate temporal and spatial variability in PFAS concentrations from historic use of AFFF. The PFOS concentrations in fish peaked in early summer, and also increased significantly downstream of former fire training areas. Benthic organisms had lower PFOS concentrations than pelagic species, contrary to previous literature observations. Bioconcentration factors varied with time but were reduced compared with previously reported literature values. The highest concentration of PFOS in whole fish was 9349 ng/g dry weight, with 15% of samples exceeding what is believed to be the maximum whole fish concentration reported to date of 1500 ng/g wet weight. Further studies are ongoing, to measure PFAS in larger fish and tissue-specific partitioning data to compare with the current whole fish values. The high concentrations presently observed could have effects on higher trophic level organisms in this system or pose a potential risk to humans consuming contaminated fish. Environ Toxicol Chem 2017;36:2022-2029. © 2016 SETAC. © 2016 SETAC.
12,12′-[2,2′-Oxybis(ethane-2,1-diyl)bis(oxy)]bis[(R p)-4-bromo[2.2]paracyclophane
Hong, Bing; Ma, Yudao; Duan, Wenzeng; He, Fuyan; Zhao, Lei
2011-01-01
The title compound, C36H36Br2O3, was synthesized from (R p)-4-bromo-12-hydroxy[2.2]paracyclophane and oxydiethane-2,1-diyl bis(4-methylbenzenesulfonate). The crystal packing exhibits a short O⋯Br interaction [Br⋯O = 3.185 (3) Å] and a weak intermolecular C—H⋯O contact. PMID:21754216
Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.
2000-01-01
Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.
78 FR 18526 - Significant New Use Rules on Certain Chemical Substances; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... aromatic sulfonic acid amino azo dye salts (PMN P-12-276) a typographical error has been identified. This... significant new uses for aromatic sulfonic acid amino azo dye salts, EPA inadvertently listed the respirator... include this requirement when promulgating the significant new uses for aromatic sulfonic acid amino azo...
NASA Astrophysics Data System (ADS)
Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole
2014-11-01
Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.
Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi
2016-05-23
Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.
Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.
Jeon, Hyun Jeong; Kim, Mal Nam
2013-02-01
A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.
Nascimento, Alvaro F. S.; Mazzeti, Ana Lia; Marques, Luiz F.; Gonçalves, Karolina R.; Mota, Ludmilla W. R.; Diniz, Lívia de F.; Caldas, Ivo S.; Talvani, André; Shackleford, David M.; Koltun, Maria; Saunders, Jessica; White, Karen L.; Scandale, Ivan; Charman, Susan A.; Chatelain, Eric
2014-01-01
This study was designed to verify the in vivo efficacy of sulfoxide and sulfone fexinidazole metabolites following oral administration in a murine model of Chagas disease. Female Swiss mice infected with the Y strain of Trypanosoma cruzi were treated orally once per day with each metabolite at doses of 10 to 100 mg/kg of body weight for a period of 20 days. Parasitemia was monitored throughout, and cures were detected by parasitological and PCR assays. The results were compared with those achieved with benznidazole treatment at the same doses. Fexinidazole metabolites were effective in reducing the numbers of circulating parasites and protecting mice against death, compared with untreated mice, but without providing cures at daily doses of 10 and 25 mg/kg. Both metabolites were effective in curing mice at 50 mg/kg/day (30% to 40%) and 100 mg/kg/day (100%). In the benznidazole-treated group, parasitological cure was detected only in animals treated with the higher dose of 100 mg/kg/day (80%). Single-dose pharmacokinetic parameters for each metabolite were obtained from a parallel group of uninfected mice and were used to estimate the profiles following repeated doses. Pharmacokinetic data suggested that biological efficacy most likely resides with the sulfone metabolite (or subsequent reactive metabolites formed following reduction of the nitro group) following administration of either the sulfoxide or the sulfone and that prolonged plasma exposure over the 24-h dosing window is required to achieve high cure rates. Fexinidazole metabolites were effective in treating T. cruzi in a mouse model of acute infection, with cure rates superior to those achieved with either fexinidazole itself or benznidazole. PMID:24841257
Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.
2015-01-01
The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817
Molecular weight dependence of LB morphology of poly(n-hexyl isocyanate) (PHIC).
Morioka, Takako; Shibata, Osamu; Kawaguchi, Masami
2010-12-07
The morphologies of Langmuir-Blodgett (LB) films of two fractionated poly(n-hexyl isocyanate) (PHIC) and those of their binary mixtures were observed by AFM, together with those of an unfractionated PHIC. The low molecular weight PHIC formed random packing of bundles consisting of rigid rods, while the high molecular weight PHIC formed random packing of bundles consisting of hairy rods. Bundle interpenetration was observed only for the latter in the semidilute regime. In the bilayer region, the area occupied by the PHIC bundles in the upper layer was obviously smaller for the high molecular weight PHIC than for the low molecular weight PHIC, suggesting that the bundles of high molecular weight PHIC more easily interpenetrate than those of low molecular weight PHIC. For the blended films composed of both low and high molecular weight PHICs, the characteristic morphologies of the respective PHIC samples were no longer present. Moreover, the morphologies of the blended films appeared to resemble each other at any molar fraction owing to the ideal miscibility of the low molecular weight and high molecular weight PHICs. The morphologies of the blended films were also similar to that of the unfractionated PHIC film in the dilute regime. In the semidilute regime, the blended films became rounded owing to an increase in bundles interpenetration between PHICs as compared to that in the dilute regime, whereas the morphology of unfractionated PHIC films remained unchanged as compared to that in the dilute regime.
NASA Astrophysics Data System (ADS)
Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui
2014-06-01
A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.
NASA Astrophysics Data System (ADS)
Mosa, J.; Durán, A.; Aparicio, M.
An important research area in proton exchange membrane fuel cells (PEMFC) is devoted to the development of low cost membranes able to work at temperatures higher than 100 °C. In this work, homogeneous, transparent and crack-free hybrid membranes have been synthesized using tetraethyl orthosilicate (TEOS), 3-glycidoxipropyl trimethoxysilane (GPTMS) and 2-allylphenol (AP) as precursors. The synthesis of proton conducting membranes was performed by a post-sulfonation method using trimethylsilyl chlorosulfonate as a mild sulfonating agent. The water retention properties provided by sulfonate and hydroxyl groups and the high porosity leads to relatively high proton conductivity (maximum values around 1.3 × 10 -3 S cm -1 at 140 °C and 100% RH) for membranes treated at 180 °C and sulfonated for 2 h.
Clustering effects in ionic polymers: Molecular dynamics simulations
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2015-08-18
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less
Zhong, Kang; Lin, Zuan-Tao; Zheng, Xi-Liang; Jiang, Gang-Biao; Fang, Yu-Sheng; Mao, Xiao-Yun; Liao, Zong-Wen
2013-02-15
Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS). PHR and KOH were mixed in acrylic acid solution to provide phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent were investigated. The maximum swelling capacity in distilled water or 0.9 wt.% (weight percent) NaCl solution reached 498 g g(-1) and 65 g g(-1) (water/prepared dry superabsorbent) respectively. Moreover, release behaviours of P and K in SCS/PAA/PHR were also investigated. The results showed that SCS/PAA/PHR possessed excellent sustained-release property of plant nutrient, and the SCS/PAA could improve the P release greatly. Besides, the XPS analysis was employed to study the relationship between PHR and superabsorbent polymer. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I
2016-06-30
The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Effect of Sulfation and Molecular Weight on Anticoagulant Activity of Dextran.
Drozd, N N; Logvinova, Yu S; Torlopov, M A; Udoratina, E V
2017-02-01
Sulfation (to 2.8) of dextrans with molecular weight of 150 and 20 kDa was followed by the appearance of anticoagulant activity that increased with decreasing their molecular weight and did not depend on antithrombin, plasma inhibitor of serine proteases of the blood coagulation system. Antithrombin activity of dextran sulfate with a molecular weight of 20 kDa reached 12.6-15.3 U/mg. Dextran sulfates with molecular weights of 20 and 150 kDa did not potentiate ADP-induced human platelet aggregation.
Turquois, T; Gloria, H
2000-11-01
High-performance size exclusion chromatography with multiangle laser light scattering detection (HPSEC-MALLS) was used for characterizing complete molecular weight distributions for a range of commercial alginates used as ice cream stabilizers. For the samples investigated, molecular weight averages were found to vary between 115 000 and 321 700 g/mol and polydispersity indexes varied from 1. 53 to 3.25. These samples displayed a high content of low molecular weights. Thus, the weight percentage of material below 100 000 g/mol ranged between 6.9 and 54.4%.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong
2016-01-01
Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity. PMID:27916796
He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong
2016-11-28
Four seaweed polysaccharides were extracted from Sarcodia ceylonensis , Ulva lactuca L., Gracilaria lemaneiformis , and Durvillaea antarctica , respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box-Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight ( M W ) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight ( M W ) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays-2,2-azino -bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power-and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity.
Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien
2017-03-22
Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent; Lafrance, Jean-Philippe
2015-12-07
Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. In total, 33 outpatients with CKD and mild hyperkalemia (5.0-5.9 mEq/L) in a single teaching hospital were included in this double-blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, -1.04 mEq/L; 95% confidence interval, -1.37 to -0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. Copyright © 2015 by the American Society of Nephrology.
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent
2015-01-01
Background and objectives Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. Design, setting, participants, & measurements In total, 33 outpatients with CKD and mild hyperkalemia (5.0–5.9 mEq/L) in a single teaching hospital were included in this double–blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. Results The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, −1.04 mEq/L; 95% confidence interval, −1.37 to −0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Conclusions Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. PMID:26576619
Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity▿
Caughey, Winslow S.; Priola, Suzette A.; Kocisko, David A.; Raymond, Lynne D.; Ward, Anne; Caughey, Byron
2007-01-01
Cyclic tetrapyrroles are among the most potent compounds with activity against transmissible spongiform encephalopathies (TSEs; or prion diseases). Here the effects of differential sulfonation and metal binding to cyclic tetrapyrroles were investigated. Their potencies in inhibiting disease-associated protease-resistant prion protein were compared in several types of TSE-infected cell cultures. In addition, prophylactic antiscrapie activities were determined in scrapie-infected mice. The activity of phthalocyanine was relatively insensitive to the number of peripheral sulfonate groups but varied with the type of metal bound at the center of the molecule. The tendency of the various phthalocyanine sulfonates to oligomerize (i.e., stack) correlated with anti-TSE activity. Notably, aluminum(III) phthalocyanine tetrasulfonate was both the poorest anti-TSE compound and the least prone to oligomerization in aqueous media. Similar comparisons of iron- and manganese-bound porphyrin sulfonates confirmed that stacking ability correlates with anti-TSE activity among cyclic tetrapyrroles. PMID:17709470
Brandi, Jamile; Oliveira, Éder C; Monteiro, Nilson; Vasconcelos, Ana Flora D; Dekker, Robert F H; Barbosa, Aneli M; Silveira, Joana L M; Mourão, Paulo A S; Corradi da Silva, Maria de Lourdes
2011-10-01
The exopolysaccharide botryosphaeran (EPS(GLC); a (1--> 3)(1-->6)-β-D-glucan from Botryosphaeria rhodina MAMB- 05) was sulfonated to produce a water-soluble fraction (EPS(GLC)-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction (EPSGLC-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and (13)C nuclear magnetic resonance ((13)C NMR) spectroscopies. EPS(GLC) and EPS(GLC)-RS were also assayed for anticoagulation activity, and EPS(GLC)-RS was identified as an anticoagulant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos
2009-08-26
Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less
Gel filtration applied to the study of lipases and other esterases
Downey, W. K.; Andrews, P.
1965-01-01
1. Sephadex G-100 and G-200 gel-filtration columns were calibrated for molecular-weight estimation with proteins of known molecular weights, and used to study the composition of several lipase or esterase preparations. 2. Enzymes from cow's milk, rat adipose tissue and pig pancreas were detected in the column effluents by their ability to liberate free acid from emulsified tributyrin at pH 8·5. 3. Four tributyrinases were detected in preparations from individual cow's milks. Molecular weights 62000, 75000 and 112000 were estimated for three of them, but although the fourth may be of unusually low molecular weight an estimate was not possible. 4. Extracts of rat adipose tissue apparently contained six tributyrinases (molecular weights 39000, 47000, 55000, 68000, 75000 and 200000) but the relative amounts of these enzymes varied widely from rat to rat. 5. Tributyrinase activity in juice expressed from pig pancreatic tissue was due mainly to one enzyme (molecular weight 42000). On the other hand, activity in extracts of acetone-dried pancreas was confined to material of molecular weight > 106, which may be an aggregated form of the lower-molecular-weight enzyme. 6. Activity in fractionated wheat-germ extracts was assayed with emulsified triacetin substrate, and was evidently due to one enzyme (molecular weight 51000). 7. Some problems arising in the application of gel filtration to the study of lipase–esterase systems were indicated. PMID:14340054
Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages
Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le
2015-01-01
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419
McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping
2018-01-16
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .
Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A
2015-09-16
Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.
Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1
Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard
1999-01-01
A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401
NASA Astrophysics Data System (ADS)
Sukhishvili, Svetlana A.; Granick, Steve
1999-05-01
We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.
Reilly, Peter T. A. [Knoxville, TN; Harris, William A [Naperville, IL
2010-03-02
A matrix assisted laser desorption/ionization (MALDI) method and related system for analyzing high molecular weight analytes includes the steps of providing at least one matrix-containing particle inside an ion trap, wherein at least one high molecular weight analyte molecule is provided within the matrix-containing particle, and MALDI on the high molecular weight particle while within the ion trap. A laser power used for ionization is sufficient to completely vaporize the particle and form at least one high molecular weight analyte ion, but is low enough to avoid fragmenting the high molecular weight analyte ion. The high molecular weight analyte ion is extracted out from the ion trap, and is then analyzed using a detector. The detector is preferably a pyrolyzing and ionizing detector.
Process for crosslinking and extending conjugated diene-containing polymers
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1977-01-01
A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.
1992-01-01
Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.
Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.
Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less
Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier
2018-03-06
The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.
A Versatile Method for Functionalizing Surfaces with Bioactive Glycans
Cheng, Fang; Shang, Jing; Ratner, Daniel M.
2011-01-01
Microarrays and biosensors owe their functionality to our ability to display surface-bound biomolecules with retained biological function. Versatile, stable, and facile methods for the immobilization of bioactive compounds on surfaces have expanded the application of high-throughput ‘omics’-scale screening of molecular interactions by non-expert laboratories. Herein, we demonstrate the potential of simplified chemistries to fabricate a glycan microarray, utilizing divinyl sulfone (DVS)-modified surfaces for the covalent immobilization of natural and chemically derived carbohydrates, as well as glycoproteins. The bioactivity of the captured glycans was quantitatively examined by surface plasmon resonance imaging (SPRi). Composition and spectroscopic evidence of carbohydrate species on the DVS-modified surface were obtained by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. The site-selective immobilization of glycans based on relative nucleophilicity (reducing sugar vs. amine- and sulfhydryl-derived saccharides) and anomeric configuration was also examined. Our results demonstrate straightforward and reproducible conjugation of a variety of functional biomolecules onto a vinyl sulfone-modified biosensor surface. The simplicity of this method will have a significant impact on glycomics research, as it expands the ability of non-synthetic laboratories to rapidly construct functional glycan microarrays and quantitative biosensors. PMID:21142056
Lyubartseva, Ganna; Parkin, Sean; Mallik, Uma Prasad
2013-01-01
In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2H2O, the NiII cation is located on an inversion centre and is coordinated by six N atoms from two tridentate 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligands in a distorted octahedral geometry. The Ni—N distances range from 2.0594 (12) to 2.0664 (12) Å, intra-ligand N—Ni—N angles range from 84.59 (5) to 86.06 (5)°, and adjacent inter-ligand N—Ni—N angles range between 93.94 (5) and 95.41 (5)°. In the crystal, inversion-related pyrazole rings are π–π stacked, with an interplanar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a-axis direction. Intermolecular O—H⋯O hydrogen bonds are present between water molecules and trifluoromethanesulfonate anions. PMID:24098167
NASA Astrophysics Data System (ADS)
Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.
1996-05-01
Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.
Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; ...
2015-09-16
Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology withmore » higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.« less
Production of high molecular weight polylactic acid
Bonsignore, Patrick V.
1995-01-01
A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.
NASA Astrophysics Data System (ADS)
Hong, Young Taik; Lee, Chang Hyun; Park, Hyung Su; Min, Kyung A.; Kim, Hyung Joong; Nam, Sang Yong; Lee, Young Moo
In the present study, modified acid-base blend membranes were fabricated via incorporation of sulfonated poly(arylene ether benzimidazole) (SPAEBI) into sulfonated poly(arylene ether sulfone) (SPAES). These membranes had excellent methanol-barrier properties in addition to an ability to compensate for the loss of proton conductivity that typically occurs in general acid-base blend system. To fabricate the membranes, SPAEBIs, which served as amphiphilic polymers with different degrees of sulfonation (0-50 mol%), were synthesized by polycondensation and added to SPAES. It resulted in the formation of acid-amphiphilic complexes such as [PAES-SO 3] - +[H-SPAEBI] through the ionic crosslinking, which prevented SO 3H groups in the complex from transporting free protons in an aqueous medium, contributing to a reduction of ion exchange capacity values and water uptake in the blend membranes, and leading to lower methanol permeability in a water-methanol mixture. Unfortunately, the ionic bonding formation was accompanied by a decrease of bound water content and proton conductivity, although the latter problem was solved to some extent by the incorporation of additional SO 3H groups in SPAEBI. In the SPAES-SPAEBI blend membranes, enhancement of proton conductivity and methanol-barrier property was prominent at temperatures over 90 °C. The direct methanol fuel cell (DMFC) performance, which was based on SPAES-SPAEBI-50-5, was 1.2 times higher than that of Nafion ® 117 under the same operating condition.
Ndesendo, Valence M K; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Buchmann, Eckhart; Meyer, Leith C R; Khan, Riaz A
2012-01-01
This study aimed at elucidating an optimal synergistic polymer composite for achieving a desirable molecular bioadhesivity and Matrix Erosion of a bioactive-loaded Intravaginal Bioadhesive Polymeric Device (IBPD) employing Molecular Mechanic Simulations and Artificial Neural Networks (ANN). Fifteen lead caplet-shaped devices were formulated by direct compression with the model bioactives zidovudine and polystyrene sulfonate. The Matrix Erosion was analyzed in simulated vaginal fluid to assess the critical integrity. Blueprinting the molecular mechanics of bioadhesion between vaginal epithelial glycoprotein (EGP), mucin (MUC) and the IBPD were performed on HyperChem 8.0.8 software (MM+ and AMBER force fields) for the quantification and characterization of correlative molecular interactions during molecular bioadhesion. Results proved that the IBPD bioadhesivity was pivoted on the conformation, orientation, and poly(acrylic acid) (PAA) composition that interacted with EGP and MUC present on the vaginal epithelium due to heterogeneous surface residue distributions (free energy= -46.33 kcalmol(-1)). ANN sensitivity testing as a connectionist model enabled strategic polymer selection for developing an IBPD with an optimally prolonged Matrix Erosion and superior molecular bioadhesivity (ME = 1.21-7.68%; BHN = 2.687-4.981 N/mm(2)). Molecular modeling aptly supported the EGP-MUC-PAA molecular interaction at the vaginal epithelium confirming the role of PAA in bioadhesion of the IBPD once inserted into the posterior fornix of the vagina.
Kuempel, Peter L.
1972-01-01
Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome. PMID:4562387
Electrical and Environmental Studies of Conduction Polymers.
1986-01-17
Carbonate), 0.25M Tetrabutylammonium hexafluorophosphate (Bu4 NPF 6 )/THF, and 0.25M Lithium Trifluoromethyl sulfonate (LiCF3 SO 3)frHF. Lithium ...processible polymeric component Other anions commonly used in synthesizing polypyrrole, namely, tetrafluoroborate, hexafluorophosphate rifluoromethyl...are perchlorate (CI0 4 "), tetrafluoroborate (BF 4 "), trifluoromethyl sulfonate (CF3 SO"), hexafluorophosphate (PF6 ") and p-toluene sulfonate (PTS
McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping
2018-01-01
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.
Production of high molecular weight polylactic acid
Bonsignore, P.V.
1995-11-28
A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.
BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity.
Dorh, Nethaniah; Zhu, Shilei; Dhungana, Kamal B; Pati, Ranjit; Luo, Fen-Tair; Liu, Haiying; Tiwari, Ashutosh
2015-12-18
Mapping surface hydrophobic interactions in proteins is key to understanding molecular recognition, biological functions, and is central to many protein misfolding diseases. Herein, we report synthesis and application of new BODIPY-based hydrophobic sensors (HPsensors) that are stable and highly fluorescent for pH values ranging from 7.0 to 9.0. Surface hydrophobic measurements of proteins (BSA, apomyoglobin, and myoglobin) by these HPsensors display much stronger signal compared to 8-anilino-1-naphthalene sulfonic acid (ANS), a commonly used hydrophobic probe; HPsensors show a 10- to 60-fold increase in signal strength for the BSA protein with affinity in the nanomolar range. This suggests that these HPsensors can be used as a sensitive indicator of protein surface hydrophobicity. A first principle approach is used to identify the molecular level mechanism for the substantial increase in the fluorescence signal strength. Our results show that conformational change and increased molecular rigidity of the dye due to its hydrophobic interaction with protein lead to fluorescence enhancement.
Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation.
Barros, Frederico; Awika, Joseph; Rooney, Lloyd W
2014-04-01
There is a growing interest to increase resistant starch (RS) in foods through natural modification of starch. Sorghum tannins (proanthocyanidins, PAs) were recently reported to interact with starch, increasing RS. However, there is no information about how the molecular weight profile of PAs affects RS formation. This study investigated how different-molecular-weight PAs from sorghum affected RS formation in different starch models. The levels of RS were higher (331-437 mg g(-1)) when high-amylose starch was cooked with phenolic extracts containing mostly high-molecular-weight PAs compared with extracts containing lower-molecular-weight PAs or monomeric catechin (249-285 mg g(-1)). In general, binding capacity of PAs with amylose increased proportionally with molecular weight. For example, the percentage of PAs bound to amylose increased from 45% (PAs with degree of polymerization (DP) = 6) to 94% (polymeric PAs, DP > 10). The results demonstrate that molecular weight of the PAs directly affects their interaction with starch: the higher the molecular weight, the stronger the binding to amylose and the higher the RS formation. Polymeric PAs from sorghum can naturally modify starch by interacting strongly with amylose and are thus most suitable to produce foods with higher RS. © 2013 Society of Chemical Industry.
Elsgaard, L; Petersen, S O; Debosz, K
2001-08-01
Linear alkylbenzene sulfonates (LAS) may occur in sewage sludge that is applied to agricultural soil, in which LAS can be inhibitory to biological activity. As a part of a broader risk assessment of LAS in the terrestrial environment, we tested the short-term effects of aqueous LAS on microbial parameters in a sandy agricultural soil that was incubated for up to 11 d. The assays included 10 microbial soil parameters; ethylene degradation; potential ammonium oxidation; potential dehydrogenase activity; beta-glucosidase activity; iron reduction; the populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Except for beta-glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC10 values in the range of less than 8 to 22 mg/kg dry weight. This probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed that sensitivity to LAS was common for various soil microorganisms. The extracellular beta-glucosidase activity was rather insensitive to LAS (ECI10, 47 mg/kg dry wt), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated compartments of the microbial community. The PLFA content, surprisingly, showed no decrease even at 488 mg/kg. In conclusion, LAS inhibited specific microbial activities, although this could not be deduced from the basal respiration or the total PLFA content. The lowest EC10 values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (approximately 5 mg/kg dry wt).
Therapeutic action of ghrelin in a mouse model of colitis.
Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario
2006-05-01
Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.
Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroy, Rocio; Morrison, Katherine; Teo, Koon
2008-09-15
Perfluoroalkyl compounds (PFCs) are end-stage metabolic products from industrial flourochemicals used in the manufacture of plastics, textiles, and electronics that are widely distributed in the environment. The objective of the present study was to quantify exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorodecanoic acid (PFDeA), perfluorohexane sulfonate (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid (PFNA) in serum samples collected from pregnant women and the umbilical cord at delivery. Pregnant women (n=101) presenting for second trimester ultrasound were recruited and PFC residue levels were quantified in maternal serum at 24-28 weeks of pregnancy, at delivery, and in umbilical cord blood (UCB;more » n=105) by liquid chromatography-mass spectrometry. Paired t-test and multiple regression analysis were performed to determine the relationship between the concentrations of each analyte at different sample collection time points. PFOA and PFOS were detectable in all serum samples analyzed including the UCB. PFOS serum levels (mean{+-}S.D.) were significantly higher (p<0.001) in second trimester maternal serum (18.1{+-}10.9 ng/mL) than maternal serum levels at delivery (16.2{+-}10.4 ng/mL), which were higher than the levels found in UCB (7.3{+-}5.8 ng/mL; p<0.001). PFHxS was quantifiable in 46/101 (45.5%) maternal and 21/105 (20%) UCB samples with a mean concentration of 4.05{+-}12.3 and 5.05{+-}12.9 ng/mL, respectively. There was no association between serum PFCs at any time point studied and birth weight. Taken together our data demonstrate that although there is widespread exposure to PFCs during development, these exposures do not affect birth weight.« less
Lee, Young Ah; Kim, Jin Hee; Jung, Hae Woon; Lim, Youn-Hee; Bae, Sanghyuk; Kho, Younglim; Hong, Yun-Chul; Shin, Choong Ho; Yang, Sei Won
2018-07-01
The relationship between the serum concentrations of perfluoroalkyl compounds (PFCs) and growth parameters was investigated in 2-year-old Korean children. The study included 361 children aged 2years (192 boys and 169 girls; 22-27months), born at term appropriate-for-gestational-age, who visited between 2012 and 2013. Growth parameters of height and weight, and serum samples were collected from 2-year-old children. Four PFCs (perfluorohexane sulfonic acid [PFHxS], perfluorooctane sulfonic acid [PFOS], perfluorooctanoic acid [PFOA], and perfluorononanoic acid [PFNA]), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluoroheptanoic acid (PFHpA) were detected in >99, 93.4, 89.8, and 74.2% of the serum samples, respectively. The duration of breastfeeding was positively associated with the serum concentrations of ln-transformed PFHxS, PFOS, PFHpA, PFOA, PFNA, PFDA, and PFUnDA (all P<0.001). Height at 2years of age was inversely related to PFHxS, PFOS, PFOA, PFNA, and PFDA concentrations (adjusted β per ln unit [95% confidence interval, CI]: -0.84 [-1.26, -0.42], -0.77 [-1.27, -0.15], -0.91 [-1.36, -0.47], -0.48 [-1.40, -0.51], and -0.44 [-0.77, -0.10] cm, respectively), after adjusting for age, sex, and midparental height. Weight at 2years of age was inversely associated with PFNA (adjusted β per ln unit [95% CI]: -0.32 [-0.48, -0.15] kg), after adjusting for age, sex, and parental BMI. In conclusion, the serum concentrations of PFCs were inversely associated with growth parameters in 2-year-old children. Copyright © 2018 Elsevier B.V. All rights reserved.
Mulloy, Barbara; Hogwood, John
2015-01-01
Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.
Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.
Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong
2015-11-01
In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.
Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio
2017-10-01
Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrophilic modification of polyethersulfone and its membrane characteristics
NASA Astrophysics Data System (ADS)
Liu, Haiju; Huangfu, Feng-yun; Bai, Yundong; Kong, Yuanyuan
2010-07-01
In order to enhance the hydrophilicity of PES, A series of sulfonated polyethersulfone (SPES) were readily prepared via a reaction of sulphonation which used chlorosulfonic as sulfonating agent and concentrated sulfuric acid as solvent. Sulfonation was confirmed by Fourier transform infrared spectroscopy and Thermo gravimetric analyzer. We studied forming film characteristic of SPES by phase diagram. The sulfonated PES materials were then utilized as a hydrophilic modifier for fabrication of SPES membranes. The solvent was NMP and PEG-6000 was pore-forming agent. The characteristics of membranes were studied. It was found that the surface hydrophilicity of the modified PES membranes was remarkably enhanced by contact angle. Water flux was obvious increased and antifouling performance was also improved.
Wu, Chunli; Li, Pan; Shi, Xiufang; Pan, Xiaotao; Wu, Jizhou
2011-01-01
In the title compound, C22H16F3NO7S, the two benzene rings are almost perpendicular, the dihedral angle between their mean planes being 87.1 (1)°. The terminal O atom of the benzoate moiety is disordered over two positions with site occupancies of 0.244 (15) and 0.756 (15). The crystal structure is stablized by two types of weak intermolecular C—H⋯O hydrogen bonds. PMID:21523058
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1985-01-01
In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.
Bano, Bilquees; Arshia; Khan, Khalid Mohammed; Kanwal; Fatima, Bibi; Taha, Muhammad; Ismail, Nor Hadiani; Wadood, Abdul; Ghufran, Mehreen; Perveen, Shahnaz
2017-10-20
In this study synthesis and β-glucuronidase inhibitory potential of 3/5/8 sulfonamide and 8-sulfonate derivatives of quinoline (1-40) are discussed. Studies reveal that all the synthetic compounds were found to have good inhibitory activity against β-glucuronidase. Nonetheless, compounds 1, 2, 5, 13, and 22-24 having IC 50 values in the range of 1.60-8.40 μM showed superior activity than the standard saccharic acid 1,4-lactone (IC 50 = 48.4 ± 1.25 μM). Moreover, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. Structures of all the synthetic compounds were confirmed through 1 H NMR, EI-MS and HREI-MS spectroscopic techniques. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Crystal structure of N-{[3-bromo-1-(phenyl-sulfon-yl)-1H-indol-2-yl]meth-yl}benzene-sulfonamide.
Umadevi, M; Raju, P; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G
2015-10-01
In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol-ecular conformation is stabilized by intra-molecular N-H⋯O and C-H⋯O hydrogen bonds and an aromatic π-π stacking [centroid-to-centroid distance = 3.503 (2) Å] inter-action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol-ecules into [010] chains. The chains are cross-linked by weak C-H⋯π inter-actions, forming a three-dimensional network.
Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan
2017-07-24
The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.
Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.
Park, Jung Min; Kim, Young Han; Kim, Sung Bin
2013-01-01
In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.
NASA Astrophysics Data System (ADS)
Hong, K.; Zhang, X.
2005-03-01
Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.
Improvement of neutral oil quality in the production of sulfonate additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.
This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less
NASA Astrophysics Data System (ADS)
Rostam, Abbas Babaei; Peyravi, Majid; Ghorbani, Mohsen; Jahanshahi, Mohsen
2018-01-01
In this study, sulfonated-polyethersulfone/polyrhodanine (SPES/PRh) membranes with antibacterial behavior were fabricated. Polyethersulfone (PES) sulfonation was performed to enhance its hydrophilicity and next polyrhodanine nanoparticles (PRhNPs) were synthesized along with the sulfonated PES (SPES) by polyrhodanine (PRh) in situ polymerization. The sulfonation step also helps making composite membrane due to development of probable bondings and polymers engagements. The constructed membranes characterization was performed by FTIR, FESEM, contact angle, 1H NMR, TGA and EDS analyses. SPES/PRh membrane had enhanced hydrophilicity and consequently better fluxes for aqueous solutions. The composite SPES/PRh membrane flux was improved to 139/78 L/m2 h comparing 58.21 L/m2 h for SPES one. Membrane operational performances, antibacterial and antibiofouling tests showed improved flux, better rejection and appropriate antibacterial and antibiofouling properties for SPES/PRh membrane. The 100% bacteria mortality for specified concentrations and appropriate inhibition zones up to 9 mm have been achieved. It is generally a suitable membrane to provide proper performance beside antibacterial and antibiofouling behavior.
NASA Astrophysics Data System (ADS)
Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash
2013-03-01
In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.
... Dimethyl Sulfone MSM, DMSO2, Methyl Sulfone, Methyl Sulfonyl Methane, Methyl Sulphonyl Methane, Méthyle Sulfonyle Méthane, Méthyle Sulphonyle Méthane, Méthylsulfonylméthane, Metilsulfonilmentano, ...
21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).
Code of Federal Regulations, 2010 CFR
2010-04-01
... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols when tested by the analytical methods... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights...
Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong
2013-09-01
Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Shulu
2011-12-01
Two kinds of renewable energy materials, room temperature ionic liquids (RTILs) and proton exchange membranes (PEMs), especially Nafion, are studied by computational and theoretical approaches. The ultimate purpose of the present research is to design novel materials to meet the future energy demands. To elucidate the effect of alkyl side chain length and anion on the structure and dynamics of the mixtures, molecular dynamics (MD) simulations of three RTILs/water mixtures at various water mole fractions: 1-butyl-3-methylimidazolium (BMIM+)/BF4-, 1-octyl-3-methylimidazolium (OMIM+)/BF4-, and OMIM +/Cl- are performed. Replacing the BMIM + cation with OMIM+ results in stronger aggregation of the cations as well as a slower diffusion of the anions, and replacing the BF4- anion with Cl- alters the water distribution at low water mole fractions and slows diffusion of the mixtures. Potential experimental manifestations of these behaviors in both cases are provided. Proton solvation properties and transport mechanisms are studied in hydrated Nafion, by using the self-consistent multistate empirical valence bond (SCI-MS-EVB) method. It is found that by stabilizing a more Zundel-like (H5O 2+) structure in the first solvation shells, the solvation of excess protons, as well as the proton hydration structure are both influenced by the sulfonate groups. Hydrate proton-related hydrogen bond networks are observed to be more stable than those with water alone. In order to characterize the nature of the proton transport (PT), diffusive motion, Arrhenius activation energies, and transport pathways are calculated and analyzed. Analysis of diffusive motion suggests that (1) a proton-hopping mechanism dominates the proton transport for the studied water loading levels and (2) there is an obvious degree of anti-correlation between the proton hopping and the vehicular transport. The activation energy drops rapidly with an increasing water content when the water loading level is smaller than ˜ 10 H2O/SO 3-, which is consistent with experimental observations. The sulfonate groups are also found to have influence on the proton hopping directions. The temperature and water content effects on the PT pathways are also investigated. The morphological effects on proton solvation and transport in hydrated Nafion are investigated, by using the SCI-MS-EVB method. Two of the most significant morphological models of Nafion, the lamellar model and the cylinder model, are selected. The two models exhibit distinct PT patterns, which result in different proton diffusion rates. In both models, the interaction between protons and the sulfonate groups are proven to be the key to determining PT behavior. The proton solvation structure change as a function of the distance between protons and sulfonate groups has been analyzed. It is found that the increase of water cylinder radius or water layer height leads to the presence of more protons around the sulfonate groups. Furthermore, at a lower hydration level, the increased amount of protons around the sulfonate groups consists of more Zundel-like structures, which is influenced by the distinct morphological structures of Nafion.
Pyrolytic carbon black composite and method of making the same
Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe
2016-09-13
A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun
2018-03-01
A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.
NASA Astrophysics Data System (ADS)
Li, Zhen; He, Guangwei; Zhao, Yuning; Cao, Ying; Wu, Hong; Li, Yifan; Jiang, Zhongyi
2014-09-01
In this study, octahedral crystal MIL101(Cr) with a uniform size of ∼400 nm is synthesized via hydrothermal reaction. It is then functionalized with sulfonic acid groups by concentrated sulfuric acid and trifluoromethanesulfonic anhydride in nitromethane. The sulfonated MIL101(Cr) are homogeneously incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. The performances of hybrid membranes are evaluated by proton conductivity, methanol permeability, water uptake and swelling property, and thermal stability. The methanol permeability increased slightly from 6.12 × 10-7 to 7.39 × 10-7 cm2 s-1 with the filler contents increasing from 0 to 10 wt. %. However, the proton conductivity of the hybrid membranes increased significantly. The proton conductivity is increased up to 0.306 S cm-1 at 75 °C and 100% RH, which is 96.2% higher than that of pristine membranes (0.156 S cm-1). The increment of proton conductivity is attributed to the following multiple functionalities of the sulfonated MIL101(Cr) in hybrid membranes: i) providing sulfonic acid groups as facile proton hopping sites; ii) forming additional proton-transport pathways at the interfaces of polymer and MOFs; iii) constructing hydrogen-bonded networks for proton conduction via -OH provided by the hydrolysis of coordinatively unsaturated metal sites.
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Aricò, A. S.; Antonucci, V.
This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm -2), obtained with a thin SPSf membrane (70 μm) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm -2. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g -1) was 2.8 × 10 -2 S cm -1. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements.
Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G
2018-05-02
Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.
Differential fipronil susceptibility and metabolism in two rice stem borers from China.
Fang, Qi; Huang, Cheng-Hua; Ye, Gong-Yin; Yao, Hong-Wei; Cheng, Jia-An; Akhtar, Zunnu-Raen
2008-08-01
The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results offipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.
Purification and characterization of peroxidase from avocado (Persea americana Mill, cv. Hass).
Rojas-Reyes, José O; Robles-Olvera, Victor; Carvajal-Zarrabal, Octavio; Castro Matinez, Claudia; Waliszewski, Krzysztof N; Aguilar-Uscanga, María Guadalupe
2014-07-01
Avocado (Persea americana Mill, cv. Hass) fruit ranks tenth in terms of the most important products for Mexico. Avocado products are quite unstable due to the presence of oxidative enzymes such as polyphenol oxidase and peroxidase. The present study is to characterize the activity of purified avocado peroxidase from avocado in order to ascertain the biochemical and kinetic properties and their inhibition conditions. Purification was performed by Sephacryl S 200 HR gel filtration chromatography and its estimated molecular weight was 40 kDa. The zymogram showed an isoelectric point of 4.7. Six substrates were tested in order to ascertain the affinity of the enzyme for these substrates. The purified peroxidase was found to have low Km (0.296 mM) and high catalytic efficiency (2688 mM(-1) s(-1)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), optimum activity being reached at 51°C, pH 3.8. The addition of dithiothreitol, β-mercaptoethanol, ascorbic acid, sodium azide, L-cysteine and Tween-20 had high inhibitory effects, while metals ions such as Cu(+), Fe(2+) and Mn(2+) had weak inhibitory activity on purified avocado peroxidase. The purified avocado peroxidase exhibits high inhibition (Ki = 0.37 µM) with 1.97 µM n-propyl gallate using ABTS as substrate at 51°C, pH 3.8 for 10 min. © 2013 Society of Chemical Industry.
Chakrabarty, Arindam; Singha, Nikhil K
2013-10-15
Controlled/living radical polymerization (CRP) of a fluoroacrylate was successfully carried out in miniemulsion by Reversible Addition Fragmentation chain Transfer (RAFT) process. In this case, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) was polymerized using 2-cyanopropyl dodecyl trithiocarbonate (CPDTC) as RAFT agent, Triton X-405 and sodium dodecyl sulfonate (SDS) as surfactant, and potassium persulphate (KPS) or 2,2'-azobis isobutyronitrile (AIBN) as initiator. Being compatible with hydrophobic fluoroacrylate, this RAFT agent offered very high conversion and good control over the molecular weight of the polymer. The miniemulsion was stable without any costabilizer. The long chain dodecyl group (-C12H25) (Z-group in the RAFT agent) had beneficial effect in stabilizing the miniemulsion. When 2-cyano 2-propyl benzodithioate (CPBD) (Z=-C6H5) was used as RAFT agent, the conversion was less and particle size distribution was very broad. Block copolymerization with butyl acrylate (BA) using PHFBA as macro-RAFT agent showed core-shell morphology with the aggregation of PHFBA segment in the shell. GPC as well as DSC analysis confirmed the formation of block copolymer. The core-shell morphology was confirmed by TEM analysis. The block copolymers (PHFBA-b-PBA) showed significantly higher water contact angle (WCA) showing much better hydrophobicity compared to PHFBA alone. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Yejing; He, Huawei; Liu, Lina; Gao, Chunyan; Xu, Shui; Zhao, Ping; Xia, Qingyou
2014-01-01
The effects of urea and guanidine hydrochloride (GdnHCl) on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase), a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV) circular dichroism (CD), Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS) fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.
Liu, Lina; Gao, Chunyan; Xu, Shui; Zhao, Ping; Xia, Qingyou
2014-01-01
The effects of urea and guanidine hydrochloride (GdnHCl) on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase), a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV) circular dichroism (CD), Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS) fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase. PMID:25255086
Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone
Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.
2012-01-01
β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308
Ingham, Eileen; Fisher, John; Tipper, Joanne L
2014-01-01
It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586
Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L
2014-04-01
It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.
Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes
Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina
2009-01-01
The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910
The Molecular Weight Distribution of Polymer Samples
ERIC Educational Resources Information Center
Horta, Arturo; Pastoriza, M. Alejandra
2007-01-01
Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.
Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.
Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu
2016-12-11
This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.
Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures
2016-07-26
SECURITY CLASSIFICATION OF: The objective of this research is to characterize combustion of high molecular weight hydrocarbon fuels and jet- fuels (in...Unlimited UU UU UU UU 26-07-2016 1-May-2012 30-Apr-2016 Final Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate...Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures (Research Area 1: Mechanical Sciences) Report Title The
Application of the weibull distribution function to the molecular weight distribution of cellulose
A. Broido; Hsiukang Yow
1977-01-01
The molecular weight distribution of a linear homologous polymer is usually obtained empirically for any particular sample. Sample-to-sample comparisons are made in terms of the weight- or number-average molecular weights and graphic displays of the distribution curves. Such treatment generally precludes data interpretations in which a distribution can be described in...
Synthesis of high molecular weight PEO using non-metal initiators
Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam
2015-05-19
A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.
Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...
2017-03-16
New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated .pi.-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Polyarylether composition and membrane
Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony
2010-11-09
A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.
Toxicity of pyrolysis gases from synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.
Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S
2013-05-01
PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.
Metabolism of AGEs – Bacterial AGEs Are Degraded by Metallo-Proteases
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z.
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism. PMID:24130678
Metabolism of AGEs--bacterial AGEs are degraded by metallo-proteases.
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism.
Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan
2017-08-15
There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.
How Molecular Structure Affects Mechanical Properties of an Advanced Polymer
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.
2000-01-01
density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.
Copolymers of fluorinated polydienes and sulfonated polystyrene
Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN
2009-11-17
Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.
Reactions of Phenolphthalein at Various pH Values.
ERIC Educational Resources Information Center
Wittke, Georg
1983-01-01
Reactions of phenolphthalein with sodium hydroxide and sulfuric are discussed. Also discusses the sulfonation of phenolphthalein, listing experimental results related to the sulfonation reaction. (JN)
Lechner, Mareike; Knapp, Holger
2011-10-26
A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).
Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Putri, Zufira; Arcana, I. Made
2014-03-01
Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).
Arisha, M H; Liang, B-K; Muhammad Shah, S N; Gong, Z-H; Li, D-W
2014-11-28
Pepper seeds (Capsicum annuum L.) var. B12 were mutagenized by four presoaking treatments in ten concentrations of ethyl methane sulfonate (EMS) to determine the sensitivity of the first generation (M1) to mutagens. The spectrum of mutations and induced variability for various quantitative traits, including germination, percent plant height, injury occurrence, survival ratio, first three fruits weight, and number of seeds per first fruit, were observed in the M1 generation. Our results indicated that all of the test parameters decreased with increasing EMS concentration, except for seedling injury. There were significant differences in germination ratio, LD50, plant height, percent injury, and survival ratio among the tested presoaking treatment. The LD50 was 1% EMS in seeds that were not presoaked (T1) and seeds presoaked for 12 h before treating with EMS (T3). In contrast, the LD50 was 0.5% EMS in seeds presoaked for 6 h (T2) and seeds presoaked in water for 6 h then incubated at 28°C for 12 h before EMS treatment (T4). Five dwarf plants were observed in mutagenized seeds without presoaking as compared to control seeds (at the maturity stage of the control plant).
US Domestic Cats as Sentinels for Perfluoroalkyl Substances ...
Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) , are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.
2009-01-01
Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less
Suwanprateeb, Jintamai; Thammarakcharoen, Faungchat; Hobang, Nattapat
2016-11-01
A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n ~80,000) or low (M n ~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.
Xu, Jiao; Fan, Qiao-Jia; Yin, Zhong-Qiong; Li, Xu-Ting; Du, Yong-Hua; Jia, Ren-Yong; Wang, Kai-Yu; Lv, Cheng; Ye, Gang; Geng, Yi; Su, Gang; Zhao, Ling; Hu, Ting-Xiu; Shi, Fei; Zhang, Li; Wu, Chang-Long; Tao, Cui; Zhang, Ya-Xue; Shi, Dong-Xia
2010-05-11
The preparation of neem oil microemulsion and its acaricidal activity in vitro was developed in this study. In these systems, the mixture of Tween-80 and the sodium dodecyl benzene sulfonate (SDBS) (4:1, by weight) was used as compound surfactant; the mixture of compound surfactant and hexyl alcohol (4:1, by weight) was used as emulsifier system; the mixture of neem oil, emulsifier system and water (1:3.5:5.5, by weight) was used as neem oil microemulsion. All the mixtures were stired in 800 rpm for 15 min at 40 degrees C. The acaricidal activity was measured by the speed of kill. The whole lethal time value of 10% neem oil microemulsion was 192.50 min against Sarcoptes scabiei var. cuniculi larvae in vitro. The median lethal time value was 81.7463 min with the toxicity regression equations of Y=-6.0269+3.1514X. These results demonstrated that neem oil microemulsion was effective against Sarcoptes scabie var. cuniculi larvae in vitro. (c) 2010. Published by Elsevier B.V. All rights reserved.
Origin of change in molecular-weight dependence for polymer surface tension.
Thompson, R B; Macdonald, J R; Chen, P
2008-09-01
Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion explanation are shown to be valid for a range of different polymer compressibilities.
Yang, X J; Lecksell, K; Gaudin, P; Epstein, J I
1999-02-01
Immunohistochemistry with antibodies for high-molecular-weight cytokeratin labels basal cells and is used as an ancillary study in diagnosing prostate carcinoma, which reportedly lacks expression of high-molecular-weight cytokeratin. A recent report questioned the specificity of this marker, describing immunopositivity for high-molecular-weight cytokeratin in a small series of metastatic prostate cancer. We have also noted rare cases of prostate lesions on biopsy with typical histological features of adenocarcinoma showing immunopositivity for high-molecular-weight cytokeratin, either in tumor cells or in patchy cells with the morphology of basal cells. In some of these cases, it was difficult to distinguish cancer from out-pouching of high-grade prostatic intraepithelial neoplasia. To investigate whether prostate cancer cells express high-molecular-weight cytokeratin, we studied 100 cases of metastatic prostate carcinoma and 10 cases of prostate cancer invading the seminal vesicles from surgical specimens. Metastatic sites included regional lymph nodes (n = 67), bone (n = 19), and miscellaneous (n = 14). Cases with any positivity for high-molecular-weight cytokeratin antibody (34betaE12) were verified as being of prostatic origin with immunohistochemistry for prostate-specific antigen and prostate-specific acid phosphatase. Only four cases were detected positive for high-molecular-weight cytokeratin. In two cases (one metastasis, one seminal vesicle invasion) there was weakly diffuse positivity above background level. Two metastases in lymph nodes showed scattered strong staining of clusters of tumor cells, which represented <0.2% of tumor cells in the metastatic deposits. These positive cells did not have the morphology of basal cells. We conclude that prostate cancer, even high grade, only rarely expresses high-molecular-weight cytokeratin. This marker remains a very useful adjunct in the diagnosis of prostate cancer.
High and low molecular weight hyaluronic acid differentially influence macrophage activation
Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.
2015-01-01
Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020
21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).
Code of Federal Regulations, 2010 CFR
2010-04-01
... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500. (b) It contains no more than 0.2 percent total by weight of ethylene and diethylene... ethylene and diethylene glycols if its mean molecular weight is below 350, when tested by the analytical...
Xia, Huiping; Li, Bing-Zheng; Gao, Qunyu
2017-12-01
Starch microspheres (SMs) were fabricated in an aqueous two-phase system (ATPS). A series of starch samples with different molecular weight were prepared by acid hydrolysis, and the effect of molecular weight of starch on the fabrication of SMs were investigated. Scanning electron microscopy (SEM) showed that the morphologies of SMs varied with starch molecular weight, and spherical SMs with sharp contours were obtained while using starch samples with weight-average molecular weight (M¯w)≤1.057×10 5 g/mol. X-ray diffraction (XRD) results revealed that crystalline structure of SMs were different from that of native cassava starch, and the relative crystallinity of SMs increased with the molecular weight of starch decreasing. Differential scanning calorimetry (DSC) results showed peak gelatinization temperature (T p ) and enthalpy of gelatinization (ΔH) of SMs increased with decreased M¯wof starch. Stability tests indicated that the SMs were stable under acid environment, but not stable under α-amylase hydrolysis. Copyright © 2017. Published by Elsevier Ltd.
A study on the quality control of slow burning polyester
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Yinglei; Yan, Zhengfeng; Yu, Tao
2018-04-01
In this paper, the influence of the alcohol/acid mole ratio, reaction temperature, warm-up mode, end-capping, vacuity to the quality of slow burning polyester was studied. The hydroxyl value will increase when the alcohol/acid mole ratio increase, but the acid value and molecular weight will decrease. The molecular weight and molecular weight distribution of the polyester consistent with the designed one can be obtained by stepped heating up. Monobasic alcohol end-capping can be used to control the molecular weight effectively and reduce acid value. Stripping process narrow the molecular weight distribution and reduce the hydroxyl value. Decompression is in favor of the decrease of acid value and increase of the reaction speed to get qualified production.
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
Acid monolayer functionalized iron oxide nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Ikenberry, Myles
Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
NASA Astrophysics Data System (ADS)
Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus
2018-01-01
The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.
Peters, Byron K; Zhou, Taigang; Rujirawanich, Janjira; Cadu, Alban; Singh, Thishana; Rabten, Wangchuk; Kerdphon, Sutthichat; Andersson, Pher G
2014-11-26
Several chiral sulfonyl compounds were prepared using the iridium catalyzed asymmetric hydrogenation reaction. Vinylic, allylic and homoallylic sulfone substitutions were investigated, and high enantioselectivity is maintained regardless of the location of the olefin with respect to the sulfone. Impressive stereoselectivity was obtained for dialkyl substitutions, which typically are challenging substrates in the hydrogenation. As expected, the more bulky Z-substrates were hydrogenated slower than the corresponding E isomers, and in slightly lower enantioselectivity.
21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).
Code of Federal Regulations, 2011 CFR
2011-04-01
... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights... and diethylene glycol content of polyethylene glycols having mean molecular weights below 450. Analytical Method ethylene glycol and diethylene glycol content of polyethylene glycols The analytical method...
Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian
2016-09-01
Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight
Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.
2008-01-01
The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Castor oil, sulfonated, sodium salt Cellulose acetate butyrate Cellulose acetate propionate Cetyl alcohol... trimethylenediamine (alkyl C16 to C18) Oleic acid, sulfonated, sodium salt Oleyl palmitamide N,N′-Oleoyl...
Condensed Tannin Reacts with SO2 during Wine Aging, Yielding Flavan-3-ol Sulfonates.
Ma, Lingjun; Watrelot, Aude A; Addison, Bennett; Waterhouse, Andrew L
2018-06-08
Numerous monomeric and oligomeric flavanol sulfonation products were observed in 10 wines. Levels of 0.85-20.06 and 0-14.72 mg/L were quantified for two monomeric sulfonated flavan-3-ols and, surprisingly, were generally higher than the well-known native flavan-3-ol monomers. Increasing SO 2 levels during wine aging increased the sulfonate-modified flavan-3-ol monomers and dimers along with higher concentrations of native monomers. The results indicate that >10% of SO 2 is reacting with the C-4 carbocation, formed from acid cleavage of the interflavan bond, perhaps by a bimolecular S N 2-type reaction, and as a reducing agent. In addition, the high SO 2 wine had the lowest protein-binding tannin levels, tannin activity, and mean degree of polymerization (mDP), and acidic SO 2 treatment of condensed tannin abolishes protein binding. Thus, SO 2 changes tannin composition during wine aging, and the substantial formation of sulfonate-modified flavan-3-ols may provide an additional explanation for the reduction in astringency of aged red wines.
Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater.
Trautmann, A M; Schell, H; Schmidt, K R; Mangold, K-M; Tiehm, A
2015-01-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) represent hazardous pollutants and are frequently detected in the environment, e.g. in contaminated groundwater. PFASs are persistent to biodegradation and conventional oxidation processes such as ozonation. In this study electrochemical degradation of PFASs on boron-doped diamond (BDD) electrodes is demonstrated. Experiments were performed with model solutions and contaminated groundwater with a dissolved organic carbon (DOC) content of 13 mg/L. The perfluorinated carboxylic acids (PFCAs) perfluorobutanoate, perfluoropentanoate, perfluorohexanoate, perfluoroheptanoate and perfluorooctanoate, and the perfluorinated sulfonic acids (PFSAs) perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctane sulfonate and 6:2 fluorotelomer sulfonate were detected in the groundwater samples. At PFAS concentrations ranging from 0.26 to 34 mg/L (0.7 to 79 μM), the degradation of PFASs was achieved despite of the high DOC background. Pseudo first-order kinetic constants of PFSA degradation increased with the increase of carbon chain length. Fluoride formation as well as the generation of PFCAs with shortened chain lengths was observed. Inorganic byproducts such as perchlorate were also formed and have to be considered in further process optimization.
Rakha, Allah; Åman, Per; Andersson, Roger
2011-01-01
Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191
Rakha, Allah; Aman, Per; Andersson, Roger
2011-01-01
Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.
Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi
2018-02-16
A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele
2015-01-01
In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers. PMID:28793427
Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele
2015-07-07
In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.
Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.
ERIC Educational Resources Information Center
Grider, Douglas J.; And Others
1988-01-01
Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)
Rostad, Colleen E.; Leenheer, Jerry A.
2004-01-01
Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.
Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan
2017-01-20
Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.
2014-01-01
Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936
Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia
2013-05-01
Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates
Baillod, Charles R.; Boyle, W. C.
1968-01-01
The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474
1976-06-01
ecological hazards of benzene, toluene, xylenes,* and p-chlorophenyl methyl sulfide, sulfoxide, and sulfone at Rocky Mountain Arsenal (RMA). That assessment...recently reviewed the occupational hazard associated with the use of benzene, toluene, and xylene and has recomiended the folcwln !.ImitS In workroom air...Toxicology and Ecological Hazards of "Venzene; Toluene; Xylenes; and p-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone at Rocky tc-cntain Arsenal
Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram
2015-04-03
Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.
Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.
Kurien, Biji T; Scofield, R Hal
2009-01-01
An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.
Western blotting of high and low molecular weight proteins using heat.
Kurien, Biji T; Scofield, R Hal
2015-01-01
A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.
Hansen, Irene M; Ebbesen, Morten F; Kaspersen, Liselotte; Thomsen, Troels; Bienk, Konrad; Cai, Yunpeng; Malle, Birgitte Mølholm; Howard, Kenneth A
2017-07-03
This study investigates the effects of different molecular weight hyaluronic acids (HAs) on the mucosal nanostructure using a pig stomach mucin hydrogel as a mucosal barrier model. Microparticles (1.0 μm) and nanoparticles (200 nm) were used as probes, and their movement in mucin was studied by a three-dimensional confocal microscopy-based particle tracking technique and by Nanoparticle Tracking Analysis (NTA) after addition of high-molecular weight (900 kDa) and low-molecular weight (33 kDa) HA. This demonstrated a molecular weight-dependent HA modulation of the mucin nanostructure with a 2.5-fold decrease in the mobility of 200 nm nanoparticles. To further investigate these mechanisms and to verify that the natural viscoelastic properties of mucus are not undesirably altered, rheological measurements were performed on mucin hydrogels with or without HA. This suggested the observed particle mobility restriction was not attributed to alterations of the natural mucin cohesive and viscoelastic properties but, instead, indicates that the added high-molecular weight HA primarily modulates the mucin nanostructure and mesh size. This study, hereby, demonstrates how mucus nanostructure can be modulated by the addition of high-molecular weight HA that offers an opportunity to control mucosal pathogenesis and drug delivery.
Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A
2013-01-01
Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less
New approach for assessing human perfluoroalkyl exposure via hair.
Alves, Andreia; Jacobs, Griet; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2015-11-01
In the recent years hair has been increasingly used as alternative matrix in human biomonitoring (HBM) of environmental pollutants. Sampling advantages and time integration of exposure assessment seems the most attractive features of hair matrix. In the current study, a novel miniaturized method was developed and validated for measuring 15 perfluoroalkyl substances (PFAS), including perfluoro n-butanoic acid (PFBA), perfluoro n-pentanoic acid (PFPeA), perfluoro n-hexanoic acid (PFHxA), perfluoro n-heptanoic acid (PFHpA), perfluor n-octanoic acid (PFOA), perfluoro n-nonanoic acid (PFNA), perfluoro tetradecanoic acid (PFTeDA), perfluorobutane sulfonic acid (PFBS), perfluoro pentane sulfonic acid (PFPeS), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), perfluorononane sulfonic acid (PFNS), perfluorodecane sulfonic acid (PFDS) and perfluorododecane sulfonic acid (PFDoS) in human hair by liquid chromatography tandem mass spectrometry (LC-MS/MS). After extraction using ethyl acetate, dispersive ENVI-Carb was used for clean-up. Good intra- and inter-day precision for low (LQ 5 ng/g hair) and high spike (HQ 15n g/g) levels were achieved (in general RSD <10%). The accuracy was assessed using recoveries (%), which ranged between 68-118% (LQ) and 70-121% (HQ). The instrumental limit of detection (LODi) and limit of quantification (LOQi) were between 1-4 pg/g hair and 3-13 pg/g hair, respectively. The method limit of quantification (LOQm) ranged between 6 and 301 pg/g hair. The PFAS levels were measured in 30 human hair samples indicating that the levels are low (14-1534 pg/g hair). Some PFAS were not present in any hair sample (e.g. PFHpA, PFTeDA, PFNA, PFPeS, PFHpS, PFOS and PFNS), while other PFAS were frequently detected (PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, PFOS, PFDS and PFDoS) in human hair. Although levels in general were low, there is evidence of higher human exposure to some analytes, such as PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, and PFDoS. The current study shows that hair is a suitable alternative non-invasive matrix for exposure assessment of PFAS. Copyright © 2015 Elsevier B.V. All rights reserved.
High temperature polymers for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Einsla, Brian Russel
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.
NASA Astrophysics Data System (ADS)
Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un
2018-04-01
Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.
Mechanisms of proton transfer in Nafion: elementary reactions at the sulfonic acid groups.
Sagarik, Kritsana; Phonyiem, Mayuree; Lao-ngam, Charoensak; Chaiwongwattana, Sermsiri
2008-04-21
Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.
Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G
2013-11-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.
Supramolecular interactions in carboxylate and sulfonate salts of 2,6-diamino-4-chloropyrimidinium.
Mohana, Marimuthu; Thomas Muthiah, Packianathan; Butcher, Ray J
2017-07-01
Two new salts, namely 2,6-diamino-4-chloropyrimidinium 2-carboxy-3-nitrobenzoate, C 4 H 6 ClN 4 + ·C 8 H 4 NO 6 - , (I), and 2,6-diamino-4-chloropyrimidinium p-toluenesulfonate monohydrate, C 4 H 6 ClN 4 + ·C 7 H 7 O 3 S - ·H 2 O, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both crystal structures, the N atom in the 1-position of the pyrimidine ring is protonated. In salt (I), the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N-H...O hydrogen bonds to form a heterosynthon with an R 2 2 (8) ring motif. In hydrated salt (II), the presence of the water molecule prevents the formation of the familiar R 2 2 (8) ring motif. Instead, an expanded ring [i.e. R 3 2 (8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [R 2 2 (8) ring motif] through N-H...N hydrogen bonds. The molecular structures are further stabilized by π-π stacking, and C=O...π, C-H...O and C-H...Cl interactions.
Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.
2013-01-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558
Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X
2015-11-01
The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Louie, Stacey M; Spielman-Sun, Eleanor R; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V
2015-02-17
Engineered nanoparticles (NPs) released into natural environments will interact with natural organic matter (NOM) or humic substances, which will change their fate and transport behavior. Quantitative predictions of the effects of NOM are difficult because of its heterogeneity and variability. Here, the effects of six types of NOM and molecular weight fractions of each on the aggregation of citrate-stabilized gold NPs are investigated. Correlations of NP aggregation rates with electrophoretic mobility and the molecular weight distribution and chemical attributes of NOM (including UV absorptivity or aromaticity, functional group content, and fluorescence) are assessed. In general, the >100 kg/mol components provide better stability than lower molecular weight components for each type of NOM, and they contribute to the stabilizing effect of the unfractionated NOM even in small proportions. In many cases, unfractionated NOM provided better stability than its separated components, indicating a synergistic effect between the high and low molecular weight fractions for NP stabilization. Weight-averaged molecular weight was the best single explanatory variable for NP aggregation rates across all NOM types and molecular weight fractions. NP aggregation showed poorer correlation with UV absorptivity, but the exponential slope of the UV-vis absorbance spectrum was a better surrogate for molecular weight. Functional group data (including reduced sulfur and total nitrogen content) were explored as possible secondary parameters to explain the strong stabilizing effect of a low molecular weight Pony Lake fulvic acid sample to the gold NPs. These results can inform future correlations and measurement requirements to predict NP attachment in the presence of NOM.
Sulfonated polyphenylene polymers
Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.
2007-11-27
Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.
76 FR 62336 - Notice of Meeting of the National Organic Standards Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
..., only until October 21, 2014.'' Lignin sulfonate Relist. Magnesium sulfate Relist. Ethylene gas Relist. Sodium silicate Relist. Lignin sulfonate Relist. Magnesium sulfate Relist. Ethylene gas Relist. Sodium...
Vázquez-Romero, Ana; Cárdenas, Lydia; Blasi, Emma; Verdaguer, Xavier; Riera, Antoni
2009-07-16
A new approach to the synthesis of prostaglandin and phytoprostanes B(1) is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of 4 A molecular sieves, afforded the 3-tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3-formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB(1) type I and PGB(1).