Sample records for molecularly imprinted polypyrrole

  1. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  2. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  3. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.

  4. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    PubMed

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  5. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water.

    PubMed

    Zhang, Chao; She, Yongxin; Li, Tengfei; Zhao, Fengnian; Jin, Maojun; Guo, Yirong; Zheng, Lufei; Wang, Shanshan; Jin, Fen; Shao, Hua; Liu, Haijin; Wang, Jing

    2017-12-01

    An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL -1 , with a detection limit of 0.27 ng mL -1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.

  6. A capacitive sensor for 2,4-D determination in water based on 2,4-D imprinted polypyrrole coated pencil electrode

    NASA Astrophysics Data System (ADS)

    Prusty, Arun Kumar; Bhand, Sunil

    2017-03-01

    A capacitive sensor for 2,4-dichloro phenoxy acetic acid(2,4-D) determination in drinking water has been developed using molecularly imprinted polypyrrole on pencil graphite electrode (PGE). Molecular imprinted polymer (MIP) coated PGE was prepared by electropolymerization of pyrrole via chronopotentiometry in the presence of 2,4-D as the template molecule. The prepared electrodes were characterized by field emission gun-scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The capacitance change of MIP electrode was measured in the presence of 2,4-D using EIS. The developed capacitive sensor exhibited a linear range 0.06-1.25 µg l-1 2,4-D with limit of detection of 0.02 µg l-1 and good selectivity towards 2,4-D in water with recovery from 92 to 110%. The results suggest the viable applicability of the MIP/PGE based sensor for the determination of the 2,4-D in water samples.

  7. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections.

    PubMed

    Capoferri, Denise; Álvarez-Diduk, Ruslan; Del Carlo, Michele; Compagnone, Dario; Merkoçi, Arben

    2018-05-01

    Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event. The sensor was fabricated using screen-printing technology with indium tin oxide as a transparent working electrode; IrOx NPs where electrodeposited onto the electrode followed by thermal polymerization of polypyrrole in the presence of the analyte (chlorpyrifos). Two different approaches were used to detect and quantify the pesticide: direct visual detection and smartphone imaging. Application of different oxidation potentials for 10 s resulted in color changes directly related to the concentration of the analyte. For smartphone imaging, at fixed potential, the concentration of the analyte was dependent on the color intensity of the electrode. The electrochromic sensor detects a highly toxic compound (chlorpyrifos) with a 100 fM and 1 mM dynamic range. So far, to the best of our knowledge, this is the first work where an electrochromic MIP sensor uses the electrochromic properties of IrOx to detect a certain analyte with high selectivity and sensitivity.

  8. Microbial imprinted polypyrrole/poly(3-methylthiophene) composite films for the detection of Bacillus endospores.

    PubMed

    Namvar, Azadeh; Warriner, Keith

    2007-04-15

    The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y'' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y'' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.

  9. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  10. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  11. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  12. Molecular Imprinting of Macromolecules for Sensor Applications.

    PubMed

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  13. Molecular Imprinting of Macromolecules for Sensor Applications

    PubMed Central

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-01-01

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082

  14. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  15. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography.

    PubMed

    Liu, Zhao-Sheng; Xu, Yan-Li; Yan, Chao; Gao, Ru-Yu

    2005-09-16

    The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.

  16. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.

    PubMed

    Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A

    2017-02-01

    The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.

  17. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  18. Molecular Imprinting Techniques Used for the Preparation of Biosensors

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419

  19. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Molecularly Imprinted Nanomaterials for Sensor Applications

    PubMed Central

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  1. Molecular Imprinting Applications in Forensic Science

    PubMed Central

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K.; Uzun, Lokman

    2017-01-01

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors. PMID:28350333

  2. Molecular Imprinting Applications in Forensic Science.

    PubMed

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K; Uzun, Lokman

    2017-03-28

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.

  3. Gas Sensors Based on Molecular Imprinting Technology.

    PubMed

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  4. Molecularly Imprinted Microrods via Mesophase Polymerization.

    PubMed

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  5. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  6. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  7. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-08-07

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  8. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  9. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers.

    PubMed

    Yang, Xiaoqing; Xia, Yan

    2016-01-01

    Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    PubMed

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  11. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    USDA-ARS?s Scientific Manuscript database

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  13. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole

    NASA Astrophysics Data System (ADS)

    Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.

    2017-03-01

    Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.

  14. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes.

    PubMed

    Nezhadali, Azizollah; Mojarrab, Maliheh

    2016-06-14

    This work describes the development of an electrochemical sensor based on a new molecularly imprinted polymer for detection of metoprolol (MTP) at ultra-trace level. The polypyrrole (PPy) was electrochemically synthesized on the tip of a pencil graphite electrode (PGE) which modified whit functionalized multi-walled carbon nanotubes (MWCNTs). The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and the measurement process was carried out by differential pulse voltammetry (DPV). A computational approach was used to screening functional monomers and polymerization solvent for rational design of molecularly imprinted polymer (MIP). Based on computational results, pyrrole and water were selected as functional monomer and polymerization solvent, respectively. Several significant parameters controlling the performance of the MIP sensor were examined and optimized using multivariate optimization methods such as Plackett-Burman design (PBD) and central composite design (CCD). Under the selected optimal conditions, MIP sensor was showed a linear range from 0.06 to 490 μmol L(-1) MTP, a limit of detection of 2.88 nmol L(-1), a highly reproducible response (RSD 3.9%) and a good selectivity in the presence of structurally related molecules. Furthermore, the applicability of the method was successfully tested with determination of MTP in real samples (tablet, and serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  16. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  17. Improvement of imprinting effect of ionic liquid molecularly imprinted polymers by use of a molecular crowding agent.

    PubMed

    Jia, Man; Yang, Jian; Sun, Ya Kun; Bai, Xi; Wu, Tao; Liu, Zhao Sheng; Aisa, Haji Akber

    2018-01-01

    We aimed to improve the imprinting effect of ionic liquid molecularly imprinted polymers (MIPs) by use of a molecular crowding agent. The ionic liquid 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIm][BF 4 ]) was used as the functional monomer and aesculetin was used as the template molecule in a crowding environment, which was made up of a tetrahydrofuran solution of polystyrene. The ionic liquid MIPs that were prepared in the crowding environment displayed an enhanced imprinting effect. NMR peak shifts of active hydrogen of aesculetin suggested that interaction between the functional monomer and the template could be increased by the use of a crowding agent in the self-assembly process. The retention and selectivity of aesculetin were affected greatly by high molecular crowding, the amount of high molecular weight crowding agent, and the ratio of [VEIm][BF 4 ] to aesculetin. The optimal MIPs were used as solid-phase extraction sorbents to extract aesculetin from Cichorium glandulosum. A calibration curve was obtained with aesculetin concentrations from 0.0005 to 0.05 mg mL -1 (correlation coefficient R 2 of 0.9999, y = 1519x + 0.0923). The limit of quantification was 0.12 μg mL -1 , and the limit of detection was 0.05 μg mL -1 . The absolute recovery of aesculetin was (80 ± 2)% (n = 3), and the purity of aesculetin was (92 ± 0.5)% (n = 5). As a conclusion, molecular crowding is an effective approach to obtain ionic liquid MIPs with high selectivity even in a polar solvent environment.

  18. Design of molecular imprinted polymers compatible with aqueous environment.

    PubMed

    Piletska, Elena V; Guerreiro, Antonio R; Romero-Guerra, Maria; Chianella, Iva; Turner, Anthony P F; Piletsky, Sergey A

    2008-01-21

    The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.

  19. Computational Optimization and Characterization of Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Terracina, Jacob J.

    Molecularly imprinted polymers (MIPs) are a class of materials containing sites capable of selectively binding to the imprinted target molecule. Computational chemistry techniques were used to study the effect of different fabrication parameters (the monomer-to-target ratios, pre-polymerization solvent, temperature, and pH) on the formation of the MIP binding sites. Imprinted binding sites were built in silico for the purposes of better characterizing the receptor - ligand interactions. Chiefly, the sites were characterized with respect to their selectivities and the heterogeneity between sites. First, a series of two-step molecular mechanics (MM) and quantum mechanics (QM) computational optimizations of monomer -- target systems was used to determine optimal monomer-to-target ratios for the MIPs. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (one-target) and larger scale models (five-targets). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to evaluate the heterogeneity of the sites. The more fully surrounded sites had greater binding energies. Molecular docking was then used to measure the selectivities of the QM-optimized binding sites by comparing the binding energies of the imprinted target to that of a structural analogue. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. This represented a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Next

  20. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction-molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-03-29

    The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Computational Design of Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Sreenath; Piletsky, Sergey A.

    Artificial receptors have been in use for several decades as sensor elements, in affinity separation, and as models for investigation of molecular recognition. Although there have been numerous publications on the use of molecular modeling in characterization of their affinity and selectivity, very few attempts have been made on the application of molecular modeling in computational design of synthetic receptors. This chapter discusses recent successes in the use of computational design for the development of one particular branch of synthetic receptors - molecularly imprinted polymers.

  2. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  3. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  4. Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.

    PubMed

    Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam

    2016-01-01

    Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.

  5. A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.

    PubMed

    Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio

    2017-08-01

    A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

    PubMed

    He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

    2005-07-01

    A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

  7. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  8. Recognition of Conformational Changes in β-Lactoglobulin by Molecularly Imprinted Thin Films

    PubMed Central

    Turner, Nicholas W.; Liu, Xiao; Piletsky, Sergey A.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein β-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1–100 µg mL−1. Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein. PMID:17665947

  9. Recognition of conformational changes in beta-lactoglobulin by molecularly imprinted thin films.

    PubMed

    Turner, Nicholas W; Liu, Xiao; Piletsky, Sergey A; Hlady, Vladimir; Britt, David W

    2007-09-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein beta-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1-100 microg mL(-1). Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein.

  10. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting.

    PubMed

    Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen

    2017-05-01

    Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

  11. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    PubMed Central

    Gupta, Banshi D.; Shrivastav, Anand M.; Usha, Sruthi P.

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  12. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    NASA Astrophysics Data System (ADS)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  13. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing

    2011-11-15

    A novel piezoelectric sensor has been developed for bilirubin (BR) detection, based on the modification of molecularly imprinted hydroxyapatite (HAP) film onto a quartz crystal by molecular imprinting and surface sol-gel technique. The performance of the developed BR biosensor was evaluated and the results indicated that a sensitive BR biosensor could be fabricated. The obtained BR biosensor presents high-selectivity monitoring of BR, better reproducibility, shorter response time (37 min), wider linear range (0.05-80μM) and lower detection limit (0.01μM). The analytical application of the BR biosensor confirms the feasibility of BR detection in serum sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A micro-reactor for preparing uniform molecularly imprinted polymer beads.

    PubMed

    Zourob, Mohammed; Mohr, Stephan; Mayes, Andrew G; Macaskill, Alexandra; Pérez-Moral, Natalia; Fielden, Peter R; Goddard, Nicholas J

    2006-02-01

    In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device. The diameter of the resulting products typically had a coefficient of variation (CV) below 2%. The specific binding sites that were created during the imprinting process were analysed via radioligand binding analysis. The molecularly imprinted microspheres produced in the liquid perfluorocarbon continuous phase had a higher binding capacity compared with the particles produced in the mineral oil continuous phase, though it should be noted that the aim of this study was not to optimize or maximize imprinting performance, but rather to demonstrate broad applicability and compatibility with known MIP production methods. The successful imprinting against a model compound using two very different continuous phases (one requiring a surfactant to stabilize the droplets the other not) demonstrates the generality of this current simple approach.

  15. Preparation of mixed molecularly imprinted polymer magnetic nanoparticles and its application in separation of Chinese traditional medicine

    NASA Astrophysics Data System (ADS)

    Xie, Yihui; Ma, Yajuan; Bai, Wenting; Zhu, Xiaofang; Liu, Min; Huang, Liping

    2017-08-01

    A mixed imprinted polymer which can rapidly adsorb all flavonoids from raspberry extract was prepared and recycled. The hybrid molecular surface imprinted polymers were prepared by using quercetin as the template molecule and Fe3O4 magnetic nanospheres as the carrier. The molecular imprinting polymer was prepared by using the "initial template molecule, molecularly imprinted polymer, mixed template molecule, molecularly imprint ted polymers (MIPS)". The adsorption performance and durability of the hybrid molecularly imprinted polymers were investigated by using the fingerprints of the ethyl acetate fraction of raspberry as an index. The adsorption of flavonoids from raspberry extract, lindenoside, cis-lindenin, quercetin, kaempferol and other flavonoids was completely adsorbed by mixed molecular-imprinted polymer, and the other components were basically adsorbed. When Mix-IMPs were repeatedly used 10 times, the fingerprints showed that the content and content of flavonoids were basically the same. The experimental results show that Mix-IMPs has good adsorption performance, can be recycled and used for rapid enrichment of flavonoids in raspberry.

  16. Molecular Imprinting: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Komiyama, Makoto; Takeuchi, Toshifumi; Mukawa, Takashi; Asanuma, Hiroyuki

    2003-03-01

    Molecular imprinting, the polymerization of monomers in the presence of a template molecule which imprints structural information into the resulting polymers, is a scientific field which is rapidly gaining significance for a widening range of applications in biotechnology, biochemistry and pharmaceutical research. The methods and tools needed to distinguish target molecules from others by means of tailor-made receptors are constantly growing in importance and complexity. This book gives a concise and highly up-to-date overview of the remarkable progress made in this field in the last five years. The material is comprehensively presented by the authors, giving a thorough insight into fundamentals and applications for researchers in both industry and academy.

  17. Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis.

    PubMed

    Rich, Joseph O; Mozhaev, Vadim V; Dordick, Jonathan S; Clark, Douglas S; Khmelnitsky, Yuri L

    2002-05-15

    Attaining higher levels of catalytic activity of enzymes in organic solvents is one of the major challenges in nonaqueous enzymology. One of the most successful strategies for enhancing enzyme activity in organic solvents involves tuning the enzyme active site by molecular imprinting with substrates or their analogues. Unfortunately, numerous imprinters of potential importance are poorly soluble in water, which significantly limits the utility of this method. In the present study, we have developed strategies that overcome this limitation of the molecular-imprinting technique and that thus expand its applicability beyond water-soluble ligands. The solubility problem can be addressed either by converting the ligands into a water-soluble form or by adding relatively high concentrations of organic cosolvents, such as tert-butyl alcohol and 1,4-dioxane, to increase their solubility in the lyophilization medium. We have succeeded in applying both of these strategies to produce imprinted thermolysin, subtilisin, and lipase TL possessing up to 26-fold higher catalytic activity in the acylation of paclitaxel and 17beta-estradiol compared to nonimprinted enzymes. Furthermore, we have demonstrated for the first time that molecular imprinting and salt activation, applied in combination, produce a strong additive activation effect (up to 110-fold), suggesting different mechanisms of action involved in these enzyme activation techniques.

  18. From 3D to 2D: a review of the molecular imprinting of proteins.

    PubMed

    Turner, Nicholas W; Jeans, Christopher W; Brain, Keith R; Allender, Christopher J; Hlady, Vladimir; Britt, David W

    2006-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches.

  19. The sorption properties of polymers with molecular imprints of chlorine-containing pesticides

    NASA Astrophysics Data System (ADS)

    Popov, S. A.; Dmitrienko, S. G.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2009-04-01

    Polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,6-dichloro-2-methoxybenzoic acid (dicamba), and (RS)-1- p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl) pentan-3-ol and the corresponding blank polymers were synthesized using acrylamide as a functional monomer. The specific surface area of the resulting materials was estimated and their sorption properties were studied. It was found that the sorption characteristics of the polymers with molecular imprints of chlorine-containing pesticides depended on the nature of template molecules, functional monomer: template ratio in the polymerization mixture, and nature and content of solvents varied at the synthesis stage. According to the sorption isotherms, the difference in the sorption behavior of molecularly imprinted and blank polymers was observed over a wide range of chlorine-containing pesticide concentrations. The selectivity of the adsorbent with 2,4-D imprints was estimated for the example of structurally related compounds.

  20. From 3D to 2D: A Review of the Molecular Imprinting of Proteins

    PubMed Central

    Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches. PMID:17137293

  1. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  2. Separation and purification of thymopentin with molecular imprinting membrane by solid phase extraction disks.

    PubMed

    Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan

    2015-01-01

    The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    PubMed

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-07

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement.

  6. Development and evaluation of spherical molecularly imprinted polymer beads.

    PubMed

    Kempe, Henrik; Kempe, Maria

    2006-06-01

    The majority of studies on molecularly imprinted polymers has until now been carried out on irregularly shaped particles prepared by grinding of polymer monoliths. The preparation procedures are time- and labor-consuming and produce particles of wide size distributions. To answer the need for fast and straightforward routes to spherical molecularly imprinted polymer beads, we have developed a method comprising the formation of droplets of pre-polymerization solution directly in mineral oil by vigorous mixing followed by transformation of the droplets into solid spherical beads by photoinduced free-radical polymerization. No detergents or stabilizers were required for the droplet formation. Factors influencing the bead synthesis have been investigated and are detailed here. The beads were evaluated in parallel with corresponding irregularly shaped particles prepared from polymer monoliths. Conditions for the synthesis of propranolol-imprinted poly(methacrylic acid-co-trimethylolpropane trimethacrylate) beads in the size range of 1-100 microm in almost quantitative yield are described. The beads were applied as the recognition element in a 96-well plate format radioligand assay of propranolol in human serum.

  7. Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor.

    PubMed

    Lin, Chung-Yin; Tai, Dar-Fu; Wu, Tzong-Zeng

    2003-10-17

    Based on the direct formation of a molecularly imprinted polymer on gold electrodes, we have developed a peptide sensor for the detection of low-molecular-weight peptides. A new cross-linking monomer, (N-Acr-L-Cys-NHBn)(2), was employed to attach the surface of the chip and to copolymerize with other monomers. Interestingly, N-benzylacrylamide participates in the polymerization and recognition is carried out in an aqueous environment. By using quartz crystal microbalance detection, short peptides can be monitored by their interaction with plastic antibodies specific for the target peptides. The selectivity of molecularly imprinted polymers and the sensitivity of such artificial biosensors have been combined to differentiate between traces of oxytocin and vasopressin to the ng mL(-1) scale.

  8. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    PubMed

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular imprinted polymers for separation science: a review of reviews.

    PubMed

    Cheong, Won Jo; Yang, Song Hee; Ali, Faiz

    2013-02-01

    Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

    PubMed

    Reimhult, Kristina; Yoshimatsu, Keiichi; Risveden, Klas; Chen, Si; Ye, Lei; Krozer, Anatol

    2008-07-15

    Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.

  11. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  12. Molecularly imprinted polymers for separation of various sugars from human urine.

    PubMed

    Okutucu, Burcu; Onal, Seçil

    2011-12-15

    Molecularly imprinted polymers were the new, simple and unexpensive materials that can be used in several clinical applications. Phenylboronic acid has been frequently used as functional monomer for the covalent imprinting of diols. In this study, the phenylboronic acid esters of fructose, galactose, glucose and raffinose were synthesized and then used as template analytes. The adsorption capacities of fructose, galactose and glucose-phenylboronic acid imprinted polymers were 75, 10 and 30%, respectively. The batch rebinding studies and Scatchard analysis were done for all sugar imprinted polymer. Glucose is one of the mostly found sugar in the urine. The glucose:phenylboronic acid imprinted polymer was used for the analysis of glucose, fructose, galactose, sucrose, maltose, lactose and raffinose in spiked urine. The selectivity of glucose:phenylboronic acid imprinted polymer to urine monosaccharides was found as nearly 45-55% and to di- and polysaccharides was found as 30-35%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    PubMed

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Synthesis, optimization, and characterization of molecularly imprinted nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostamizadeh, Kobra; Abdollahi, Hamid; Parsajoo, Cobra

    2013-04-01

    Nanoparticles of molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization method. Glucose was used as a template molecule. The impact of different process parameters on the preparation of nanoparticles was investigated in order to reach the maximum binding capacity of MIPs. Experimental data based on uniform design were analyzed using artificial neural network to find the optimal condition. The results showed that the binding ability of nanoparticles of MIPs prepared under optimum condition was much higher than that of the corresponding non-imprinted nanoparticles (NIPs). The findings also demonstrated high glucose selectivity of imprinted nanoparticles. The results exhibited that the particle size for MIP nanoparticles was about 557.6 nm, and the Brunauer-Emmett-Teller analysis also confirmed that the particle pores were mesopores and macropores around 40 nm and possessed higher volume, surface area, and uniform size compared to the corresponding NIPs.

  15. Molecularly imprinted polymers for the recognition of proteins: the state of the art.

    PubMed

    Bossi, A; Bonini, F; Turner, A P F; Piletsky, S A

    2007-01-15

    Molecular imprinting has proved to be an effective technique for the creation of recognition sites on a polymer scaffold. Protein imprinting has been a focus for many chemists working in the area of molecular recognition, since the creation of synthetic polymers that can specifically recognise proteins is a very challenging but potentially extremely rewarding objective. It is expected that molecularly imprinted polymers (MIPs) with specificity for proteins will find application in medicine, diagnostics, proteomics, environmental analysis, sensors and drug delivery. In this review, the authors provide an overview of the progress achieved in the decade between 1994 and 2005, with respect to the challenging area of MIPs for protein recognition. The discussion furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages and highlighting trends and possible future directions.

  16. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    PubMed

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  17. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  18. Molecularly Imprinted Polymers and Highly Porous Materials in Sensing Applications

    DTIC Science & Technology

    2007-04-01

    electrochemical in form. Piletsky and Turner (69) indicate that there are three critical issues to the design of MIP based sensors. These are the...imprinting procedures”, Anal. Bioanal. Chem., 377, 540-549 (2003). 26. O. Y. F. Henry, D. C. Cullen and S. A. Piletsky , “Optical interrogation of...Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella and S. A. Piletsky , “How to find effective functional monomers for effective molecularly imprinted

  19. Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene.

    PubMed

    Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam

    2014-02-07

    The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level

  20. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  1. Molecularly Imprinted Polymer of Colocynthin, An Effective Tool for Quality Control of Citrullus colocynthis Extracts.

    PubMed

    Farid, Ramezani; Mahnaz, Khanavi; Ardekani Mohammad Reza, Shams; Börje, Sellergren; Mahdieh, Eftekhari; Hossein, Rastegar; Maryam, Shekarchi

    2017-01-01

    Different parts of Colocynth, Citrullus colocynthis (L.) Schrad., are used in traditional phytotherapy and homeopathy. In our new approach, a molecularly imprinted polymer was synthesized to absorb colocynthin, the major plant marker, and its capability was evaluated using HPLC-UV. A new method was considered to achieve optimal conditions. FT-infrared, N2 adsorption porosimetry, fluorescent and scanning electron microscopy and thermo gravimetric profile of the polymers were studied. The imprinted polymer was applied as molecularly imprinted solid phase extraction sorbent to enrich colocynthin from colocynth oil extract, a traditional medicine dosage form. The imprinted polymer showed high capacity and affinity toward colocynthin. Physical assessments demonstrated no major differences between imprinted and nonimprinted polymers. The imprinted polymer was able to absorb colocynthin more efficiently than non-imprinted and control simple solvent extraction from the real sample. In conclusion, this polymer is capable of being applied as a promising adsorbent for analysis of colocynth traditional medicine products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted polymeric stir bar: Preparation and application for the determination of naftopidil in plasma and urine samples.

    PubMed

    Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin

    2016-01-01

    In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  5. Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.

    PubMed

    Zhou, Tongchang; Kamra, Tripta; Ye, Lei

    2018-03-01

    Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Synthesis of core-shell molecularly imprinted polymer microspheres by precipitation polymerization for the inline molecularly imprinted solid-phase extraction of thiabendazole from citrus fruits and orange juice samples.

    PubMed

    Barahona, Francisco; Turiel, Esther; Cormack, Peter A G; Martín-Esteban, Antonio

    2011-01-01

    In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  8. Preparation of "dummy" l-phenylalanine molecularly imprinted microspheres by using ionic liquid as a template and functional monomer.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Song, Dongmen; Qian, Liwei; Du, Chunbao; Song, Renyuan; Wang, Chaoli

    2015-07-07

    In this study, dummy imprinting technology was employed for the preparation of l-phenylalanine-imprinted microspheres. Ionic liquids were utilized as both a "dummy" template and functional monomer, and 4-vinylpyridine and ethylene glycol dimethacrylate were used as the assistant monomer and cross-linker, respectively, for preparing a surface-imprinted polymer on poly(divinylbenzene) microspheres. By the results obtained by theoretical investigation, the interaction between the template and monomer complex was improved as compared with that between the template and the traditional l-phenylalanine-imprinted polymer. The batch experiments indicated that the imprinting factor reached 2.5. Scatchard analysis demonstrated that the obtained "dummy" molecularly imprinted microspheres exhibited an affinity of 77.4 M·10 -4 , significantly higher that of a traditional polymer directly prepared by l-phenylalanine, which is in agreement with theoretical results. Competitive adsorption experiments also showed that the molecularly imprinted polymer with the dummy template effectively isolated l-phenylalanine from l-histidine and l-tryptophan with separation factors of 5.68 and 2.68, respectively. All these results demonstrated that the polymerizable ionic liquid as the dummy template could enhance the affinity and selectivity of molecularly imprinted polymer, thereby promoting the development of imprinting technology for biomolecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  10. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Chen, Li-Kuang

    2005-08-15

    Molecularly imprinted film was fabricated in the presence of a pentadecapeptide onto a quartz crystal microbalance (QCM) chip. This 15-mer peptide has been known as the linear epitope of the dengue virus NS1 protein. Imprinting resulted in an increased polymer affinity toward the corresponding templates but also to the virus protein. Direct detection of the dengue virus protein was achieved quantitatively. The QCM chip response to the NS1 protein was obtained using epitope-mediated imprinting demonstrating a comparable frequency shift in chips immobilized with monoclonal antibodies. The binding effect was further enhanced and confirmed using a monoclonal antibody to form a sandwich with the MIP-NS1 protein complex on the chip. No pretreatment was required.

  11. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    PubMed

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.

    PubMed

    Eggermann, Thomas; Heilsberg, Ann-Kathrin; Bens, Susanne; Siebert, Reiner; Beygo, Jasmin; Buiting, Karin; Begemann, Matthias; Soellner, Lukas

    2014-07-01

    The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID

  13. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  15. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization.

    PubMed

    Liu, Jiang; Li, Le; Tang, Hui; Zhao, Feilang; Ye, Bang-Ce; Li, Yingchun; Yao, Jun

    2015-09-01

    Erythromycin-imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation-precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as-prepared materials were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non-imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo-second-order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.

    PubMed

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-02-24

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

  17. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

    PubMed Central

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-01-01

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588

  18. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers.

    PubMed

    Rodríguez-Dorado, Rosalía; Carro, Antonia M; Chianella, Iva; Karim, Kal; Concheiro, Angel; Lorenzo, Rosa A; Piletsky, Sergey; Alvarez-Lorenzo, Carmen

    2016-09-01

    Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions.

  19. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  20. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Gao, Shu-Yan

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  2. Molecularly imprinted membranes (MIMs) for selective removal of polychlorinated biphenyls (PCBs) in environmental waters: fabrication and characterization.

    PubMed

    Mkhize, Dennis S; Nyoni, Hlengilizwe; Quinn, Laura P; Mamba, Bhekie B; Msagati, Titus A M

    2017-04-01

    Molecularly imprinted membranes (MIMs) with selective removal properties for polychlorinated biphenyls (PCBs) were prepared through the phase inversion technique. The MIMs were obtained from casting the viscous solutions of molecularly imprinted polymers (MIPs), polysulfone (PSf), and N-methyl-2-pyrrolidone (NMP) as the casting solvent. Different membranes were prepared at different concentration of MIPs and PSf. The resulting MIMs were characterized by atomic force microscope (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the performance of the membranes was evaluated by determining and interpreting the rejection (%), flux (F), permeability coefficient (P), permselectivity factor ( α ' PCB/DDT or anthracene ), and enrichment factors of PCBs, dichlorodiphenyltrichloroethane (p,p'-DDT), and anthracene from model contaminated water using the dead-end filtration cell. Molecularly imprinted membrane prepared with 18 wt% PSf and 20 wt% MIP 4 exhibited a well-defined porous structure, which was accompanied by enhanced PCB enrichment. Furthermore, molecularly imprinted membrane showed good enrichment factors for PCBs even from spiked natural water samples of Hartbeespoort dam.

  3. Enhanced molecular recognition for imprinted monolithic column containing polyhedral oligomeric silsesquioxanes by dendritic effect of mesoporous molecular sieve scaffolds.

    PubMed

    Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2018-06-07

    The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.

  4. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Zhang, Z; Jain, V

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for thismore » kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.« less

  5. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.

    PubMed

    Fonner, John M; Schmidt, Christine E; Ren, Pengyu

    2010-10-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.

  6. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode.

    PubMed

    Lakshmi, Dhana; Prasad, Bhim Bali; Sharma, Piyush Sindhu

    2006-09-15

    Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4V versus Ag/AgCl for 120s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (imprinted polymer-modified electrode did not show linear response to creatinine. The imprinting factor as high as 9.4 implies that the imprinted polymer exclusively acts as a recognition element of creatinine sensor. The proposed procedure can be used to determine creatinine in human blood serum without any preliminary treatment of the sample in an accurate, rapid and simple way.

  7. Introducing MINA--The Molecularly Imprinted Nanoparticle Assay.

    PubMed

    Shutov, Roman V; Guerreiro, Antonio; Moczko, Ewa; de Vargas-Sansalvador, Isabel Perez; Chianella, Iva; Whitcombe, Michael J; Piletsky, Sergey A

    2014-03-26

    A new ELISA- (enzyme-linked immunosorbent assay)-like assay is demonstrated in which no elements of biological origin are used for molecular recognition or signaling. Composite imprinted nanoparticles that contain a catalytic core and which are synthesized by using a solid-phase approach can simultaneously act as recognition/signaling elements, and be used with minimal modifications to standard assay protocols. This assay provides a new route towards replacement of unstable biomolecules in immunoassays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  9. Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting

    2014-09-12

    In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media

    PubMed Central

    Asman, Saliza; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978

  11. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    PubMed

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  12. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M.

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprintingmore » mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.« less

  13. Efficient synthesis of molecularly imprinted polymers with bio-recognition sites for the selective separation of bovine hemoglobin.

    PubMed

    Zhang, Zulei; Li, Lei

    2018-06-01

    We developed a facile approach to the construction of bio-recognition sites in silica nanoparticles for efficient separation of bovine hemoglobin based on amino-functionalized silica nanoparticles grafting by 3-aminopropyltriethoxylsilane providing hydrogen bonds with bovine hemoglobin through surface molecularly imprinting technology. The resulting amino-functionalized silica surface molecularly imprinted polymers were characterized using scanning electron microscope, transmission electronic microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Results showed that the as-synthesized imprinted polymers exhibited spherical morphology and favorable thermal stability. The binding adsorption experiments showed that the imprinted polymers can reach equilibrium within 1 h. The Langmuir isotherm and pseudo-second-order kinetic model fitted the adsorption data well. Meanwhile, the imprinted polymers possessed a maximum binding capacity up to 90.3 mg/g and highly selectivity for the recognition of bovine hemoglobin. Moreover, such high binding capacity and selectivity retained after eight cycles, indicating the good stability and reusability of the imprinted polymers. Finally, successful application in the selective recognition of bovine hemoglobin from a real bovine blood sample indicated that the imprinted polymers displayed great potentials in efficient purification and separation of target proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of magnetic molecularly imprinted polymers by atom transfer radical polymerization for the rapid extraction of avermectin from fish samples.

    PubMed

    You, Xiaoxiao; Gao, Lei; Qin, Dongli; Chen, Ligang

    2017-01-01

    A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2-97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra- and inter-day precisions were in the range of 1.7-2.9% and 3.4-5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical sensors from the cooperative actuation of multistep electrochemical molecular machines of polypyrrole: potentiostatic study. Trying to replicate muscle’s fatigue signals

    NASA Astrophysics Data System (ADS)

    Beaumont, Samuel; Otero, Toribio F.

    2018-07-01

    Polypyrrole film electrodes are constituted by multielectronic electrochemical molecular machines (every polymeric molecule) counterions and water, mimicking the intracellular matrix of muscular cells. The influence of the electrolyte concentration on the reversible oxidation/reduction of polypyrrole films was studied in NaCl aqueous solutions by consecutive square potential waves. The consumed redox charge and the consumed electrical energy change as a function of the concentration. That means that the extension (the consumed charge) of the reaction involving conformational, or allosteric, movements of the reacting polymeric chains (molecular machines) responds to (senses) the chemical energy of the reaction ambient. A theoretical description of the attained empirical results is presented getting the sensing equations and the concomitant sensitivities. Those results could indicate the origin and nature of the neural signals sent to the brain from biological haptic muscles working by cooperative actuation of the actin-myosin molecular machines driven by chemical reactions and sensing, simultaneously, the fatigue state of the muscle.

  16. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  18. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2017-09-15

    Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.

  19. Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing.

    PubMed

    Dai, Jingjing; Vu, Danh; Nagel, Susan; Lin, Chung-Ho; Fidalgo de Cortalezzi, Maria

    2017-12-06

    The authors describe a molecularly imprinted polymer (MIP) that enables detection of 2-butoxyethanol (2BE), a pollutant associated with hydraulic fracturing contamination. Detection is based on a combination of a colloidal crystal templating and a molecular imprinting. The MIPs are shown to display higher binding capacity for 2BE compared to non-imprinted films (NIPs), with imprinting efficiencies of ∼ 2. The tests rely on the optical effects that are displayed by the uniformly ordered porous structure of the material. The reflectance spectra of the polymer films have characteristic Bragg peaks whose location varies with the concentration of 2BE. Peaks undergo longwave red shifts up to 50 nm on exposure of the MIP to 2BE in concentrations in the range from 1 ppb to 100 ppm. This allows for quantitative estimates of the 2BE concentrations present in aqueous solutions. The material is intended for use in the early detection of contamination at hydraulic fracturing sites. Graphical abstract Molecularly imprinted polymers (MIPs) sensor with the sensing ability on reflectance spectra responding to the presence of 2-butoxyethanol (2BE) for early detection of hydraulic fracking contamination.

  20. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    PubMed

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  1. Determination of phenformin hydrochloride using molecular imprinting technology coupled with flow-injection chemiluminescence.

    PubMed

    Liu, Zhenbo; Jia, Fengyan; Wang, Wenwen; Wang, Cuixia; Liu, Yongming

    2012-01-01

    A novel method was developed using molecular imprinting technology (MIT) coupled with flow-injection chemiluminescence (FI-CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N-bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09-2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  4. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  5. Selective silica-based sorbent materials synthesized by molecular imprinting for adsorption of pharmaceuticals in aqueous matrices.

    PubMed

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; dos Santos, João Henrique Z; Fisch, Adriano G

    2013-02-01

    The presence of pharmaceuticals in aqueous environmental matrices often requires efficient and selective preconcentration procedures. Thus, silicas (SILs) were synthesized by a molecular imprinting technique using an acid-catalyzed sol-gel process and the following drugs as templates: fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol, and tetracycline. The materials were subjected to sorbent extraction assisted by ultrasonic treatment to remove the drugs and the consequent formation of molecular imprinted cavities. The surface area of the resulting materials ranged from 290 to 960 m(2)/g. Adsorption tests were performed with the molecular imprinting phases. In terms of the potential selectivity, the SILs were subjected to the adsorption of drugs from samples such as potable and surface water. The adsorption capacity remained in the range between 55 and 65% for both matrices, while for the nonimprinted SIL it remained between 15 and 20%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    PubMed

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  7. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  8. Molecularly imprinted covalent organic polymers for the selective extraction of benzoxazole fluorescent whitening agents from food samples.

    PubMed

    Ding, Hui; Wang, Rongyu; Wang, Xiao; Ji, Wenhua

    2018-06-21

    Molecularly imprinted covalent organic polymers were constructed by an imine-linking reaction between 1,3,5-triformylphloroglucinol and 2,6-diaminopyridine and used for the selective solid-phase extraction of benzoxazole fluorescent whitening agents from food samples. Binding experiments showed that imprinting sites on molecularly imprinted polymers had higher selectivity for targets compared with those of the corresponding non-imprinted polymers. Parameters affecting the solid-phase extraction procedure were examined. Under optimal conditions, actual samples were treated and the eluent was analyzed with high-performance liquid chromatography with diode-array detection. The results showed that the established method owned the wide linearity, satisfactory detection limits and quantification limits, and acceptable recoveries. Thus, this developed method possesses the practical potential to the selectively determine benzoxazole fluorescent whitening agents in complex food samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin.

    PubMed

    Pradhan, Santwana; Boopathi, M; Kumar, Om; Baghel, Anuradha; Pandey, Pratibha; Mahato, T H; Singh, Beer; Vijayaraghavan, R

    2009-11-15

    Molecularly imprinted polymer (MIP) for biological warfare agent (BWA) ricin was synthesized using silanes in order to avoid harsh environments during the synthesis of MIP. The synthesized MIP was utilized for the recognition of ricin. The complete removal of ricin from polymer was confirmed by fluorescence spectrometer and SEM-EDAX. SEM and EDAX studies confirmed the attachment of silane polymer on the surface of silica gel matrix. SEM image of Ricin-MIP exhibited nanopatterns and it was found to be entirely different from the SEM image of non-imprinted polymer (NIP). BET surface area analysis revealed more surface area (227 m(2)/g) for Ricin-MIP than that of NIP (143 m(2)/g). In addition, surface area study also showed more pore volume (0.5010 cm(3)/g) for Ricin-MIP than that of NIP (0.2828 cm(3)/g) at 12 nm pore diameter confirming the presence of imprinted sites for ricin as the reported diameter of ricin is 12 nm. The recognition and rebinding ability of the Ricin-MIP was tested in aqueous solution. Ricin-MIP rebound more ricin when compared to the NIP. Chromatogram obtained with Ricin-MIP exhibited two peaks due to imprinting, however, chromatogram of NIP exhibited only one peak for free ricin. SDS-PAGE result confirmed the second peak observed in chromatogram of Ricin-MIP as ricin peak. Ricin-MIP exhibited an imprinting efficiency of 1.76 and it also showed 10% interference from the structurally similar protein abrin.

  10. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.

    PubMed

    Turiel, Esther; Martín-Esteban, Antonio; Tadeo, José Luis

    2007-11-23

    Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures.

  11. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent.

    PubMed

    Han, Deman; Jia, Wenping; Liang, Huading

    2010-01-01

    A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process. The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR, nitrogen adsorption and static adsorption experiments. The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol (2,4-DCP) mixture or using an aqueous 2,4-D and 2,4-dichlorophenylacetic acid (DPAC) mixture. The largest selectivity coefficient for 2,4-D in the presence of 2,4-DCP was found to be over 18, the largest relative selectivity coefficient between 2,4-D and 2,4-DCP over 9. The static uptake capacity and selectivity coefficient of the 2,4-D-imprinted functionalized sorbent are higher than those of the non-imprinted sorbent. The imprinted functionalized silica gel sorbent offered a fast kinetics for the extraction/stripping of 2,4-D, 73% of binding capacity (200 mg/L 2,4-D onto 20 mg of imprinted sorbent) was obtained within 5 min and the adsorbed 2,4-D can be easily stripped by the mixture solution of ethanol and 6 mol/L HCl (V:V = 1:1). In a test of five extraction/stripping cycles, the adsorption capacity of the sorbent was all above 93% of that of the fresh sorbent. Experimental result showed the potential of molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-D.

  12. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection.

    PubMed

    Canfarotta, Francesco; Smolinska-Kempisty, Katarzyna; Piletsky, Sergey

    2017-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified. Thanks to their robustness and low cost, molecularly imprinted polymer nanoparticles (nanoMIPs) are a viable alternative to antibodies. Herein, we describe the synthesis of nanoMIPs imprinted for vancomycin and their subsequent application in an ELISA-like format for direct replacement of antibodies.

  13. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine.

    PubMed

    Azodi-Deilami, Saman; Abdouss, Majid; Javanbakht, Mehran

    2011-05-01

    Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ (max) of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.

  14. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2012-12-01

    In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L⁻¹ and the RSD (n=3) was 4.15%. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water.

    PubMed

    Peng, Jun; Liu, Donghao; Shi, Tian; Tian, Huairu; Hui, Xuanhong; He, Hua

    2017-07-01

    Although stir bar sportive extraction was thought to be a highly efficiency and simple pretreatment approach, its wide application was limited by low selectivity, short service life, and relatively high cost. In order to improve the performance of the stir bar, molecular imprinted polymers and magnetic carbon nanotubes were combined in the present study. In addition, two monomers were utilized to intensify the selectivity of molecularly imprinted polymers. Fourier transform infrared spectroscopy, scanning electron microscopy, and selectivity experiments showed that the molecularly imprinted polymeric stir bar was successfully prepared. Then micro-extraction based on the obtained stir bar was coupled with HPLC for determination of trace cefaclor and cefalexin in environmental water. This approach had the advantages of stir bar sportive extraction, high selectivity of molecular imprinted polymers, and high sorption efficiency of carbon nanotubes. To utilize this pretreatment approach, pH, extraction time, stirring speed, elution solvent, and elution time were optimized. The LOD and LOQ of cefaclor were found to be 3.5 ng · mL -1 and 12.0 ng · mL -1 , respectively; the LOD and LOQ of cefalexin were found to be 3.0 ng · mL -1 and 10.0 ng · mL -1 , respectively. The recoveries of cefaclor and cefalexin were 86.5 ~ 98.6%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). Even when utilized in more than 14 cycles, the performance of the stir bar did not decrease dramatically. This demonstrated that the molecularly imprinted polymeric stir bar based micro-extraction was a convenient, efficient, low-cost, and a specific method for enrichment of cefaclor and cefalexin in environmental samples.

  16. Molecularly imprinted hydrogels as functional active packaging materials.

    PubMed

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  18. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    PubMed Central

    Hui, Alex; Sheardown, Heather; Jones, Lyndon

    2012-01-01

    Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted) tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted) tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials. PMID:28817033

  19. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template

    NASA Astrophysics Data System (ADS)

    Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal

    2016-08-01

    In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.

  20. Contractile response of bovine lateral saphenous vein to ergotamine tartrate exposed to different concentrations of molecularly imprinted polymers

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids, in their active isomeric form, affect animal health and performance and adsorbents are used to mitigate toxicities by reducing bioavailability. Adsorbents with high specificity (molecularly imprinted: MIP and non-imprinted: NIP polymers) adsorb ergot alkaloids in vitro, but require ...

  1. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira

    2018-02-01

    A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10- 7-10- 8 M with a correlation coefficient (R2) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56 × 10- 9 M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully.

  2. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm.

    PubMed

    Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira

    2018-02-05

    A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10 -7 -10 -8 M with a correlation coefficient (R 2 ) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56×10 -9 M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination*

    PubMed Central

    Lay, Sovichea; Yu, Hai-ning; Hu, Bao-xiang; Shen, Sheng-rong

    2016-01-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  4. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  5. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    PubMed

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  7. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    PubMed

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow

  8. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.

    PubMed

    Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi

    2015-10-01

    A novel and sensitive molecular imprinted surface plasmon resonance (SPR) biosensor was developed for selective determination of citrinin (CIT) in red yeast rice. Firstly, the gold surface of SPR chip was modified with allyl mercaptane. Then, CIT-imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) (p(HEMA-MAGA)) film was generated on the gold surface modified with allyl mercaptane. The unmodified and imprinted surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and contact angle measurements. The linearity range and the detection limit were obtained as 0.005-1.0 ng/mL and 0.0017 ng/mL, respectively. The SPR biosensor was applied to determination of CIT in red yeast rice sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles.

    PubMed

    Lu, Hongzhi; Xu, Shoufang

    2017-06-15

    Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection.

    PubMed

    Luo, Jing; Huang, Jing; Wu, Yunan; Sun, Jun; Wei, Wei; Liu, Xiaoya

    2017-08-15

    In this work, a novel kind of water-dispersible molecular imprinted conductive polyaniline particles was prepared through a facile and efficient macromolecular co-assembly of polyaniline with amphiphilic copolymer, and applied as the molecular recognition element to construct protein electrochemical sensor. In our strategy, an amphiphilic copolymer P(AMPS-co-St) was first synthesized using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and styrene (St) as monomer, which could co-assemble with PANI in aqueous solution to generate PANI particles driven by the electrostatic interaction. During this process, ovalbumin (OVA) as template protein was added and trapped into the PANI NPs particles owing to their interactions, resulting in the formation of molecular imprinted polyaniline (MIP-PANI) particles. When utilizing the MIP-PANI particles as recognition element, the resultant imprinted PANI sensor not only exhibited good selectivity toward template protein (the imprinting factor α is 5.31), but also a wide linear range over OVA concentration from 10 -11 to 10 -6 mgmL -1 with a significantly lower detection limit of 10 -12 mgmL -1 , which outperformed most of reported OVA detecting methods. In addition, an ultrafast response time of less than 3min has also been demonstrated. The superior performance is ascribed to the water compatibility, large specific surface area of PANI particles and the electrical conductivity of PANI which provides a direct path for the conduction of electrons from the imprinting sites to the electrode surface. The outstanding sensing performance combined with its facile, quick, green preparation procedure as well as low production cost makes the MIP-PANI particles attractive in specific protein recognition and sensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    PubMed

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.

    PubMed

    Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami

    2012-01-01

    A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.

  13. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: An integrated computational-assisted approach.

    PubMed

    Martins, Nuno; Carreiro, Elisabete P; Locati, Abel; Ramalho, João P Prates; Cabrita, Maria João; Burke, Anthony J; Garcia, Raquel

    2015-08-28

    This work firstly addresses the design and development of molecularly imprinted systems selective for deltamethrin aiming to provide a suitable sorbent for solid phase (SPE) extraction that will be further used for the implementation of an analytical methodology for the trace analysis of the target pesticide in spiked olive oil samples. To achieve this goal, a preliminary evaluation of the molecular recognition and selectivity of the molecularly imprinted polymers has been performed. In order to investigate the complexity of the mechanistic basis for template selective recognition in these polymeric matrices, the use of a quantum chemical approach has been attempted providing new insights about the mechanisms underlying template recognition, and in particular the crucial role of the crosslinker agent and the solvent used. Thus, DFT calculations corroborate the results obtained by experimental molecular recognition assays enabling one to select the most suitable imprinting system for MISPE extraction technique which encompasses acrylamide as functional monomer and ethylene glycol dimethacrylate as crosslinker. Furthermore, an analytical methodology comprising a sample preparation step based on solid phase extraction has been implemented using this "tailor made" imprinting system as sorbent, for the selective isolation/pre-concentration of deltamethrin from olive oil samples. Molecularly imprinted solid phase extraction (MISPE) methodology was successfully applied for the clean-up of spiked olive oil samples, with recovery rates up to 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  15. Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting.

    PubMed

    Anaka, Matthew; Lynn, Audra; McGinn, Patrick; Lloyd, Vett K

    2009-02-01

    Genomic imprinting is a process that marks DNA, causing a change in gene or chromosome behavior, depending on the sex of the transmitting parent. In mammals, most examples of genomic imprinting affect the transcription of individual or small clusters of genes whereas in insects, genomic imprinting tends to silence entire chromosomes. This has been interpreted as evidence of independent evolutionary origins for imprinting. To investigate how these types of imprinting are related, we performed a phenotypic, molecular, and cytological analysis of an imprinted chromosome in Drosophila melanogaster. Analysis of this chromosome reveals that the imprint results in transcriptional silencing. Yet, the domain of transcriptional silencing is very large, extending at least 1.2 Mb and encompassing over 100 genes, and is associated with decreased somatic polytenization of the entire chromosome. We propose that repression of somatic replication in polytenized cells, as a secondary response to the imprint, acts to extend the size of the imprinted domain to an entire chromosome. Thus, imprinting in Drosophila has properties of both typical mammalian and insect imprinting which suggests that genomic imprinting in Drosophila and mammals is not fundamentally different; imprinting is manifest as transcriptional silencing of a few genes or silencing of an entire chromosome depending on secondary processes such as differences in gene density and polytenization.

  16. Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers.

    PubMed

    Zhou, Yusun; Zhou, Tingting; Jin, Hua; Jing, Tao; Song, Bin; Zhou, Yikai; Mei, Surong; Lee, Yong-Ill

    2015-05-01

    Magnetic molecularly imprinted polymers (MMIPs) were prepared based on surface molecular imprinting using erythromycin (ERY) as template molecule and Fe3O4 nanoparticles as support substrate. The MMIPs possessed high adsorption capacity of 94.1 mg/g for ERY and the imprinting factor was 11.9 indicating good imprinted effect for ERY. Selective evaluation demonstrated favorable selectivity of MMIPs for multiple macrolide antibiotics (MACs). Using MMIPs as adsorptive material, a rapid and convenient magnetic solid-phase extraction (MSPE) procedure was established for simultaneous and selective separation of six MACs in pork, fish and shrimp samples, then the MACs was subjected to high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis. At different fortified concentrations, the extraction recoveries could reach 89.1% and the relative standard deviations were lower than 12.4%. Chromatogram revealed the response signals of MACs in spiked samples were greatly enhanced and matrix interferences were effectively eliminated after treatment with MSPE. The proposed MSPE procedure coupled with HPLC-UV realized selective and sensitive determination of multiple MACs in foodstuff samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cocaine abuse determination by ion mobility spectrometry using molecular imprinting.

    PubMed

    Sorribes-Soriano, A; Esteve-Turrillas, F A; Armenta, S; de la Guardia, M; Herrero-Martínez, J M

    2017-01-20

    A cocaine-based molecular imprinted polymer (MIP) has been produced by bulk polymerization and employed as selective solid-phase extraction support for the determination of cocaine in saliva samples by ion mobility spectrometry (IMS). The most appropriate conditions for washing and elution of cocaine from MIPs were studied and MIPs were characterized in terms of analyte binding capacity, reusability in water and saliva analysis, imprinting factor and selectivity were established and compared with non-imprinted polymers. The proposed MIP-IMS method provided a LOD of 18μgL -1 and quantitative recoveries for blank saliva samples spiked from 75 to 500μgL -1 cocaine. Oral fluid samples were collected from cocaine consumers and analysed by the proposed MIP-IMS methodology. Results, ranging from below the LOD to 51±2mgL -1 , were statistically comparable to those obtained by a confirmatory gas chromatography-mass spectrometry method. Moreover, results were compared to a qualitative lateral flow immunoassay procedure providing similar classification of the samples. Thus, MIP-IMS can be considered an useful alternative that provided fast, selective and sensitive results with a cost affordable instrumentation that does not require skilled operators. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles.

    PubMed

    Lin, Zhenkun; Zhang, Yanfang; Su, Yu; Qi, Jinxia; Jia, Yinhang; Huang, Changjiang; Dong, Qiaoxiang

    2018-01-15

    One-monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi-functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial-and-error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid-phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid-phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one-monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective solid-phase extraction using a molecularly imprinted polymer for the analysis of patulin in apple-based foods.

    PubMed

    Lucci, Paolo; Moret, Sabrina; Bettin, Sara; Conte, Lanfranco

    2017-01-01

    The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid-phase extraction sorbent for the clean-up and pre-concentration of patulin from apple-based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2-100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid-phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple-based foods such as juice, puree and jam samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecularly imprinted polymers for the detection of illegal drugs and additives: a review.

    PubMed

    Xiao, Deli; Jiang, Yue; Bi, Yanping

    2018-04-04

    This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quantitation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selectivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing problems, and future developments are discussed with respect to a more widespread use in relevant fields. Graphical abstract This review gives a comprehensive overview of the advances made in molecularly imprinting of polymers for use in the extraction and quantitation of illicit drugs and additives. Methods for syntheses, highlighted applications, limitations and current challenges are specifically addressed.

  1. Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction.

    PubMed

    Chang, Limin; Li, Ying; Chu, Jia; Qi, Jingyao; Li, Xin

    2010-11-08

    In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    PubMed

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective extraction of clonazepam from human plasma and urine samples by molecularly imprinted polymeric beads.

    PubMed

    Panahi, Homayon Ahmad; Mehramizi, Ali; Ghassemi, Somayeh; Moniri, Elham

    2014-03-01

    A molecularly imprinted polymer (MIP) based on free-radical polymerization was prepared with 1-(N,N-biscarboxymethyl)amino-3-allylglycerol and N,N-dimethylacrylamide as functional monomers, N,N-methylene diacrylamide as the cross-linker, copper ion-clonazepam as the template and 2,2-azobis(2-methylbutyronitrile) as the initiator. The imprinted polymer was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and SEM. The MIP of agglomerated microparticles with multipores was used for SPE. The imprinted polymer sorbent was selective for clonazepam. The optimum pH and sorption capacity were 5 and 0.18 mg/g at 20C, respectively. The profile of the drug uptake by the sorbent reflects good accessibility of the active sites in the imprinted polymer sorbent. The MIP-SPE was the most feasible technique for the extraction of clonazepam with a high recovery from human plasma and urine samples.

  4. Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for Monosodium Glutamate

    NASA Astrophysics Data System (ADS)

    Mulyasuryani, Ani; Haryanto, Edi; Sulistyarti, Hermin; Rumhayati, Barlah

    2018-01-01

    Chitosan has been used as a functional monomer in the synthesis of molecularly imprinted polymers (MIP) for monosodium glutamate (MSG). MIP is made from a mixture of 5 g chitosan, 50 mg glutaraldehyde and 2 g MSG, MIP is formed as flakes and beads. MIPs are identified by the FTIR spectrum, SEM image and their adsorption capabilities. MIP flakes and beads have no structural differences if they are based on FTIR or SEM spectra, but MIP adsorption capacity of beads higher than flakes. Adsorption capacity of MIP flakes is 548 mg/g and MIP beads 627 mg/g.

  5. Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.

    PubMed

    Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang

    2013-08-01

    A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.

  6. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.

    PubMed

    Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C

    2015-05-01

    In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber

  7. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biosensor-assisted selection of optimal parameters for designing molecularly imprinted polymers selective to phosmet insecticide.

    PubMed

    Aftim, Nadin; Istamboulié, Georges; Piletska, Elena; Piletsky, Sergey; Calas-Blanchard, Carole; Noguer, Thierry

    2017-11-01

    Molecularly imprinted polymers (MIPs) for phosmet insecticide were synthesized by batch polymerization. The affinity of functional monomers to phosmet was tested using an original method involving an electrochemical biosensor based on acetylcholinesterase inhibition. It was demonstrated that association of phosmet with appropriate functional monomers resulted in a decrease of enzyme inhibition. Using this method, it was shown that N,N-methylenebis(acrylamide) displayed the highest interactions with phosmet using DMSO as solvent. These results were in good accordance with those obtained by conventional computational modeling. Molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were synthesized and adsorption isotherms were studied to describe their interaction with phosmet. Freundlich isotherm was able to fit phosmet adsorption on MIPs with good agreement (R 2 = 0.9). The pre-exponential factor K F determined for MIPs was 1.439mg (1-N) g -1 L N , more that 10 times higher than for NIPs (0.125mg (1-N) g -1 . L N ), indicating an increase of binding sites number and average affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer.

    PubMed

    Kor, Kamalodin; Zarei, Kobra

    2016-01-01

    A novel electrochemical sensor based on a molecularly imprinted polymer, poly(o-phenylenediamine) (PoPD), has been developed for selective and sensitive detection of furosemide. The sensor was prepared by incorporating of furosemide as template molecules during the electropolymerization of o-phenylenediamine on a gold electrode. To develop the molecularly imprinted polymer (MIP), the template molecules were removed from the modified electrode's surface by washing it with 0.25 mol L(-1) NaOH solution. The imprinted layer was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). The sensor's preparation conditions including furosemide concentration, the number of CV cycles in the electropolymerization process, extraction solution of the template from the imprinted film, the incubation time and the pH level were optimized. The incubation of the MIP-modified electrode, with respect to furosemide concentration, resulted in a suppression of the K4[Fe(CN)6] oxidation process. Under the optimal experimental conditions, the response of the imprinted sensor was linear in the range of 1.0×10(-7)-7.0×10(-6) mol L(-1) of furosemide. The detection limit was obtained as 7.0×10(-8) mol L(-1) for furosemide by using this sensor. The sensor was successfully used to determine the furosemide amount in the tablet and in human urine samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  11. Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids.

    PubMed

    Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng

    2018-02-01

    A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography.

    PubMed

    Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui

    2009-12-04

    A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.

  13. Study on the molecularly imprinted polymers with methyl-testosterone as the template.

    PubMed

    Yang, Minli; Gu, Wancheng; Sun, Li; Zhang, Feng; Ling, Yun; Chu, Xiaogang; Wang, Daning

    2010-04-15

    Molecularly imprinted polymers (MIPs) using methyl-testosterone as the template, methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EDMA) as the crosslinker were prepared by precipitation polymerization. The morphology of the obtained particles was characterized by scanning electron microscopy (SEM) and the pore size was measured by BET. Then, the specificity and selectivity of the MIPs were evaluated using the equilibrium rebinding experiments. Besides, the MIPs were also used as the stationary phase of HPLC column and the retention behaviour to the template and analogues was confirmed using HPLC-MS-MS. Finally, the real application of the methyl-testosterone imprinted polymers was evaluated using SPE procedure with the spiked tap water and lake water. The results indicated that the prepared methyl-testosterone imprinted polymer showed specific rebinding ability to its template and could retain the template strongly compared with other structural analogues. At the same time, the MIPs could be used as SPE column to enrich methyl-testosterone in the lake water and show broad prospects in real samples. (c) 2009 Elsevier B.V. All rights reserved.

  14. New molecular imprinted voltammetric sensor for determination of ochratoxin A.

    PubMed

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100mM phenol as monomer in the presence of phosphate buffer solution (pH6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10(-11) - 1.5 × 10(-9)M and 1.6 × 10(-11) M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  16. Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Rossetti, Cecilia; Świtnicka-Plak, Magdalena A.; Grønhaug Halvorsen, Trine; Cormack, Peter A. G.; Sellergren, Börje; Reubsaet, Léon

    2017-03-01

    Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.

  17. Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP)

    PubMed Central

    Mamo, Samuel Kassahun; Gonzalez-Rodriguez, Jose

    2014-01-01

    The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of −2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol·L−1, template concentration at 100 mmol·L−1 and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82–44,300 μg·L−1 and a correlation coefficient of r2 = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg·L−1 and 81.6 μg·L−1, respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 μg·L−1, respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT. PMID:25490589

  18. [Parental genome imprinting].

    PubMed

    Babinet, C

    1993-01-01

    Genetical as well as experimental embryology methods have permitted, in recent years, to uncover a very important feature of mammalian embryonic development: it has been shown that female and male genomic complements are differentially imprinted in such a way that contribution of both a maternally and a paternally derived genome are absolutely necessary for the embryo to complete its normal development. Differential genomic imprinting seems therefore to impose some new and essential kind of information to the one already contained in the genomic sequences. The differential imprinting should be imposed on the genetic material during gametogenesis and persist throughout somatic development after fertilization. It should then be erased in the germ cell line and be established again in sperm and egg genomes. The recent discovery of several mouse genes which are imprinted should permit to address the question of the molecular mechanisms of imprinting.

  19. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process

    NASA Astrophysics Data System (ADS)

    Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.

    2016-12-01

    A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.

  20. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.

    PubMed

    Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti

    2014-06-25

    A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.

  1. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin.

    PubMed

    Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui

    2013-12-11

    This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.

  2. Molecular function of microtubule-associated protein 2 for filial imprinting in domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Katagiri, Sachiko; Aoki, Naoya; Iikubo, Eiji; Kitajima, Takaaki; Matsushima, Toshiya; Homma, Koichi J

    2011-01-01

    RNA interference (RNAi)-mediated gene-silencing can be a tool for elucidating the role of genes in the neural basis of behavioral plasticity. Previously, we reported that exogenous DNA could be successfully delivered into newly-hatched chick brains via electroporation. Here, we used this in vivo gene-transfer technique and showed that transfected microRNA vectors preferentially silence exogenous DNA expression in neuronal cells. Using this system, the up-regulation of microtubule-associated protein 2 (MAP2) accompanying filial imprinting was suppressed in vivo, which impaired the filial imprinting in chicks. In addition, the phosphorylation of MAP2 was found to increase in parallel with filial imprinting, and lithium chloride, an inhibitor of glycogen synthase kinase 3 (GSK3), was found to impair filial imprinting. Our results suggest that the regulation of MAP2 expression and its phosphorylation are required for filial imprinting and may modify microtubule stability, thereby leading to cytoskeletal reorganization during imprinting. This in vivo RNAi-mediated gene-silencing system will facilitate the analysis of gene function in the living chick brain and provides further clues regarding the molecular mechanisms underpinning avian learning. Copyright © 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  4. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice.

    PubMed

    Eren, Tanju; Atar, Necip; Yola, Mehmet Lütfi; Karimi-Maleh, Hassan

    2015-10-15

    Lovastatin (LOV) is a statin, used to lower cholesterol which has been found as a hypolipidemic agent in commercial red yeast rice. In present study, a sensitive molecular imprinted quartz crystal microbalance (QCM) sensor was prepared by fabricating a self-assembling monolayer formation of allylmercaptane on QCM chip surface for selective determination of lovastatin (LOV) in red yeast rice. To prepare molecular imprinted quartz crystal microbalance (QCM) nanosensor, LOV imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was attached on the modified gold surface of QCM chip. The non-modified and improved surfaces were characterized by using contact angle, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The imprinted QCM sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range was obtained as 0.10-1.25 nM. The detection limit of the prepared material was calculated as 0.030 nM. The developed QCM nanosensor was successfully used to examine red yeast rice. Furthermore, the stability and repeatability of the prepared QCM nanosensor were studied. The spectacular long-term stability and repeatability of the prepared LOV-imprinted QCM nanosensor make them intriguing for use in QCM sensors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework

    PubMed Central

    Jiang, Mengjuan; Braiek, Mohamed; Florea, Anca; Chrouda, Amani; Farre, Carole; Bonhomme, Anne; Bessueille, Francois; Vocanson, Francis; Zhang, Aidong; Jaffrezic-Renault, Nicole

    2015-01-01

    A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1), by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity. PMID:26371042

  6. Highly selective stir bar coated with dummy molecularly imprinted polymers for trace analysis of bisphenol A in milk.

    PubMed

    Zhan, Wen; Wei, Fangdi; Xu, Guanhong; Cai, Zheng; Du, Shuhu; Zhou, Xuemin; Li, Fei; Hu, Qin

    2012-04-01

    A water compatible molecularly imprinted polymers (MIPs) coated stir bar for bisphenol A(BPA) was prepared with 3,3',5,5'-tetrabromobisphenol A as the dummy template molecule in this study. The dummy molecularly imprinted polymers coated stir bar (DMIPs-SB) showed better selectivity than the bars coated with polydimethylsiloxane or non-imprinted polymers when used to extract BPA and its three analogues. The saturated adsorption amount of the DMIPs coating was 3.0 times over that of the non-imprinted polymers coating. To achieve the optimum extraction performance, several parameters, including extraction and desorption time, pH value, adsorption temperature and stirring speed were investigated. The high-performance liquid chromatography combined with the DMIPs-SB was employed in the analysis of BPA in aqueous solution. The linear range of BPA concentration in aqueous medium was 0.0228-2.28 ng/mL with correlation coefficient of 0.9994 and the detection limit was about 6.84 × 10(-3) ng/mL based on three times ratio of signal to noise. This method was directly applied to the determination of trace BPA in milk with satisfactory results. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Detection Of Uric Acid Based On Multi-Walled Carbon Nanotubes Polymerized With A Layer Of Molecularly Imprinted PMAA

    NASA Astrophysics Data System (ADS)

    Chen, Po-Yen; Lin, Chia-Yu; Ho, Kuo-Chuan

    2009-05-01

    A molecularly imprinted poly-metharylic acid (PMAA), polymerizing on the surface of multi-walled carbon nanotube (MWCNT), was synthesized. The MWCNT was modified by a layer of carboxylic acid and reacted with EDC and NHS to activate the carboxylic acid, which was prepared for the purpose of bonding allyl amine and getting an unsaturated side chain (-C=C). The resultant structure is abbreviated as MWCNTs-CH=CH2. It is well known that the vinyl group side chain provides good attachment between the MWCNTs and the molecularly imprinted polymer (MIP). The MIP based on PMAA was polymerized on the surface of MWCNTs-CH=CH2 with the addition of uric acid (UA). The non-imprinted polymer (NIP) was polymerized without adding UA. The adsorbed amount of UA approached the equilibrium value upon 60 min adsorption. The adsorption isotherm was obtained by immersing 10 mg of MIP or NIP in 5 mL aqueous solution containing different concentrations of UA. The adsorbed amounts were measured via a UV-Vis spectrometer at a wavelength of 292 nm. From the adsorption isotherm, it is seen that the MIP particles possess a good imprinting efficiency of about 4.41.

  8. A needle extraction utilizing a molecularly imprinted-sol-gel xerogel for on-line microextraction of the lung cancer biomarker bilirubin from plasma and urine samples.

    PubMed

    Moein, Mohammad Mahdi; Jabbar, Dunia; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-10-31

    In the present work, a needle trap utilizing a molecularly imprinted sol-gel xerogel was prepared for the on-line microextraction of bilirubin from plasma and urine samples. Each prepared needle could be used for approximately one hundred extractions before it was discarded. Imprinted and non-imprinted sol-gel xerogel were applied for the extraction of bilirubin from plasma and urine samples. The produced molecularly imprinted sol-gel xerogel polymer showed high binding capacity and fast adsorption/desorption kinetics for bilirubin in plasma and urine samples. The adsorption capacity of molecularly imprinted sol-gel xerogel polymer was approximately 60% higher than that of non-imprinted polymer. The effect of the conditioning, washing and elution solvents, pH, extraction time, adsorption capacity and imprinting factor were investigated. The limit of detection and the lower limit of quantification were set to 1.6 and 5nmolL(-1), respectively using plasma or urine samples. The standard calibration curves were obtained within the concentration range of 5-1000nmolL(-1) in both plasma and urine samples. The coefficients of determination values (R(2)) were ≥0.998 for all runs. The extraction recovery was approximately 80% for BR in the human plasma and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  10. Mycotoxin analysis using imprinted materials technology: Recent developments

    USDA-ARS?s Scientific Manuscript database

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  11. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.

  12. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen

    NASA Astrophysics Data System (ADS)

    Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He

    2018-01-01

    A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.

  13. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    PubMed

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

  14. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives.

    PubMed

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi

    2017-05-15

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine

    NASA Astrophysics Data System (ADS)

    Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun

    2016-04-01

    In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.

  16. Flow injection chemiluminescence sensor using core-shell molecularly imprinted polymers as recognition element for determination of dapsone.

    PubMed

    Lu, Fuguang; Yang, Jinlong; Sun, Min; Fan, Lulu; Qiu, Huamin; Li, Xiangjun; Luo, Chuannan

    2012-07-01

    This paper reports the preparation of dapsone (DDS) imprinted polymer layer-coated silica submicron particles (SiO(2)) combined with chemiluminescence (CL) toward analysis of tracing DDS in practical samples. To induce the selective occurrence of surface polymerization, the amino groups were first grafted at the surface of SiO(2) by the (3-aminopropyl)triethoxysilane (APTES). The molecularly imprinted polymers (MIP) were coated at the surface of modified SiO(2) by the graft copolymerization. After the removal of templates, recognition sites of DDS were exposed in the polymer layers. The DDS-imprinted products were characterized by FT-IR, SEM, TEM, dynamic adsorption, and static adsorption tests. The proximity between the thickness of MIP layer and the spatial size of DDS indicated that the imprinted sites almost situated at the surface of MIP, leading to rapid adsorption saturation within 90 min. The apparent maximum binding amount of MIP toward DDS was evaluated as 14.98 mg·g(-1), which was much higher than that of non-molecularly imprinted polymers. The CL sensor provided a wide linear range for DDS within 1.0 × 10(-6) to 1.0 × 10(-4) mol·L(-1) with a detection limit of 5.27 × 10(-7) mol·L(-1) and the relative standard deviation of 1.8 % (n = 11) by determinations of 5.0 × 10(-6) mol·L(-1) DDS. This method was applied to determine DDS in urine samples and satisfactory results were obtained.

  17. Comparative study of the molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer "bulk" polymerization and traditional radical "bulk" polymerization.

    PubMed

    Ma, Yue; Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Zhang, Huiqi

    2013-05-01

    Bisphenol A (BPA) and propranolol-imprinted polymers have been prepared via both reversible addition-fragmentation chain transfer "bulk" polymerization (RAFTBP) and traditional radical "bulk" polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Molecularly imprinted polymer for analysis of trace atrazine herbicide in water.

    PubMed

    Kueseng, Pamornrat; Noir, Mathieu L; Mattiasson, Bo; Thavarungkul, Panote; Kanatharana, Proespichaya

    2009-11-01

    A molecularly imprinted polymer (MIP) for atrazine was synthesized by non-covalent method. The binding capacity of MIP was 1.00 mg g(-1) polymer. The selectivity and recovery were investigated with various pesticides which are mostly, found in the environment, for both similar and different chemical structure of atrazine. The competitive recognition between atrazine and structurally similar compounds was evaluated and it was found that the system provided highest recovery and selectivity for atrazine while low recovery and selectivity were obtained for the other compounds. The highest recovery was obtained from MIP compared with non-imprinted polymer (NIP), a commercial C(18) and a granular activated carbon (GAC) sorbent. The method provided high recoveries ranged from 94 to 99% at two spiked levels with relative standard deviations less than 2%. The lower detection limit of the method was 80 ng L(-1). This method was successfully applied for analysis of environmental water samples.

  19. Adenosine methylation as a molecular imprint defining the fate of RNA.

    PubMed

    Knuckles, Philip; Bühler, Marc

    2018-05-21

    Multiple lines of evidence suggest the RNA modification N 6 -methyladonsine (m 6 A), which is installed in the nucleus co-transcriptionally and, thereafter, serves as a reversible chemical imprint that influences several steps of mRNA metabolism. This includes but is not limited to RNA folding, splicing, stability, transport, and translation. In this Review we focus on the current view of the nuclear installation of m 6 A as well the molecular players involved, the so called m 6 A writers. We also explore the effector proteins, or m 6 A readers, that decode the imprint in different cellular contexts and compartments, and ultimately, the way the modification influences the lifecycle of an RNA molecule. The wide evolutionary conservation of m 6 A and its critical role in physiology and disease warrants further studies into this burgeoning and exciting field. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles.

    PubMed

    Yuan, Xingyi; Tan, Yanji; Wei, Xiaoping; Li, Jianping

    2017-11-01

    A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe 3 O 4 @Au nanoparticles modified with 6-mercapto-beta-cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N,N'-methylenebisacrylamide as a cross-linking agent. Cinchonine was specifically recognized by the 6-mercapto-beta-cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy) 3 2+ . Cinchonine concentrations of 1 × 10 -10 to 4 × 10 -7  mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10 -11  mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol).

    PubMed

    Kong, Yong; Shan, Xueling; Ma, Jianfeng; Chen, Meilan; Chen, Zhidong

    2014-01-27

    A molecularly imprinted copolymer, poly(o-phenylenediamine-co-o-aminophenol) (PoPDoAP), was prepared as a new ascorbic acid (AA) sensor. The copolymer was synthesized by incorporation of AA as template molecules during the electrochemical copolymerization of o-phenylenediamine and o-aminophenol, and complementary sites were formed after the copolymer was electrochemically reduced in ammonium aqueous solution. The molecularly imprinted copolymer sensor exhibited a high sensitivity and selectivity toward AA. Differential pulse voltammograms (DPVs) showed a linear concentration range of AA from 0.1 to 10 mM, and the detection limit was calculated to be 36.4 μM. Compared to conventional polyaniline-based AA sensors, the analytical performance of the imprinted copolymer sensor was improved due to the broadened usable pH range of PoPDoAP (from pH 1.0 to pH 8.0). The sensor also exhibited a good reproducibility and stability. And it has been successfully applied in the determination of AA in real samples, including vitamin C tablet and orange juices, with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco

    2010-05-01

    Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.

  3. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The sorption properties of polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid synthesized by various methods

    NASA Astrophysics Data System (ADS)

    Dmitrienko, S. G.; Popov, S. A.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2011-03-01

    New sorbents, polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), were prepared on the basis of acrylamide. The sorbents were synthesized by thermal polymerization methods with and without the use of ultrasound, photopolymerization, and suspension polymerization. The specific surface area of the products was estimated and their sorption properties were studied. Polymers with molecular imprints prepared by thermal polymerization with the use of ultrasound and by suspension polymerization showed the best ability to repeatedly bind 2,4-D. The selectivity of polymers was estimated for the example of structurally related compounds. It was shown that the method of synthesis decisively influenced not only the ability of sorbents to repeatedly bind 2,4-D but also their selectivity.

  6. Development of carbon dots modified fluorescent molecular imprinted Polymer@Ag/AgCl nanoparticle for hepatocellular carcinoma marker

    NASA Astrophysics Data System (ADS)

    Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    In this work, a sensitive and selective fluorescent molecularly imprinted polymer (MIP) was developed for detection of hepatocellular carcinoma (HCC) biomarker i.e. alpha feto protein (AFP) using Ag/AgCl as platform. Here, the carbon dots and Ag/AgCl nanoparticles were functionalized with vinyl groups and used as functional monomer for synthesis of AFP-imprinted polymer. The imprinted polymer shows a linear range of 3.96 ng mL-1 to 80.0 ng mL-1 with detection limit of 0.42 ng mL-1.The adsorption property of the MIP@Ag/AgCl was studied and shows the high affinity binding towards their target analyte without any cross-reactivity and false-positive or false-negative results.

  7. Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.

    PubMed

    Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan

    2017-03-01

    A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.

  8. Molecularly imprinted polymer sensors for detection in the gas, liquid, and vapor phase.

    PubMed

    Jenkins, Amanda L; Ellzy, Michael W; Buettner, Leonard C

    2012-06-01

    Fast, reliable, and inexpensive analytical techniques for detection of airborne chemical warfare agents are desperately needed. Recent advances in the field of molecularly imprinted polymers have created synthetic nanomaterials that can sensitively and selectively detect these materials in aqueous environments, but thus far, they have not been demonstrated to work for detection of vapors. The imprinted polymers function by mimicking the function of biological receptors. They can provide high sensitivity and selectivity but, unlike their biological counterparts, maintain excellent thermal and mechanical stability. The traditional imprinted polymer approach is further enhanced in this work by the addition of a luminescent europium that has been introduced into the polymers to provide enhanced chemical affinity as well as a method for signal transduction to indicate the binding event. The europium in these polymers is so sensitive to the bound target; it can distinguish between species differing by a single methyl group. The imprinted polymer technology is fiber optic-based making it inexpensive and easily integratable with commercially available miniature fiber optic spectrometer technologies to provide a shoebox size device. In this work, we will describe efforts to apply these sensors for detection of airborne materials and vapors. Successful application of this technology will provide accurate low level vapor detection of chemical agents or pesticides with little to no false positives. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  9. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  10. Preparation and recognition performance of creatinine-imprinted material prepared with novel surface-imprinting technique.

    PubMed

    Gao, Baojiao; Li, Yanbin; Zhang, Zhenguo

    2010-08-01

    By adopting the novel surface molecular imprinting technique put forward by us not long ago, a creatinine molecule-imprinted material with high performance was prepared. The functional macromolecule polymethacrylic acid (PMAA) was first grafted on the surfaces of micron-sized silica gel particles in the manner of "grafting from" using 3-methacryloxypropyltrimethoxysilane (MPS) as intermedia, resulting in the grafted particles PMAA/SiO(2). Subsequently, the molecular imprinting was carried out towards the grafted macromolecule PMAA using creatinine as template and with ethylene glycol diglycidyl ether (EGGE) as crosslinker by right of the intermolecular hydrogen bonding and electrostatic interaction between the grafted PMAA and creatinine molecules. Finally, the creatinine-imprinted material MIP-PMAA/SiO(2) was obtained. The binding character of MIP-PMAA/SiO(2) for creatinine was investigated in depth with both batch and column methods and using N-hydroxysuccinimide and creatine as two contrast substances, whose chemical structures are similar to creatinine to a certain degree. The experimental results show that the surface-imprinted material MIP-PMAA/SiO(2) has excellent binding affinity and high recognition selectivity for creatinine. Before imprinting, PMAA/SiO(2) particles nearly has not recognition selectivity for creatinine, and the selectivity coefficients of PMAA/SiO(2) for creatinine relative to N-hydroxysuccinimide and creatine are only 1.23 and 1.30, respectively. However, after imprinting, the selectivity coefficients of MIP-PMAA/SiO(2) for creatinine in respect to N-hydroxysuccinimide and creatine are remarkably enhanced to 11.64 and 12.87, respectively, displaying the excellent recognition selectivity and binding affinity towards creatinine molecules. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea.

    PubMed

    Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao

    2016-05-15

    A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01 μg/mL and 0.03 μg/mL for theophylline, 0.05 μg/mL and 0.17 μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Molecularly imprinted composite cryogel for albumin depletion from human serum.

    PubMed

    Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil

    2012-11-01

    A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Selective extraction and determination of chlorogenic acids as combined quality markers in herbal medicines using molecularly imprinted polymers based on a mimic template.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Yan, Huijiao; Zhao, Hengqiang; Mu, Yan; Guo, Lanping; Wang, Xiao

    2017-12-01

    We describe a solid-phase extraction adsorbent based on molecularly imprinted polymers (MIPs), prepared with use of a mimic template. The MIPs were used for the selective extraction and determination of three chlorogenic acids as combined quality markers for Lonicera japonica and Lianhua qingwen granules. The morphologies and surface groups of the MIPs were assessed by scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, and Fourier transform infrared spectroscopy. The adsorption isotherms, kinetics, and selectivity of the MIPs were systematically compared with those of non-molecularly imprinted polymers. The MIPs showed high selectivity toward three structurally similar chlorogenic acids (chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid). A procedure using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography was established for the determination of three chlorogenic acids from Lonicera japonica and Lianhua qingwen granules. The recoveries of the chlorogenic acids ranged from 93.1% to 101.4%. The limits of detection and limits of quantification for the three chlorogenic acids were 0.003 mg g -1 and 0.01 mg g -1 , respectively. The newly developed method is thus a promising technique for the enrichment and determination of chlorogenic acids from herbal medicines. Graphical Abstract Mimic molecularly imprinted polymers for the selective extraction of chlorogenic acids.

  15. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    PubMed

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    PubMed

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice.

    PubMed

    Zhang, Wengang; Han, Yong; Chen, Xiumei; Luo, Xueli; Wang, Jianlong; Yue, Tianli; Li, Zhonghong

    2017-10-01

    A Mn-doped ZnS quantum dots (QDs) based nanosensor for selective phosphorescent determination of patulin (PAT) was synthesized with 6-hydroxynicotinic acid (6-HNA) as dummy template via a surface molecular imprinting sol-gel process. FTIR and XRD indicated the successful graft of molecularly imprinted polymer (MIP) onto crystal QDs. Binding tests revealed that the MIP-QDs presented higher selectivity, adsorption capacity and mass transfer rate than non-imprinted polymers, demonstrating a specific recognition for PAT among competitive mycotoxins and its analogues with the imprinting factor of 2.02. The MIP-QDs could recognize PAT in a linear range of 0.43-6.50μmolL -1 with a detection limit of 0.32μmolL -1 and a correlation coefficient (R 2 ) of 0.9945. Recoveries of 102.9-127.2% with relative standard deviations <4.95% were achieved in apple juice samples which were in good agreement with high-performance liquid chromatography (HPLC) (P>0.05). The results indicated a simple phosphorescent nanosensor for PAT detection in complex matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds.

    PubMed

    Yan, Hongyuan; Qiao, Jindong; Pei, Yuning; Long, Tao; Ding, Wen; Xie, Kun

    2012-05-01

    New molecularly imprinted microspheres synthesized by suspension polymerisation using phenylamine and naphthol as mimic template were successfully applied as selective sorbents for the solid-phase extraction used for the simultaneous determination of four Sudan dyes from preserved beancurd products. The obtained imprinted microspheres showed good recognition and selectivity to the four Sudan dyes in aqueous solution and the affinity could be easily controlled by adjusting the property of the solution. Under the selected experimental condition, the recoveries of the Sudan dyes in preserved beancurds at three spiked levels were ranged between 90.2-104.5% with the relative standard deviation of less than 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) based on a signal-to-noise of 3 and 10 were in the range of 0.005-0.009μgg(-1) and 0.015-0.030μgg(-1), respectively. Comparing with alumina and C18-based extraction, the selectivity and repeatability of molecularly imprinted solid-phase extraction (MISPE) were obviously improved. This method could be potentially applied for the determination of Sudan dyes in complicated food samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Synthesis of metronidazole-imprinted molecularly imprinted polymers by distillation precipitation polymerization and their use as a solid-phase adsorbent and chromatographic filler.

    PubMed

    Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun

    2015-04-01

    Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    PubMed

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an

  3. Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride.

    PubMed

    Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X

    2016-01-01

    In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system.

  4. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    PubMed

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments.

    PubMed

    Tai, Dar-Fu; Jhang, Ming-Hong; Chen, Guan-Yu; Wang, Sue-Chen; Lu, Kuo-Hao; Lee, Yu-Der; Liu, Hsin-Tzu

    2010-03-15

    A molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template. With the use of a basic monomer, the binding-effect was further enhanced increasing the affinity to nanomolar levels. The affinities of the peptide to their corresponding molecularly induced polymers (MIPs) were more closely related to the molecular weight of the analyte than to the number of residues. All epitope-cavities differentiated their epitope region on the protective antigen PA(83) as well as the corresponding furin cleavage fragments PA(63) and PA(20). The QCM chip differential response to the protective antigen fragment was observed in the picomolar range, thus demonstrating a method to manipulate protein on the surface with defined orientation.

  6. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique.

    PubMed

    Zhang, Yuanyuan; Shang, Jiaobo; Song, Yanqun; Rong, Chuan; Wang, Yinghui; Huang, Wenyu; Yu, Kefu

    2017-02-01

    A facile strategy to increase the selectivity of heterogeneous Fenton oxidation is investigated. The increase was reached by increasing selective adsorption of heterogeneous Fenton catalyst to a target pollutant. The heterogeneous Fenton catalyst was prepared by a two-step process. First, zeolite particles were imprinted by the target pollutant, methylene blue (MB), in their aggregations, and second, iron ions were loaded on the zeolite aggregations to form the molecule imprinted Fe-zeolites (MI-FZ) Fenton catalyst. Its adsorption amount for MB reached as high as 44.6 mg g -1 while the adsorption amount of un-imprinted Fe-zeolites (FZ) is only 15.6 mg g -1 . Fenton removal efficiency of MI-FZ for MB was 87.7%, being 33.9% higher than that of FZ. The selective Fenton oxidation of MI-FZ for MB was further confirmed by its removal performance for the mixed MB and bisphenol A (BPA) in solution. The removal efficiency of MB was 44.7% while that of BPA was only 14.9%. This fact shows that molecular imprinting is suitable to prepare the Fe-zeolites (FZ)-based Fenton catalyst with high selectivity for removal of target pollutants, at least MB.

  7. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  8. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO2@CNTs nanostructure.

    PubMed

    Liu, Meichuan; Ding, Xue; Yang, Qiwei; Wang, Yu; Zhao, Guohua; Yang, Nianjun

    2017-06-05

    A simple and highly sensitive photoelectrochemical (PEC) sensor towards Microcystin-LR (MC-LR), a kind of typical cyanobacterial toxin in water samples, was developed on a surface molecular imprinted TiO 2 coated multiwalled carbon nanotubes (MI-TiO 2 @CNTs) hybrid nanostructure. It was synthesized using a feasible two-step sol-gel method combining with in situ surface molecular imprinting technique (MIT). With a controllable core-shell tube casing structure, the resultant MI-TiO 2 @CNTs are enhanced greatly in visible-light driven response capacity. In comparison with the traditional TiO 2 (P25) and non-imprinted (NI-)TiO 2 @CNTs, the MI-TiO 2 @CNTs based PEC sensor showed a much higher photoelectric oxidation capacity towards MC-LR. Using this sensor, the determination of MC-LR was doable in a wide linear range from 1.0pM to 3.0nM with a high photocurrent response sensitivity. An outstanding selectivity towards MC-LR was further achieved with this sensor, proven by simultaneously monitoring 100-fold potential co-existing interferences. The superiority of the obtained MC-LR sensor in sensitivity and selectivity is mainly attributed to the high specific surface area and excellent photoelectric activity of TiO 2 @CNTs heterojunction structure, as well as the abundant active recognition sites on its functionalized molecular imprinting surface. A promising PEC analysis platform with high sensitivity and selectivity for MC-LR has thus been provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples.

    PubMed

    Rao, Wei; Cai, Rong; Yin, Yuli; Long, Fang; Zhang, Zhaohui

    2014-10-01

    In this paper, a highly selective sample clean-up procedure combining magnetic dummy molecular imprinting with solid-phase extraction was developed for rapid separation and determination of 4-nonylphenol (NP) in the environmental water samples. The magnetic dummy molecularly imprinted polymers (mag-DMIPs) based on multi-walled carbon nanotubes were successfully synthesized with a surface molecular imprinting technique using 4-tert-octylphenol as the dummy template and tetraethylorthosilicate as the cross-linker. The maximum adsorption capacity of the mag-DMIPs for NP was 52.4 mg g(-1) and it took about 20 min to achieve the adsorption equilibrium. The mag-DMIPs exhibited the specific selective adsorption toward NP. Coupled with high performance liquid chromatography analysis, the mag-DMIPs were used to extract solid-phase and detect NP in real water samples successfully with the recoveries of 88.6-98.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    NASA Astrophysics Data System (ADS)

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-11-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  11. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format.

    PubMed

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J; Piletsky, Sergey

    2016-11-24

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  12. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    PubMed Central

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-01-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays. PMID:27883023

  13. Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review.

    PubMed

    Murray, Audrey; Ormeci, Banu

    2012-11-01

    Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.

  14. Molecularly imprinted solid-phase extraction combined with electrochemical oxidation fluorimetry for the determination of methotrexate in human serum and urine

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Zhang, Zhujun

    2008-06-01

    The method of synthesis and evaluation of molecularly imprinted polymers was reported. As a selective solid-phase extraction sorbent, the polymers were coupled with electrochemical fluorimetry detection for the efficient determination of methotrexate in serum and urine. Methotrexate was preconcentrated in the molecularly imprinted solid-phase extraction microcolumn packed with molecularly imprinted polymers, and then eluted. The eluate was detected by fluorescence spectrophotometer after electrochemical oxidation. The conditions of preconcentration, elution, electrochemical oxidation and determination were carefully studied. Under the selected experimental conditions, the calibration graph of the fluorescence intensity versus methotrexate concentration was linear from 4 × 10 -9 g mL -1 to 5 × 10 -7 g mL -1, and the detection limit was 8.2 × 10 -10 g mL -1 (3 σ). The relative standard deviation was 3.92% ( n = 7) for 1 × 10 -7 g mL -1 methotrexate. The experiments showed that the selectivity and sensitivity of fluorimetry could be greatly improved by the proposed method. This method has been successfully applied to the determination of methotrexate. At the same time, the binding characteristics of the polymers to the methotrexate were evaluated by batch and dynamic methods.

  15. Molecularly imprinted solid-phase extraction for the selective determination of bromhexine in human serum and urine with high performance liquid chromatography.

    PubMed

    Javanbakht, Mehran; Namjumanesh, Mohammad Hadi; Akbari-Adergani, Behrouz

    2009-11-15

    In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 microg L(-1)) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3x 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 microg L(-1) with good precisions (3.3% and 2.8% for 5.0 microg L(-1)), respectively. The recoveries for serum and urine samples were higher than 92%.

  16. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein.

    PubMed

    Sun, Yanhua; Li, Yuqing; Xu, Jiangfeng; Huang, Ling; Qiu, Tianyun; Zhong, Shian

    2017-07-01

    Hydroxyapatite hybridized molecularly imprinted polydopamine polymers with selective recognition of bovine hemoglobin (BHb) were successfully prepared via Pickering oil-in-water high internal phase emulsions-hydrogels and molecularly imprinting technique. The emulsions were stabilized by hydroxyapatite of which the wettability was modified by 3-methacryloxypropyltrimethoxysilane. The materials were characterized by SEM, IR and TGA. The results showed that the BHb imprinted polymers based on Pickering hydrogels (Hydro-MIPs) possess macropores ranging from 20μm to 50μm, and their large numbers of amino groups and hydroxyl groups result in a favorable adsorption capacity for BHb. The maximum adsorption capacity of Hydro-MIPs for BHb was 438mg/g, 3.27 times more than that of the non-imprinted polymers (Hydro-NIPs). The results indicated that Hydro-MIPs possessing well-defined hierarchical porous structures exhibited outstanding recognition behavior towards the target protein molecules. This work provided a promising alternative method for the fabrication of polymer materials with tunable and interconnected pores structures for the separation and purification of protein in vitro. Copyright © 2017. Published by Elsevier B.V.

  17. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone.

    PubMed

    Muhammad, Turghun; Cui, Liu; Jide, Wang; Piletska, Elena V; Guerreiro, Antonio R; Piletsky, Sergey A

    2012-01-04

    Novel water-compatible molecularly imprinted polymers (MIPs) selective for amiodarone (AD) were designed via a new methodology which relies on screening library of non-imprinted polymers (NIPs). The NIP library consisted of eighteen cross-linked co-polymers synthesized from monomers commonly used in molecular imprinting. The binding capacity of each polymer in the library was analyzed in two different solvents. Binding in water was used to assess non-specific (hydrophobic) interactions and binding in an appropriate organic solvent was used to assess specific interactions. A good correlation was found between the screening tests and modeling of monomer-template interactions performed using computational approach. Additionally, analysis of template-monomer interactions was performed using UV-vis spectroscopy. As the result, 4-vinylpyridine (4-VP) was selected as the best monomer for developing MIP for AD. The 4-VP-based polymers demonstrated imprinting factor equal 3.9. The polymers performance in SPE was evaluated using AD and its structural analogues. The recovery of AD was as high as 96% when extracted from spiked phosphate buffer (pH 4.5) solution and 82.1% from spiked serum samples. The developed MIP shown as a material with specific binding to AD, comparing to its structural analogues, 1-(2-diethylaminoethoxy)-2,6-diiodo-4-nitrobenzene and lidocaine, which shown 9.9% and 25.4% of recovery from the buffer solution, correspondingly. We believe that the screening of NIP library could be proposed as an alternative to commonly used computational and combinatorial approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties.

    PubMed

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter W; Yesilkaya, Hasan

    2017-12-22

    We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic, core-shell structured and surface molecularly imprinted polymers for the rapid and selective recognition of salicylic acid from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin

    2018-03-01

    In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.

  20. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    NASA Astrophysics Data System (ADS)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  1. Determination of L-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence

    NASA Astrophysics Data System (ADS)

    Qiu, Huamin; Xi, Yulei; Lu, Fuguang; Fan, Lulu; Luo, Chuannan

    2012-02-01

    A novel molecular imprinting-chemiluminescence (MIP-CL) sensor for the determination of L-phenylalanine (Phe) using molecularly imprinted polymer (MIP) as recognition element is reported. The Phe-MIP was synthesized using acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, 2,2-azobisisobutyronitrile (AIBN) as initiator and the polymers' properties were characterized. Then the synthesized MIP was employed as recognition element by packing into flow cell to establish a novel flow injection CL sensor. The CL intensity responded linearly to the concentration of Phe in the range 1.3 × 10 -6 to 5.44 × 10 -4 mol/L with a detection limit of 6.23 × 10 -7 mol/L (3 σ), which is lower than that of conventional methods. The sensor is reusable and has a great improvement in sensitivity and selectivity for CL analysis. As a result, the new MIP-CL sensor had been successfully applied to the determination of Phe in samples.

  2. Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC.

    PubMed

    Du, Wei; Zhang, Bilin; Guo, Pengqi; Chen, Guoning; Chang, Chun; Fu, Qiang

    2018-03-15

    Dexamethasone-imprinted polymers were fabricated by reversible addition-fragmentation chain transfer polymerization on the surface of magnetic nanoparticles under mild polymerization conditions, which exhibited a narrow polydispersity and high selectivity for dexamethasone extraction. The dexamethasone-imprinted polymers were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometry, and vibrating sample magnetometry. The adsorption performance was evaluated by static adsorption, kinetic adsorption and selectivity tests. The results confirmed the successful construction of an imprinted polymer layer on the surface of the magnetic nanoparticles, which benefits the characteristics of high adsorption capacity, fast mass transfer, specific molecular recognition, and simple magnetic separation. Combined with high-performance liquid chromatography, molecularly imprinted polymers as magnetic extraction sorbents were used for the rapid and selective extraction and determination of dexamethasone in skincare cosmetic samples, with the accuracies of the spiked samples ranging from 93.8 to 97.6%. The relative standard deviations were less than 2.7%. The limit of detection and limit of quantification were 0.05 and 0.20 μg/mL, respectively. The developed method was simple, fast and highly selective and could be a promising method for dexamethasone monitoring in cosmetic products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Study on the choice of functional monomer before preparation of myclobutanil molecularly imprinted polymer].

    PubMed

    Gao, Wen-Hui; Liu, Bo; Li, Xing-Feng; Han, Jun-Hua; Jia, Ying-Min

    2014-03-01

    To prepare myclobutanil molecularly imprinted polymer, a method was established for the choice of the appropriate functional monomer and its dosage. UV spectra was applied to study the combination form, the effect intensity, the optimal concentration ratio and the numbers of binding sites between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The results showed that hydrogen-bonding interaction could be formed between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The pi electron of the triazole ring conjugated double bond in my clobutanil could transit to pi* conjugate antibonding orbital when it absorbed energy. The formation of hydrogen bond could make pi-->pi* absorption band transit. Maximum absorption wavelength produced red shift with the increase in the functional monomer concentration in the system. The research revealed that the optimal concentration ratios between myclobutanil and the two monomers were c(M):c(MAA) = 1:4, c(M):c(AM) = 1:2. Myclobutanil and the both the functional monomers had the bonding ability, and strong bonding force. The prepared molecularly imprinted polymer using AM as a functional monomer had better stability and specificity of recognition for myclobutanil.

  4. Development of molecularly imprinted polymer in porous film format for binding of phenol and alkylphenols from water.

    PubMed

    Gryshchenko, Andriy O; Bottaro, Christina S

    2014-01-20

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a "sandwich" technique giving ~20 µm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L(-1)). The isotherm was of a Freundlich type over 0.1-40 mg·L(-1) and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network.

  5. Novel approach for extraction of quercetin using molecular imprinted membranes

    NASA Astrophysics Data System (ADS)

    Kamarudin, Siti Fatimah; Ahmad, Mohd Noor; Dzahir, Irfan Hatim Mohamed; Nasir, Azalina Mohamed; Ishak, Noorhidayah; Halim, Nurul Farhanah

    2017-12-01

    Quercetin imprinted membrane (QIM) was synthesized and applied for the extraction of quercetin. The quercetin imprinted membranes (QIM) were fabricated through a non-covalent approach via surface thermal polymerization. Polyvinylidene fluoride (PVDF) microfiltration membrane was used as a support to improve mechanical stability of the membrane. The thin imprinted layer was formed by copolymerization of acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinker in the presence of quercetin as template in tetrahydrofuran (THF) solution. The Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to visualize the surface of membrane. Batch rebinding and binding kinetic experiments proved that the binding properties of the QIM are higher than non-imprinted membranes (NIM). QIM also have higher selectivity towards quercetin compared to sinensetin and rosmarinic acid.

  6. Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation.

    PubMed

    Henry, Olivier Y F; Piletsky, Sergey A; Cullen, David C

    2008-07-15

    The possibility to assess several functional polymeric materials in parallel in a microchip format could find a wide range of applications in sensing, combinatorial and high-throughput screening. However several factors, inherent to the nature of material polymerisation have limited such development. We here report an innovative fabrication approach for the elaboration of polymer microarrays bearing polymer dots typically 300 microm in diameter fabricated in situ on a glass cover slip via CO(2) laser pulse initiated polymerisation, as well as initial results on the identification of a suitable monomer composition for the molecular imprinting of dansyl-L-phenylalanine as a proof-of-concept example. A combination of methacrylic acid and 2-vinylpyridine showed the largest affinity to dansyl-L-phenylalanine which agreed with the existing literature and the results were further confirmed by HPLC. Finally, a sensor chip bearing both non-imprinted as well as imprinted polymers was also prepared in order to prove the suitability of this fabrication approach for the elaboration of MIP based sensors. The assay consisted in a simple dip-and-read step and the sensing system was able to discriminate between the l and d enantiomers of dansylphenylalanine with an imprinting factor of 1.6.

  7. Preparation and utilization of molecularly imprinted polymer for chlorsulfuron extraction from water, soil, and wheat plant.

    PubMed

    Fu, Xu Wei; Wu, Yan Jiao; Qu, Jin Rong; Yang, Hong

    2012-07-01

    A molecularly imprinted polymer (MIP) was prepared using chlorsulfuron (CS), a herbicide as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methanol and toluene as a porogen, and 2,2-azobisisobutyronitrile as an initiator. The binding behaviors of the template chlorsulfuron and its analog on MIP were evaluated by equilibrium adsorption experiments, which showed that the MIP particles had specific affinity for the template CS. Solid-phase extraction (SPE) with the chlorsulfuron molecularly imprinted polymer as an adsorbent was investigated. The optimum loading, washing, and eluting conditions for chlorsulfuron molecularly imprinted polymer solid-phase extraction (CS-MISPE) were established. The optimized CS-MISPE procedure was developed to enrich and clean up the chlorsulfuron residue in water, soils, and wheat plants. Concentrations of chlorsulfuron in the samples were analyzed by HPLC-UVD. The average recoveries of CS spiked standard at 0.05~0.2 mg L(-1) in water were 90.2~93.3%, with the relative standard deviation (RSD) being 2.0~3.9% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 10 g soil were 91.1~94.7%, with the RSD being 3.1~5.6% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 5 g wheat plant were 82.3~94.3%, with the RSD being 2.9~6.8% (n=3). Overall, our study provides a sensitive and cost-effective method for accurate determination of CS residues in water, soils, and plants.

  8. RECOGNITION OF PYRENE USING MOLECULARLY-IMPRINTED ELECTROCHEMICALLY-DEPOSITED POLY (2-MERCAPTOBENZIMIDAZOLE) OR POLY(RESORCINOL) ON GOLD ELECTRODES

    EPA Science Inventory

    The feasibility of using thiol chemistry to form molecularly imprinted polymer-coated gold electrodes to measure pyrene is reported. For the first approach, poly(2-mercaptoimidazole) (2-MBI) was electrochemically deposited on gold electrodes in the presence or absence of the tem...

  9. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    PubMed

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  10. Application of Molecularly Imprinted Polymers to Selective Removal of Clofibric Acid from Water

    PubMed Central

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52±0.46 mg L−1 and 114±4.2 mg L−1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance. PMID:24205143

  11. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.

    PubMed

    Yola, Mehmet Lütfi; Eren, Tanju; Atar, Necip

    2014-10-15

    The molecular imprinting technique depends on the molecular recognition. It is a polymerization method around the target molecule. Hence, this technique creates specific cavities in the cross-linked polymeric matrices. In present study, a sensitive imprinted electrochemical biosensor based on Fe@Au nanoparticles (Fe@AuNPs) involved in 2-aminoethanethiol (2-AET) functionalized multi-walled carbon nanotubes (f-MWCNs) modified glassy carbon (GC) electrode was developed for determination of cefexime (CEF). The results of X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS) confirmed the formation of the developed surfaces. CEF imprinted film was constructed by cyclic voltammetry (CV) for 9 cycles in the presence of 80 mM pyrrole in phosphate buffer solution (pH 6.0) containing 20mM CEF. The developed electrochemical biosensor was validated according to the International Conference on Harmonisation (ICH) guideline and found to be linear, sensitive, selective, precise and accurate. The linearity range and the detection limit were obtained as 1.0 × 10(-10)-1.0 × 10(-8)M and 2.2 × 10(-11)M, respectively. The developed CEF imprinted sensor was successfully applied to real samples such as human plasma. In addition, the stability and reproducibility of the prepared molecular imprinted electrode were investigated. The excellent long-term stability and reproducibility of the prepared CEF imprinted electrodes make them attractive in electrochemical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adsorption of β-sitosterol on molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Soekamto, N. H.; Fauziah, St.; Taba, P.; Amran, M. B.

    2017-04-01

    Molecularly Imprinted Polymer (MIP) has been synthesized using methacrylate acid (MAA) as a monomer with hydroxyl and carbonyl functional groups that can react with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, and β-sitosterol as a template molecule. After the template was removed from the polymer, MIP_TFMAA was obtained. The MIP was used to adsorb β-sitosterol. The amount of β-sitosterol in solution after the adsorption was determined by HPLC. The results showed that the MIP was able to adsorb well the β-sitosterol at a pH 7 and the contact time of 90 min. The kinetic adsorption data obtained for β-sitosterol followed the pseudo-second-order model and consistent with the model of Feundlich isothermal with the adsorption capacity of 1.05 mg/g. The MIP was selective on β-sitosterol because it was able to adsorb β-sitosterol better than cholesterol.

  13. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution.

    PubMed

    Sai, Na; Wu, Yuntang; Sun, Zhong; Huang, Guowei; Gao, Zhixian

    2015-11-01

    A novel opal closest-packing (OCP) photonic crystal (PC) was prepared by the introduction of molecular imprinting technique into the OCP PC. This molecular imprinted (MI)-OCP PC was fabricated via a vertical convective self-assembly method using 17β-estradiol (E2) as template molecules for monitoring E2 in aqueous solution. Morphology characterization showed that the MI-OCP PC possessed a highly ordered three-dimensional (3D) periodically-ordered structure, showing the desired structural color. The proposed PC material displayed a reduced reflection intensity when detecting E2 in water environment, because the molecular imprinting recognition events make the optical characteristics of PC change. The Bragg diffraction intensity decreased by 19.864 a.u. with the increase of E2 concentration from 1.5 ng mL(-1) to 364.5 ng mL(-1) within 6 min, whereas there were no obvious peak intensity changes for estriol, estrone, cholesterol, testosterone and diethylstilbestrol, indicating that the MI-OCP PC had selective and rapid response for E2 molecules. The adsorption results showed that the OCP structure and homogeneous layers were created in the MI-OCP PC with higher adsorption capacity. Thus, it was learned the MI-OCP PC is a simple prepared, sensitive, selective, and easy operative material, which shows promising use in routine supervision for residue detection in food and environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Imprinting Technology in Electrochemical Biomimetic Sensors

    PubMed Central

    Frasco, Manuela F.; Truta, Liliana A. A. N. A.; Sales, M. Goreti F.; Moreira, Felismina T. C.

    2017-01-01

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out. PMID:28272314

  15. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  16. Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2018-01-01

    4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.

  17. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Lai, Cui; Wang, Man-Man; Zeng, Guang-Ming; Liu, Yun-Guo; Huang, Dan-Lian; Zhang, Chen; Wang, Rong-Zhong; Xu, Piao; Cheng, Min; Huang, Chao; Wu, Hai-Peng; Qin, Lei

    2016-12-01

    The molecular imprinted TiO2/graphene photocatalyst (MIP-TiO2/GR) was successfully prepared with bisphenol A (BPA) as the template molecule (target pollutant) and o-phenylenediamine (OPDA) as functional monomers by the surface molecular imprinting method. The combination between BPA and OPDA led to the formation of the precursor, and the subsequent polymerization of OPDA initiated by ultraviolet radiation can ensure the realization of MIP-TiO2/GR. The samples were characterized by SEM, EDS, XRD, BET, UV-vis DRS and Zeta potential. In addition, adsorption capacities, adsorption selectivity and visible light photocatalytic performances of MIP-TiO2/GR and non-imprinted TiO2/graphene (NIP-TiO2/GR) were evaluated. Moreover, the effects of pH and initial BPA concentration on removal efficiency of BPA were also investigated. The results showed that MIP-TiO2/GR exhibited better adsorption capacity and adsorption selectivity towards the template molecule compared to NIP-TiO2/GR due to the imprinted cavities on the surface of MIP-TiO2/GR. Moreover, the photocatalytic activity of MIP-TiO2/GR toward the target molecules was stronger than that of NIP-TiO2/GR as a result of large adsorption capacity to target molecules and narrow band gap energy on MIP-TiO2/GR. Therefore, modifying the photocatalyst by the surface molecular imprinting is a promising method to improve the molecule recognition and photocatalytic efficiency of photocatalyst for target pollutant.

  18. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum.

    PubMed

    Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao

    2016-08-01

    An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

  19. Cell and Tissue Imaging with Molecularly Imprinted Polymers.

    PubMed

    Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-01-01

    Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

  20. Preparation of a molecularly imprinted sensor based on quartz crystal microbalance for specific recognition of sialic acid in human urine.

    PubMed

    Qiu, Xiuzhen; Xu, Xian-Yan; Chen, Xuncai; Wu, Yiyong; Guo, Huishi

    2018-05-08

    A novel molecularly imprinted quartz crystal microbalance (QCM) sensor was successfully prepared for selective determination of sialic acid (SA) in human urine samples. To obtain the QCM sensor, we first modified the gold surface of the QCM chip by self-assembling of allylmercaptane to introduce polymerizable double bonds on the chip surface. Then, SA molecularly imprinted polymer (MIP) nanofilm was attached to the modified QCM chip surface. For comparison, we have also characterized the nonmodified and improved surfaces of the QCM sensor by using atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. We then tested the selectivity and detection limit of the imprinted QCM sensor via a series of adsorption experiments. The results show a linear response in the range of 0.025-0.50 μmol L -1 for sialic acid. Moreover, the limit of detection (LOD) of the prepared imprinted QCM sensor was found to be 1.0 nmol L -1 for sialic acid, and high recovery values range from 87.6 to 108.5% with RSD < 8.7 (n = 5) for the spiked urine sample obtained. Overall, this work presents how a novel QCM sensor was developed and used to detect sialic acid in human urine samples. Graphical abstract Specific recognition of sialic acid by the MIP-QCM sensor system.

  1. Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol

    PubMed Central

    Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2014-01-01

    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378

  2. Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    İlktaç, Raif; Aksuner, Nur; Henden, Emur

    2017-03-01

    In this study, magnetite-molecularly imprinted polymer has been used for the first time as selective adsorbent before the fluorimetric determination of carbendazim. Adsorption capacity of the magnetite-molecularly imprinted polymer was found to be 2.31 ± 0.63 mg g- 1 (n = 3). Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 2.3 and 7.8 μg L- 1, respectively. Calibration graph was linear in the range of 10-1000 μg L- 1. Rapidity is an important advantage of the method where re-binding and recovery processes of carbendazim can be completed within an hour. The same imprinted polymer can be used for the determination of carbendazim without any capacity loss repeatedly for at least ten times. Proposed method has been successfully applied to determine carbendazim residues in apple and orange, where the recoveries of the spiked samples were found to be in the range of 95.7-103%. Characterization of the adsorbent and the effects of some potential interferences were also evaluated. With the reasonably high capacity and reusability of the adsorbent, dynamic calibration range, rapidity, simplicity, cost-effectiveness and with suitable LOD and LOQ, the proposed method is an ideal method for the determination of carbendazim.

  3. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Noguer, Thierry; Rouillon, Régis

    2012-07-13

    A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N'-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L(-1) (r(2)=0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L(-1) and 0.1 mg L(-1), respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples

    NASA Astrophysics Data System (ADS)

    Xu, Wanzhen; Zhang, Xiaoming; Huang, Weihong; Luan, Yu; Yang, Yanfei; Zhu, Maiyong; Yang, Wenming

    2017-12-01

    In this work, the molecular imprinted polymers were synthesized with the low monomer concentrations for dibutyl phthalate (DBP). The polymers were prepared over carboxyl-modified silica nanoparticle, which used methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker agent and azoisobutyronitrile as the initiator in the process of preparation. Various measures were used to characterize the structure and morphology in order to get the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. And adsorption capacity experiments were evaluated to analyze its adsorption performance, through adsorption isotherms/kinetics, selectivity adsorption and desorption and regeneration experiments. These results showed that the molecular imprinted polymers had a short equilibrium time about 60 min and high stability with 88% after six cycles. Furthermore, the molecular imprinted polymers were successfully applied to remove dibutyl phthalate. The concentration range was 5.0-30.0 μmol L-1, and the limit of detection was 0.06 μmol L-1 in tap water samples.

  5. [Characteristics of supramolecular imprinting template on liver meridian tropism of traditional Chinese medicine based on molecular connectivity index].

    PubMed

    Fan, Shi-Qi; Li, Sen; Liu, Jin-Ling; Yang, Jiao; Hu, Chao; Zhu, Jun-Ping; Xiao, Xiao-Qin; Liu, Wen-Long; He, Fu-Yuan

    2017-01-01

    The molecular connectivity index was adopted to explore the characteristics of supramolecular imprinting template of herbs distributed to liver meridian, in order to provide scientific basis for traditional Chinese medicines(TCMs) distributed to liver meridian. In this paper, with "12th five-year plan" national planning textbooks Science of Traditional Chinese Medicine and Chemistry of Traditional Chinese Medicine as the blueprint, literatures and TCMSP sub-databases in TCM pharmacology of northwest science and technology university of agriculture and forestry were retrieved to collect and summarize active constituents of TCM distributed to liver meridian, and calculate the molecular connectivity index. The average molecular connectivity index of ingredients distributed to liver meridian was 9.47, which was close to flavonoid glycosides' (9.17±2.11) and terpenes (9.30±3.62). Therefore, it is inferred that template molecule of liver meridian is similar to physicochemical property of flavonoid glycosides and terpenes, which could be best matched with imprinting template of liver meridian. Copyright© by the Chinese Pharmaceutical Association.

  6. Detection of L-phenylalanine using molecularly imprinted solid-phase extraction and flow injection electrochemiluminescence.

    PubMed

    Lu, Juanjuan; Ge, Shenguang; Wan, Fuwei; Yu, Jinghua

    2012-01-01

    A novel flow injection electrochemiluminescence method combined with molecularly imprinted solid-phase extraction was developed for the determination of L-phenylalanine, in which ${\\rm{Ru(bpy}})_3^{2 + }$ was used as the luminophor and indium tin oxide glass was modified as the working electrode. Molecularly imprinted polymers, synthesized by self-assembly with functional monomer and crossing linker, were used for the selective extraction of L-phenylalanine. In order to overcome the drawbacks of traditional electrochemiluminescence cells such as high IR drop, high over-potential and so on, a novel electrochemiluminescence cell was developed. The enhanced electrochemiluminescence intensity was linearly related with the concentration of L-phenylalanine in the range from 1.0×10(-7) to 5.0×10(-5) g/mL with a detection limit of 2.59×10(-8) g/mL. The relative standard deviation for the determination of 1.0×10(-6) g/mL L-phenylalanine was 1.2% (n=11). The method showed higher sensitivity and good repeatability, and was successfully applied for the determination of L-phenylalanine in egg white, chicken and serum samples. A possible mechanism for the enhanced electrochemiluminescence response on indium tin oxide glass is proposed. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  8. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies".

    PubMed

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A

    2013-06-13

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.

  9. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    PubMed

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li 2 S x , x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g -1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li 2 S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  10. Polypyrrole based nanocomposites for supercapacitor applications: A review

    NASA Astrophysics Data System (ADS)

    Sardar, A.; Gupta, P. S.

    2018-05-01

    Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  11. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    PubMed Central

    Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.

    2011-01-01

    We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761

  12. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach.

    PubMed

    Çorman, Mehmet Emin; Armutcu, Canan; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-11-01

    Molecular imprinting is a polymerization technique that provides synthetic analogs for template molecules. Molecularly imprinted polymers (MIPs) have gained much attention due to their unique properties such as selectivity and specificity for target molecules. In this study, we focused on the development of polymeric materials with molecular recognition ability, so molecular imprinting was combined with miniemulsion polymerization to synthesize self-orienting nanoparticles through the use of an epitope imprinting approach. Thus, L-lysine imprinted nanoparticles (LMIP) were synthesized via miniemulsion polymerization technique. Immunoglobulin G (IgG) was then bound to the cavities that specifically formed for L-lysine molecules that are typically found at the C-terminus of the Fc region of antibody molecules. The resulting nanoparticles makes it possible to minimize the nonspecific interaction between monomer and template molecules. In addition, the orientation of the entire IgG molecule was controlled, and random imprinting of the IgG was prevented. The optimum conditions were determined for IgG recognition using the imprinted nanoparticles. The selectivity of the nanoparticles against IgG molecules was also evaluated using albumin and hemoglobin as competitor molecules. In order to show the self-orientation capability of imprinted nanoparticles, human serum albumin (HSA) adsorption onto both the plain nanoparticles and immobilized nanoparticles by anti-human serum albumin antibody (anti-HSA antibody) was also carried out. Due to anti-HSA antibody immobilization on the imprinted nanoparticles, the adsorption capability of nanoparticles against HSA molecules vigorously enhanced. It is proved that the oriented immobilization of antibodies was appropriately succeeded. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  14. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides.

    PubMed

    Peng, Mijun; Xiang, Haiyan; Hu, Xin; Shi, Shuyun; Chen, Xiaoqing

    2016-11-25

    Rapid and efficient extraction of bioactive glycosides from complex natural origins poses a difficult challenge, and then is often inherent bottleneck for their highly utilization. Herein, we propose a strategy to fabricate boronate affinity based surface molecularly imprinted polymers (MIPs) for excellent recognition of glucosides. d-glucose was used as fragment template. Boronic acid, dynamic covalent binding with d-glucose under different pH conditions, was selected as functional monomer to improve specificity. Fe 3 O 4 solid core for surface imprinting using tetraethyl orthosilicate (TEOS) as crosslinker could control imprinted shell thickness for favorable adsorption capacity and satisfactory mass transfer rate, improve hydrophilicity, separate easily by a magnet. Model adsorption studies showed that the resulting MIPs show specific recognition of glucosides. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. Furthermore, the MIPs were successfully applied for selective extraction of three flavonoid glucosides (daidzin, glycitin, and genistin) from soybean. Results indicated that selective extraction of glucosides from complex aqueous media based on the prepared MIPs is simple, rapid, efficient and specific. Moreover, this method opens up a universal route for imprinting saccharide with cis-diol group for glycosides recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Preparation of Magnetic Molecularly Imprinted Polymer for Chlorpyrifos Adsorption and Enrichment

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ma, X.; Sheng, J.

    2017-11-01

    Magnetic molecularly imprinted polymer (MMIP) for chlorpyrifos was prepared and characterized. The adsorption performance of MMIP for chlorpyrifos was evaluated under various conditions. The results showed that the adsorption equilibrium was achieved within 1 h, the adsorption capacity was 16.8 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo-second-order kinetic model. The MMIP was used as the selective sorbent for solid-phase extraction of chlorpyrifos from environmental water and vegetable samples. Combined with gas chromatography-mass spectrometry, a LOD of 30 ng/L, spiked recovery of 89.6%-107.3% and RSD of 1.9%-3.8% for chlorpyrifos were obtained.

  16. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    PubMed

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis of molecularly imprinted polymers by atom transfer radical polymerization for the solid-phase extraction of phthalate esters in edible oil.

    PubMed

    Chen, Ningning; He, Juan; Wu, Chaojun; Li, Yuanyuan; Suo, An; Wei, Hongliang; He, Lijun; Zhang, Shusheng

    2017-03-01

    Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1-chlorine-1-ethyl benzene as initiator and 2,2-bipyridyl as cross-linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid-phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10-0.25 μg/mL, and the recoveries of spiked samples were 82.5-101.4% with relative standard deviations of 1.24-5.37% (n = 6). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Li, Jiufeng; Zhang, Meiyu; Xie, Jingmeng; He, Limin

    2018-05-14

    With the extensive application of antibiotics in livestock, their contamination of the aquatic environment has received more attention. Molecularly imprinted polymer (MIP), as an eco-friendly and durable solid-phase extraction material, has shown great potential for the separation and enrichment of antibiotics in water. This study aims at developing a practical and economical method based on molecularly imprinted solid phase extraction (MISPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously detecting ten macrolide drugs in different sources of water samples. The MIP was synthesized by bulk polymerization using tylosin as the template and methacrylic acid as the functional monomer. The MIP exhibited a favorable load-bearing capacity for water (>90 mL), which is more than triple that of non-molecularly imprinted polymers (NIP). The mean recoveries of macrolides at four spiked concentration levels (limit of quantification, 40, 100, and 400 ng/L) were 62.6⁻100.9%, with intra-day and inter-day relative standard deviations below 12.6%. The limit of detection and limit of quantification were 1.0⁻15.0 ng/L and 3.0⁻40.0 ng/L, respectively. Finally, the proposed method was successfully applied to the analysis of real water samples.

  19. On the influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A

    2014-06-12

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.

  20. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-06-30

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.

  1. Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis

    PubMed Central

    Yu, Jorn C. C.; Lai, Edward P. C.

    2010-01-01

    Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649

  2. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  3. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography.

    PubMed

    Lhotská, Ivona; Holznerová, Anežka; Solich, Petr; Šatínský, Dalibor

    2017-12-01

    Reaching trace amounts of mycotoxin contamination requires sensitive and selective analytical tools for their determination. Improving the selectivity of sample pretreatment steps covering new and modern extraction techniques is one way to achieve it. Molecularly imprinted polymers as selective sorbent for extraction undoubtedly meet these criteria. The presented work is focused on the hyphenation of on-line molecularly imprinted solid-phase extraction with a chromatography system using a column-switching approach. Making a critical comparison with a simultaneously developed off-line extraction procedure, evaluation of pros and cons of each method, and determining the reliability of both methods on a real sample analysis were carried out. Both high-performance liquid chromatography methods, using off-line extraction on molecularly imprinted polymer and an on-line column-switching approach, were validated, and the validation results were compared against each other. Although automation leads to significant time savings, fewer human errors, and required no handling of toxic solvents, it reached worse detection limits (15 versus 6 μg/L), worse recovery values (68.3-123.5 versus 81.2-109.9%), and worse efficiency throughout the entire clean-up process in comparison with the off-line extraction method. The difficulties encountered, the compromises made during the optimization of on-line coupling and their critical evaluation are presented in detail. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular mechanisms of memory in imprinting

    PubMed Central

    Solomonia, Revaz O.; McCabe, Brian J.

    2015-01-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-d-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. PMID:25280906

  5. Electrodeposition of Copper onto Polypyrrole Films: Application to Proton Reduction

    NASA Astrophysics Data System (ADS)

    Chikouche, Imene; Sahari, Ali; Zouaoui, Ahmed; Zegadi, Ameur

    2016-09-01

    In this paper, we have electrodeposited copper on polypyrrole surface. Results show that at high applied cathodic potential (>-1.8V), copper electrodeposition occurs with difficulties. The amount of electrodeposited copper is low (1.32%) and it is limited by the low polypyrrole conductivity. At this potential, poor conductivity is caused by its insulating state. However, at an applied cathodic potential of -1.2V, the polypyrrole exhibits a relatively high conductivity and copper particles are electrodeposited with large amounts (12.44%) on polypyrrole/silicon system. At high applied cathodic potential, the SEM images show clearly dispersed grains of copper, but polypyrrole surface is less occupied. At an applied cathodic potential of -1.2V, the SEM image shows that polypyrrole surface is homogenously more occupied with copper. After copper deposition, the Cu/PPy/Si system is used to catalyze the hydrogen reaction. It was found that, once the deposited copper is present with considerable amounts, the proton reduction occurs easily. As for the polypyrrole conductivity, it was found that electrodeposited copper onto PPy/Si surface affect the total conductivity.

  6. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Kang, Yeona; Zhang, Lingxi; Rigas, Basil; Division of Gastroenterology, School of Medicine Team

    2013-03-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. In addition, we use biosensor to discriminate normal fibrinogen and damaged fibrinogen, which is critical for the detection of bleeding disorder. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  7. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Ranjbaran, Alina; Wang, Tom; Nam, David

    2012-02-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed when detection was performed in the presence of 100% serum albumin, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups, without significant change in the morphology. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  8. Development of molecularly imprinted polymers to block quorum sensing and inhibit bacterial biofilm formation.

    PubMed

    Ma, Luyao; Feng, Shaolong; de la Fuente-Nunez, Cesar; Hancock, Robert E W; Lu, Xiaonan

    2018-05-16

    Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity towards 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved 5-fold. HEMA-based MIPs significantly reduced biofilm formation (by ~65%), while biofilm suppression by IA-based MIPs was neutralized due to increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.

  9. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate

    PubMed Central

    Mazouz, Zouhour; Rahali, Seyfeddine; Fourati, Najla; Zerrouki, Chouki; Aloui, Nadia; Seydou, Mahamadou; Yaakoubi, Nourdin; Chehimi, Mohamed M.; Othmane, Ali; Kalfat, Rafik

    2017-01-01

    There is a global debate and concern about the use of glyphosate (Gly) as an herbicide. New toxicological studies will determine its use in the future under new strict conditions or its replacement by alternative synthetic or natural herbicides. In this context, we designed biomimetic polymer sensing layers for the selective molecular recognition of Gly. Towards this end, complementary surface acoustic wave (SAW) and electrochemical sensors were functionalized with polypyrrole (PPy)-imprinted polymer for the selective detection of Gly. Their corresponding limits of detection were on the order of 1 pM, which are among the lowest values ever reported in literature. The relevant dissociation constants between PPy and Gly were estimated at [Kd1 = (0.7 ± 0.3) pM and Kd2 = (1.6 ± 1.4) µM] and [Kd1 = (2.4 ± 0.9) pM and Kd2 = (0.3 ± 0.1) µM] for electrochemical and gravimetric measurements, respectively. Quantum chemical calculations permitted to estimate the interaction energy between Gly and PPy film: ΔE = −145 kJ/mol. Selectivity and competitivity tests were investigated with the most common pesticides. This work conclusively shows that gravimetric and electrochemical results indicate that both MIP-based sensors are perfectly able to detect and distinguish glyphosate without any ambiguity. PMID:29120397

  10. [Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A].

    PubMed

    Hu, Mei; Zhang, Yijun; Yang, Jinghua; Zhou, Xiaomao; Wei, Zhuqing; Ding, Xiaoqing; Zhang, Yuping

    2015-02-01

    The rapid preparation of molecularly imprinted polymer (MIP) fibers was reported using bisphenol A (BPA) as the template molecular, acetonitrile (ACN) as the porogenic solvent, α-methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EDMA) as the crosslinker, and azodiisobutyronitrile (AIBN) as the thermal initiator. It was carried out within a capillary of 530 µm inner diameter (I. D.) by microwave irradiation in 7 min. The resulted BPA-MIP fibers were pushed out from the capillary, eluted in a vial and inserted in the capillary again followed by the application of the solid phase microextraction (SPME) procedure. The extraction performance was investigated in detail by varying the molar ratios between the template and the monomer (BPA/MAA), the concentration of NaCl, the extraction and desorption time, the pH value and the desorption solvents. The selectivity of the prepared MIP and non-molecularly imprinted polymer (NIP) fibers was comparatively evaluated by selecting two structurally-related compounds, phenol (P) and 4-phenylphenol (PP), and non-analogue dicyandiamide (DCD). The established method was successfully applied for the pretreatment and determination of BPA from beverage samples coupled to high performance liquid chromatography (HPLC). Under the optimal conditions, the linear range of BPA was 10-400 µg/L; the detection limit (LOD) was 0.45 µg/L and the recoveries spiked in the mineral water were 88.4%-102. 8%. The results demonstrated that the developed method can determine BPA in real samples with some advantages of simple pretreatment, rapid analysis, low limit of detection and low consumption of materials.

  11. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    EPA Science Inventory

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  12. Formation of protein molecular imprints within Langmuir monolayers: A quartz crystal microbalance study

    PubMed Central

    Turner, Nicholas W.; Wright, Bryon E.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Protein imprinting leading to enhanced rebinding of ferritin to ternary lipid monolayers is demonstrated using a quartz crystal microbalance. Monolayers consisting of cationic dioctadecyldimethylammonium bromide, non-ionic methyl stearate, and poly(ethylene glycol) bearing phospholipids were imprinted with ferritin at the air/water interface of a Langmuir-Blodgett trough and transferred hydrated to hydrophobic substrates for study. This immobilization was shown by fluorescence correlation spectroscopy to significantly hinder any further diffusion of lipids, while rebinding studies demonstrated up to a six-fold increase in ferritin adsorption to imprinted versus control monolayers. A diminished rebinding of ferritin to its imprint was observed through pH reduction to below the protein isoelectric point, demonstrating the electrostatic nature of the interaction. Rebinding to films where imprint pockets remained occupied by the template protein was also minimal. Studies with a smaller acidic protein revealed the importance of the steric influence of poly(ethylene glycol) in forming the protein binding pockets, as albumin-imprinted monolayers showed low binding of ferritin, while ferritin-imprinted monolayers readily accommodated albumin. The controllable structure-function relationship and limitations of this system are discussed with respect to the application of protein imprinting in sensor development as well as fundamental studies of proteins at dynamic interfaces. PMID:17204279

  13. Chemodosimeter-based fluorescent detection of L-cysteine after extracted by molecularly imprinted polymers.

    PubMed

    Cai, Xiaoqiang; Li, Jinhua; Zhang, Zhong; Wang, Gang; Song, Xingliang; You, Jinmao; Chen, Lingxin

    2014-03-01

    A chemodosimeter-based fluorescent detection method coupled with molecularly imprinted polymers (MIPs) extraction was developed for determination of L-cysteine (L-Cys) by combining molecular imprinting technique with fluorescent chemodosimeter. The MIPs prepared by precipitation polymerization with L-Cys as template, possessed high specific surface area of 145 m(2)/g and good thermal stability without decomposition lower than 300 °C, and were successfully applied as an adsorbent with excellent selectivity for L-Cys over other amino acids, and enantioselectivity was also demonstrated. A novel chemodosimeter, rhodamine B1, was synthesized for discriminating L-Cys from its structurally similar homocysteine and glutathione as well as various possibly co-existing biospecies in aqueous solutions with notable fluorescence enhancement when adding L-Cys. As L-Cys was added with increasing concentrations, an emission band peaked at 580 nm occurred and significantly increased in fluorescence intensity, by which the L-Cys could be sensed optically. High detectability up to 12.5 nM was obtained. An excellent linearity was found within the wide range of 0.05-50 μM (r=0.9996), and reasonable relative standard deviations ranging from 0.3% to 3.5% were attained. Such typical features as high selectivity, high sensitivity, easy operation and low cost enabled this MIPs-fluorometry to be potentially applicable for routine detection of trace L-Cys. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.

    PubMed

    Zhao, Yi; Shen, Yanmei; Ma, Guoyi; Hao, Rongjie

    2014-01-01

    CO2 separation by molecularly imprinted adsorbent from coal-fired flue gas after desulfurization system has been studied. The adsorbent was synthesized by molecular imprinted technique, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as the template, functional monomer, and cross-linker, respectively. According to the conditions of coal-fired flue gas, the influencing factors, including adsorption temperature, desorption temperature, gas flow rate, and concentrations of CO2, H2O, O2, SO2, and NO, were studied by fixed bed breakthrough experiments. The experimental conditions were optimized to gain the best adsorption performance and reduce unnecessary energy consumption in future practical use. The optimized adsorption temperature, desorption temperature, concentrations of CO2, and gas flow rate are 60 °C, 80 °C, 13%, and 170 mL/min, respectively, which correspond to conditions of practical flue gases to the most extent. The CO2 adsorption performance was nearly unaffected by H2O, O2, and NO in the flue gas, and was promoted by SO2 within the emission limit stipulated in the Chinese emission standards of air pollutants for a thermal power plant. The maximum CO2 adsorption capacity, 0.57 mmol/g, was obtained under the optimized experimental conditions, and the SO2 concentration was 150 mg/m(3). The influence mechanisms of H2O, O2, SO2, and NO on CO2 adsorption capacity were investigated by infrared spectroscopic analysis.

  15. Metal | polypyrrole battery with the air regenerated positive electrode

    NASA Astrophysics Data System (ADS)

    Grgur, Branimir N.

    2014-12-01

    Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.

  16. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry.

    PubMed

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2017-05-01

    The application of molecularly imprinted polymers (MIPs) as molecular scavengers for ambient plasma ionization mass spectrometry has been reported for the first time. MIPs were synthesized using methacrylic acid as functional monomer; nicotine, propyphenazone, or methylparaben as templates; ethylene glycol dimethacrylate as a cross-linker; and 2,2'-azobisisobutyronitrile as polymerization initiator. To perform ambient plasma ionization experiments, a setup consisting of the heated crucible, a flowing atmospheric-pressure afterglow (FAPA) plasma ion source, and a quadrupole ion trap mass spectrometer has been used. The heated crucible with programmable temperature allows for desorption of the analytes from MIPs structure which results in their direct introduction into the ion stream. Limits of detection, linearity of the proposed analytical procedure, and selectivities have been determined for three analytes: nicotine, propyphenazone, and methylparaben. The analytes used were chosen from various classes of organic compounds to show the feasibility of the analytical procedure. The limits of detections (LODs) were 10 nM, 10, and 0.5 μM for nicotine, propyphenazone, and methylparaben, respectively. In comparison with the measurements performed for the non-imprinted polymers, the values of LODs were improved for at least one order of magnitude due to preconcentration of the sample and reduction of background noise, contributing to signal suppression. The described procedure has shown linearity in a broad range of concentrations. The overall time of single analysis is short and requires ca. 5 min. The developed technique was applied for the determination of nicotine, propyphenazone, and methylparaben in spiked real-life samples, with recovery of 94.6-98.4%. The proposed method is rapid, sensitive, and accurate which provides a new option for the detection of small organic compounds in various samples. Graphical abstract The experimental setup used for analysis.

  17. Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: application to sample clean-up prior to gas chromatographic determination.

    PubMed

    Shaikh, Huma; Memon, Najma; Khan, Hamayun; Bhanger, M I; Nizamani, S M

    2012-07-20

    The molecularly imprinted polymer (MIP) selective for di(2-ethylhexyl) phthalate (DEHP) an environmental endocrine disruptor was prepared by suspension polymerization using methacrylamide as functional monomer and N,N'-methylene-bis-acrylamide as cross-linker. The imprinted polymer was employed for solid-phase extraction of DEHP from water samples of environmental importance and characterized by FT-IR and SEM. The adsorption properties of the imprinted polymer were demonstrated by equilibrium rebinding experiments, Pseudo-second-order kinetic model, Sips isotherm and Scatchard analysis. The reusability of MIP was checked for at least six repeated batch adsorption cycles and the results showed almost no deterioration in the adsorption capacity. The competitive recognition studies were performed with DEHP and structurally similar compounds; dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP). The imprinting factor (IF) of DEHP was found to be 12.86 which was much higher than the imprinting factors (IF) of other phthalates. A method constituted by molecularly imprinted solid-phase extraction (MISPE) with GC-FID was developed for DEHP analysis in water samples under very simple conditions. Sample loading and desorption conditions were also optimized. The MISPE method's linearity ranged from 0.035 to 3.0 μg ml⁻¹ with r² = 0.9998. Intra-assay, interassay precision and accuracy ranged from 0.0168% to 1.017%, 1.130% to 4.799% and 94.98% to 99.35%, respectively. The LOD and LOQ were found to be 0.011 and 0.035 μg ml⁻¹, respectively. Synthesized MIP was employed in MISPE for cleaning up the spiked river water samples prior to gas chromatographic analysis. The river samples were found to contain DEHP in the range of 1.4 × 10⁻³ to 0.349 μg ml⁻¹. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  19. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    PubMed

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.

  20. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    NASA Astrophysics Data System (ADS)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  1. Preparation and evaluation of magnetic core-shell mesoporous molecularly imprinted polymers for selective adsorption of tetrabromobisphenol S.

    PubMed

    Wang, Xuemei; Huang, Pengfei; Ma, Xiaomin; Wang, Huan; Lu, Xiaoquan; Du, Xinzhen

    2017-05-01

    Novel magnetic mesoporous molecularly imprinted polymers (MMIPs) with core-shell structure were prepared by simple surface molecular imprinting polymerization using tetrabromobisphenol-S (TBBPS) as the template. The MMIPs-TBBPS were characterized by fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption transmission, and vibrating sample magnetometry. The resultant MMIPs-TBBPS were successfully applied magnetic solid-phase extraction (MSPE) coupled with HPLC determination of TBBPS in spiked real water samples with recoveries of 77.8-88.9%. The adsorption experiments showed that the binding capacity of MMIPs-TBBPS to TBBPS and six structural analogs were significantly higher than that of the magnetic nonimprinted polymers (MNIPs). Meanwhile, the MMIPs-TBBPS possessed rapid binding affinity, excellent magnetic response, specific selectivity and high adsorption capacity toward TBBPS with a maximum adsorption capacity of 1626.8µgg -1 . The analytical results indicate that the MMIPs-TBBPS are promising materials for selective separation and fast enrichment of TBBPS from complicated enviromental samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Song, Xingliang; Li, Jinhua; Xu, Shoufang; Ying, Rongjian; Ma, Jiping; Liao, Chunyang; Liu, Dongyan; Yu, Junbao; Chen, Lingxin

    2012-09-15

    A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as a template based on sol-gel surface imprinting. Compared with the non-imprinted polymers (NIPs), the MIPs exhibited excellent affinity towards 16 PAHs with binding capacity of 111.0-195.0 μg g(-1), and imprinting factor of 1.50-3.12. The significant binding specificity towards PAHs even in the presence of environmental parameters such as dissolved organic matter and various metal ions, suggested that this new imprinting material was capable of removing 93.2% PAHs in natural seawater. High sensitivity was attained, with the low limits of detection for 16 PAHs in natural seawater ranging from 5.2-12.6 ng L(-1). The application of MIPs with high affinity and excellent stereo-selectivity toward PAHs in SPE might offer a more attractive alternative to conventional sorbents for extraction and abatement of PAH-contaminated seawater. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Photoresponsive molecularly imprinted hydrogel casting membrane for the determination of trace tetracycline in milk.

    PubMed

    Wang, Qiang; Lv, Zhen; Tang, Qian; Gong, Cheng-Bin; Lam, Michael Hon Wah; Ma, Xue-Bing; Chow, Cheuk-Fai

    2016-03-01

    This study aimed to develop a photoresponsive molecularly imprinted hydrogel (MIH) casting membrane for the determination of trace tetracycline (TC) in milk. This MIH casting membrane combined the specificity of MIHs, the photoresponsive properties of azobenzene, and the portable properties of a membrane. Photoresponsive TC-imprinted MIHs were initially fabricated and then cast on sodium dodecyl sulfonate polyacrylamide gel. After TC removal, a photoresponsive MIH casting membrane was obtained. The photoresponsive properties of the MIH casting membrane were robust, and no obvious photodegradation was observed after 20 cycles. The MIH casting membrane displayed specific affinity to TC upon alternate irradiation at 365 and 440 nm; it could quantitatively uptake and release TC. The TC concentration (0.0-2.0 × 10(-4) mol l(-1)) in aqueous solution displayed a linear relationship with the photoisomerization rate constant of azobenzene within the MIH casting membrane. As such, a quick detection method for trace TC in aqueous foodstuff samples was established. The recovery of this method for TC in milk was investigated with a simple pretreatment of milk, and a high recovery of 100.54-106.35% was obtained. Therefore, the fabricated membrane can be used as a portable molecular sensor that can be easily recycled. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood.

    PubMed

    Baydemir, Gözde; Andaç, Müge; Perçin, Işιk; Derazshamshir, Ali; Denizli, Adil

    2014-09-01

    A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun

    2012-11-01

    A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome

    PubMed Central

    Eggermann, Katja; Bliek, Jet; Brioude, Frédéric; Algar, Elizabeth; Buiting, Karin; Russo, Silvia; Tümer, Zeynep; Monk, David; Moore, Gudrun; Antoniadi, Thalia; Macdonald, Fiona; Netchine, Irène; Lombardi, Paolo; Soellner, Lukas; Begemann, Matthias; Prawitt, Dirk; Maher, Eamonn R; Mannens, Marcel; Riccio, Andrea; Weksberg, Rosanna; Lapunzina, Pablo; Grønskov, Karen; Mackay, Deborah JG; Eggermann, Thomas

    2016-01-01

    Molecular genetic testing for the 11p15-associated imprinting disorders Silver–Russell and Beckwith–Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis of these disorders and the demand for molecular testing, it turned out that there is an urgent need for a standardized molecular diagnostic testing and reporting strategy. Based on the results from the first external pilot quality assessment schemes organized by the European Molecular Quality Network (EMQN) in 2014 and in context with activities of the European Network of Imprinting Disorders (EUCID.net) towards a consensus in diagnostics and management of SRS and BWS, best practice guidelines have now been developed. Members of institutions working in the field of SRS and BWS diagnostics were invited to comment, and in the light of their feedback amendments were made. The final document was ratified in the course of an EMQN best practice guideline meeting and is in accordance with the general SRS and BWS consensus guidelines, which are in preparation. These guidelines are based on the knowledge acquired from peer-reviewed and published data, as well as observations of the authors in their practice. However, these guidelines can only provide a snapshot of current knowledge at the time of manuscript submission and readers are advised to keep up with the literature. PMID:27165005

  7. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  8. Halloysite-based dopamine-imprinted polymer for selective protein capture.

    PubMed

    Zhu, Xiaohong; Li, Hui; Liu, Hui; Peng, Wei; Zhong, Shian; Wang, Yan

    2016-06-01

    We describe a facile, general, and highly efficient approach to obtain polydopamine-coated molecularly imprinted polymer based on halloysite nanotubes for bovine serum albumin. The method combined surface molecular imprinting and one-step immobilized template technique. Hierarchically structured polymer was prepared in physiological conditions adopting dopamine as functional monomer. A thin layer of polydopamine can be coated on the surface of amino-modified halloysite nanotubes by self-polymerization, and the thickness of the imprinted shells can be controlled by the mass ratio of matrix and dopamine. The polymer was characterized by Fourier transform infrared spectrometry, transmission electron microscopy, and thermogravimetric analysis. The prepared material showed high binding capacity (45.4 mg/g) and specific recognition behavior toward the template protein. In addition, stability and regeneration analyses indicated that the imprinted polymer exhibited excellent reusability (relative standard deviation < 9% for batch-to-batch evaluation). Therefore, the developed polymer is effective for protein recognition and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular mechanisms of memory in imprinting.

    PubMed

    Solomonia, Revaz O; McCabe, Brian J

    2015-03-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint-switch models, genetic counseling, and prenatal diagnosis.

    PubMed Central

    Buiting, K; Dittrich, B; Gross, S; Lich, C; Färber, C; Buchholz, T; Smith, E; Reis, A; Bürger, J; Nöthen, M M; Barth-Witte, U; Janssen, B; Abeliovich, D; Lerer, I; van den Ouweland, A M; Halley, D J; Schrander-Stumpel, C; Smeets, H; Meinecke, P; Malcolm, S; Gardner, A; Lalande, M; Nicholls, R D; Friend, K; Schulze, A; Matthijs, G; Kokkonen, H; Hilbert, P; Van Maldergem, L; Glover, G; Carbonell, P; Willems, P; Gillessen-Kaesbach, G; Horsthemke, B

    1998-01-01

    The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the father's germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint. PMID:9634532

  11. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-08

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.

  12. Selective adsorption of carbohydrates and glycoproteins via molecularly imprinted hydrogels: application to visible detection by a boronic acid monomer.

    PubMed

    Kubo, Takuya; Furuta, Hayato; Naito, Toyohiro; Sano, Tomoharu; Otsuka, Koji

    2017-06-29

    Selective adsorption of carbohydrates and glycoproteins was effectively achieved by molecularly imprinted hydrogels (MIHs) with a poly(ethylene glycol) (PEG)-based crosslinker and 4-vinylphenylboronic acid. In addition, an MIH with a novel boronic acid monomer provided selective adsorption and enabled visible detection of fructose.

  13. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors.

    PubMed

    Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-07-15

    Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pollen-imprinted polyurethanes for QCM allergen sensors.

    PubMed

    Jenik, Michael; Seifner, Alexandra; Lieberzeit, Peter; Dickert, Franz L

    2009-05-01

    Molecularly imprinted polymers for detecting plant pollen were designed as artificial recognition materials for quartz crystal microbalances in the gaseous phase. Imprints of birch (diameter, 25 mum) and nettle (diameter, 15 mum) pollen can be generated by polydimethylsiloxane stamping technique as proven by atomic force microscopy. If pollen grains are able to access the cavities and thus are incorporated, the resulting sensors display Sauerbrey-like negative frequency shifts. Non-Sauerbrey behaviour can be observed as soon as pollen is prevented from entering the selective hollows: this results in grain mobility on the electrode surface leading to frequency increases. Access to the cavities is determined by the diameter ratio between pollen grains and imprints as can be revealed during cross-selectivity measurements of nettle and birch pollen imprinted layers. When the amount of pollen grains on the electrode surface exceeds the number of available imprints, the excess particles move freely, resulting in positive, non-Sauerbrey frequency shifts.

  15. Triazine herbicide imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Derazshamshir, Ali; Yılmaz, Fatma; Denizli, Adil

    2015-12-01

    Trietazine was selectively separated from aqueous solution containing the competitor molecule cyanazine, which is similar in size and shape to the template molecule. Structural features of the molecularly imprinted column were figured out by SEM. The influence of the mobile-phase composition, applied electrical field, and pH of the mobile phase on the recognition of trietazine by the imprinted monolithic polymer has been evaluated, and the imprint effect in the trietazine-imprinted monolithic polymer was demonstrated by an imprinting factor. The optimized monolithic column resulted in separation of trietazine from a structurally related competitor molecule, cyanazine. In addition, fast separation was obtained within 6 min by applying higher electrical field, with the electrophoretic mobility of 2.97 × 10(-8) m(2) V(-1) s(-1) at pH 11.0. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular dynamics modeling framework for overcoming nanoshape retention limits of imprint lithography

    NASA Astrophysics Data System (ADS)

    Cherala, Anshuman; Sreenivasan, S. V.

    2018-12-01

    Complex nanoshaped structures (nanoshape structures here are defined as shapes enabled by sharp corners with radius of curvature <5 nm) have been shown to enable emerging nanoscale applications in energy, electronics, optics, and medicine. This nanoshaped fabrication at high throughput is well beyond the capabilities of advanced optical lithography. While the highest-resolution e-beam processes (Gaussian beam tools with non-chemically amplified resists) can achieve <5 nm resolution, this is only available at very low throughputs. Large-area e-beam processes, needed for photomasks and imprint templates, are limited to 18 nm half-pitch lines and spaces and 20 nm half-pitch hole patterns. Using nanoimprint lithography, we have previously demonstrated the ability to fabricate precise diamond-like nanoshapes with 3 nm radius corners over large areas. An exemplary shaped silicon nanowire ultracapacitor device was fabricated with these nanoshaped structures, wherein the half-pitch was 100 nm. The device significantly exceeded standard nanowire capacitor performance (by 90%) due to relative increase in surface area per unit projected area, enabled by the nanoshape. Going beyond the previous work, in this paper we explore the scaling of these nanoshaped structures to 10 nm half-pitch and below. At these scales a new "shape retention" resolution limit is observed due to polymer relaxation in imprint resists, which cannot be predicted with a linear elastic continuum model. An all-atom molecular dynamics model of the nanoshape structure was developed here to study this shape retention phenomenon and accurately predict the polymer relaxation. The atomistic framework is an essential modeling and design tool to extend the capability of imprint lithography to sub-10 nm nanoshapes. This framework has been used here to propose process refinements that maximize shape retention, and design template assist features (design for nanoshape retention) to achieve targeted nanoshapes.

  17. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    PubMed

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  18. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  19. Neural basis of imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Molecularly imprinted polymer nanoparticle-based assay (MINA): application for fumonisin B1 determination.

    PubMed

    Munawar, Hasim; Smolinska-Kempisty, Katarzyna; Cruz, Alvaro Garcia; Canfarotta, Francesco; Piletska, Elena; Karim, Khalku; Piletsky, Sergey A

    2018-06-20

    The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1). Unfortunately, ELISA is not always efficient due to the instability of the antibody and enzyme components in the immunoassay, the presence of natural enzyme inhibitors in the samples and the high levels of non-specific protein binding. Additionally, the production of antibodies for ELISA can be time-consuming and costly, due to the involvement of animals in the manufacturing process. To overcome these limiting factors, a molecularly imprinted nanoparticle based assay (MINA) has been developed, where the molecularly imprinted nanoparticles (nanoMIPs) replace the primary antibody used in a competitive ELISA. Herein, computational modelling was used to design the nanoMIPs by selecting monomers that specifically interact with FB1. The affinity of the monomers to FB1 was verified by measuring their binding in affinity chromatography experiments. The nanoMIPs were produced by solid phase synthesis and the results showed that nanoMIPs had a hydrodynamic diameter of around 249 ± 29 nm. The assay tested in model samples is highly selective and does not show cross-reactivity with other mycotoxins such as fumonisin B2 (FB2), aflatoxin B1 (AFB1), citrinin (CTT), zearalenone (ZEA), and deoxynivalenol (DON). The MINA allows the detection of FB1 in the concentration range of 10 pM-10 nM with a detection limit of 1.9 pM and a recovery of 108.13-113.76%.

  2. A Simple and Selective Fluorescent Sensor Chip for Indole-3-Butyric Acid in Mung Bean Sprouts Based on Molecularly Imprinted Polymer Coatings

    PubMed Central

    Chang, Jiahua; Bahethan, Bota; Muhammad, Turghun; Yakup, Burabiye; Abbas, Mamatimin

    2017-01-01

    In this paper, we report the preparation of molecularly imprinted polymer coatings on quartz chips for selective solid-phase microextraction and fluorescence sensing of the auxin, indole-3-butyric acid. The multiple copolymerization method was used to prepare polymer coatings on silylated quartz chips. The polymer preparation conditions (e.g., the solvent, monomer, and cross-linker) were investigated systemically to enhance the binding performance of the imprinted coatings. Direct solid-phase fluorescence measurements on the chips facilitated monitoring changes in coating performance. The average binding capacity of an imprinted polymer coated chip was approximately 152.9 µg, which was higher than that of a non-imprinted polymer coated chip (60.8 µg); the imprinted coatings showed the highest binding to IBA among the structural analogues, indicating that the coatings possess high selectivity toward the template molecule. The developed method was used for the determination of the auxin in mung bean extraction, and the recovery was found to be in the range of 91.5% to 97.5%, with an RSD (n = 3) of less than 7.4%. Thus, the present study provides a simple method for fabricating a fluorescent sensor chip for selective analysis. PMID:28837081

  3. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz

    2011-04-01

    In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Preparation and application of epitope magnetic molecularly imprinted polymers for enrichment of sulfonamide antibiotics in water.

    PubMed

    Hu, Yufeng; Wang, Cheng; Li, Xiangdao; Liu, Lifen

    2017-10-01

    Sulfonamides, which are widely used synthetic antibiotics, are hydrophilic and stable. They can easily migrate into the environment and aquatic animals, and increase the risk of cancer, drug resistance, and allergic symptoms if consumed by humans. Here, we developed an epitope magnetic imprinting approach to enrich multiple sulfonamide antibiotics from a water sample. Epitope magnetic molecularly imprinted polymers (EMMIPs) were prepared by free-radical polymerization using vinyl-functioned Fe 3 O 4 as a core, sulfanilamide (SA) as a dummy template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The performance of the EMMIPs was first evaluated by rebinding SA, and then an adsorption experiment was conducted to assess the extraction of multiple sulfonamide antibiotics containing the SA group. The binding experiments showed that the EMMIPs reached adsorption equilibrium in only 5 min with adsorption of SA at 2040 μg/g, compared with just 462 μg/g for the epitope magnetic non-imprinted polymers. EMMIPs were combined with HPLC for the detection of six sulfonamide antibiotics in surface water samples. The recoveries ranged from 79.3 to 92.4% and the relative standard deviations from 0.9 to 7.3%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular scale modeling of polymer imprint nanolithography.

    PubMed

    Chandross, Michael; Grest, Gary S

    2012-01-10

    We present the results of large-scale molecular dynamics simulations of two different nanolithographic processes, step-flash imprint lithography (SFIL), and hot embossing. We insert rigid stamps into an entangled bead-spring polymer melt above the glass transition temperature. After equilibration, the polymer is then hardened in one of two ways, depending on the specific process to be modeled. For SFIL, we cross-link the polymer chains by introducing bonds between neighboring beads. To model hot embossing, we instead cool the melt to below the glass transition temperature. We then study the ability of these methods to retain features by removing the stamps, both with a zero-stress removal process in which stamp atoms are instantaneously deleted from the system as well as a more physical process in which the stamp is pulled from the hardened polymer at fixed velocity. We find that it is necessary to coat the stamp with an antifriction coating to achieve clean removal of the stamp. We further find that a high density of cross-links is necessary for good feature retention in the SFIL process. The hot embossing process results in good feature retention at all length scales studied as long as coated, low surface energy stamps are used.

  6. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    PubMed

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  7. Synthesis of a molecularly imprinted polymer for the selective recognition of carmoisine (Azorubin E122) from pomegranate juice.

    PubMed

    Ghasempour, Zahra; Alizadeh-Khaledabad, Mohammad; Vardast, Mohammad-Reza; Rezazad-Bari, Mahmoud

    2017-02-01

    Since natural pigments are lost during the processing of beverages such as pomegranate juice, carmoisine, as an adulterant, is often added into the pure juice to improve color characteristics. In this study, molecularly imprinted polymers, as an adsorbent of carmoisine, were synthesized using acrylamide, methacrylic acid, and 4-vinylpyridine as functional monomers and then they were evaluated in terms of the separation and detection of carmoisine. Experiments on the batch adsorption of carmoisine 10 ppm stock solution revealed a better binding capacity for the 4-vinylpyridine-based polymer in comparison to methacrylic acid and acrylamide polymers. The complexation of carmoisine with the 4-vinylpyridine-based polymer was confirmed by Fourier transform infrared spectroscopy. The synthesized polymer exerted a high thermal degradation point and average diameter of polymer particles were obtained to be 0.2 μm by dynamic light scattering analysis. This work showed that detection of pomegranate juice adulteration with carmoisine is not necessarily difficult, time consuming or expensive with selective separation techniques such as molecularly imprinted polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    PubMed

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.

  9. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin

    2015-07-01

    This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.

  10. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology ofmore » Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.« less

  11. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    NASA Astrophysics Data System (ADS)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  12. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable.

    PubMed

    Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-06-10

    A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications.

  13. Carbon paste electrode modified molecularly imprinted polymer as a sensor for creatinine analysis by stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Khasanah, M.; Darmokoesoemo, H.; Rizki, D. A.

    2017-09-01

    Modification of carbon paste electrode with molecularly imprinted polymer (CP-MIP) as a voltammetric sensor for creatinine has been developed. MIP was synthesized by reacting melamine, chloranil and creatinine with a mole ratio of 1:1:0.1. Creatinine was extracted from polymer chain by using hot water to form a specific imprinted for creatinine molecule. Carbon paste-MIP electrode was prepared by mixing activated carbon, solid paraffin, and MIP in a 45:40:15(w/w %) ratio. The optimum conditions of creatinine analysis by differential pulse stripping voltammetry (DPSV) using the developed electrode were the accumulation potential -1000 mV during 90 s at pH 5. The precision of the method for 0.1-0.5 μlg/L creatinine was 88.7-96.3%, while the detection limit of this method was 0.0315 μlg/L. The accuracy compared by spectrophotometric method was 95.3-103.6%

  14. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    PubMed

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-08

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H.

  15. Cost-effective imprinting combining macromolecular crowding and a dummy template for the fast purification of punicalagin from pomegranate husk extract.

    PubMed

    Sun, Guang-Ying; Wang, Chao; Luo, Yu-Qin; Zhao, Yong-Xin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber

    2016-05-01

    The combination of molecular crowding and virtual imprinting was employed to develop a cost-effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin-imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid-phase extraction with the recovery of 85.3 ± 1.2%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane.

    PubMed

    Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Johansson, Niclas; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-05-01

    Molecularly imprinted polymers (MIPs) can be used as antibody mimics to develop robust chemical sensors. One challenging problem in using MIPs for sensor development is the lack of reliable conjugation chemistry that allows MIPs to be fixed on transducer surface. In this work, we study the use of epoxy silane to immobilize MIP nanoparticles on model transducer surfaces without impairing the function of the immobilized nanoparticles. The MIP nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model transducer surface is functionalized with a self-assembled monolayer of epoxy silane, which reacts with the core-shell MIP particles to enable straightforward immobilization. The whole process is characterized by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show that the MIP particles are immobilized uniformly on surface. The photoelectron spectroscopy results further confirm the action of each functionalization step. The molecular selectivity of the MIP-functionalized surface is verified by radioligand binding analysis. The particle immobilization approach described here has a general applicability for constructing selective chemical sensors in different formats. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template – “Plastic Antibodies”

    PubMed Central

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.

    2016-01-01

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870

  18. Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil.

    PubMed

    Bakas, Idriss; Ben Oujji, Najwa; Istamboulié, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2014-07-01

    A combination of molecular modelling and a screening of the library of non-imprinted polymers (NIPs) was used to identify acrylamide as a functional monomer with high affinity towards fenthion, organophosphate insecticide, which is frequently used in the treatment of olives. A good correlation was found between the screening tests and modelling of monomer-template interactions performed using a computational approach. Acrylamide-based molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) were thermally synthesised in dimethyl formamide (porogen) using ethylene glycol dimethacrylate as a cross-linker and 1,1-azo-bis (isobutyronitrile) as an initiator. The chemical and physical properties of the prepared polymers were characterised. The binding of fenthion by the polymers was studied using solvents with different polarities. The developed MIP showed a high selectivity towards fenthion, compared to other organophosphates (dimethoate, methidathion malalthion), and allowed extraction of fenthion from olive oil samples with a recovery rate of about 96%. The extraction of fenthion using MIPs was much more effective than traditional C18 reverse-phase solid phase extraction and allowed to achieve a low detection limit (LOD) (5 µg L(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Novel Biomimetic Tool for Assessing Vitamin K Status Based on Molecularly Imprinted Polymers.

    PubMed

    Eersels, Kasper; Diliën, Hanne; Lowdon, Joseph W; Steen Redeker, Erik; Rogosic, Renato; Heidt, Benjamin; Peeters, Marloes; Cornelis, Peter; Lux, Petra; Reutelingsperger, Chris P; Schurgers, Leon J; Cleij, Thomas J; van Grinsven, Bart

    2018-06-11

    Vitamin K was originally discovered as a cofactor required to activate clotting factors and has recently been shown to play a key role in the regulation of soft tissue calcification. This property of vitamin K has led to an increased interest in novel methods for accurate vitamin K detection. Molecularly Imprinted Polymers (MIPs) could offer a solution, as they have been used as synthetic receptors in a large variety of biomimetic sensors for the detection of similar molecules over the past few decades, because of their robust nature and remarkable selectivity. In this article, the authors introduce a novel imprinting approach to create a MIP that is able to selectively rebind vitamin K₁. As the native structure of the vitamin does not allow for imprinting, an alternative imprinting strategy was developed, using the synthetic compound menadione (vitamin K₃) as a template. Target rebinding was analyzed by means of UV-visible (UV-VIS) spectroscopy and two custom-made thermal readout techniques. This analysis reveals that the MIP-based sensor reacts to an increasing concentration of both menadione and vitamin K₁. The Limit of Detection (LoD) for both compounds was established at 700 nM for the Heat Transfer Method (HTM), while the optimized readout approach, Thermal Wave Transport Analysis (TWTA), displayed an increased sensitivity with a LoD of 200 nM. The sensor seems to react to a lesser extent to Vitamin E, the analogue under study. To further demonstrate its potential application in biochemical research, the sensor was used to measure the absorption of vitamin K in blood serum after taking vitamin K supplements. By employing a gradual enrichment strategy, the sensor was able to detect the difference between baseline and peak absorption samples and was able to quantify the vitamin K concentration in good agreement with a validation experiment using High-Performance Liquid Chromatography (HPLC). In this way, the authors provide a first proof of principle for

  20. Molecular imprinting of caffeine on cellulose/silica composite and its characterization

    NASA Astrophysics Data System (ADS)

    Gill, Rajinder Singh

    This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.

  1. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-01

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory.

  2. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2013-01-25

    This work presents the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate from olive oil. Computational simulations allowed selecting itaconic acid as the monomer showing the highest affinity towards dimethoate. Experimental validation confirmed modelling predictions and showed that the polymer based on IA as functional monomer and omethoate as template molecule displays the highest selectivity for the structurally similar pesticides dimethoate, omethoate and monocrotophos. Molecularly imprinted solid phase extraction (MISPE) method was developed and applied to the clean-up of olive oil extracts. It was found that the most suitable solvents for loading, washing and elution step were respectively hexane, hexane-dichloromethane (85:15%) and methanol. The developed MIPSE was successfully applied to extraction of dimethoate from olive oil, with recovery rates up to 94%. The limits of detection and quantification of the described method were respectively 0.012 and 0.05 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of β-blockers from complex samples.

    PubMed

    Hajizadeh, Solmaz; Xu, Changgang; Kirsebom, Harald; Ye, Lei; Mattiasson, Bo

    2013-01-25

    In this work, a new macroporous molecularly imprinted cryogel (MIP composite cryogel) was synthesized by glutaraldehyde cross-linking reaction of poly(vinyl alcohol) (PVA) particles and amino-modified molecularly imprinted core-shell nanoparticles. The MIP core-shell nanoparticles were prepared using propranolol as a template by one-pot precipitation polymerization with sequential monomer addition. The characteristics of the MIP composite cryogel were studied by scanning electron microscopy (SEM) and texture analyzer. The macroporous structure of the composite (with the pore size varying from a few micrometers to 100 μm) enabled high mass transfer of particulate-containing fluids. In a solid phase extraction (SPE) process, the efficiency and selectivity of the MIP composite cryogel were investigated, where the cryogel was used as an affinity matrix to remove propranolol from aqueous solution as well as from complex plasma sample without prior protein precipitation. The MIP composite cryogel maintained high selectivity and stability and could be used repeatedly after regeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.

    PubMed

    Liu, Jiang; Zhang, Yu; Jiang, Min; Tian, Liping; Sun, Shiguo; Zhao, Na; Zhao, Feilang; Li, Yingchun

    2017-05-15

    In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10 -6 -4×10 -4 M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10 -11 -4×10 -9 M with remarkably low detection limit of 8×10 -12 M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and Evaluation of a Molecularly Imprinted Polymer for the Determination of Metronidazole in Water Samples.

    PubMed

    de León-Martínez, L Díaz; Rodríguez-Aguilar, M; Ocampo-Pérez, R; Gutiérrez-Hernández, J M; Díaz-Barriga, F; Batres-Esquivel, L; Flores-Ramírez, R

    2018-03-01

    A molecularly imprinted polymer was developed and evaluated for selective determination of metronidazole (MNZ) in wastewater. This was achieved by using sodium methacrylate as monomer, toluene as porogen, ethylene glycol dimethacrylate as crosslinker, azobisisobutyronitrile as initiator and metronidazole as template molecule to generate the selectivity of the polymer for the compound, as well as non-imprinted polymers were synthesized. Two different polymerization approaches were used, bulk and emulsion and the polymers obtained by emulsion presented higher retention percentages the MIP 2-M presented the higher retention (83%). The performed method, was validated in fortified water, showing linearity from 10 up to 1000 ng/mL; limit of detection and quantification for compound were between 3 and 10 ng/mL, respectively. Finally, the method was applied in samples of a wastewater treatment plant in the city of San Luis Potosí, México, and the concentrations of MNZ in these samples were 84.1-114 ng/mL.

  6. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  7. Preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles for anti-Helicobacter pylori therapy.

    PubMed

    Wu, Zhihui; Hou, Jiapeng; Wang, Yuyan; Chai, Miaolin; Xiong, Yan; Lu, Weiyue; Pan, Jun

    2015-12-30

    This paper reports studies on preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles (Amo/Dual-MIPs) designed for anti-H. pylori therapy. Both MNQA and AmoNa were chosen as templates to prepare Dual-MIPs using inverse microemulsion polymerization method. NQA was modified with myristic acid (MNQA) to become amphiphilic and assist in leaving NQA cavities on the surface of Dual-MIPs for H. pylori adhesion. AmoNa was applied to produce imprinting sites in Dual-MIPs for rebinding AmoNa to exert its anti-H. pylori effect. Batch rebinding test demonstrated a preferential rebinding effect of NQA toward the Dual-MIPs. In vivofluorescence imaging showed the prolonged residence time of Dual-MIPs in H. pylori infected mice stomachs after intragastric administration of nanoparticles.In vivo H. pylori clearance tests indicated Amo/Dual-MIPs had a better aniti-H. pylori effect than amoxicillin powder did. In conclusion, Amo/Dual-MIPs may provide an alternative drug delivery strategy for anti-H. pylori therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. DETERMINATION OF OXALATE ION DOPANT LEVEL IN POLYPYRROLE USING FT-IR

    PubMed Central

    Benally, Kristal J.; GreyEyes, Shawn D.; McKenzie, Jason T.

    2014-01-01

    A pellet method using standard addition and FT-IR was used to estimate oxalate ion doping levels in electrosynthesized polypyrrole. The method is useful for materials where removal of analyte from an insoluble material is problematic. Here, electrosynthesized oxalate doped polypyrrole is dispersed in potassium bromide. Spikes of sodium oxalate are added and the mixtures pressed into pellets. The oxalate carbonyl absorption peak is then used to quantify the amount of oxalate present in the polypyrrole. The mass fraction of oxalate dopant in polypyrrole was determined to be 0.4 ± 0.1 % and coincides with the original synthesis solution composition. PMID:25598749

  9. Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.

    PubMed

    Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong

    2015-09-15

    A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    PubMed

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    PubMed Central

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  12. Solid-phase synthesis of molecularly imprinted nanoparticles.

    PubMed

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  13. Student award for outstanding research winner in the Ph.D. category for the 2017 society for biomaterials annual meeting and exposition, april 5-8, 2017, Minneapolis, Minnesota: Characterization of protein interactions with molecularly imprinted hydrogels that possess engineered affinity for high isoelectric point biomarkers.

    PubMed

    Clegg, John R; Zhong, Justin X; Irani, Afshan S; Gu, Joann; Spencer, David S; Peppas, Nicholas A

    2017-06-01

    Molecularly imprinted polymers (MIPs) with selective affinity for protein biomarkers could find extensive utility as environmentally robust, cost-efficient biomaterials for diagnostic and therapeutic applications. In order to develop recognitive, synthetic biomaterials for prohibitively expensive protein biomarkers, we have developed a molecular imprinting technique that utilizes structurally similar, analogue proteins. Hydrogel microparticles synthesized by molecular imprinting with trypsin, lysozyme, and cytochrome c possessed an increased affinity for alternate high isoelectric point biomarkers both in isolation and plasma-mimicking adsorption conditions. Imprinted and non-imprinted P(MAA-co-AAm-co-DEAEMA) microgels containing PMAO-PEGMA functionalized polycaprolactone nanoparticles were net-anionic, polydisperse, and irregularly shaped. MIPs and control non-imprinted polymers (NIPs) exhibited regions of Freundlich and BET isotherm adsorption behavior in a range of non-competitive protein solutions, where MIPs exhibited enhanced adsorption capacity in the Freundlich isotherm regions. In a competitive condition, imprinting with analogue templates (trypsin, lysozyme) increased the adsorption capacity of microgels for cytochrome c by 162% and 219%, respectively, as compared to a 122% increase provided by traditional bulk imprinting with cytochrome c. Our results suggest that molecular imprinting with analogue protein templates is a viable synthetic strategy for enhancing hydrogel-biomarker affinity and promoting specific protein adsorption behavior in biological fluids. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1565-1574, 2017. © 2017 Wiley Periodicals, Inc.

  14. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    PubMed

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.

    PubMed

    Attia, Nour F; Geckeler, Kurt E

    2013-06-13

    A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    PubMed

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  17. A virus resonance light scattering sensor based on mussel-inspired molecularly imprinted polymers for high sensitive and high selective detection of Hepatitis A Virus.

    PubMed

    Yang, Bin; Gong, Hang; Chen, Chunyan; Chen, Xiaoming; Cai, Changqun

    2017-01-15

    We described a novel resonance light scattering (RLS) sensor for the specific recognition of trace quantities of Hepatitis A Virus (HAV); the sensor was based on a mussel-inspired hepatitis molecularly imprinted polymer. As a recognition element, polydopamine (PDA)-coated totivirus-imprinted polymer was introduced on the surface of SiO 2 nanoparticles (virus-imprinted SiO 2 @PDA NPs) using an efficient one-step synthesis method. The target virus was selectively captured by the imprinted polymer films, thereby increasing the RLS intensity. A simple fluorescence spectrophotometer was employed to measure the changes in the intensity. The enhanced RLS intensity (∆I RLS ) was proportional to the concentration of HAV in the range of 0.04-6.0nmol∙L -1 , with a low limit of detection of 8.6pmol∙L -1 . The selectivity study confirmed that the resultant HAV-imprinted SiO 2 @PDA NPs possessed high selectivity for HAV. The sensor was successfully applied for the direct detection of additional HAV from a 20,000-fold dilution of human serum. The proposed strategy is simple, eco-friendly, highly selective, and sensitive. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    PubMed

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. © 2013 Elsevier B.V. All rights reserved.

  19. In Vivo Recognition of Human Vascular Endothelial Growth Factor by Molecularly Imprinted Polymers.

    PubMed

    Cecchini, Alessandra; Raffa, Vittoria; Canfarotta, Francesco; Signore, Giovanni; Piletsky, Sergey; MacDonald, Michael P; Cuschieri, Alfred

    2017-04-12

    One of the mechanisms responsible for cancer-induced increased blood supply in malignant neoplasms is the overexpression of vascular endothelial growth factor (VEGF). Several antibodies for VEGF targeting have been produced for both imaging and therapy. Molecularly imprinted polymer nanoparticles, nanoMIPs, however, offer significant advantages over antibodies, in particular in relation to improved stability, speed of design, cost and control over functionalization. In the present study, the successful production of nanoMIPs against human VEGF is reported for the first time. NanoMIPs were coupled with quantum dots (QDs) for cancer imaging. The composite nanoparticles exhibited specific homing toward human melanoma cell xenografts, overexpressing hVEGF, in zebrafish embryos. No evidence of this accumulation was observed in control organisms. These results indicate that nanoMIPs are promising materials which can be considered for advancing molecular oncological research, in particular when antibodies are less desirable due to their immunogenicity or long production time.

  20. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    PubMed

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.

  1. Multiwalled carbon nanotube based molecular imprinted polymer for trace determination of 2,4-dichlorophenoxyaceticacid in natural water samples using a potentiometric method

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Alexander, Sheeba

    2014-06-01

    A novel potentiometric sensor based on ion imprinted polymer inclusion membrane (IPIM) was prepared from the modification of multiwalled carbon nanotube (MWCNT) based molecularly imprinted polymer for the trace determination of the pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) in natural water samples. MWCNTs are initially functionalized with vinyl groups through nitric acid oxidation along with reacting by allylamine. MWCNT based imprinted polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the monomer, trimethylol propane trimethacrylate (TRIM) as the cross linker, α,α‧-azobisisobutyronitrile (AIBN) as the initiator and 2,4-D an organochlorine pesticide molecule as the template. Organized material was characterized by means of FTIR, XRD and SEM analyses. The sensing membrane was developed by the inclusion of 2,4-D imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The optimization of operational parameters normally used such as amount and nature of plasticizers sensing material, pH and response time was conducted. From the non-imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors the response behavior of 2,4-D was compared under optimum conditions. The IPIM sensor responds in the range of 1 × 10-9-1 × 10-5 M and the detection limit was found to be 1.2 × 10-9 M. The stability of MWCNT-IPIM sensor was checked by various methods and it is found to be 3 months and it can be reused many times without losing its sensitivity. For the application of sensor experiments with ground and tap water samples were performed.

  2. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water.

    PubMed

    Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan

    2014-07-15

    A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3mg/g and 35.2mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85-94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis of molecular imprinted polymers for selective extraction of domperidone from human serum using high performance liquid chromatography with fluorescence detection.

    PubMed

    Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam

    2016-08-01

    In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Biomimicry issues: the quest for sensing molecules at the origin of life using molecularly imprinter polymer

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Chehimi, Mohamed M.; Bakas, Idriss; Salmi, Zakaria; Mazerie, Isabelle; Floner, Didier; Geneste, Florence; Guerrouache, Mohamed

    The use of real time sensing analysis is becoming very popular in many applications and research areas such as, environment and agriculture for in situ monitoring of contaminants and food safety analysis, fundamental biology for studying for example protein-membrane interactions or drug discovery, health research for clinical diagnosis.[1] More recently, chip technology involving antibody-based detection system has been envisioned to search for life outside the Earth with a specific focus on Mars. [2] Sensors using such natural receptors are usually costly and suffer from the unstability of the surface-immobilized receptors. In this respect, the use of synthetic receptors appears as a very promising approach. Molecularly imprinting is undoubtedly one of the most promising approaches for designing biomimetic materials. In this respect, sensing microdevices based on molecularly imprinted polymers (MIPs) have attracted a great deal of interest over the recent years given their ability to recognize specifically and selectively molecules, proteins and even microorganisms, with excellent detection limits. MIPs can be prepared as powders, colloids and ultrathin films. The latter option is particularly interesting because it limits diffusion of the analytes to the artificial receptor sites within the sensing layers [3] and facilitates the making of nanostructured MIP grafts [4]. In addition, MIP sensing ultrathin layers are amenable to the detection of the analytes with varied transducing methods among which electrochemistry, a simple, versatile and easy to implement technique is very appealing to detect analytes concentrations in the picomolar or sub-picomolar range [5]. In this contribution, the important parameters in obtaining molecularly imprinted polymer layers grafted on gold working electrodes and exhibiting high sensitivity towards acid and base molecules are addressed. Square wave voltammetry is demonstrated to be a very powerful electroanalytical while the limit

  5. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  6. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    PubMed

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  7. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    PubMed Central

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  8. Three-phase molecularly imprinted sol-gel based hollow fiber liquid-phase microextraction combined with liquid chromatography-tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed

    2015-07-15

    In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples.

    PubMed

    Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia

    2009-08-15

    The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.

  10. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography.

    PubMed

    Yan, Hongyuan; Wang, Fang; Han, Dandan; Yang, Gengliang

    2012-06-21

    A highly selective molecularly imprinted solid-phase extraction (MISPE) combined with liquid chromatography-ultraviolet detection was developed for the simultaneous isolation and determination of four plant hormones including indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) in banana samples. The new molecularly imprinted microspheres (MIMs) prepared by aqueous suspension polymerization using 3-hydroxy-2-naphthoic acid and 1-methylpiperazine as mimic templates performed with high selectivity and affinity for the four plant hormones, and applied as selective sorbents of solid-phase extraction could effectively eliminate the interferences of the banana matrix. Good linearity was obtained in a range of 0.04-4.00 μg g(-1) and the recoveries of the four plant hormones at three spiked levels ranged from 78.5 to 107.7% with the relative standard deviations (RSD) of less than 4.6%. The developed MISPE-HPLC protocol obviously improved the selectivity and eliminated the effect of template leakage on quantitative analysis, and could be applied for the determination of plant hormones in complicated biological samples.

  11. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

    PubMed

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-15

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis of a novel molecularly imprinted organic-inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia.

    PubMed

    Yang, Xun; Wang, Ruiling; Wang, Weihua; Yan, Hongyuan; Qiu, Mande; Song, Yanxue

    2014-01-15

    A novel molecularly imprinted organic-inorganic hybrid polymer (MI-MAA/APTS) based on a dummy molecular imprinting technique and an organic-inorganic hybrid material technique was synthesised and used as a sorbent in solid-phase extraction for the selective isolation and determination of ofloxacin (OFL), lomefloxacin (LOM), and ciprofloxacin (CIP) in tilapia samples. The MI-MAA/APTS sorbent was prepared from 3-aminopropyltriethoxysilanes (APTS) as an inorganic source and methacrylic acid (MAA) as an organic source and exhibited high mechanical strength and special affinities to the analytes. A comparison of MI-MAA/APTS with other conventional sorbents (C18 and HLB) showed that MI-MAA/APTS displayed good selectivity and affinity for OFL, LOM, and CIP, and the recoveries of the analytes at three spiked levels were in the range of 85.1-101.0%, with the relative standard deviations ≤5.1%. The presented MI-MAA/APTS-SPE-HPLC method could be potentially applied to the determination of fluoroquinolones (FQs) in complex fish samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Dispersive solid-phase extraction based on magnetic dummy molecularly imprinted microspheres for selective screening of phthalates in plastic bottled beverages.

    PubMed

    Qiao, Jindong; Wang, Mingyu; Yan, Hongyuan; Yang, Gengliang

    2014-04-02

    A new magnetic dummy molecularly imprinted dispersive solid-phase extraction (MAG-MIM-dSPE) coupled with gas chromatography-FID was developed for selective determination of phthalates in plastic bottled beverages. The new magnetic dummy molecularly imprinted microspheres (MAG-MIM) using diisononyl phthalate as a template mimic were synthesized by coprecipitation coupled with aqueous suspension polymerization and were successfully applied as the adsorbents for MAG-MIM-dSPE to extract and isolate five phthalates from plastic bottled beverages. Validation experiments showed that the MAG-MIM-dSPE method had good linearity at 0.0040-0.40 μg/mL (0.9991-0.9998), good precision (3.1-6.9%), and high recovery (89.5-101.3%), and limits of detection were obtained in a range of 0.53-1.2 μg/L. The presented MAG-MIM-dSPE method combines the quick separation of magnetic particles, special selectivity of MIM, and high extraction efficiency of dSPE, which could potentially be applied to selective screening of phthalates in beverage products.

  14. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    PubMed Central

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982

  15. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    PubMed Central

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  16. Molecularly imprinted polymer for glutathione by modified precipitation polymerization and its application to determination of glutathione in supplements.

    PubMed

    Nakamura, Yukari; Masumoto, Shizuka; Matsunaga, Hisami; Haginaka, Jun

    2017-09-10

    Molecularly imprinted polymers (MIP) particles for glutathione (GSH) with a narrow particle size distribution were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and water as a co-solvent. The particle diameters of the MIP and non-imprinted polymer (NIP) prepared under the optimum conditions were 3.81±0.95 (average±standard deviation) and 3.39±1.22μm, respectively. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of acetonitrile and water as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of GSH was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of GSH on the MIP. The MIP had a specific molecular-recognition ability for GSH, while glutathione disulfide, l-Glu, l-Cys, Gly-Gly and l-Cys-Gly could not be retained or recognized on the MIP. The effect of column temperature revealed that the separation of GSH on the MIP was entropically driven. Binding experiments and Scatchard analyses revealed that one binding sites were formed on both the MIP and NIP, while the MIP gave higher affinity and capacity for GSH than the NIP. Furthermore, the MIP was successfully applied for determination of GSH in the supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of polypyrrole grafted chitin

    NASA Astrophysics Data System (ADS)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  18. Grafting molecularly imprinted poly(2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres

    NASA Astrophysics Data System (ADS)

    Yang, Yongzhen; Zhang, Yan; Li, Sha; Liu, Xuguang; Xu, Bingshe

    2012-06-01

    Poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) was grafted on the surface of carbon microspheres (CMSs), which were modified in prior by a mixed acid (HNO3 and H2SO4) oxidation and 3-methacryloxypropyl trimethoxysilane silanization. Then, the molecularly imprinting polymerization was carried out towards the macromolecule PAMPS grafted on the surface of CMSs using dibenzothiophene (DBT) as template, ethylene dimethacrylate as cross-linking agent and (NH4)2S2O8 (APS) as initiator to prepare surface molecularly imprinted polymer (MIP-PAMPS/CMSs) for adsorbing DBT. The optimized conditions of grafting PAMPS, including AMPS dosage, APS content, reaction temperature and reaction time, were emphasized in this paper. The morphology of the samples was characterized by field emission scanning electron microscopy. The functional groups were analyzed qualitatively by Fourier transform infrared spectrometry. The grafting degree of PAMPS was investigated by thermogravimetry. The results show that the preferable AMPS dosage, APS content, reaction temperature and time were 5 g, 0.15 g, 70 °C and 12 h, respectively, for preparing PAMPS/CMSs composite on the basis of 1.0 g of silanized-CMSs. The absorbing characteristic of MIP-PAMPS/CMSs toward DBT was studied preliminarily with dynamic adsorption. In the experiment of dynamic adsorption, MIP-PAMPS/CMSs and non-imprinted polymer (NIP-PAMPS/CMSs) were compared with respect to their rapid adsorption in 1 mmol/L of DBT solution in n-hexane. When the first 1 mL of 1 mmol/L DBT solution was injected and flowed through a column packed with 0.1 g of MIP-PAMPS/CMSs, the content of DBT reduced to 0.265 mmol/L, that is, decreased significantly from 279 to 74 ppm. When 3 mL of DBT solution was flowed through the packed column, the adsorption of MIP-PAMPS/CMSs toward DBT reached saturation with the maximum adsorption amount of 1.38 × 10-2 mmol/g and the overall adsorption efficiency of 46%, while NIP-PAMPS/CMSs adsorbed only 1.66

  19. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO2 thin films functionalized with molecularly imprinted copolymer films

    NASA Astrophysics Data System (ADS)

    Lazau, Carmen; Iordache, Tanta-Verona; Florea, Ana-Mihaela; Orha, Corina; Bandas, Cornelia; Radu, Anita-Laura; Sarbu, Andrei; Rotariu, Traian

    2016-10-01

    In this study, TiO2 films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl4 as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO2 film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO2 films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO2 films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO2 film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  20. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    PubMed

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  1. Molecularly imprinted nanomicrospheres as matrix solid-phase dispersant combined with gas chromatography for determination of four phosphorothioate pesticides in carrot and yacon.

    PubMed

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05-17.0 ng·g(-1) with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g(-1) in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4-105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples.

  2. Molecularly Imprinted Nanomicrospheres as Matrix Solid-Phase Dispersant Combined with Gas Chromatography for Determination of Four Phosphorothioate Pesticides in Carrot and Yacon

    PubMed Central

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05–17.0 ng·g−1 with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g−1 in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4–105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples. PMID:25954569

  3. Analysis of Benzo[a]pyrene in Vegetable Oils Using Molecularly Imprinted Solid Phase Extraction (MISPE) Coupled with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Pschenitza, Michael; Hackenberg, Rudolf; Niessner, Reinhard; Knopp, Dietmar

    2014-01-01

    This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ∼32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. PMID:24887045

  4. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol.

    PubMed

    Yuan, Lihua; Zhang, Jun; Zhou, Ping; Chen, Jiaxing; Wang, Ruoyu; Wen, Tingting; Li, Yun; Zhou, Xuemin; Jiang, Huijun

    2011-11-15

    In this paper, an electrochemical sensor for 17β-estradiol (E2) based on the molecular imprinting polymer (MIP) membranes had been constructed. 6-mercaptonicotinic acid (MNA) and E2 were first assembled on the surface of platinum nanoparticles-modified glassy carbon electrode (PtNPs/GCE) by the formation of Pt-S bonds and hydrogen-bonding interactions, and subsequently the polymer membranes were formed by electropolymerization. Finally, a novel molecularly imprinted sensor (MIS) was obtained after removal of E2. Experimental parameters such as deposition time, scan cycles, pH value and accumulation condition were optimized. Under optimal conditions, the MIS exhibited a large adsorption capacity and high selectivity. A good linearity was obtained in the range of 3.0×10(-8)-5.0×10(-5)molL(-1) (r=0.996) with an estimated detection limit of 1.6×10(-8)molL(-1). MIS had been successfully used to analyze E2 in water samples without complex pretreatment. Meanwhile, the average recoveries were higher than 93.9% with RSD<3.7%. All results above reveal that MIS is an effective electrochemical technique to determine E2 real-time in complicated matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer.

    PubMed

    Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava

    2005-12-01

    Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.

  6. TD-M06-2X insights into the absorption and emission spectra of dichlorvos and its molecularly imprinted recognition by methacrylic acid.

    PubMed

    Cheng, Xueli

    2016-11-01

    The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.

  7. Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan-graphene composite film modified electrode.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Kuang, Yunfei

    2014-08-15

    Herein, a novel electrochemical sensor based on an acetylene black paste electrode modified with molecularly imprinted chitosan-graphene composite film for sensitive and selective detection of bisphenol A (BPA) has been developed. Several important parameters controlling the performance of the sensor were investigated and optimised. The imprinted sensor offers a fast response and sensitive BPA quantification. Under the optimal conditions, a linear range from 8.0 nM to 1.0 μM and 1.0 to 20 μM for the detection of BPA was observed with the detection limit of 6.0 nM (S/N=3). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, this imprinted electrochemical sensor was successfully employed to detect BPA in plastic bottled drinking water and canned beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of a flame retardant hydrolysis product in human urine by SPE and LC-MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger.

    PubMed

    Möller, Kristina; Crescenzi, Carlo; Nilsson, Ulrika

    2004-01-01

    Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective, but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC-ESI-MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC-ESI-MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC-ESI-MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08-20 ng microL(-1).

  9. Rational computational design for the development of andrographolide molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor

    2017-10-01

    Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.

  10. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  11. Effective determination of a pharmaceutical, sulpiride, in river water by online SPE-LC-MS using a molecularly imprinted polymer as a preconcentration medium.

    PubMed

    Kubo, Takuya; Kuroda, Kenta; Tominaga, Yuichi; Naito, Toyohiro; Sueyoshi, Kenji; Hosoya, Ken; Otsuka, Koji

    2014-02-01

    We report an effective and a quantitative analysis method for one of pharmaceuticals, sulpiride, in river water by online solid phase extraction (SPE) connected with liquid chromatography-mass spectrometry (LC-MS) using a molecularly imprinted polymer as a preconcentration medium. The polymer prepared with a pseudo template molecule showed the selective retention ability based on the interval recognition of functional groups in sulpiride. Also, the imprinted polymer provided an effective concentration of a trace level of sulpiride in offline SPE with dual washing processes using water and acetonitrile, although another imprinted polymer prepared by an authentic method using sulpiride and methacrylic acid as a template and a functional monomer, respectively, showed the selective adsorption only in organic solvents. Furthermore, we employed the imprinted polymer as the preconcentration column of online SPE-LC-MS and the results supposed that the proposed system allowed the quantitative analysis of sulpiride with high sensitivity and recovery (10ng/L at 96%). Additionally, the determination of sulpiride in real river water without an additional spiking was effectively achieved by the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers.

    PubMed

    Bunte, Gudrun; Hürttlen, Jürgen; Pontius, Heike; Hartlieb, Kerstin; Krause, Horst

    2007-05-15

    Fast, reliable and inexpensive analytical techniques for trace detection of explosive components are in high demand. Our approach is to develop specific sensor coating materials based on molecularly imprinted polymers (MIPs). Despite the known inhibition of radical polymerisations by nitro groups and the known shrinkage of the polymer lattice during/after drying we were able to synthesize particulate MIPs by suspension polymerisation as well as thin MIP coatings by direct surface polymerisation on quartz crystal microbalances (QCM). The best method to purify the porous beads was Soxhlet extraction followed by supercritical carbon dioxide extraction (SFE with sc-CO2) at mild conditions (150 bar, 50 degrees C). At least a removal of >99.7% of the template was achieved. Performance tests of TNT imprinted polymer beads showed that acrylamide (AA) and more pronounced also methacrylic acid (MAA) possessed an enhanced adsorption tendency for gaseous TNT. An adsorption of 2,4-DNT, dinitrotoluene, by these MIPs was not detected. Using 2,4-DNT as template and methacrylamide, MAAM, a positive imprint effect for gaseous 2,4-DNT was achieved with no measurable cross-sensitivity for 2,4,6-TNT. The thin MIP coatings directly synthesized on the QCMs showed thicknesses of 20 to up to 500 nm. Preliminary screening experiments were performed for five different monomers and three different solvents (acetonitrile, chloroform and dimethylformamide). Best adsorption properties for TNT vapour until now showed a PAA-MIP synthesized with chloroform. Direct measurements of the mass attachment, respectively frequency decrease of the coated QCMs during vapour treatment showed a TNT-uptake of about 150 pg per microg MIP per hour. Results look worthy for further studies.

  13. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    PubMed

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  14. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors

    PubMed Central

    Storer, Christopher S.; Coldrick, Zachary; Donoghue, Jack Marsden

    2018-01-01

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP. PMID:29439386

  15. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    PubMed

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such

  16. Identification of an Imprinted Gene Cluster in the X-Inactivation Center

    PubMed Central

    Kobayashi, Shin; Totoki, Yasushi; Soma, Miki; Matsumoto, Kazuya; Fujihara, Yoshitaka; Toyoda, Atsushi; Sakaki, Yoshiyuki; Okabe, Masaru; Ishino, Fumitoshi

    2013-01-01

    Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development. PMID:23940725

  17. Identification of an imprinted gene cluster in the X-inactivation center.

    PubMed

    Kobayashi, Shin; Totoki, Yasushi; Soma, Miki; Matsumoto, Kazuya; Fujihara, Yoshitaka; Toyoda, Atsushi; Sakaki, Yoshiyuki; Okabe, Masaru; Ishino, Fumitoshi

    2013-01-01

    Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs-miR-374-5p and miR-421-3p-mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.

  18. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing

    2014-09-05

    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  20. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  1. Determination of semicarbazide in fish by molecularly imprinted stir bar sorptive extraction coupled with high performance liquid chromatography.

    PubMed

    Tang, Tang; Wei, Fangdi; Wang, Xu; Ma, Yujie; Song, Yueyue; Ma, Yunsu; Song, Quan; Xu, Guanhong; Cen, Yao; Hu, Qin

    2018-02-15

    A novel molecularly imprinted stir bar (MI-SB) for sorptive extraction of semicarbazide (SEM) was prepared in present paper. The coating of the stir bar was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic adsorption and static adsorption tests. The saturated adsorption of MI-SB was about 4 times over that of non-imprinted stir bar (NI-SB). The selectivity of MI-SB for SEM was much better than NI-SB. A method to determine SEM was established by coupling MI-SB sorptive extraction with HPLC-UV. The liner range was 1-100ng/mL for SEM with a correlation coefficient of 0.9985. The limit of detection was about 0.59ng/mL, which was below the minimum required performance limit of SEM in meat products regulated by European Union. The method was applied to the determination of SEM in fish samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin.

    PubMed

    Shumyantseva, Victoria V; Bulko, Tatiana V; Sigolaeva, Larisa V; Kuzikov, Alexey V; Archakov, Alexander I

    2016-12-15

    Electrosynthesis of molecularly imprinted polymer (MIP) templated with myoglobin (Mb) and the reference non-imprinted polymer (NIP) was examined with o-phenylenediamine (o-PD) as a monomer. Mass-sensitive quartz crystal microbalance with dissipation monitoring supplied by an electrochemical module (EQCM-D) was applied to characterize and optimize MIP/NIP electrosynthesis. Mb rebinding was detected by direct electrocatalytic reduction of Mb by square wave voltammetry (SWV) or differential pulse voltammetry (DPV). The results obtained showed high specificity of polymeric antibodies to template Mb, with an imprinting factor determined as a ratio Imax(MIP)/Imax(NIP) of 2-4. The prepared MIP sensor is characterized by an apparent dissociation constant of (3.3±0.5)×10(-9)M and has a broad range of working concentrations of 1nM-1μМ, with the detection limit of 0.5nM (9ng/ml). Mb rebinding was examined in Mb-free diluted human serum spiked with Mb as well as in plasma samples of patients with acute myocardial infarction (AMI) and in control plasma of healthy donors in order to demonstrate the potential medical application of developed MIP sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DNA Based Molecular Scale Nanofabrication

    DTIC Science & Technology

    2015-12-04

    structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing

  4. Preparation of l-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of l-phenylalanine from human urine.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan

    2016-05-01

    A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water.

    PubMed

    Li, Jin; Zhang, Xuebin; Liu, Yuxin; Tong, Hongwu; Xu, Yeping; Liu, Shaomin

    2013-12-15

    In this paper, a highly selective sample cleanup procedure combing dummy molecular imprinting and solid-phase extraction (DMIP-SPE) was developed for the isolation and determination of bisphenol A (BPA) in tap water. The novel hollow porous dummy molecularly imprinted polymer (HPDMIP) was prepared adopting a sacrificial support approach, using tetrabromobisphenol A (TBBPA), whose structure was similar to that of BPA, as the dummy template and mesoporous MCM-48 nanospheres as the support. Owing to a very short distance between the binding sites and the surface, a large surface area and a good steric structure to match its imprint molecules, the maximum adsorption capacities (Qmax) of the dummy-imprinted and non-imprinted sorbents for BPA were as high as 445 and 340 μmol g(-1), respectively, and the adsorption reached about 73% of Qmax in 10 min. Meanwhile, a method was developed for the determination of BPA using HPDMIP as a solid-phase extraction enrichment sorbent coupled with HPLC. Under the optimum experimental conditions, HPDMIP exhibited satisfactory results in the enrichment and determination of BPA in tap water with a recovery rate of 95-105%, and relative standard deviations of below 6%, and it can achieve a limit of detection as low as 3 ng mL(-1). The developed extraction protocol eliminated the effect of template leakage on quantitative analysis and could be applied for the determination of BPA in complicated functional samples. © 2013 Elsevier B.V. All rights reserved.

  6. Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in beer, red wine, and grape juice.

    PubMed

    Cao, Jiliang; Kong, Weijun; Zhou, Shujun; Yin, Lihui; Wan, Li; Yang, Meihua

    2013-04-01

    A simple, reliable, and low-cost method based on molecularly imprinted polymer as a selective sorbent of SPE was proposed for the determination of ochratoxin A (OTA) in beer, red wine, and grape juice by HPLC coupled with fluorescence detection (HPLC-FLD). Samples were diluted with water and cleaned up with an AFFINIMIP® SPE OTA column. After washing and eluting, the analyte was analyzed by HPLC-FLD. Under the optimized conditions, LOD and LOQ for OTA were 0.025 and 0.08 ng/mL, respectively. The recoveries of OTA from beer, red wine, and grape spiked at 0.1, 2, and 5 ng/mL ranged from 91.6 to 101.7%. Furthermore, after a simple regenerated procedure, the molecularly imprinted polymer based SPE column could be reused at least 14 times to achieve more than 80% recoveries of OTA in real samples. The developed method was applied to the detection of 30 beer, red wine, and grape juice samples and only four samples were contaminated by OTA with levels below the legal limits. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.

    PubMed

    Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao

    2017-12-29

    Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole

    NASA Technical Reports Server (NTRS)

    Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.

    1988-01-01

    Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.

  9. A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole

    NASA Technical Reports Server (NTRS)

    Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.

    1987-01-01

    Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.

  10. Porous and magnetic molecularly imprinted polymers via Pickering high internal phase emulsions polymerization for selective adsorption of λ-cyhalothrin

    NASA Astrophysics Data System (ADS)

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu

    2017-03-01

    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in approximately 2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 µmol g-1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.

  11. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin.

    PubMed

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu

    2017-01-01

    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g -1 . Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.

  12. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin

    PubMed Central

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu

    2017-01-01

    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC. PMID:28401145

  13. Reduced graphene oxide/molecular imprinted polymer-organic thin film transistor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.

    2017-03-01

    This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.

  14. Soft-Template Construction of 3D Macroporous Polypyrrole Scaffolds.

    PubMed

    Liu, Shaohua; Wang, Faxing; Dong, Renhao; Zhang, Tao; Zhang, Jian; Zheng, Zhikun; Mai, Yiyong; Feng, Xinliang

    2017-04-01

    A bottom-up approach toward 3D hierarchical macroporous polypyrrole aerogels is demonstrated via soft template-directed synthesis and self-assembly of ultrathin polypyrrole nanosheets in solution, which present interconnected macropores, ultrathin walls, and large specific surface areas, thereby exhibiting a high capacity, satisfactory rate capability, and excellent cycling stability for Na-ion storage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecularly imprinted solid-phase extraction for determination of tilmicosin in feed using high performance liquid chromatography.

    PubMed

    Zheng, Yaqiu; Liu, Yahong; Guo, Hongbin; He, Limin; Fang, Binghu; Zeng, Zhenling

    2011-04-01

    A simple, sensitive and reproducible molecularly imprinted solid-phase extraction (MISPE) coupled with high performance liquid chromatographic method was developed for monitoring tilmicosin in feeds. The polymers were prepared using tylosin as mimic template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linking monomer, and chloroform as a solvent by bulk polymerization. Under the optimum MISPE conditions, the novel polymer sorbent can selectively extract and enrich tilmicosin from variety of feeds. The MISPE cartridge was better than non-imprinted, C(18) and HLB cartridges in terms of both recovery and precision. Mean recoveries of tilmicosin from five kinds of feeds spiked at 1, 10 and 50 mg kg(-1) ranged from 76.9% to 95.6%, with intra-day and inter-day relative standard deviation less than 7.6%. The linearity was ranged from 1.0 to 100 mg L(-1) for matrix standard solution (r=0.9990). The limit of detection was approximately 0.35 mg kg(-1) and the limit of quantification was approximately 0.98 mg kg(-1). There was cleaner chromatogram by using MISPE than C(18) and HLB SPE. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.

    PubMed

    Luo, Qiaohui; Yu, Neng; Shi, Chunfei; Wang, Xiaoping; Wu, Jianmin

    2016-12-01

    A surface plasmon resonance (SPR) sensor combined with nanoscale molecularly imprinted polymer (MIP) film as recognition element was developed for selective detection of the antibiotic ciprofloxacin (CIP). The MIP film on SPR sensor chip was prepared by in situ photo-initiated polymerization method which has the advantages of short polymerization time, controllable thickness and good uniformity. The surface wettability and thickness of MIP film on SPR sensor chip were characterized by static contact angle measurement and stylus profiler. The MIP-SPR sensor exhibited high selectivity, sensitivity and good stability for ciprofloxacin. The imprinting factors of the MIP-SPR sensor to ciprofloxacin and its structural analogue ofloxacin were 2.63 and 3.80, which is much higher than those to azithromycin, dopamine and penicillin. The SPR response had good linear relation with CIP concentration over the range 10 -11 -10 -7 molL -1 . The MIP-SPR sensor also showed good repeatability and stability during cyclic detections. On the basis of the photo-initiated polymerization method, a surface plasmon resonance imaging (SPRi) chip modified with three types of MIP sensing spots was fabricated. The MIPs-SPRi sensor shows different response patterns to ciprofloxacin and azithromycin, revealing the ability to recognize different antibiotic molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine.

    PubMed

    Zeng, Yanbo; Zhou, Ying; Kong, Lei; Zhou, Tianshu; Shi, Guoyue

    2013-07-15

    A novel imprinting route based on graphene oxide (GO) was proposed for preparing a composite of SiO2-coated GO and molecularly imprinted polymers (GO/SiO2-MIPs). In this route, SiO2-coated GO sheets were synthesized in a water-alcohol mixture with sol-gel technique. Prior to polymerization, the vinyl groups were introduced onto the surface of GO/SiO2 through chemical modification with γ-methacryloxypropyl trimethoxysilane (γ-MAPS), which can direct the selective polymerization on the GO/SiO2 surface. Then a novel composite of GO/SiO2-MIPs was successfully obtained by the copolymerization in presence of vinyl groups functionalized GO/SiO2, dopamine (DA), methacrylic acid and ethylene glycol dimethacrylate. The GO/SiO2-MIPs composite was characterized by FTIR, TGA, Raman spectroscopy, SEM and AFM. The properties such as special binding, adsorption dynamics and selective recognition ability using differential pulse voltammetry (DPV) were evaluated. The DPV current response of GO/SiO2-MIPs sensor was nearly 3.2 times that of the non-imprinted polymers (NIPs). In addition, the GO/SiO2-MIPs sensor could recognize DA from its relatively similar molecules of norepinephrine and epinephrine, while the sensors based on GO/SiO2-NIPs and vinyl groups functionalized GO/SiO2 did not have the ability. The GO/SiO2-MIPs sensor had a wide linear range over DA concentration from 5.0 × 10(-8) to 1.6 × 10(-4)M with a detection limit of 3.0 × 10(-8)M (S/N=3). The sensor based on this novel imprinted composite was applied to the determination of DA in injections and human urine samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Molecularly imprinted phloroglucinol-formaldehyde-melamine resin prepared in a deep eutectic solvent for selective recognition of clorprenaline and bambuterol in urine.

    PubMed

    Liang, Shiru; Yan, Hongyuan; Cao, Jiankun; Han, Yehong; Shen, Shigang; Bai, Ligai

    2017-01-25

    A new molecularly imprinted phloroglucinol-formaldehyde-melamine resin (MIPFMR) was synthesized in a deep eutectic solvent (DES) using phenylephrine as a dummy template. The MIPFMR was used as a solid phase extraction (SPE) sorbent for the selective isolation and recognition of clorprenaline (CLP) and bambuterol (BAM) in urine. Phloroglucinol and melamine were used as double functional monomers that introduced abundant hydrophilic groups (such as hydroxyl groups, imino groups, and ether linkages) into the MIPFMR, making it compatible with aqueous solvents. In addition, the formation of DES by combining the quaternary ammonium salt of choline chloride with ethylene glycol as a hydrogen bond donor was an environmentally safe alternative to toxic organic solvents such as chloroform and dimethylsulfoxide that are typically used in the preparation of most molecularly imprinted polymers (MIPs). Moreover, MIPFMR-based SPE of CLP and BAM in urine resulted in higher recoveries and purer extracts than those obtained by using other SPE materials (e.g., SCX, C 18 , HLB, and non-imprinted phloroglucinol-formaldehyde-melamine resin (NIPFMR)). The optimized MIPFMR-SPE-HPLC-UV method had good linearity (r 2  ≥ 0.9996) ranging from 15.0 to 3000.0 ng mL -1 for CLP and BAM, and the recoveries at three spiked levels ranged from 91.7% to 100.1% with RSDs ≤7.6%. The novel MIPFMR-SPE-HPLC-UV method is simple, selective, and accurate, and can be used for the determination of CLP and BAM in urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation.

    PubMed

    Guerreiro, J Rafaela L; Teixeira, Natércia; De Freitas, Victor; Sales, M Goreti F; Sutherland, Duncan S

    2017-10-15

    Wine astringency was evaluated based on the interaction of two complex matrices (red wine and saliva) by combining localized surface plasmon resonance (LSPR) and molecular imprinted polymers (MIP) at gold nanodisks as an alternative to sensorial analysis. The main objective of the work was to simulate wine astringency inside the mouth by mimicking this biological system. The LSPR/MIP sensor provided a linear response for astringency expressed in pentagalloyl glucose (PGG) units in concentrations ranging from 1 to 140μmol/L. The sensor was also applied to wine samples correlating well with sensorial analysis obtained by a trained panel. The correlation of astringency and wine composition was also evaluated showing that anthocyanins may have an important role, not only for pigmentation but also in astringency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran.

    PubMed

    Li, Shuhuai; Li, Jianping; Luo, Jinhui; Xu, Zhi; Ma, Xionghui

    2018-05-11

    An electrochemical microfluidic chip is described for the determination of the insecticide carbofuran. It is making use of a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. The analyte (carbofuran) is transported to the MIP and captured at the identification site in the channel. Then, carbofuran is eluted with carbinol-acetic acid and transported to the DNA aptamer on the testing position of the chip. It is captured again, this time by the aptamer, and detected by differential pulse voltammetry (DPV). The dual recognition (by aptamer and MIP) results in outstanding selectivity. Additionally, graphene oxide-supported gold nanoparticles (GO-AuNPs) were used to improve the sensitivity of electrochemical detector. DPV response is linear in the 0.2 to 50 nM carbofuran concentration range at a potential of -1.2 V, with a 67 pM detection limit. The method has attractive features such as its potential for high throughput, high degree of automation, and high integration. Conceivably, the method may be extended to other analytes for which appropriate MIPs and aptamers are available. Graphical abstract Schematic of an electrochemical microfluidic chip for carbofuran detection based on a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. In the chip, targets were recognized by MIP and aptamer, respectively. It shows promising potential for the design of electrochemical devices with high throughput, high automation, and high integration.

  2. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    PubMed

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N + atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  4. Polypyrrole Actuator Based on Electrospun Microribbons.

    PubMed

    Beregoi, Mihaela; Evanghelidis, Alexandru; Diculescu, Victor C; Iovu, Horia; Enculescu, Ionut

    2017-11-01

    The development of soft actuators by using inexpensive raw materials and straightforward fabrication techniques, aiming at creating and developing muscle like micromanipulators, represents an important challenge nowadays. Providing such devices with biomimetic qualities, for example, sensing different external stimuli, adds even more complexity to the task. We developed electroactive polymer-coated microribbons that undergo conformational changes in response to external physical and chemical parameters. These were prepared following three simple steps. During the first step nylon-6/6 microribbons were fabricated by electrospinning. In a second step the microribbons were one side coated with a metallic layer. Finally, a conducting layer of polypyrrole was added by means of electrochemical deposition. Strips of polypyrrole-coated aligned microribbon meshes were tested as actuators responding to current, pH, and temperature. The electrochemical activity of the microstructured actuators was investigated by recording cyclic voltammograms. Chronopontentiograms for specific current, pH, and temperature values were obtained in electrolytes with different compositions. It was shown that, upon variation of the external stimulus, the actuator undergoes conformational changes due to the reduction processes of the polypyrrole layer. The ability of the actuator to hold and release thin wires, and to collect polystyrene microspheres from the bottom of the electrochemical cell, was also investigated.

  5. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    PubMed

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  6. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    NASA Astrophysics Data System (ADS)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  7. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures.

    PubMed

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-06

    Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  8. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination.

    PubMed

    Khodadadian, Mehdi; Ahmadi, Farhad

    2010-06-15

    Molecularly imprinted polymers (MIPs) were computationally designed and synthesized for the selective extraction of a carbonic anhydrase inhibitor, i.e. acetazolamide (ACZ), from human plasma. Density functional theory (DFT) calculations were performed to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation. The interaction energies were corrected for the basis set superposition error (BSSE) using the counterpoise (CP) correction. The polymerization solvent was simulated by means of polarizable continuum model (PCM). It was found that acrylamide (AAM) is the best candidate to prepare MIPs. To confirm the results of theoretical calculations, three MIPs were synthesized with different functional monomers and evaluated using Langmuir-Freundlich (LF) isotherm. The results indicated that the most homogeneous MIP with the highest number of binding sites is the MIP prepared by AAM. This polymer was then used as a selective adsorbent to develop a molecularly imprinted solid-phase extraction procedure followed by differential pulse voltammetry (MISPE-DPV) for clean-up and determination of ACZ in human plasma.

  9. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Liu, Qingying; Zhang, Meiyu; Meng, Chenying; Li, Jiufeng; He, Limin

    2016-10-01

    A simple and sensitive method based on molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry was developed for the determination of the residues of ten macrolide drugs in swine, cattle and chicken muscles samples. The molecularly imprinted polymers (MIPs) were synthesized using tylosin as a template and methacrylic acid as a functional monomer. Samples were extracted with sodium borate buffer solution and ethyl acetate, and purified by the MIP cartridge. The results showed that the cartridge exhibited good recognition performance for macrolides, and better purification effect than the traditional solid-phase extraction cartridges. Recoveries of analytes at three spiking levels 1, 5 and 20μgkg(-1) ranged from 60.7% to 100.3% with the relative standard deviations less than 14%. The limits of detection of the method were between 0.1 and 0.4μgkg(-1). The method is useful for the routine monitoring of the residues of macrolide drugs in animal muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Selectivity mapping of the binding sites of (E)-resveratrol imprinted polymers using structurally diverse polyphenolic compounds present in Pinot noir grape skins.

    PubMed

    Hashim, Shima N N S; Schwarz, Lachlan J; Danylec, Basil; Potdar, Mahesh K; Boysen, Reinhard I; Hearn, Milton T W

    2016-12-01

    This investigation describes a general procedure for the selectivity mapping of molecularly imprinted polymers, using (E)-resveratrol-imprinted polymers as the exemplar, and polyphenolic compounds present in Pinot noir grape skin extracts as the test compounds. The procedure is based on the analysis of samples generated before and after solid-phase extraction of (E)-resveratrol and other polyphenols contained within the Pinot noir grape skins using (E)-resveratrol-imprinted polymers. Capillary reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionisation tandem mass spectrometry (ESI MS/MS) was then employed for compound analysis and identification. Under optimised solid-phase extraction conditions, the (E)-resveratrol-imprinted polymer showed high binding affinity and selectivity towards (E)-resveratrol, whilst no resveratrol was bound by the corresponding non-imprinted polymer. In addition, quercetin-3-O-glucuronide and a dimer of catechin-methyl-5-furfuraldehyde, which share some structural features with (E)-resveratrol, were also bound by the (E)-resveratrol-imprinted polymer. Polyphenols that were non-specifically retained by both the imprinted and non-imprinted polymer were (+)-catechin, a B-type procyanidin and (-)-epicatechin. The compounds that did not bind to the (E)-resveratrol molecularly imprinted polymer had at least one of the following molecular characteristics in comparison to the (E)-resveratrol template: (i) different spatial arrangements of their phenolic hydroxyl groups, (ii) less than three or more than four phenolic hydroxyl groups, or (iii) contained a bulky substituent moiety. The results show that capillary RP-HPLC in conjunction with ESI MS/MS represent very useful techniques for mapping the selectivity of the binding sites of imprinted polymer. Moreover, this procedure permits performance monitoring of the characteristics of molecularly imprinted polymers intended for solid-phase extraction of bioactive and

  11. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection.

    PubMed

    Kechagia, Maria; Samanidou, Victoria; Kabir, Abuzar; Furton, Kenneth G

    2018-02-01

    A highly selective molecularly imprinted polymer sorbent was synthesized and employed for the simultaneous determination of six sulfonamide antibiotic residues (sulfanilamide, sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, and sulfamethizole) in milk samples. Multi-analyte imprinted particles were used as a sorbent in solid-phase extraction. Sulfonamides were separated on a high-performance liquid chromatography column (Merck-Lichrospher RP18e, 5 μm 250 × 4 mm) and further identified and quantified by diode array detection. Several parameters including required loading of the molecularly imprinted polymer sorbent, mass of milk, volume, and type of elution solvent, as well as time for absorption and elution were investigated to obtain optimal experimental conditions. For comparison purpose, a non-imprinted polymer was applied under the optimum conditions. The validation study according to the European Union Decision 2002/657/EC was based on the investigation of linearity, selectivity, stability, limits of detection and quantitation, decision limit, detection capability, trueness, precision, and ruggedness according to Youden's approach. The decision limit and detection capability values in the milk were achieved from 101.9 to 113.5 μg/kg and from 114.4 to 135.4 μg/kg, respectively, depending on the target sulfonamide drug. Finally, the optimized protocol was successfully applied to commercial milk samples and human breast milk. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food.

    PubMed

    Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang

    2015-03-15

    Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. New Secondary Batteries Utilizing Electronically Conductive Polypyrrole Cathode. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yeu, Taewhan

    1991-01-01

    To gain a better understanding of the dynamic behavior in electronically conducting polypyrroles and to provide guidance toward designs of new secondary batteries based on these polymers, two mathematical models are developed; one for the potentiostatically controlled switching behavior of polypyrrole film, and one for the galvanostatically controlled charge/discharge behavior of lithium/polypyrrole secondary battery cell. The first model is used to predict the profiles of electrolyte concentrations, charge states, and electrochemical potentials within the thin polypyrrole film during switching process as functions of applied potential and position. Thus, the detailed mechanisms of charge transport and electrochemical reaction can be understood. Sensitivity analysis is performed for independent parameters, describing the physical and electrochemical characteristic of polypyrrole film, to verify their influences on the model performance. The values of independent parameters are estimated by comparing model predictions with experimental data obtained from identical conditions. The second model is used to predict the profiles of electrolyte concentrations, charge state, and electrochemical potentials within the battery system during charge and discharge processes as functions of time and position. Energy and power densities are estimated from model predictions and compared with existing battery systems. The independent design criteria on the charge and discharge performance of the cell are provided by studying the effects of design parameters.

  14. Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three sulfonamides in pork and chicken.

    PubMed

    He, Jinxing; Wang, Shuo; Fang, Guozhen; Zhu, Huaping; Zhang, Yan

    2008-05-14

    A selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for online solid-phase extraction-HPLC determination of three trace sulfonamides in pork and chicken muscle. The imprinted functionalized silica gel sorbent exhibited selectivity and fast kinetics for the adsorption and desorption of sulfonamides. With a sample loading flow rate of 4 mL min (-1) for 12.5 min, enhancement factors and detection limits for three sulfonamides ( S/ N = 3) were achieved. The precision (RSD) for nine replicate online sorbent extractions of 5 microg L (-1) sulfonamides was less than 4.5%. The sorbent also offered good linearity ( r (2) > 0.99) for online solid-phase extraction of trace levels of sulfonamides. The method was applied to the determination of sulfonamides in pork and chicken muscle samples. The prepared polymer sorbent shows promise for online solid-phase extraction for HPLC determination of trace levels of sulfonamides in pork and chicken samples.

  15. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †.

    PubMed

    Afzal, Adeel; Dickert, Franz L

    2018-04-20

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.

  16. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †

    PubMed Central

    2018-01-01

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed. PMID:29677107

  17. Determination of azithromycin residue in pork using a molecularly imprinted monolithic microcolumn coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Tong; Yang, Haicui; Jin, Zhen; Liu, Qingying; Song, Xuqin; He, Limin; Fang, Binghu; Meng, Chenying

    2016-04-01

    Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro-column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro-column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro-column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro-column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50-50 μg/L with the correlation coefficient (r(2) ) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO₂) hybrid material synthesized with different molar ratios.

    PubMed

    Clausen, Débora Nobile; Pires, Igor Matheus Ruiz; Tarley, César Ricardo Teixeira

    2014-11-01

    The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Jalili, Roghayeh

    2018-02-01

    We report on a ratiometric fluorescent sensor based on dual-emission molecularly imprinted mesoporous silica embedded with carbon dots and CdTe quantum dots (mMIP@CDs/QDs) for celecoxib (CLX) as target molecule. The fluorescence of the embedded CDs is insensitive to the analyte while the green emissive QDs are selectively quenched by it. This effect is much stronger for the MIP than for the non-imprinted polymer, which indicates a good recognition ability of the mesoporous MIP. The hybrid sensor also exhibited good selectivity to CLX over other substances. The ratio of the intensity at two wavelengths (F550/F440) proportionally decreased with the increasing of CLX concentration in the range of 0.08-0.90 μM. A detection limit as low as 57 nM was achieved. Experimental results testified that this sensor was highly sensitive and selective for the detection of CLX in human serum samples.

  20. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein.

    PubMed

    Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui

    2013-10-01

    Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation and application of a molecular capture for safety detection of cosmetics based on surface imprinting and multi-walled carbon nanotubes.

    PubMed

    Wang, Fang; Li, Xiaoyan; Li, Junjie; Zhu, Chen; Liu, Min; Wu, Zongyuan; Liu, Li; Tan, Xuecai; Lei, Fuhou

    2018-05-14

    A novel composite material for prednisone molecular capture (PS-MC) was prepared by surface imprinting technique in combination with a polyethylene filter plate coated with multi-walled carbon nanotubes for the first time. PS-MC was achieved by using prednisone as the template molecule, 3-aminopropyltriethoxysilane as the monomer, and tetraethoxysilane as the cross-linker. The structure, morphology, and thermal stability of the prepared PS-MC were studied by fourier-transform infrared spectrometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. PS-MC was assessed by re-binding experiments such as adsorption kinetics, adsorption isotherms, molecular identification, and applied to the separation and enrichment of prednisone in cosmetics. The results indicated that PS-MC has rapid binding kinetic, high adsorption capacity, and favorable reusability. The imprinted materials were coupled with HPLC to selectively separation, purification, and detection of prednisone from spiked cosmetic samples. The recoveries of spiked cosmetic samples were in the range of 83.0-106.0%, with relative standard deviations of less than 2.10%, and the limit of detection of 5 ng/mL (S/N = 3). Copyright © 2018. Published by Elsevier Inc.

  2. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Understanding the gas sensing properties of polypyrrole coated tin oxide nanofiber mats

    NASA Astrophysics Data System (ADS)

    Bagchi, Sudeshna; Ghanshyam, C.

    2017-03-01

    Tin oxide-polypyrrole composites have been widely studied for their enhanced sensing performance towards ammonia vapours, but further investigations are required for an understanding of the interaction mechanisms with different target analytes. In this work, polypyrrole coated tin oxide fibers have been synthesized using a two-step approach of electrospinning and vapour phase polymerization for the sensing of ammonia, ethanol, methanol, 2-propanol and acetone vapours. The resistance variation in the presence of these vapours of different nature and concentration is investigated for the determination of sensor response. A decrease in resistance occurred on interaction of tin oxide-polypyrrole with ammonia, as opposed to previous reported works. Partial reduction of polypyrrole due to interfacial interaction with tin oxide has been proposed to explain this behavior. High sensitivity of 7.45 is achieved for 1 ppm ammonia concentration. Furthermore, the sensor exhibited high sensitivity and a faster response towards ethanol vapours although methanol has the highest electron donating capability. The catalytic mechanism has been discussed to explain this interesting behavior. The results reveal that interaction between tin oxide and polypyrrole is crucial to control the predominant sensing mechanism.

  4. Adhesion of Particulate Materials to Mesostructured Polypyrrole

    NASA Astrophysics Data System (ADS)

    Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen

    Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.

  5. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    PubMed

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.

  6. Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems.

    PubMed

    Koç, İlker; Baydemir, Gözde; Bayram, Engin; Yavuz, Handan; Denizli, Adil

    2011-09-15

    The selective removal of 17β-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Enhanced Conductivity and Electrochemical Performance of Electrode Material Based on Multifunctional Dye Doped Polypyrrole.

    PubMed

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-03-01

    Polypyrrole were prepared via in-situ chemical oxidative polymerization in the presence of multisulfonate acid dye (acid violet 19). In this work, acid violet 19 could play the role as dopant, surfactant and physical cross-linker for pyrrole polymerization, and had impact on the morphology, dispersion stability, thermal stability, electrical conductivity and electrochemical behavior of the samples. The thermal stability of the dye doped polypyrrole was enhanced than pure polypyrrole due to the strong interactions between polypyrrole and acid violet 19. The dispersion stability of the samples in water was also improved by incorporating an appropriate amount of acid violet 19. The sample with 20% of acid violet 19 showed granular morphology with the smallest diameter of -50 nm and possessed the maximum electrical conductivity of 39.09 S/cm. The as-prepared multifunctional dye doped polypyrrole samples were used to fabricate electrodes and exhibited a mass specific capacitance of 379-206 F/g in the current density range of 0.2-1.0 A/g. The results indicated that the multifunctional dye could improve the performances of polypyrrole as electrode material for supercapacitors.

  8. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer.

    PubMed

    Mehrzad-Samarin, Mina; Faridbod, Farnoush; Dezfuli, Amin Shiralizadeh; Ganjali, Mohammad Reza

    2017-06-15

    A novel optical nanosensor for detection of Metronidazole in biological samples was reported. Graphene quantum dots embedded silica molecular imprinted polymer (GQDs-embedded SMIP) was synthesized and used as a selective fluorescent probe for Metronidazole detection. The new synthesized GQDs-embedded SMIP showed strong fluorescent emission at 450nm excited at 365nm which quenched in presence of Metronidazole as a template molecule.. The quenching was proportional to the concentration of Metronidazole in a linear range of at least 0.2μM to 15μM. The limit of detection for metronidazole determination was obtained 0.15μM. The nanosensor successfully worked in plasma matrixes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    NASA Astrophysics Data System (ADS)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  10. Theoretical and experimental study for the biomimetic recognition of levothyroxine hormone on magnetic molecularly imprinted polymer.

    PubMed

    Moura, Silio Lima; Fajardo, Laura Martinez; Cunha, Leonardo Dos Anjos; Sotomayor, Maria Del Pilar Taboada; Machado, Francisco Bolivar Correto; Ferrão, Luiz Fernando Araújo; Pividori, Maria Isabel

    2018-06-01

    This study addresses the rational design of a magnetic molecularly imprinted polymer (magnetic-MIP) for the selective recognition of the hormone levothyroxine. The theoretical study was carried out by the density functional theory (DFT) computations considering dispersion interaction energies, and using the D2 Grimme's correction. The B97-D/def2-SV(P)/PCM method is used not only for studying the structure of the template the and monomer-monomer interactions, but also to assess the stoichiometry, noncovalent binding energies, solvation effects and thermodynamics properties such as binding energy. Among the 13 monomers studied in silico, itaconic acid is the most suitable according to the thermodynamic values. In order to assess the efficiency of the computational study, three different magnetic-MIPs based on itaconic acid, acrylic acid and acrylamide were synthesized and experimentally compared. The theoretical results are in agreement with experimental binding studies based on laser confocal microscopy, magneto-actuated immunoassay and electrochemical sensing. Furthermore, and for the first time, the direct electrochemical sensing of L-thyroxine preconcentrated on magnetic-MIP was successfully performed on magneto-actuated electrodes within 30 min with a limit of detection of as low as 0.0356 ng mL -1 which cover the clinical range of total L-thyroxine. Finally, the main analytical features were compared with the gold standard method based on commercial competitive immunoassays. This work provides a thoughtful strategy for magnetic molecularly imprinted polymer design, synthesis and application, opening new perspectives in the integration of these materials in magneto-actuated approaches for replacing specific antibodies in biosensors and microfluidic devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review.

    PubMed

    Figueiredo, L; Erny, G L; Santos, L; Alves, A

    2016-01-01

    Personal-care products (PCPs) involve a variety of chemicals whose persistency along with their constant release into the environment raised concern to their potential impact on wildlife and humans health. Regarded as emergent contaminants, PCPs demonstrated estrogenic activity leading to the need of new methodologies to detect and remove those compounds from the environment. Molecular imprinting starts with a complex between a template molecule and a functional monomer, which is then polymerized in the presence of a cross-linker. After template removal, the polymer will contain specific cavities. Based on a good selectivity towards the template, molecularly imprinted polymers (MIPs) have been investigated as efficient materials for the analysis and extraction of the so called emergent pollutants contaminants. Rather than lowering the limit of detections, the key theoretical advantage of MIP over existing methodologies is the potential to target specific chemicals. This unique feature, sometime named specificity (as synonym to very high selectivity) allows to use cheap, simple and/or rapid quantitative techniques such as fast separation with ultra-violet (UV) detection, sensors or even spectrometric techniques. When a high degree of selectivity is achieved, samples extracted with MIPs can be directly analyzed without the need of a separation step. However, while some papers clearly demonstrated the specificity of their MIP toward the targeted PCP, such prove is often lacking, especially with real matrices, making it difficult to assess the success of the different approaches. This review paper focusses on the latest development of MIPs for the analysis of personal care products in the environment, with particular emphasis on design, preparation and practical applications of MIPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Initial formation behaviour of polypyrrole on single crystal TiO2 through photo-electrochemical reaction.

    PubMed

    Kawakita, Jin; Weitzel, Matthias

    2011-04-01

    Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.

  13. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages.

    PubMed

    Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng

    2016-09-01

    A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The selectivity of protein-imprinted gels and its relation to protein properties: A computer simulation study.

    PubMed

    Yankelov, Rami; Yungerman, Irena; Srebnik, Simcha

    2017-07-01

    Polymer-based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer-based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse-grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Biomimetic ELISA detection of malachite green based on molecularly imprinted polymer film.

    PubMed

    Li, Lu; Peng, Ai-Hong; Lin, Zheng-Zhong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2017-08-15

    A highly selective and sensitive enzyme-linked immunosorbent assay (ELISA) was developed for the detection of malachite green (MG) using a molecularly imprinted polymer (MIP) film as bionic antibody. The MIP film, based on the self-polymerization of dopamine, was fabricated on the surfaces of a 96-well microplate. It showed specific recognition for MG in aqueous solution. A direct competitive ELISA method was established with the sensitivity reaching 10.31μgL -1 and the detection limit being 0.3μgL -1 . The cross-reactivity of two structural analogues to MG was less than 10%. The average recovery tested by MG standard spiking was 88.8% for bass and 90.4% for water, and the relative standard deviations were less than 3.6%. All the above results indicated that the developed method could be used to detect MG in fish and water samples rapidly, specifically and accurately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode.

    PubMed

    Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir

    2015-08-01

    A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.

  17. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples.

    PubMed

    Ning, Fangjian; Peng, Hailong; Dong, Liling; Zhang, Zhong; Li, Jinhua; Chen, Lingxin; Xiong, Hua

    2014-11-19

    Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 μmol g(-1) and 58.82 μmol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs.

  19. To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs)

    PubMed Central

    Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2011-01-01

    Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081

  20. Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables.

    PubMed

    Yan, Hongyuan; Sun, Ning; Han, Yehong; Yang, Chen; Wang, Mingyu; Wu, Ruijun

    2013-09-13

    New ionic liquid-mediated molecularly imprinted polymers (IL-MIPs) were prepared by precipitation polymerization using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM(+)PF6(-)) as the auxiliary solvent, α-chloro-DDT as the dummy template, and they were successfully applied as the sorbents of solid-phase extraction (SPE) for rapid screening of dicofol from cabbage, tomato, and carrot samples. The IL-MIPs were characterized by FTIR, FE-SEM, static adsorption and chromatographic evaluation, and the results revealed that the IL-MIPs had higher adsorption capacity and selectivity to dicofol in aqueous solution than that of ionic liquid-mediated non-imprinted polymers (IL-NIPs) and non-imprinted polymers (NIPs). Under the optimized conditions, the IL-MIPs-SPE-GC method offered good linearity (0.4-40.0ngg(-1), r(2)=0.9995) and the average recoveries of dicofol at three spiked levels were in a range of 84.6-104.1% (n=3) with RSD≤7.6%. The proposed method obviously improved the selectivity and purification effect, and eliminated the effect of template leakage on dicofol quantitative analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs).

    PubMed

    Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2011-01-01

    Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.

  2. Comparative analysis of isodisomic and heterodisomic segments in cases with maternal uniparental disomy 14 suggests more than one imprinted region.

    PubMed

    Kotzot, D

    2001-09-01

    The results of molecular investigations of 21 cases with complete or segmental maternal uniparental disomy (UPD) 14 published in the literature were compared with respect to isodisomic and heterodisomic segments. The aim of the study was to find hints toward imprinted regions other than the recently defined imprinted segment 14q32. Three regions with no isodisomic molecular marker were found. The most distal of these regions located on 14q32.12 and 14q32.13 supports the hypothesis of genomic imprinting as the cause of the maternal UPD 14 phenotype by synteny to the maternally imprinted region on mouse distal chromosome 12 and correlation with the recently defined imprinting cluster on human chromosome 14q32. The other two heterodisomic areas located on 14q11.2-->14q12 and 14q21.1-->14q31.2 are hints toward one or more additional regions of genomic imprinting on human chromosome 14.

  3. Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Piletsky, Sergey A.; Karim, Kal; Gascoine, Paul; Lacey, Richard; Sun, Tong; Grattan, Kenneth T. V.

    2014-05-01

    Previously, we have developed chemical sensors using fibre optic-based techniques for the detection of Cocaine, utilising molecularly imprinted polymers (MIPs) containing fluorescein moieties as the signalling groups. Here, we report the computational design of a fluorophore which was incorporated into a MIP for the generation of a novel sensor that offers improved sensitivity for Cocaine with a detection range of 1-100μM. High selectivity for Cocaine over a suite of known Cocaine interferants (25μM) was also demonstrated by measuring changes in the intensity of fluorescence signals received from the sensor.

  4. Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming

    2017-05-01

    This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.

  5. Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water.

    PubMed

    Hassanzadeh, Marjan; Ghaemy, Mousa

    2018-02-21

    In this study, new bio-based magnetic molecularly imprinted polymer nanoparticles (∼23 nm) were synthesized from keratin extracted from chicken feathers and methacrylate-functionalized Fe 3 O 4 nanoparticles for its potential application in separation and removal of bisphenol A from water. The prepared magnetic molecularly imprinted polymer was characterized by Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, thermogravimetric analysis, alternative gradient field magnetometry, and energy-dispersive X-ray spectroscopy. The sorption of bisphenol A was investigated by changing the influencing factors such as pH, immersion time, Fe 3 O 4 nanoparticles dosage, and the initial concentration of bisphenol A. Results illustrated that sorption was very fast and efficient (Q m  = 600 mg/g) having a removal efficiency of ∼98% in 40 min of immersion. The adsorption process showed better conformity with the Weber-Morris kinetics and the Freundlich isotherm model. The selectivity of bisphenol A by adsorbent was checked in the presence of hydroquinone, phenol, tetrabromobisphenol, and 4,4'-biphenol as interferences. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Genomic Imprinting in Mammals

    PubMed Central

    Barlow, Denise P.

    2014-01-01

    Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation. PMID:24492710

  7. Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery.

    PubMed

    Yan, Hongyuan; Yang, Chen; Sun, Yunyun; Row, Kyung Ho

    2014-09-26

    A new type of ionic liquid molecularly imprinted polymers (IL-MIPs) synthesized by precipitation polymerization using 1-allyl-3-methylimidazolium bromide as an auxiliary solvent and α-chloro-dichlorodiphenyltrichloroethane (α-chloro-DDT) as the template was applied as a selective sorbent of minimized pipette tip-solid-phase extraction (PT-SPE) for rapid isolation and extraction of dicofol (DCF) from celery samples. The pretreatment procedure of celery samples involved only 2.0mg of IL-MIPs, 0.8 mL of acetonitrile-water (ACN-H2O; 1:1, v/v) (washing solvent), and 1.0 mL of acetone-10% acetic acid (HOAc) (elution solvent). Compared with molecularly imprinted polymers (MIPs), ionic liquid-non-imprinted polymers (IL-NIPs) and conventional sorbents such as C18, Si, NH2, and Al2O3-N, IL-MIPs showed higher adsorption and purification capacity to DCF in aqueous solution. Good linearity for DCF was observed in the range from 2.3 to 232.5 ng g(-1) (r(2)=0.9995). The average recoveries at three spiking levels ranged from 86.6% to 101.9% with relative standard deviations (RSDs) of ≤ 6.5% (n=3). The presented IL-MIPs-PT-SPE-GC/ECD method combines the advantages of MIPs, IL, and PT-SPE, and can be used in aqueous conditions with high affinity and selectivity to analytes of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples.

    PubMed

    Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad

    2016-09-01

    In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon.

  9. Preparation, characterization and adsorption study of o-cresol molecularly imprinted grafted silica gel sorbent synthesized by sol-gel polymerization

    NASA Astrophysics Data System (ADS)

    Zinalibdin, Mohamad Raizul; Jaafar, Jafariah; Majid, Zaiton Abdul; Sanagi, Mohd Marsin

    2017-11-01

    In this study, a new composite core-shell of o-cresol molecularly imprinted polymer grafted silica gel (MIP@SiO2) was prepared via sol-gel polymerization. It was synthesized using o-cresol as the template molecule, 3-propyl(metacrylate)trimethoxysilane (3-PMTMOS) as the functional monomer, tetraethoxysilane (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica gel. The non-imprinted polymer-grafted silica gel (NIP@SiO2) was prepared with the same technique but without template molecule. This analyte was selected as a template due to the fact that it is one of toluene metabolites. The characterization of MIP@SiO2 and NIP@SiO2 were observed by N2 adsorption analysis and Field emission scanning electron microscopy-energy dispersive x-ray (FESEM-EDX). The MIP@SiO2 and NIP@SiO2 were employed as an adsorbent for the extraction of o-cresol, a metabolite in urine sample for the monitoring of occupational toluene exposure in workers. Based on the results of the adsorption study, the MIP prepared using 0.5 mmol 3-(propylmethacrylate)trimethoxysilane), 10 mL of ethanol, 4 mmol TEOS,0.05 mmol o-cresol, 0.1g silica gel and 1mL of 0.01 mol/L acetic acid was found the adsorption capacity (0.9920 mg g-1) and imprint factor (5.21).

  10. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits themore » potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.« less

  11. Synthesis and characterization of a molecularly imprinted polymer for the determination of trace tributyltin in seawater and seafood by liquid chromatography-tandem mass spectroscopy.

    PubMed

    Zhu, Shanshan; Hu, Futao; Yang, Ting; Gan, Ning; Pan, Daodong; Cao, Yuting; Wu, Dazhen

    2013-03-15

    Analysis of tributyltin chloride (TBT) in environmental samples, such as seawater, is important in order to evaluate the TBT contamination and accumulation in the trophic chain. The environmental impact of organotin compounds has been a particular focus of analytical studies. The present study reports the use of molecular imprinting technology coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine trace amounts of TBT in seawater and seafood (mussel tissue samples). The imprinted polymer was synthesized by a non-covalent free-radical approach using acrylamide (AM) as a monomer and TBT as a template molecule in acetonitrile solvent (polymerization media). The imprinted polymer synthesized by this approach exhibited good adsorptive capacity and allowed specific retention of TBT. Recoveries of TBT in seawater samples spiked with different TBT concentrations ranged from 67.2% to 81.1% with peak area precision (RSD)<3.7%, and recoveries of TBT in mussel tissue samples ranged from 75.0% to 94.2% with RSD<4.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.

    PubMed

    El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M

    2015-12-01

    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our

  13. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD).

    PubMed

    Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan

    2013-07-24

    Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.

  14. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C

    2018-03-15

    Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  16. A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects.

    PubMed

    Johnstone, Karen A; DuBose, Amanda J; Futtner, Christopher R; Elmore, Michael D; Brannan, Camilynn I; Resnick, James L

    2006-02-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.

  17. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Chen, Fang; Zhu, De-Rong

    2015-02-01

    A simple, fast, and universal suspension polymerization method was used to synthesize the molecularly imprinted microspheres (MIMs) for the topical anesthetic benzocaine (BZC). The desired diameter (10-20 μm) and uniform morphology of the MIMs were obtained easily by changing one or more of the synthesis conditions, including type and amount of surfactant, stirring rate, and ratio of organic to water phase. The MIMs obtained were used as a molecular-imprinting solid-phase-extraction (MISPE) material for extraction of BZC in human serum and fish tissues. The MISPE results revealed that the BZC in these biosamples could be enriched effectively after the MISPE operation. The recoveries of BZC on MIMs cartridges were higher than 90% (n = 3). Finally, an MISPE-HPLC method with UV detection was developed for highly selective extraction and fast detection of trace BZC in human serum and fish tissues. The developed method could also be used for the enrichment and detection of BZC in other complex biosamples.

  18. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol

    NASA Astrophysics Data System (ADS)

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-01

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.

  19. A novel, molecularly imprinted polymer sensor made using an oligomeric methyl silsesquioxane-TiO2 composite sol on a glassy carbon electrode for the detection of procainamide hydrochloride.

    PubMed

    Wang, Kai; Guan, Xiwen; Chai, Shigan; Zou, Qichao; Zhang, Xiuhua; Zhang, Jinzhi

    2015-02-15

    In this study, we designed a novel molecularly imprinted polymer (MIP), oligomeric methyl silsesquioxane (O-MSSQ)-TiO2 composite sol, which was made using a sol-gel reaction. This polymer has structural rigidity and high surface area of O-MSSQ, as well as high bio-compatibility and relatively good conductivity of the TiO2. Next, a sensitive and selective imprinted electrochemical sensor was successfully constructed for the direct detection of procainamide hydrochloride by molecularly imprinting a film onto the surface of a glassy carbon electrode. Adding TiO2 resulted in a noticeable enhancement in the sensitivity of the MIP sensor. The performance of the O-MSSQ-TiO2 film was discussed, and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of procainamide hydrochloride in the range of 4.00 × 10(-9)-4.97 × 10(-5) M using differential pulse voltammetry, and the detection limit was 1.30 × 10(-9) M with S/N = 3. Furthermore, the sensor was applied to determine the procainamide hydrochloride content in a human blood serum sample. The recoveries of the sensors varied from 96.77% to 101.35%, indicating that the prepared sensor might be promising for the determination of procainamide hydrochloride in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect procainamide hydrochloride. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment.

    PubMed

    Franco, Jefferson Honorio; Aissa, Alejandra Ben; Bessegato, Guilherme Garcia; Fajardo, Laura Martinez; Zanoni, Maria Valnice Boldrin; Pividori, María Isabel; Del Pilar Taboada Sotomayor, Maria

    2017-02-01

    Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retained more selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation.

  1. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin.

    PubMed

    Zeng, Huan; Wang, Yuzhi; Liu, Xiaojie; Kong, Jinhuan; Nie, Chan

    2012-05-15

    Molecular imprinted polymers (MIPs) were prepared using rutin as the template, different reagents as the functional monomer and different reagents as the cross-linker by solution polymerization. Several parameters that would influence the performance of MIPs were investigated including the type of functional monomer (single or double) and cross-linker (single or double), and the molar ratio of the template, the functional monomer and the cross-linker. The optimum synthesis conditions of MIPs were found to be bi-monomers (acrylamide-co-2-vinyl pyridine, 3:1) and bi-crosslinker (ethylene glycol dimethacrylate-co-divinylbenzene, 3:1). The ratio of the template, the functional monomer and the cross-linker was found to be 1:6:20. MIPs synthesized under these conditions were filled into the cartridges as the adsorbents of solid-phase extraction (SPE). A competition test was conducted to authenticate the selectivity and the specificity of molecularly imprinted solid-phase extraction (MISPE) for rutin using the mixture solution of standard rutin and its structural analogs including quercetin, naringenin and kaempferol. Compared with purchased SPE including C(18), silica and PCX, MISPE showed better selectivity and enrichment property for rutin in the extracted solutions of Chinese medicinal plants than any others. The mean recoveries were 85.93% (RSD: 3.04%, n=3) for Saururus chinensis (Lour.) Bail and 88.61% (RSD: 3.36%, n=3) for Flos Sophorae, respectively, which indicated that the optimized rutin-MIPs possess the value of practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    PubMed

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  3. Polymers imprinted with PAH mixtures--comparing fluorescence and QCM sensors.

    PubMed

    Lieberzeit, Peter A; Halikias, Konstantin; Afzal, Adeel; Dickert, Franz L

    2008-12-01

    Molecular imprinting with binary mixtures of different polycyclic aromatic hydrocarbons (PAH) is a tool for design of chemically highly sensitive layers for detection of these analytes. Sensor responses increase by one order of magnitude compared with layers imprinted with one type of template. Detection limits, e.g. for pyrene, reach down to 30 ng L(-1) in water, as could be observed with a naphthalene and pyrene-imprinted polyurethane. Comparing sensor characteristics obtained by QCM and fluorescence reveals different saturation behaviours indicating that, first, single PAH molecules occupy the interaction centres followed by gradual excimer incorporation at higher concentrations finally leading to substantial quenching, when all accessible cavities are occupied. The plateau in the mass-sensitive measurements suggests that up to 80% of the cavities generated in the MIP are re-occupied. Displacement measurements between chrysene and pyrene revealed that for imprinted layers with very high pyrene sensitivities the signals of both PAH are additive, whereas in materials with lower pyrene uptake the two analytes replace each other in the interaction sites of the polymer.

  4. Comparison of multi-recognition molecularly imprinted polymers for recognition of melamine, cyromazine, triamterene, and trimethoprim.

    PubMed

    Wang, Xian-Hua; Zhang, Jing; Peng, Chao; Dong, Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-09-01

    Three fragmental templates, including 2,4-diamino-6-methyl-1,3,5-triazine (DMT), cyromazine (CYR), and trimethoprim (TME), were used to prepare the fragment molecularly imprinted polymers (FMIPs), respectively, in polar ternary porogen which was composed of ionic liquid ([BMIM]BF4), methanol, and water. The morphology, specific surface areas, and selectivity of the obtained FMIPs for fragmental analogues were systematically characterized. The experimental results showed that the FMIPs possessed the best specific recognition ability to the relative template and the greatest imprinting factor (IF) was 5.25, 6.69, and 7.11 of DMT on DMT-MIPs, CYR on CYR-MIPs, and TME on TME-MIPs, respectively. In addition, DMT-MIPs also showed excellent recognition capability for fragmental analogues including CYR, melamine (MEL), triamterene (TAT), and TME, and the IFs were 2.08, 3.89, 2.18, and 2.60, respectively. The effects of pH and temperature on the retention of the fragmental and structural analogues were studied in detail. Van't Hoff analysis indicated that the retention and selectivity on FMIPs were an entropy-driven process, i.e., steric interaction. The resulting DMT-MIPs were used as a solid-phase extraction material to enrich CYR, MEL, TAT, and TME in different bio-matrix samples for high-performance liquid chromatography analysis. The developed method had acceptable recoveries (86.8-98.6%, n = 3) and precision (2.7-4.6%) at three spiked levels (0.05-0.5 μg g(-1)).

  5. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film.

    PubMed

    Zhang, Qingwen; Jing, Lijing; Zhang, Jinling; Ren, Yamin; Wang, Yang; Wang, Yi; Wei, Tianxin; Liedberg, Bo

    2014-10-15

    A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10(-15)g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8months of storage at room temperature, which is more robust than protein-based biosensors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  7. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water.

    PubMed

    Cennamo, Nunzio; D'Agostino, Girolamo; Porto, Gianni; Biasiolo, Adriano; Perri, Chiara; Arcadio, Francesco; Zeni, Luigi

    2018-06-05

    A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs) mixture sample. The sensor's response is the same for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C₄⁻C 11 range. We have also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.

  8. Synthesis of molecularly imprinted polymers using acrylamide-β-cyclodextrin as a cofunctional monomer for the specific capture of tea saponins from the defatted cake extract of Camellia oleifera.

    PubMed

    Guo, Huiqin; Xiong, Jingjing; Ma, Wentian; Wu, Minghuo; Yan, Liushui; Li, Kexin; Liu, Yu

    2016-11-01

    Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-β-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R 2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R 2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-β-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Liu, Hongcheng; Lin, Xin; Lin, Tao; Zhang, Yulong; Luo, Yinglan; Li, Qiwan

    2016-09-01

    A simple, accurate, and highly sensitive analytical method was developed in this study for the determination of nine β-agonists in milk. In this method, a new magnetic adsorbent of molecularly imprinted polymers/magnetic nanoparticles prepared by simple physical blending was adopted, which enabled magnetic solid-phase extraction. Thus, the resultant material can be separated from the solvent rapidly and conveniently by a magnet. Two kinds of molecularly imprinted polymer/magnetic nanoparticles materials were fabricated, and the characteristics of materials such as the ratio, pH, amount, desorption, and regeneration were investigated. The analytes were quantified by ultra high performance liquid chromatography coupled to an electrospray ionization tandem mass spectrometer operating in multiple reaction monitoring modes. The detection limit of the method was 0.003-0.3 μg/L, and the detection capability was 0.01-0.3 μg/L. The recoveries of these compounds were 65.7-114% at three spiked levels. Reproducibility represented by relative standard deviation was 11.2% or less. The method was successfully applied to the screening of real samples obtained from local markets and confirmation of the suspected target analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Neurobiology of imprinting].

    PubMed

    Ohki-Hamazaki, Hiroko

    2012-06-01

    Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.

  11. Thermometric sensing of nitrofurantoin by noncovalently imprinted polymers containing two complementary functional monomers.

    PubMed

    Athikomrattanakul, Umporn; Gajovic-Eichelmann, Nenad; Scheller, Frieder W

    2011-10-15

    Molecularly imprinted polymers (MIPs) for nitrofurantoin (NFT) recognition addressing in parallel of two complementary functional groups were created using a noncovalent imprinting approach. Specific tailor-made functional monomers were synthesized: a diaminopyridine derivative as the receptor for the imide residue and three (thio)urea derivatives for the interaction with the nitro group of NFT. A significantly improved binding of NFT to the new MIPs was revealed from the imprinting factor, efficiency of binding, affinity constants and maximum binding number as compared to previously reported MIPs, which addressed either the imide or the nitro residue. Substances possessing only one functionality (either the imide group or nitro group) showed significantly weaker binding to the new imprinted polymers than NFT. However, the compounds lacking both functionalities binds extremely weak to all imprinted polymers. The new imprinted polymers were applied in a flow-through thermistor in organic solvent for the first time. The MIP-thermistor allows the detection of NFT down to a concentration of 5 μM in acetonitrile + 0.2% dimethyl sulfoxide (DMSO). The imprinting factor of 3.91 at 0.1 mM of NFT as obtained by thermistor measurements is well comparable to the value obtained by batch binding experiments. © 2011 American Chemical Society

  12. Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma.

    PubMed

    Cobb, Zoe; Sellergren, Börje; Andersson, Lars I

    2007-12-01

    Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.

  13. Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2,4-dichlorophenoxyacetic acid in the human urine and different water samples.

    PubMed

    Omidi, Fariborz; Behbahani, Mohammad; Sadeghi Abandansari, Hamid; Sedighi, Alireza; Shahtaheri, Seyed Jamaleddin

    2014-01-01

    A molecular-imprinted polymer nanoparticles (MIP-NP) for the selective preconcentration of 2,4-dichlorophenoxyacetic acid (2,4-D) is described. It was obtained by precipitation polymerization from methacrylic acid (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2,2'-azobisisobutyronitrile (the initiator) and 2,4-D (the template molecule) in acetonitrile solution. The MIP-NPs were characterized by thermogravimetric analysis, and by scanning electron microscopy. Imprinted 2,4-D molecules were removed from the polymeric structure using acetic acid in methanol (15:85 v/v %) as the eluting solvent. The sorption and desorption process occur within 10 min and 15 min, respectively. The maximum sorbent capacity of the molecular imprinted polymer is 89.2 mg g(-1). The relative standard deviation and limit of detection for water samples by introduced selective solid phase extraction were 4.2% and 1.25 μg L(-1), and these data for urine samples were 4.7% and 1.80 μg L(-1), respectively. The method was applied to the determination of 2,4-D in the urine and different water samples.

  14. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves.

    PubMed

    Miura, Chitose; Matsunaga, Hisami; Haginaka, Jun

    2016-08-05

    Molecularly imprinted polymers (MIPs) for caffeic acid (CA) were prepared using 4-vinylpyridine and methacrylamide (MAM) as functional monomers, divinylbenzene as a crosslinker and acetonitrile-toluene (3:1, v/v) as a porogen by precipitation polymerization. The use of MAM as the co-monomer resulted in the formation of microsphere MIPs and non-imprinted polymers (NIPs) with ca. 3- and 5-μm particle diameters, respectively. Binding experiments and Scatchard analyses revealed that the binding capacity and affinity of the MIP to CA are higher than those of the NIP. The retention and molecular-recognition properties of the prepared MIPs were evaluated using water-acetonitrile and sodium phosphate buffer-acetonitrile as mobile phases in hydrophilic interaction chromatography (HILIC) and reversed-phase chromatography, respectively. In HILIC mode, the MIP showed higher molecular-recognition ability for CA than in reversed-phase mode. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CA on the MIP in HILIC mode, while hydrogen bonding and hydrophobic interactions seem to work for the recognition of CA in reversed-phase mode. The MIP had a specific molecular-recognition ability for CA in HILIC mode, while other structurally related compounds, such as chlorogenic acid (CGA), gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP was successfully applied for extraction of CA and CGA in the leaves of Eucommia ulmodies in HILIC mode. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    PubMed

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  16. Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography.

    PubMed

    Zhao, Qing-Li; Zhou, Jin; Zhang, Li-Shun; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-05-15

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic coating for capillary electrochromatography. The imprinted monolithic coating was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), S-amlodipine (template), methacrylic acid (functional monomer), and 2-methacrylamidopropyl methacrylate (crosslinker), in a porogenic mixture of toluene-isooctane. The influence of synthesis parameters on the imprinting effect and separation performance, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest resolution for enantiomers separation on the imprinted monolithic column prepared with MA 0702 was up to 22.3, about 2 times higher than that prepared in absence of the POSS. Column efficiency on the POSS-based MIP coatings was beyond 30,000 plate m(-1). The comparisons between MIP coating synthesized with the POSS and without the POSS were made in terms of selectivity, column efficiency, and resolution. POSS-based MIP capillaries with naproxen or zopiclone was also prepared and separation of enantiomers can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An Unexpected Function of the Prader-Willi Syndrome Imprinting Center in Maternal Imprinting in Mice

    PubMed Central

    Wu, Mei-Yi; Jiang, Ming; Zhai, Xiaodong; Beaudet, Arthur L.; Wu, Ray-Chang

    2012-01-01

    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11–q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings

  18. An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice.

    PubMed

    Wu, Mei-Yi; Jiang, Ming; Zhai, Xiaodong; Beaudet, Arthur L; Wu, Ray-Chang

    2012-01-01

    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings

  19. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    PubMed

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of Size and Shape of Silica Supports on the Sol⁻Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol.

    PubMed

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Jiang, Yingfang; Zhang, Letao; Yasin, Akram

    2018-05-11

    The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g −1 . The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.